NetBSD/sys/arch/m68k/060sp/fskeletn.s

351 lines
10 KiB
ArmAsm

#
# $NetBSD: fskeletn.s,v 1.2 1996/05/15 19:48:30 is Exp $
#
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
# MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
# M68000 Hi-Performance Microprocessor Division
# M68060 Software Package Production Release
#
# M68060 Software Package Copyright (C) 1993, 1994, 1995, 1996 Motorola Inc.
# All rights reserved.
#
# THE SOFTWARE is provided on an "AS IS" basis and without warranty.
# To the maximum extent permitted by applicable law,
# MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
# INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS
# FOR A PARTICULAR PURPOSE and any warranty against infringement with
# regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
# and any accompanying written materials.
#
# To the maximum extent permitted by applicable law,
# IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
# (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
# BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
# ARISING OF THE USE OR INABILITY TO USE THE SOFTWARE.
#
# Motorola assumes no responsibility for the maintenance and support
# of the SOFTWARE.
#
# You are hereby granted a copyright license to use, modify, and distribute the
# SOFTWARE so long as this entire notice is retained without alteration
# in any modified and/or redistributed versions, and that such modified
# versions are clearly identified as such.
# No licenses are granted by implication, estoppel or otherwise under any
# patents or trademarks of Motorola, Inc.
#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#
# fskeleton.s
#
# This file contains:
# (1) example "Call-out"s
# (2) example package entry code
# (3) example "Call-out" table
#
#################################
# (1) EXAMPLE CALL-OUTS #
# #
# _060_fpsp_done() #
# _060_real_ovfl() #
# _060_real_unfl() #
# _060_real_operr() #
# _060_real_snan() #
# _060_real_dz() #
# _060_real_inex() #
# _060_real_bsun() #
# _060_real_fline() #
# _060_real_fpu_disabled() #
# _060_real_trap() #
#################################
#
# _060_fpsp_done():
#
# This is the main exit point for the 68060 Floating-Point
# Software Package. For a normal exit, all 060FPSP routines call this
# routine. The operating system can do system dependent clean-up or
# simply execute an "rte" as with the sample code below.
#
global _060_fpsp_done
_060_fpsp_done:
rte
#
# _060_real_ovfl():
#
# This is the exit point for the 060FPSP when an enabled overflow exception
# is present. The routine below should point to the operating system handler
# for enabled overflow conditions. The exception stack frame is an overflow
# stack frame. The FP state frame holds the EXCEPTIONAL OPERAND.
#
# The sample routine below simply clears the exception status bit and
# does an "rte".
#
global _060_real_ovfl
_060_real_ovfl:
fsave -(%sp)
mov.w &0x6000,0x2(%sp)
frestore (%sp)+
rte
#
# _060_real_unfl():
#
# This is the exit point for the 060FPSP when an enabled underflow exception
# is present. The routine below should point to the operating system handler
# for enabled underflow conditions. The exception stack frame is an underflow
# stack frame. The FP state frame holds the EXCEPTIONAL OPERAND.
#
# The sample routine below simply clears the exception status bit and
# does an "rte".
#
global _060_real_unfl
_060_real_unfl:
fsave -(%sp)
mov.w &0x6000,0x2(%sp)
frestore (%sp)+
rte
#
# _060_real_operr():
#
# This is the exit point for the 060FPSP when an enabled operand error exception
# is present. The routine below should point to the operating system handler
# for enabled operand error exceptions. The exception stack frame is an operand error
# stack frame. The FP state frame holds the source operand of the faulting
# instruction.
#
# The sample routine below simply clears the exception status bit and
# does an "rte".
#
global _060_real_operr
_060_real_operr:
fsave -(%sp)
mov.w &0x6000,0x2(%sp)
frestore (%sp)+
rte
#
# _060_real_snan():
#
# This is the exit point for the 060FPSP when an enabled signalling NaN exception
# is present. The routine below should point to the operating system handler
# for enabled signalling NaN exceptions. The exception stack frame is a signalling NaN
# stack frame. The FP state frame holds the source operand of the faulting
# instruction.
#
# The sample routine below simply clears the exception status bit and
# does an "rte".
#
global _060_real_snan
_060_real_snan:
fsave -(%sp)
mov.w &0x6000,0x2(%sp)
frestore (%sp)+
rte
#
# _060_real_dz():
#
# This is the exit point for the 060FPSP when an enabled divide-by-zero exception
# is present. The routine below should point to the operating system handler
# for enabled divide-by-zero exceptions. The exception stack frame is a divide-by-zero
# stack frame. The FP state frame holds the source operand of the faulting
# instruction.
#
# The sample routine below simply clears the exception status bit and
# does an "rte".
#
global _060_real_dz
_060_real_dz:
fsave -(%sp)
mov.w &0x6000,0x2(%sp)
frestore (%sp)+
rte
#
# _060_real_inex():
#
# This is the exit point for the 060FPSP when an enabled inexact exception
# is present. The routine below should point to the operating system handler
# for enabled inexact exceptions. The exception stack frame is an inexact
# stack frame. The FP state frame holds the source operand of the faulting
# instruction.
#
# The sample routine below simply clears the exception status bit and
# does an "rte".
#
global _060_real_inex
_060_real_inex:
fsave -(%sp)
mov.w &0x6000,0x2(%sp)
frestore (%sp)+
rte
#
# _060_real_bsun():
#
# This is the exit point for the 060FPSP when an enabled bsun exception
# is present. The routine below should point to the operating system handler
# for enabled bsun exceptions. The exception stack frame is a bsun
# stack frame.
#
# The sample routine below clears the exception status bit, clears the NaN
# bit in the FPSR, and does an "rte". The instruction that caused the
# bsun will now be re-executed but with the NaN FPSR bit cleared.
#
global _060_real_bsun
_060_real_bsun:
fsave -(%sp)
fmov.l %fpsr,-(%sp)
andi.b &0xfe,(%sp)
fmov.l (%sp)+,%fpsr
add.l &0xc,%sp
rte
#
# _060_real_fline():
#
# This is the exit point for the 060FPSP when an F-Line Illegal exception is
# encountered. Three different types of exceptions can enter the F-Line exception
# vector number 11: FP Unimplemented Instructions, FP implemented instructions when
# the FPU is disabled, and F-Line Illegal instructions. The 060FPSP module
# _fpsp_fline() distinguishes between the three and acts appropriately. F-Line
# Illegals branch here.
#
global _060_real_fline
_060_real_fline:
bra.b _060_real_fline
#
# _060_real_fpu_disabled():
#
# This is the exit point for the 060FPSP when an FPU disabled exception is
# encountered. Three different types of exceptions can enter the F-Line exception
# vector number 11: FP Unimplemented Instructions, FP implemented instructions when
# the FPU is disabled, and F-Line Illegal instructions. The 060FPSP module
# _fpsp_fline() distinguishes between the three and acts appropriately. FPU disabled
# exceptions branch here.
#
# The sample code below enables the FPU, sets the PC field in the exception stack
# frame to the PC of the instruction causing the exception, and does an "rte".
# The execution of the instruction then proceeds with an enabled floating-point
# unit.
#
global _060_real_fpu_disabled
_060_real_fpu_disabled:
mov.l %d0,-(%sp) # enabled the fpu
movc %pcr,%d0
bclr &0x1,%d0
movc %d0,%pcr
mov.l (%sp)+,%d0
mov.l 0xc(%sp),0x2(%sp) # set "Current PC"
rte
#
# _060_real_trap():
#
# This is the exit point for the 060FPSP when an emulated "ftrapcc" instruction
# discovers that the trap condition is true and it should branch to the operating
# system handler for the trap exception vector number 7.
#
# The sample code below simply executes an "rte".
#
global _060_real_trap
_060_real_trap:
rte
#############################################################################
##################################
# (2) EXAMPLE PACKAGE ENTRY CODE #
##################################
global _060_fpsp_snan
_060_fpsp_snan:
bra.l _FP_CALL_TOP+0x80+0x00
global _060_fpsp_operr
_060_fpsp_operr:
bra.l _FP_CALL_TOP+0x80+0x08
global _060_fpsp_ovfl
_060_fpsp_ovfl:
bra.l _FP_CALL_TOP+0x80+0x10
global _060_fpsp_unfl
_060_fpsp_unfl:
bra.l _FP_CALL_TOP+0x80+0x18
global _060_fpsp_dz
_060_fpsp_dz:
bra.l _FP_CALL_TOP+0x80+0x20
global _060_fpsp_inex
_060_fpsp_inex:
bra.l _FP_CALL_TOP+0x80+0x28
global _060_fpsp_fline
_060_fpsp_fline:
bra.l _FP_CALL_TOP+0x80+0x30
global _060_fpsp_unsupp
_060_fpsp_unsupp:
bra.l _FP_CALL_TOP+0x80+0x38
global _060_fpsp_effadd
_060_fpsp_effadd:
bra.l _FP_CALL_TOP+0x80+0x40
#############################################################################
################################
# (3) EXAMPLE CALL-OUT SECTION #
################################
# The size of this section MUST be 128 bytes!!!
global _FP_CALL_TOP
_FP_CALL_TOP:
long _060_real_bsun - _FP_CALL_TOP
long _060_real_snan - _FP_CALL_TOP
long _060_real_operr - _FP_CALL_TOP
long _060_real_ovfl - _FP_CALL_TOP
long _060_real_unfl - _FP_CALL_TOP
long _060_real_dz - _FP_CALL_TOP
long _060_real_inex - _FP_CALL_TOP
long _060_real_fline - _FP_CALL_TOP
long _060_real_fpu_disabled - _FP_CALL_TOP
long _060_real_trap - _FP_CALL_TOP
long _060_real_trace - _FP_CALL_TOP
long _060_real_access - _FP_CALL_TOP
long _060_fpsp_done - _FP_CALL_TOP
long 0x00000000, 0x00000000, 0x00000000
long _060_imem_read - _FP_CALL_TOP
long _060_dmem_read - _FP_CALL_TOP
long _060_dmem_write - _FP_CALL_TOP
long _060_imem_read_word - _FP_CALL_TOP
long _060_imem_read_long - _FP_CALL_TOP
long _060_dmem_read_byte - _FP_CALL_TOP
long _060_dmem_read_word - _FP_CALL_TOP
long _060_dmem_read_long - _FP_CALL_TOP
long _060_dmem_write_byte - _FP_CALL_TOP
long _060_dmem_write_word - _FP_CALL_TOP
long _060_dmem_write_long - _FP_CALL_TOP
long 0x00000000
long 0x00000000, 0x00000000, 0x00000000, 0x00000000
#############################################################################
# 060 FPSP KERNEL PACKAGE NEEDS TO GO HERE!!!