973 lines
27 KiB
C
973 lines
27 KiB
C
/* $NetBSD: spdmem.c,v 1.28 2017/10/24 08:02:06 msaitoh Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2007 Nicolas Joly
|
|
* Copyright (c) 2007 Paul Goyette
|
|
* Copyright (c) 2007 Tobias Nygren
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Serial Presence Detect (SPD) memory identification
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: spdmem.c,v 1.28 2017/10/24 08:02:06 msaitoh Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/device.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/sysctl.h>
|
|
#include <machine/bswap.h>
|
|
|
|
#include <dev/i2c/i2cvar.h>
|
|
#include <dev/ic/spdmemreg.h>
|
|
#include <dev/ic/spdmemvar.h>
|
|
|
|
/* Routines for decoding spd data */
|
|
static void decode_edofpm(const struct sysctlnode *, device_t, struct spdmem *);
|
|
static void decode_rom(const struct sysctlnode *, device_t, struct spdmem *);
|
|
static void decode_sdram(const struct sysctlnode *, device_t, struct spdmem *,
|
|
int);
|
|
static void decode_ddr(const struct sysctlnode *, device_t, struct spdmem *);
|
|
static void decode_ddr2(const struct sysctlnode *, device_t, struct spdmem *);
|
|
static void decode_ddr3(const struct sysctlnode *, device_t, struct spdmem *);
|
|
static void decode_ddr4(const struct sysctlnode *, device_t, struct spdmem *);
|
|
static void decode_fbdimm(const struct sysctlnode *, device_t, struct spdmem *);
|
|
|
|
static void decode_size_speed(device_t, const struct sysctlnode *,
|
|
int, int, int, int, bool, const char *, int);
|
|
static void decode_voltage_refresh(device_t, struct spdmem *);
|
|
|
|
#define IS_RAMBUS_TYPE (s->sm_len < 4)
|
|
|
|
static const char* const spdmem_basic_types[] = {
|
|
"unknown",
|
|
"FPM",
|
|
"EDO",
|
|
"Pipelined Nibble",
|
|
"SDRAM",
|
|
"ROM",
|
|
"DDR SGRAM",
|
|
"DDR SDRAM",
|
|
"DDR2 SDRAM",
|
|
"DDR2 SDRAM FB",
|
|
"DDR2 SDRAM FB Probe",
|
|
"DDR3 SDRAM",
|
|
"DDR4 SDRAM",
|
|
"unknown",
|
|
"DDR4E SDRAM",
|
|
"LPDDR3 SDRAM",
|
|
"LPDDR4 SDRAM"
|
|
};
|
|
|
|
static const char* const spdmem_ddr4_module_types[] = {
|
|
"DDR4 Extended",
|
|
"DDR4 RDIMM",
|
|
"DDR4 UDIMM",
|
|
"DDR4 SO-DIMM",
|
|
"DDR4 Load-Reduced DIMM",
|
|
"DDR4 Mini-RDIMM",
|
|
"DDR4 Mini-UDIMM",
|
|
"DDR4 Reserved",
|
|
"DDR4 72Bit SO-RDIMM",
|
|
"DDR4 72Bit SO-UDIMM",
|
|
"DDR4 Undefined",
|
|
"DDR4 Reserved",
|
|
"DDR4 16Bit SO-DIMM",
|
|
"DDR4 32Bit SO-DIMM",
|
|
"DDR4 Reserved",
|
|
"DDR4 Undefined"
|
|
};
|
|
|
|
static const char* const spdmem_superset_types[] = {
|
|
"unknown",
|
|
"ESDRAM",
|
|
"DDR ESDRAM",
|
|
"PEM EDO",
|
|
"PEM SDRAM"
|
|
};
|
|
|
|
static const char* const spdmem_voltage_types[] = {
|
|
"TTL (5V tolerant)",
|
|
"LvTTL (not 5V tolerant)",
|
|
"HSTL 1.5V",
|
|
"SSTL 3.3V",
|
|
"SSTL 2.5V",
|
|
"SSTL 1.8V"
|
|
};
|
|
|
|
static const char* const spdmem_refresh_types[] = {
|
|
"15.625us",
|
|
"3.9us",
|
|
"7.8us",
|
|
"31.3us",
|
|
"62.5us",
|
|
"125us"
|
|
};
|
|
|
|
static const char* const spdmem_parity_types[] = {
|
|
"no parity or ECC",
|
|
"data parity",
|
|
"data ECC",
|
|
"data parity and ECC",
|
|
"cmd/addr parity",
|
|
"cmd/addr/data parity",
|
|
"cmd/addr parity, data ECC",
|
|
"cmd/addr/data parity, data ECC"
|
|
};
|
|
|
|
int spd_rom_sizes[] = { 0, 128, 256, 384, 512 };
|
|
|
|
|
|
/* Cycle time fractional values (units of .001 ns) for DDR2 SDRAM */
|
|
static const uint16_t spdmem_cycle_frac[] = {
|
|
0, 100, 200, 300, 400, 500, 600, 700, 800, 900,
|
|
250, 333, 667, 750, 999, 999
|
|
};
|
|
|
|
/* Format string for timing info */
|
|
#define LATENCY "tAA-tRCD-tRP-tRAS: %d-%d-%d-%d\n"
|
|
|
|
/* CRC functions used for certain memory types */
|
|
|
|
static uint16_t
|
|
spdcrc16(struct spdmem_softc *sc, int count)
|
|
{
|
|
uint16_t crc;
|
|
int i, j;
|
|
uint8_t val;
|
|
crc = 0;
|
|
for (j = 0; j <= count; j++) {
|
|
(sc->sc_read)(sc, j, &val);
|
|
crc = crc ^ val << 8;
|
|
for (i = 0; i < 8; ++i)
|
|
if (crc & 0x8000)
|
|
crc = crc << 1 ^ 0x1021;
|
|
else
|
|
crc = crc << 1;
|
|
}
|
|
return (crc & 0xFFFF);
|
|
}
|
|
|
|
int
|
|
spdmem_common_probe(struct spdmem_softc *sc)
|
|
{
|
|
int cksum = 0;
|
|
uint8_t i, val, spd_type;
|
|
int spd_len, spd_crc_cover;
|
|
uint16_t crc_calc, crc_spd;
|
|
|
|
/* Read failed means a device doesn't exist */
|
|
if ((sc->sc_read)(sc, 2, &spd_type) != 0)
|
|
return 0;
|
|
|
|
/* Memory type should not be 0 */
|
|
if (spd_type == 0x00)
|
|
return 0;
|
|
|
|
/* For older memory types, validate the checksum over 1st 63 bytes */
|
|
if (spd_type <= SPDMEM_MEMTYPE_DDR2SDRAM) {
|
|
for (i = 0; i < 63; i++) {
|
|
(sc->sc_read)(sc, i, &val);
|
|
cksum += val;
|
|
}
|
|
|
|
(sc->sc_read)(sc, 63, &val);
|
|
|
|
if ((cksum & 0xff) != val) {
|
|
aprint_debug("spd checksum failed, calc = 0x%02x, "
|
|
"spd = 0x%02x\n", cksum, val);
|
|
return 0;
|
|
} else
|
|
return 1;
|
|
}
|
|
|
|
/* For DDR3 and FBDIMM, verify the CRC */
|
|
else if (spd_type <= SPDMEM_MEMTYPE_DDR3SDRAM) {
|
|
(sc->sc_read)(sc, 0, &val);
|
|
spd_len = val;
|
|
if (spd_len & SPDMEM_SPDCRC_116)
|
|
spd_crc_cover = 116;
|
|
else
|
|
spd_crc_cover = 125;
|
|
switch (spd_len & SPDMEM_SPDLEN_MASK) {
|
|
case SPDMEM_SPDLEN_128:
|
|
spd_len = 128;
|
|
break;
|
|
case SPDMEM_SPDLEN_176:
|
|
spd_len = 176;
|
|
break;
|
|
case SPDMEM_SPDLEN_256:
|
|
spd_len = 256;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
if (spd_crc_cover > spd_len)
|
|
return 0;
|
|
crc_calc = spdcrc16(sc, spd_crc_cover);
|
|
(sc->sc_read)(sc, 127, &val);
|
|
crc_spd = val << 8;
|
|
(sc->sc_read)(sc, 126, &val);
|
|
crc_spd |= val;
|
|
if (crc_calc != crc_spd) {
|
|
aprint_debug("crc16 failed, covers %d bytes, "
|
|
"calc = 0x%04x, spd = 0x%04x\n",
|
|
spd_crc_cover, crc_calc, crc_spd);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
} else if (spd_type == SPDMEM_MEMTYPE_DDR4SDRAM) {
|
|
(sc->sc_read)(sc, 0, &val);
|
|
spd_len = val & 0x0f;
|
|
if ((unsigned int)spd_len >= __arraycount(spd_rom_sizes))
|
|
return 0;
|
|
spd_len = spd_rom_sizes[spd_len];
|
|
spd_crc_cover = 125; /* For byte 0 to 125 */
|
|
if (spd_crc_cover > spd_len)
|
|
return 0;
|
|
crc_calc = spdcrc16(sc, spd_crc_cover);
|
|
(sc->sc_read)(sc, 127, &val);
|
|
crc_spd = val << 8;
|
|
(sc->sc_read)(sc, 126, &val);
|
|
crc_spd |= val;
|
|
if (crc_calc != crc_spd) {
|
|
aprint_debug("crc16 failed, covers %d bytes, "
|
|
"calc = 0x%04x, spd = 0x%04x\n",
|
|
spd_crc_cover, crc_calc, crc_spd);
|
|
return 0;
|
|
}
|
|
/*
|
|
* We probably could also verify the CRC for the other
|
|
* "pages" of SPD data in blocks 1 and 2, but we'll do
|
|
* it some other time.
|
|
*/
|
|
return 1;
|
|
}
|
|
|
|
/* For unrecognized memory types, don't match at all */
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
spdmem_common_attach(struct spdmem_softc *sc, device_t self)
|
|
{
|
|
struct spdmem *s = &(sc->sc_spd_data);
|
|
const char *type;
|
|
const char *rambus_rev = "Reserved";
|
|
int dimm_size;
|
|
unsigned int i, spd_len, spd_size;
|
|
const struct sysctlnode *node = NULL;
|
|
|
|
(sc->sc_read)(sc, 0, &s->sm_len);
|
|
(sc->sc_read)(sc, 1, &s->sm_size);
|
|
(sc->sc_read)(sc, 2, &s->sm_type);
|
|
|
|
if (s->sm_type == SPDMEM_MEMTYPE_DDR4SDRAM) {
|
|
/*
|
|
* An even newer encoding with one byte holding both
|
|
* the used-size and capacity values
|
|
*/
|
|
spd_len = s->sm_len & 0x0f;
|
|
spd_size = (s->sm_len >> 4) & 0x07;
|
|
|
|
spd_len = spd_rom_sizes[spd_len];
|
|
spd_size *= 512;
|
|
|
|
} else if (s->sm_type >= SPDMEM_MEMTYPE_FBDIMM) {
|
|
/*
|
|
* FBDIMM and DDR3 (and probably all newer) have a different
|
|
* encoding of the SPD EEPROM used/total sizes
|
|
*/
|
|
spd_size = 64 << (s->sm_len & SPDMEM_SPDSIZE_MASK);
|
|
switch (s->sm_len & SPDMEM_SPDLEN_MASK) {
|
|
case SPDMEM_SPDLEN_128:
|
|
spd_len = 128;
|
|
break;
|
|
case SPDMEM_SPDLEN_176:
|
|
spd_len = 176;
|
|
break;
|
|
case SPDMEM_SPDLEN_256:
|
|
spd_len = 256;
|
|
break;
|
|
default:
|
|
spd_len = 64;
|
|
break;
|
|
}
|
|
} else {
|
|
spd_size = 1 << s->sm_size;
|
|
spd_len = s->sm_len;
|
|
if (spd_len < 64)
|
|
spd_len = 64;
|
|
}
|
|
if (spd_len > spd_size)
|
|
spd_len = spd_size;
|
|
if (spd_len > sizeof(struct spdmem))
|
|
spd_len = sizeof(struct spdmem);
|
|
for (i = 3; i < spd_len; i++)
|
|
(sc->sc_read)(sc, i, &((uint8_t *)s)[i]);
|
|
|
|
/*
|
|
* Setup our sysctl subtree, hw.spdmemN
|
|
*/
|
|
sc->sc_sysctl_log = NULL;
|
|
sysctl_createv(&sc->sc_sysctl_log, 0, NULL, &node,
|
|
0, CTLTYPE_NODE,
|
|
device_xname(self), NULL, NULL, 0, NULL, 0,
|
|
CTL_HW, CTL_CREATE, CTL_EOL);
|
|
if (node != NULL && spd_len != 0)
|
|
sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
|
|
0,
|
|
CTLTYPE_STRUCT, "spd_data",
|
|
SYSCTL_DESCR("raw spd data"), NULL,
|
|
0, s, spd_len,
|
|
CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
|
|
|
|
/*
|
|
* Decode and print key SPD contents
|
|
*/
|
|
if (IS_RAMBUS_TYPE) {
|
|
if (s->sm_type == SPDMEM_MEMTYPE_RAMBUS)
|
|
type = "Rambus";
|
|
else if (s->sm_type == SPDMEM_MEMTYPE_DIRECTRAMBUS)
|
|
type = "Direct Rambus";
|
|
else
|
|
type = "Rambus (unknown)";
|
|
|
|
switch (s->sm_len) {
|
|
case 0:
|
|
rambus_rev = "Invalid";
|
|
break;
|
|
case 1:
|
|
rambus_rev = "0.7";
|
|
break;
|
|
case 2:
|
|
rambus_rev = "1.0";
|
|
break;
|
|
default:
|
|
rambus_rev = "Reserved";
|
|
break;
|
|
}
|
|
} else {
|
|
if (s->sm_type < __arraycount(spdmem_basic_types))
|
|
type = spdmem_basic_types[s->sm_type];
|
|
else
|
|
type = "unknown memory type";
|
|
|
|
if (s->sm_type == SPDMEM_MEMTYPE_EDO &&
|
|
s->sm_fpm.fpm_superset == SPDMEM_SUPERSET_EDO_PEM)
|
|
type = spdmem_superset_types[SPDMEM_SUPERSET_EDO_PEM];
|
|
if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
|
|
s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_SDRAM_PEM)
|
|
type = spdmem_superset_types[SPDMEM_SUPERSET_SDRAM_PEM];
|
|
if (s->sm_type == SPDMEM_MEMTYPE_DDRSDRAM &&
|
|
s->sm_ddr.ddr_superset == SPDMEM_SUPERSET_DDR_ESDRAM)
|
|
type =
|
|
spdmem_superset_types[SPDMEM_SUPERSET_DDR_ESDRAM];
|
|
if (s->sm_type == SPDMEM_MEMTYPE_SDRAM &&
|
|
s->sm_sdr.sdr_superset == SPDMEM_SUPERSET_ESDRAM) {
|
|
type = spdmem_superset_types[SPDMEM_SUPERSET_ESDRAM];
|
|
}
|
|
if (s->sm_type == SPDMEM_MEMTYPE_DDR4SDRAM &&
|
|
s->sm_ddr4.ddr4_mod_type <
|
|
__arraycount(spdmem_ddr4_module_types)) {
|
|
type = spdmem_ddr4_module_types[s->sm_ddr4.ddr4_mod_type];
|
|
}
|
|
}
|
|
|
|
strlcpy(sc->sc_type, type, SPDMEM_TYPE_MAXLEN);
|
|
|
|
if (s->sm_type == SPDMEM_MEMTYPE_DDR4SDRAM) {
|
|
/*
|
|
* The latest spec (DDR4 SPD Document Release 3) defines
|
|
* NVDIMM Hybrid only.
|
|
*/
|
|
if ((s->sm_ddr4.ddr4_hybrid)
|
|
&& (s->sm_ddr4.ddr4_hybrid_media == 1))
|
|
strlcat(sc->sc_type, " NVDIMM hybrid",
|
|
SPDMEM_TYPE_MAXLEN);
|
|
}
|
|
|
|
if (node != NULL)
|
|
sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
|
|
0,
|
|
CTLTYPE_STRING, "mem_type",
|
|
SYSCTL_DESCR("memory module type"), NULL,
|
|
0, sc->sc_type, 0,
|
|
CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
|
|
|
|
if (IS_RAMBUS_TYPE) {
|
|
aprint_naive("\n");
|
|
aprint_normal("\n");
|
|
aprint_normal_dev(self, "%s, SPD Revision %s", type, rambus_rev);
|
|
dimm_size = 1 << (s->sm_rdr.rdr_rows + s->sm_rdr.rdr_cols - 13);
|
|
if (dimm_size >= 1024)
|
|
aprint_normal(", %dGB\n", dimm_size / 1024);
|
|
else
|
|
aprint_normal(", %dMB\n", dimm_size);
|
|
|
|
/* No further decode for RAMBUS memory */
|
|
return;
|
|
}
|
|
switch (s->sm_type) {
|
|
case SPDMEM_MEMTYPE_EDO:
|
|
case SPDMEM_MEMTYPE_FPM:
|
|
decode_edofpm(node, self, s);
|
|
break;
|
|
case SPDMEM_MEMTYPE_ROM:
|
|
decode_rom(node, self, s);
|
|
break;
|
|
case SPDMEM_MEMTYPE_SDRAM:
|
|
decode_sdram(node, self, s, spd_len);
|
|
break;
|
|
case SPDMEM_MEMTYPE_DDRSDRAM:
|
|
decode_ddr(node, self, s);
|
|
break;
|
|
case SPDMEM_MEMTYPE_DDR2SDRAM:
|
|
decode_ddr2(node, self, s);
|
|
break;
|
|
case SPDMEM_MEMTYPE_DDR3SDRAM:
|
|
decode_ddr3(node, self, s);
|
|
break;
|
|
case SPDMEM_MEMTYPE_FBDIMM:
|
|
case SPDMEM_MEMTYPE_FBDIMM_PROBE:
|
|
decode_fbdimm(node, self, s);
|
|
break;
|
|
case SPDMEM_MEMTYPE_DDR4SDRAM:
|
|
decode_ddr4(node, self, s);
|
|
break;
|
|
}
|
|
|
|
/* Dump SPD */
|
|
for (i = 0; i < spd_len; i += 16) {
|
|
unsigned int j, k;
|
|
aprint_debug_dev(self, "0x%02x:", i);
|
|
k = (spd_len > (i + 16)) ? i + 16 : spd_len;
|
|
for (j = i; j < k; j++)
|
|
aprint_debug(" %02x", ((uint8_t *)s)[j]);
|
|
aprint_debug("\n");
|
|
}
|
|
}
|
|
|
|
int
|
|
spdmem_common_detach(struct spdmem_softc *sc, device_t self)
|
|
{
|
|
sysctl_teardown(&sc->sc_sysctl_log);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
decode_size_speed(device_t self, const struct sysctlnode *node,
|
|
int dimm_size, int cycle_time, int d_clk, int bits,
|
|
bool round, const char *ddr_type_string, int speed)
|
|
{
|
|
int p_clk;
|
|
struct spdmem_softc *sc = device_private(self);
|
|
|
|
if (dimm_size < 1024)
|
|
aprint_normal("%dMB", dimm_size);
|
|
else
|
|
aprint_normal("%dGB", dimm_size / 1024);
|
|
if (node != NULL)
|
|
sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
|
|
CTLFLAG_IMMEDIATE,
|
|
CTLTYPE_INT, "size",
|
|
SYSCTL_DESCR("module size in MB"), NULL,
|
|
dimm_size, NULL, 0,
|
|
CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
|
|
|
|
if (cycle_time == 0) {
|
|
aprint_normal("\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Calculate p_clk first, since for DDR3 we need maximum significance.
|
|
* DDR3 rating is not rounded to a multiple of 100. This results in
|
|
* cycle_time of 1.5ns displayed as PC3-10666.
|
|
*
|
|
* For SDRAM, the speed is provided by the caller so we use it.
|
|
*/
|
|
d_clk *= 1000 * 1000;
|
|
if (speed)
|
|
p_clk = speed;
|
|
else
|
|
p_clk = (d_clk * bits) / 8 / cycle_time;
|
|
d_clk = ((d_clk + cycle_time / 2) ) / cycle_time;
|
|
if (round) {
|
|
if ((p_clk % 100) >= 50)
|
|
p_clk += 50;
|
|
p_clk -= p_clk % 100;
|
|
}
|
|
aprint_normal(", %dMHz (%s-%d)\n",
|
|
d_clk, ddr_type_string, p_clk);
|
|
if (node != NULL)
|
|
sysctl_createv(&sc->sc_sysctl_log, 0, NULL, NULL,
|
|
CTLFLAG_IMMEDIATE,
|
|
CTLTYPE_INT, "speed",
|
|
SYSCTL_DESCR("memory speed in MHz"),
|
|
NULL, d_clk, NULL, 0,
|
|
CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL);
|
|
}
|
|
|
|
static void
|
|
decode_voltage_refresh(device_t self, struct spdmem *s)
|
|
{
|
|
const char *voltage, *refresh;
|
|
|
|
if (s->sm_voltage < __arraycount(spdmem_voltage_types))
|
|
voltage = spdmem_voltage_types[s->sm_voltage];
|
|
else
|
|
voltage = "unknown";
|
|
|
|
if (s->sm_refresh < __arraycount(spdmem_refresh_types))
|
|
refresh = spdmem_refresh_types[s->sm_refresh];
|
|
else
|
|
refresh = "unknown";
|
|
|
|
aprint_verbose_dev(self, "voltage %s, refresh time %s%s\n",
|
|
voltage, refresh,
|
|
s->sm_selfrefresh?" (self-refreshing)":"");
|
|
}
|
|
|
|
static void
|
|
decode_edofpm(const struct sysctlnode *node, device_t self, struct spdmem *s)
|
|
{
|
|
|
|
aprint_naive("\n");
|
|
aprint_normal("\n");
|
|
aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
|
|
|
|
aprint_normal("\n");
|
|
aprint_verbose_dev(self,
|
|
"%d rows, %d cols, %d banks, %dns tRAC, %dns tCAC\n",
|
|
s->sm_fpm.fpm_rows, s->sm_fpm.fpm_cols, s->sm_fpm.fpm_banks,
|
|
s->sm_fpm.fpm_tRAC, s->sm_fpm.fpm_tCAC);
|
|
}
|
|
|
|
static void
|
|
decode_rom(const struct sysctlnode *node, device_t self, struct spdmem *s)
|
|
{
|
|
|
|
aprint_naive("\n");
|
|
aprint_normal("\n");
|
|
aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
|
|
|
|
aprint_normal("\n");
|
|
aprint_verbose_dev(self, "%d rows, %d cols, %d banks\n",
|
|
s->sm_rom.rom_rows, s->sm_rom.rom_cols, s->sm_rom.rom_banks);
|
|
}
|
|
|
|
static void
|
|
decode_sdram(const struct sysctlnode *node, device_t self, struct spdmem *s,
|
|
int spd_len)
|
|
{
|
|
int dimm_size, cycle_time, bits, tAA, i, speed, freq;
|
|
|
|
aprint_naive("\n");
|
|
aprint_normal("\n");
|
|
aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
|
|
|
|
aprint_normal("%s, %s, ",
|
|
(s->sm_sdr.sdr_mod_attrs & SPDMEM_SDR_MASK_REG)?
|
|
" (registered)":"",
|
|
(s->sm_config < __arraycount(spdmem_parity_types))?
|
|
spdmem_parity_types[s->sm_config]:"invalid parity");
|
|
|
|
dimm_size = 1 << (s->sm_sdr.sdr_rows + s->sm_sdr.sdr_cols - 17);
|
|
dimm_size *= s->sm_sdr.sdr_banks * s->sm_sdr.sdr_banks_per_chip;
|
|
|
|
cycle_time = s->sm_sdr.sdr_cycle_whole * 1000 +
|
|
s->sm_sdr.sdr_cycle_tenths * 100;
|
|
bits = le16toh(s->sm_sdr.sdr_datawidth);
|
|
if (s->sm_config == 1 || s->sm_config == 2)
|
|
bits -= 8;
|
|
|
|
/* Calculate speed here - from OpenBSD */
|
|
if (spd_len >= 128)
|
|
freq = ((uint8_t *)s)[126];
|
|
else
|
|
freq = 0;
|
|
switch (freq) {
|
|
/*
|
|
* Must check cycle time since some PC-133 DIMMs
|
|
* actually report PC-100
|
|
*/
|
|
case 100:
|
|
case 133:
|
|
if (cycle_time < 8000)
|
|
speed = 133;
|
|
else
|
|
speed = 100;
|
|
break;
|
|
case 0x66: /* Legacy DIMMs use _hex_ 66! */
|
|
default:
|
|
speed = 66;
|
|
}
|
|
decode_size_speed(self, node, dimm_size, cycle_time, 1, bits, FALSE,
|
|
"PC", speed);
|
|
|
|
aprint_verbose_dev(self,
|
|
"%d rows, %d cols, %d banks, %d banks/chip, %d.%dns cycle time\n",
|
|
s->sm_sdr.sdr_rows, s->sm_sdr.sdr_cols, s->sm_sdr.sdr_banks,
|
|
s->sm_sdr.sdr_banks_per_chip, cycle_time/1000,
|
|
(cycle_time % 1000) / 100);
|
|
|
|
tAA = 0;
|
|
for (i = 0; i < 8; i++)
|
|
if (s->sm_sdr.sdr_tCAS & (1 << i))
|
|
tAA = i;
|
|
tAA++;
|
|
aprint_verbose_dev(self, LATENCY, tAA, s->sm_sdr.sdr_tRCD,
|
|
s->sm_sdr.sdr_tRP, s->sm_sdr.sdr_tRAS);
|
|
|
|
decode_voltage_refresh(self, s);
|
|
}
|
|
|
|
static void
|
|
decode_ddr(const struct sysctlnode *node, device_t self, struct spdmem *s)
|
|
{
|
|
int dimm_size, cycle_time, bits, tAA, i;
|
|
|
|
aprint_naive("\n");
|
|
aprint_normal("\n");
|
|
aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
|
|
|
|
aprint_normal("%s, %s, ",
|
|
(s->sm_ddr.ddr_mod_attrs & SPDMEM_DDR_MASK_REG)?
|
|
" (registered)":"",
|
|
(s->sm_config < __arraycount(spdmem_parity_types))?
|
|
spdmem_parity_types[s->sm_config]:"invalid parity");
|
|
|
|
dimm_size = 1 << (s->sm_ddr.ddr_rows + s->sm_ddr.ddr_cols - 17);
|
|
dimm_size *= s->sm_ddr.ddr_ranks * s->sm_ddr.ddr_banks_per_chip;
|
|
|
|
cycle_time = s->sm_ddr.ddr_cycle_whole * 1000 +
|
|
spdmem_cycle_frac[s->sm_ddr.ddr_cycle_tenths];
|
|
bits = le16toh(s->sm_ddr.ddr_datawidth);
|
|
if (s->sm_config == 1 || s->sm_config == 2)
|
|
bits -= 8;
|
|
decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
|
|
"PC", 0);
|
|
|
|
aprint_verbose_dev(self,
|
|
"%d rows, %d cols, %d ranks, %d banks/chip, %d.%dns cycle time\n",
|
|
s->sm_ddr.ddr_rows, s->sm_ddr.ddr_cols, s->sm_ddr.ddr_ranks,
|
|
s->sm_ddr.ddr_banks_per_chip, cycle_time/1000,
|
|
(cycle_time % 1000 + 50) / 100);
|
|
|
|
tAA = 0;
|
|
for (i = 2; i < 8; i++)
|
|
if (s->sm_ddr.ddr_tCAS & (1 << i))
|
|
tAA = i;
|
|
tAA /= 2;
|
|
|
|
#define __DDR_ROUND(scale, field) \
|
|
((scale * s->sm_ddr.field + cycle_time - 1) / cycle_time)
|
|
|
|
aprint_verbose_dev(self, LATENCY, tAA, __DDR_ROUND(250, ddr_tRCD),
|
|
__DDR_ROUND(250, ddr_tRP), __DDR_ROUND(1000, ddr_tRAS));
|
|
|
|
#undef __DDR_ROUND
|
|
|
|
decode_voltage_refresh(self, s);
|
|
}
|
|
|
|
static void
|
|
decode_ddr2(const struct sysctlnode *node, device_t self, struct spdmem *s)
|
|
{
|
|
int dimm_size, cycle_time, bits, tAA, i;
|
|
|
|
aprint_naive("\n");
|
|
aprint_normal("\n");
|
|
aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
|
|
|
|
aprint_normal("%s, %s, ",
|
|
(s->sm_ddr2.ddr2_mod_attrs & SPDMEM_DDR2_MASK_REG)?
|
|
" (registered)":"",
|
|
(s->sm_config < __arraycount(spdmem_parity_types))?
|
|
spdmem_parity_types[s->sm_config]:"invalid parity");
|
|
|
|
dimm_size = 1 << (s->sm_ddr2.ddr2_rows + s->sm_ddr2.ddr2_cols - 17);
|
|
dimm_size *= (s->sm_ddr2.ddr2_ranks + 1) *
|
|
s->sm_ddr2.ddr2_banks_per_chip;
|
|
|
|
cycle_time = s->sm_ddr2.ddr2_cycle_whole * 1000 +
|
|
spdmem_cycle_frac[s->sm_ddr2.ddr2_cycle_frac];
|
|
bits = s->sm_ddr2.ddr2_datawidth;
|
|
if ((s->sm_config & 0x03) != 0)
|
|
bits -= 8;
|
|
decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
|
|
"PC2", 0);
|
|
|
|
aprint_verbose_dev(self,
|
|
"%d rows, %d cols, %d ranks, %d banks/chip, %d.%02dns cycle time\n",
|
|
s->sm_ddr2.ddr2_rows, s->sm_ddr2.ddr2_cols,
|
|
s->sm_ddr2.ddr2_ranks + 1, s->sm_ddr2.ddr2_banks_per_chip,
|
|
cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
|
|
|
|
tAA = 0;
|
|
for (i = 2; i < 8; i++)
|
|
if (s->sm_ddr2.ddr2_tCAS & (1 << i))
|
|
tAA = i;
|
|
|
|
#define __DDR2_ROUND(scale, field) \
|
|
((scale * s->sm_ddr2.field + cycle_time - 1) / cycle_time)
|
|
|
|
aprint_verbose_dev(self, LATENCY, tAA, __DDR2_ROUND(250, ddr2_tRCD),
|
|
__DDR2_ROUND(250, ddr2_tRP), __DDR2_ROUND(1000, ddr2_tRAS));
|
|
|
|
#undef __DDR_ROUND
|
|
|
|
decode_voltage_refresh(self, s);
|
|
}
|
|
|
|
static void
|
|
print_part(const char *part, size_t pnsize)
|
|
{
|
|
const char *p = memchr(part, ' ', pnsize);
|
|
if (p == NULL)
|
|
p = part + pnsize;
|
|
aprint_normal(": %.*s\n", (int)(p - part), part);
|
|
}
|
|
|
|
static void
|
|
decode_ddr3(const struct sysctlnode *node, device_t self, struct spdmem *s)
|
|
{
|
|
int dimm_size, cycle_time, bits;
|
|
|
|
aprint_naive("\n");
|
|
print_part(s->sm_ddr3.ddr3_part, sizeof(s->sm_ddr3.ddr3_part));
|
|
aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
|
|
|
|
if (s->sm_ddr3.ddr3_mod_type ==
|
|
SPDMEM_DDR3_TYPE_MINI_RDIMM ||
|
|
s->sm_ddr3.ddr3_mod_type == SPDMEM_DDR3_TYPE_RDIMM)
|
|
aprint_normal(" (registered)");
|
|
aprint_normal(", %sECC, %stemp-sensor, ",
|
|
(s->sm_ddr3.ddr3_hasECC)?"":"no ",
|
|
(s->sm_ddr3.ddr3_has_therm_sensor)?"":"no ");
|
|
|
|
/*
|
|
* DDR3 size specification is quite different from others
|
|
*
|
|
* Module capacity is defined as
|
|
* Chip_Capacity_in_bits / 8bits-per-byte *
|
|
* external_bus_width / internal_bus_width
|
|
* We further divide by 2**20 to get our answer in MB
|
|
*/
|
|
dimm_size = (s->sm_ddr3.ddr3_chipsize + 28 - 20) - 3 +
|
|
(s->sm_ddr3.ddr3_datawidth + 3) -
|
|
(s->sm_ddr3.ddr3_chipwidth + 2);
|
|
dimm_size = (1 << dimm_size) * (s->sm_ddr3.ddr3_physbanks + 1);
|
|
|
|
cycle_time = (1000 * s->sm_ddr3.ddr3_mtb_dividend +
|
|
(s->sm_ddr3.ddr3_mtb_divisor / 2)) /
|
|
s->sm_ddr3.ddr3_mtb_divisor;
|
|
cycle_time *= s->sm_ddr3.ddr3_tCKmin;
|
|
bits = 1 << (s->sm_ddr3.ddr3_datawidth + 3);
|
|
decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, FALSE,
|
|
"PC3", 0);
|
|
|
|
aprint_verbose_dev(self,
|
|
"%d rows, %d cols, %d log. banks, %d phys. banks, "
|
|
"%d.%03dns cycle time\n",
|
|
s->sm_ddr3.ddr3_rows + 9, s->sm_ddr3.ddr3_cols + 12,
|
|
1 << (s->sm_ddr3.ddr3_logbanks + 3),
|
|
s->sm_ddr3.ddr3_physbanks + 1,
|
|
cycle_time/1000, cycle_time % 1000);
|
|
|
|
#define __DDR3_CYCLES(field) (s->sm_ddr3.field / s->sm_ddr3.ddr3_tCKmin)
|
|
|
|
aprint_verbose_dev(self, LATENCY, __DDR3_CYCLES(ddr3_tAAmin),
|
|
__DDR3_CYCLES(ddr3_tRCDmin), __DDR3_CYCLES(ddr3_tRPmin),
|
|
(s->sm_ddr3.ddr3_tRAS_msb * 256 + s->sm_ddr3.ddr3_tRAS_lsb) /
|
|
s->sm_ddr3.ddr3_tCKmin);
|
|
|
|
#undef __DDR3_CYCLES
|
|
|
|
/* For DDR3, Voltage is written in another area */
|
|
if (!s->sm_ddr3.ddr3_NOT15V || s->sm_ddr3.ddr3_135V
|
|
|| s->sm_ddr3.ddr3_125V) {
|
|
aprint_verbose("%s:", device_xname(self));
|
|
if (!s->sm_ddr3.ddr3_NOT15V)
|
|
aprint_verbose(" 1.5V");
|
|
if (s->sm_ddr3.ddr3_135V)
|
|
aprint_verbose(" 1.35V");
|
|
if (s->sm_ddr3.ddr3_125V)
|
|
aprint_verbose(" 1.25V");
|
|
aprint_verbose(" operable\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
decode_fbdimm(const struct sysctlnode *node, device_t self, struct spdmem *s)
|
|
{
|
|
int dimm_size, cycle_time, bits;
|
|
|
|
aprint_naive("\n");
|
|
aprint_normal("\n");
|
|
aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
|
|
|
|
/*
|
|
* FB-DIMM module size calculation is very much like DDR3
|
|
*/
|
|
dimm_size = s->sm_fbd.fbdimm_rows + 12 +
|
|
s->sm_fbd.fbdimm_cols + 9 - 20 - 3;
|
|
dimm_size = (1 << dimm_size) * (1 << (s->sm_fbd.fbdimm_banks + 2));
|
|
|
|
cycle_time = (1000 * s->sm_fbd.fbdimm_mtb_dividend +
|
|
(s->sm_fbd.fbdimm_mtb_divisor / 2)) /
|
|
s->sm_fbd.fbdimm_mtb_divisor;
|
|
bits = 1 << (s->sm_fbd.fbdimm_dev_width + 2);
|
|
decode_size_speed(self, node, dimm_size, cycle_time, 2, bits, TRUE,
|
|
"PC2", 0);
|
|
|
|
aprint_verbose_dev(self,
|
|
"%d rows, %d cols, %d banks, %d.%02dns cycle time\n",
|
|
s->sm_fbd.fbdimm_rows, s->sm_fbd.fbdimm_cols,
|
|
1 << (s->sm_fbd.fbdimm_banks + 2),
|
|
cycle_time / 1000, (cycle_time % 1000 + 5) /10 );
|
|
|
|
#define __FBDIMM_CYCLES(field) (s->sm_fbd.field / s->sm_fbd.fbdimm_tCKmin)
|
|
|
|
aprint_verbose_dev(self, LATENCY, __FBDIMM_CYCLES(fbdimm_tAAmin),
|
|
__FBDIMM_CYCLES(fbdimm_tRCDmin), __FBDIMM_CYCLES(fbdimm_tRPmin),
|
|
(s->sm_fbd.fbdimm_tRAS_msb * 256 + s->sm_fbd.fbdimm_tRAS_lsb) /
|
|
s->sm_fbd.fbdimm_tCKmin);
|
|
|
|
#undef __FBDIMM_CYCLES
|
|
|
|
decode_voltage_refresh(self, s);
|
|
}
|
|
|
|
static void
|
|
decode_ddr4(const struct sysctlnode *node, device_t self, struct spdmem *s)
|
|
{
|
|
int dimm_size, cycle_time;
|
|
int tAA_clocks, tRCD_clocks,tRP_clocks, tRAS_clocks;
|
|
|
|
aprint_naive("\n");
|
|
print_part(s->sm_ddr4.ddr4_part_number,
|
|
sizeof(s->sm_ddr4.ddr4_part_number));
|
|
aprint_normal_dev(self, "%s", spdmem_basic_types[s->sm_type]);
|
|
if (s->sm_ddr4.ddr4_mod_type < __arraycount(spdmem_ddr4_module_types))
|
|
aprint_normal(" (%s)",
|
|
spdmem_ddr4_module_types[s->sm_ddr4.ddr4_mod_type]);
|
|
aprint_normal(", %sECC, %stemp-sensor, ",
|
|
(s->sm_ddr4.ddr4_bus_width_extension) ? "" : "no ",
|
|
(s->sm_ddr4.ddr4_has_therm_sensor) ? "" : "no ");
|
|
|
|
/*
|
|
* DDR4 size calculation from JEDEC spec
|
|
*
|
|
* Module capacity in bytes is defined as
|
|
* Chip_Capacity_in_bits / 8bits-per-byte *
|
|
* primary_bus_width / DRAM_width *
|
|
* logical_ranks_per_DIMM
|
|
*
|
|
* logical_ranks_per DIMM equals package_ranks, but multiply
|
|
* by diecount for 3DS packages
|
|
*
|
|
* We further divide by 2**20 to get our answer in MB
|
|
*/
|
|
dimm_size = (s->sm_ddr4.ddr4_capacity + 28) /* chip_capacity */
|
|
- 20 /* convert to MB */
|
|
- 3 /* bits --> bytes */
|
|
+ (s->sm_ddr4.ddr4_primary_bus_width + 3); /* bus width */
|
|
switch (s->sm_ddr4.ddr4_device_width) { /* DRAM width */
|
|
case 0: dimm_size -= 2;
|
|
break;
|
|
case 1: dimm_size -= 3;
|
|
break;
|
|
case 2: dimm_size -= 4;
|
|
break;
|
|
case 4: dimm_size -= 5;
|
|
break;
|
|
default:
|
|
dimm_size = -1; /* flag invalid value */
|
|
}
|
|
if (dimm_size >= 0) {
|
|
dimm_size = (1 << dimm_size) *
|
|
(s->sm_ddr4.ddr4_package_ranks + 1); /* log.ranks/DIMM */
|
|
if (s->sm_ddr4.ddr4_signal_loading == 2) {
|
|
dimm_size *= (s->sm_ddr4.ddr4_diecount + 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Note that the ddr4_xxx_ftb fields are actually signed offsets from
|
|
* the corresponding mtb value, so we might have to subtract 256!
|
|
*/
|
|
#define __DDR4_VALUE(field) ((s->sm_ddr4.ddr4_##field##_mtb * 125 + \
|
|
s->sm_ddr4.ddr4_##field##_ftb) - \
|
|
((s->sm_ddr4.ddr4_##field##_ftb > 127)?256:0))
|
|
/*
|
|
* For now, the only value for mtb is 0 = 125ps, and ftb = 1ps
|
|
* so we don't need to figure out the time-base units - just
|
|
* hard-code them for now.
|
|
*/
|
|
cycle_time = __DDR4_VALUE(tCKAVGmin);
|
|
decode_size_speed(self, node, dimm_size, cycle_time, 2,
|
|
1 << (s->sm_ddr4.ddr4_primary_bus_width + 3),
|
|
TRUE, "PC4", 0);
|
|
|
|
aprint_verbose_dev(self,
|
|
"%d rows, %d cols, %d banks, %d bank groups, "
|
|
"%d.%03dns cycle time\n",
|
|
s->sm_ddr4.ddr4_rows + 9, s->sm_ddr4.ddr4_cols + 12,
|
|
1 << (2 + s->sm_ddr4.ddr4_logbanks),
|
|
1 << s->sm_ddr4.ddr4_bankgroups,
|
|
cycle_time / 1000, cycle_time % 1000);
|
|
|
|
|
|
tAA_clocks = __DDR4_VALUE(tAAmin) * 1000 / cycle_time;
|
|
tRCD_clocks = __DDR4_VALUE(tRCDmin) * 1000 / cycle_time;
|
|
tRP_clocks = __DDR4_VALUE(tRPmin) * 1000 / cycle_time;
|
|
tRAS_clocks = (s->sm_ddr4.ddr4_tRASmin_msb * 256 +
|
|
s->sm_ddr4.ddr4_tRASmin_lsb) * 125 * 1000 / cycle_time;
|
|
|
|
/*
|
|
* Per JEDEC spec, rounding is done by taking the time value, dividing
|
|
* by the cycle time, subtracting .010 from the result, and then
|
|
* rounded up to the nearest integer. Unfortunately, none of their
|
|
* examples say what to do when the result of the subtraction is already
|
|
* an integer. For now, assume that we still round up (so an interval
|
|
* of exactly 12.010 clock cycles will be printed as 13).
|
|
*/
|
|
#define __DDR4_ROUND(value) ((value - 10) / 1000 + 1)
|
|
|
|
aprint_verbose_dev(self, LATENCY, __DDR4_ROUND(tAA_clocks),
|
|
__DDR4_ROUND(tRCD_clocks),
|
|
__DDR4_ROUND(tRP_clocks),
|
|
__DDR4_ROUND(tRAS_clocks));
|
|
|
|
#undef __DDR4_VALUE
|
|
#undef __DDR4_ROUND
|
|
}
|