NetBSD/sys/dev/ic/rtl81x9.c

1510 lines
35 KiB
C

/* $NetBSD: rtl81x9.c,v 1.103 2018/06/26 06:48:00 msaitoh Exp $ */
/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* FreeBSD Id: if_rl.c,v 1.17 1999/06/19 20:17:37 wpaul Exp
*/
/*
* RealTek 8129/8139 PCI NIC driver
*
* Supports several extremely cheap PCI 10/100 adapters based on
* the RealTek chipset. Datasheets can be obtained from
* www.realtek.com.tw.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The RealTek 8139 PCI NIC redefines the meaning of 'low end.' This is
* probably the worst PCI ethernet controller ever made, with the possible
* exception of the FEAST chip made by SMC. The 8139 supports bus-master
* DMA, but it has a terrible interface that nullifies any performance
* gains that bus-master DMA usually offers.
*
* For transmission, the chip offers a series of four TX descriptor
* registers. Each transmit frame must be in a contiguous buffer, aligned
* on a longword (32-bit) boundary. This means we almost always have to
* do mbuf copies in order to transmit a frame, except in the unlikely
* case where a) the packet fits into a single mbuf, and b) the packet
* is 32-bit aligned within the mbuf's data area. The presence of only
* four descriptor registers means that we can never have more than four
* packets queued for transmission at any one time.
*
* Reception is not much better. The driver has to allocate a single large
* buffer area (up to 64K in size) into which the chip will DMA received
* frames. Because we don't know where within this region received packets
* will begin or end, we have no choice but to copy data from the buffer
* area into mbufs in order to pass the packets up to the higher protocol
* levels.
*
* It's impossible given this rotten design to really achieve decent
* performance at 100Mbps, unless you happen to have a 400MHz PII or
* some equally overmuscled CPU to drive it.
*
* On the bright side, the 8139 does have a built-in PHY, although
* rather than using an MDIO serial interface like most other NICs, the
* PHY registers are directly accessible through the 8139's register
* space. The 8139 supports autonegotiation, as well as a 64-bit multicast
* filter.
*
* The 8129 chip is an older version of the 8139 that uses an external PHY
* chip. The 8129 has a serial MDIO interface for accessing the MII where
* the 8139 lets you directly access the on-board PHY registers. We need
* to select which interface to use depending on the chip type.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rtl81x9.c,v 1.103 2018/06/26 06:48:00 msaitoh Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/device.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_ether.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <sys/rndsource.h>
#include <sys/bus.h>
#include <machine/endian.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/ic/rtl81x9reg.h>
#include <dev/ic/rtl81x9var.h>
static void rtk_reset(struct rtk_softc *);
static void rtk_rxeof(struct rtk_softc *);
static void rtk_txeof(struct rtk_softc *);
static void rtk_start(struct ifnet *);
static int rtk_ioctl(struct ifnet *, u_long, void *);
static int rtk_init(struct ifnet *);
static void rtk_stop(struct ifnet *, int);
static void rtk_watchdog(struct ifnet *);
static void rtk_eeprom_putbyte(struct rtk_softc *, int, int);
static void rtk_mii_sync(struct rtk_softc *);
static void rtk_mii_send(struct rtk_softc *, uint32_t, int);
static int rtk_mii_readreg(struct rtk_softc *, struct rtk_mii_frame *);
static int rtk_mii_writereg(struct rtk_softc *, struct rtk_mii_frame *);
static int rtk_phy_readreg(device_t, int, int);
static void rtk_phy_writereg(device_t, int, int, int);
static void rtk_phy_statchg(struct ifnet *);
static void rtk_tick(void *);
static int rtk_enable(struct rtk_softc *);
static void rtk_disable(struct rtk_softc *);
static void rtk_list_tx_init(struct rtk_softc *);
#define EE_SET(x) \
CSR_WRITE_1(sc, RTK_EECMD, \
CSR_READ_1(sc, RTK_EECMD) | (x))
#define EE_CLR(x) \
CSR_WRITE_1(sc, RTK_EECMD, \
CSR_READ_1(sc, RTK_EECMD) & ~(x))
#define EE_DELAY() DELAY(100)
#define ETHER_PAD_LEN (ETHER_MIN_LEN - ETHER_CRC_LEN)
/*
* Send a read command and address to the EEPROM, check for ACK.
*/
static void
rtk_eeprom_putbyte(struct rtk_softc *sc, int addr, int addr_len)
{
int d, i;
d = (RTK_EECMD_READ << addr_len) | addr;
/*
* Feed in each bit and stobe the clock.
*/
for (i = RTK_EECMD_LEN + addr_len; i > 0; i--) {
if (d & (1 << (i - 1))) {
EE_SET(RTK_EE_DATAIN);
} else {
EE_CLR(RTK_EE_DATAIN);
}
EE_DELAY();
EE_SET(RTK_EE_CLK);
EE_DELAY();
EE_CLR(RTK_EE_CLK);
EE_DELAY();
}
}
/*
* Read a word of data stored in the EEPROM at address 'addr.'
*/
uint16_t
rtk_read_eeprom(struct rtk_softc *sc, int addr, int addr_len)
{
uint16_t word;
int i;
/* Enter EEPROM access mode. */
CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_PROGRAM);
EE_DELAY();
EE_SET(RTK_EE_SEL);
/*
* Send address of word we want to read.
*/
rtk_eeprom_putbyte(sc, addr, addr_len);
/*
* Start reading bits from EEPROM.
*/
word = 0;
for (i = 16; i > 0; i--) {
EE_SET(RTK_EE_CLK);
EE_DELAY();
if (CSR_READ_1(sc, RTK_EECMD) & RTK_EE_DATAOUT)
word |= 1 << (i - 1);
EE_CLR(RTK_EE_CLK);
EE_DELAY();
}
/* Turn off EEPROM access mode. */
CSR_WRITE_1(sc, RTK_EECMD, RTK_EEMODE_OFF);
return word;
}
/*
* MII access routines are provided for the 8129, which
* doesn't have a built-in PHY. For the 8139, we fake things
* up by diverting rtk_phy_readreg()/rtk_phy_writereg() to the
* direct access PHY registers.
*/
#define MII_SET(x) \
CSR_WRITE_1(sc, RTK_MII, \
CSR_READ_1(sc, RTK_MII) | (x))
#define MII_CLR(x) \
CSR_WRITE_1(sc, RTK_MII, \
CSR_READ_1(sc, RTK_MII) & ~(x))
/*
* Sync the PHYs by setting data bit and strobing the clock 32 times.
*/
static void
rtk_mii_sync(struct rtk_softc *sc)
{
int i;
MII_SET(RTK_MII_DIR|RTK_MII_DATAOUT);
for (i = 0; i < 32; i++) {
MII_SET(RTK_MII_CLK);
DELAY(1);
MII_CLR(RTK_MII_CLK);
DELAY(1);
}
}
/*
* Clock a series of bits through the MII.
*/
static void
rtk_mii_send(struct rtk_softc *sc, uint32_t bits, int cnt)
{
int i;
MII_CLR(RTK_MII_CLK);
for (i = cnt; i > 0; i--) {
if (bits & (1 << (i - 1))) {
MII_SET(RTK_MII_DATAOUT);
} else {
MII_CLR(RTK_MII_DATAOUT);
}
DELAY(1);
MII_CLR(RTK_MII_CLK);
DELAY(1);
MII_SET(RTK_MII_CLK);
}
}
/*
* Read an PHY register through the MII.
*/
static int
rtk_mii_readreg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
{
int i, ack, s;
s = splnet();
/*
* Set up frame for RX.
*/
frame->mii_stdelim = RTK_MII_STARTDELIM;
frame->mii_opcode = RTK_MII_READOP;
frame->mii_turnaround = 0;
frame->mii_data = 0;
CSR_WRITE_2(sc, RTK_MII, 0);
/*
* Turn on data xmit.
*/
MII_SET(RTK_MII_DIR);
rtk_mii_sync(sc);
/*
* Send command/address info.
*/
rtk_mii_send(sc, frame->mii_stdelim, 2);
rtk_mii_send(sc, frame->mii_opcode, 2);
rtk_mii_send(sc, frame->mii_phyaddr, 5);
rtk_mii_send(sc, frame->mii_regaddr, 5);
/* Idle bit */
MII_CLR((RTK_MII_CLK|RTK_MII_DATAOUT));
DELAY(1);
MII_SET(RTK_MII_CLK);
DELAY(1);
/* Turn off xmit. */
MII_CLR(RTK_MII_DIR);
/* Check for ack */
MII_CLR(RTK_MII_CLK);
DELAY(1);
ack = CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN;
MII_SET(RTK_MII_CLK);
DELAY(1);
/*
* Now try reading data bits. If the ack failed, we still
* need to clock through 16 cycles to keep the PHY(s) in sync.
*/
if (ack) {
for (i = 0; i < 16; i++) {
MII_CLR(RTK_MII_CLK);
DELAY(1);
MII_SET(RTK_MII_CLK);
DELAY(1);
}
goto fail;
}
for (i = 16; i > 0; i--) {
MII_CLR(RTK_MII_CLK);
DELAY(1);
if (!ack) {
if (CSR_READ_2(sc, RTK_MII) & RTK_MII_DATAIN)
frame->mii_data |= 1 << (i - 1);
DELAY(1);
}
MII_SET(RTK_MII_CLK);
DELAY(1);
}
fail:
MII_CLR(RTK_MII_CLK);
DELAY(1);
MII_SET(RTK_MII_CLK);
DELAY(1);
splx(s);
if (ack)
return 1;
return 0;
}
/*
* Write to a PHY register through the MII.
*/
static int
rtk_mii_writereg(struct rtk_softc *sc, struct rtk_mii_frame *frame)
{
int s;
s = splnet();
/*
* Set up frame for TX.
*/
frame->mii_stdelim = RTK_MII_STARTDELIM;
frame->mii_opcode = RTK_MII_WRITEOP;
frame->mii_turnaround = RTK_MII_TURNAROUND;
/*
* Turn on data output.
*/
MII_SET(RTK_MII_DIR);
rtk_mii_sync(sc);
rtk_mii_send(sc, frame->mii_stdelim, 2);
rtk_mii_send(sc, frame->mii_opcode, 2);
rtk_mii_send(sc, frame->mii_phyaddr, 5);
rtk_mii_send(sc, frame->mii_regaddr, 5);
rtk_mii_send(sc, frame->mii_turnaround, 2);
rtk_mii_send(sc, frame->mii_data, 16);
/* Idle bit. */
MII_SET(RTK_MII_CLK);
DELAY(1);
MII_CLR(RTK_MII_CLK);
DELAY(1);
/*
* Turn off xmit.
*/
MII_CLR(RTK_MII_DIR);
splx(s);
return 0;
}
static int
rtk_phy_readreg(device_t self, int phy, int reg)
{
struct rtk_softc *sc = device_private(self);
struct rtk_mii_frame frame;
int rval;
int rtk8139_reg;
if ((sc->sc_quirk & RTKQ_8129) == 0) {
if (phy != 7)
return 0;
switch (reg) {
case MII_BMCR:
rtk8139_reg = RTK_BMCR;
break;
case MII_BMSR:
rtk8139_reg = RTK_BMSR;
break;
case MII_ANAR:
rtk8139_reg = RTK_ANAR;
break;
case MII_ANER:
rtk8139_reg = RTK_ANER;
break;
case MII_ANLPAR:
rtk8139_reg = RTK_LPAR;
break;
default:
#if 0
printf("%s: bad phy register\n", device_xname(self));
#endif
return 0;
}
rval = CSR_READ_2(sc, rtk8139_reg);
return rval;
}
memset(&frame, 0, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
rtk_mii_readreg(sc, &frame);
return frame.mii_data;
}
static void
rtk_phy_writereg(device_t self, int phy, int reg, int data)
{
struct rtk_softc *sc = device_private(self);
struct rtk_mii_frame frame;
int rtk8139_reg;
if ((sc->sc_quirk & RTKQ_8129) == 0) {
if (phy != 7)
return;
switch (reg) {
case MII_BMCR:
rtk8139_reg = RTK_BMCR;
break;
case MII_BMSR:
rtk8139_reg = RTK_BMSR;
break;
case MII_ANAR:
rtk8139_reg = RTK_ANAR;
break;
case MII_ANER:
rtk8139_reg = RTK_ANER;
break;
case MII_ANLPAR:
rtk8139_reg = RTK_LPAR;
break;
default:
#if 0
printf("%s: bad phy register\n", device_xname(self));
#endif
return;
}
CSR_WRITE_2(sc, rtk8139_reg, data);
return;
}
memset(&frame, 0, sizeof(frame));
frame.mii_phyaddr = phy;
frame.mii_regaddr = reg;
frame.mii_data = data;
rtk_mii_writereg(sc, &frame);
}
static void
rtk_phy_statchg(struct ifnet *ifp)
{
/* Nothing to do. */
}
#define rtk_calchash(addr) \
(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
/*
* Program the 64-bit multicast hash filter.
*/
void
rtk_setmulti(struct rtk_softc *sc)
{
struct ifnet *ifp;
uint32_t hashes[2] = { 0, 0 };
uint32_t rxfilt;
struct ether_multi *enm;
struct ether_multistep step;
int h, mcnt;
ifp = &sc->ethercom.ec_if;
rxfilt = CSR_READ_4(sc, RTK_RXCFG);
if (ifp->if_flags & IFF_PROMISC) {
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
rxfilt |= RTK_RXCFG_RX_MULTI;
CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
CSR_WRITE_4(sc, RTK_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, RTK_MAR4, 0xFFFFFFFF);
return;
}
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, RTK_MAR0, 0);
CSR_WRITE_4(sc, RTK_MAR4, 0);
/* now program new ones */
ETHER_FIRST_MULTI(step, &sc->ethercom, enm);
mcnt = 0;
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0)
goto allmulti;
h = rtk_calchash(enm->enm_addrlo);
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
mcnt++;
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
if (mcnt)
rxfilt |= RTK_RXCFG_RX_MULTI;
else
rxfilt &= ~RTK_RXCFG_RX_MULTI;
CSR_WRITE_4(sc, RTK_RXCFG, rxfilt);
/*
* For some unfathomable reason, RealTek decided to reverse
* the order of the multicast hash registers in the PCI Express
* parts. This means we have to write the hash pattern in reverse
* order for those devices.
*/
if ((sc->sc_quirk & RTKQ_PCIE) != 0) {
CSR_WRITE_4(sc, RTK_MAR0, bswap32(hashes[1]));
CSR_WRITE_4(sc, RTK_MAR4, bswap32(hashes[0]));
} else {
CSR_WRITE_4(sc, RTK_MAR0, hashes[0]);
CSR_WRITE_4(sc, RTK_MAR4, hashes[1]);
}
}
void
rtk_reset(struct rtk_softc *sc)
{
int i;
CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_RESET);
for (i = 0; i < RTK_TIMEOUT; i++) {
DELAY(10);
if ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_RESET) == 0)
break;
}
if (i == RTK_TIMEOUT)
printf("%s: reset never completed!\n",
device_xname(sc->sc_dev));
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
void
rtk_attach(struct rtk_softc *sc)
{
device_t self = sc->sc_dev;
struct ifnet *ifp;
struct rtk_tx_desc *txd;
uint16_t val;
uint8_t eaddr[ETHER_ADDR_LEN];
int error;
int i, addr_len;
callout_init(&sc->rtk_tick_ch, 0);
/*
* Check EEPROM type 9346 or 9356.
*/
if (rtk_read_eeprom(sc, RTK_EE_ID, RTK_EEADDR_LEN1) == 0x8129)
addr_len = RTK_EEADDR_LEN1;
else
addr_len = RTK_EEADDR_LEN0;
/*
* Get station address.
*/
val = rtk_read_eeprom(sc, RTK_EE_EADDR0, addr_len);
eaddr[0] = val & 0xff;
eaddr[1] = val >> 8;
val = rtk_read_eeprom(sc, RTK_EE_EADDR1, addr_len);
eaddr[2] = val & 0xff;
eaddr[3] = val >> 8;
val = rtk_read_eeprom(sc, RTK_EE_EADDR2, addr_len);
eaddr[4] = val & 0xff;
eaddr[5] = val >> 8;
if ((error = bus_dmamem_alloc(sc->sc_dmat,
RTK_RXBUFLEN + 16, PAGE_SIZE, 0, &sc->sc_dmaseg, 1, &sc->sc_dmanseg,
BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(self,
"can't allocate recv buffer, error = %d\n", error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg,
RTK_RXBUFLEN + 16, (void **)&sc->rtk_rx_buf,
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
aprint_error_dev(self,
"can't map recv buffer, error = %d\n", error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->sc_dmat,
RTK_RXBUFLEN + 16, 1, RTK_RXBUFLEN + 16, 0, BUS_DMA_NOWAIT,
&sc->recv_dmamap)) != 0) {
aprint_error_dev(self,
"can't create recv buffer DMA map, error = %d\n", error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->recv_dmamap,
sc->rtk_rx_buf, RTK_RXBUFLEN + 16,
NULL, BUS_DMA_READ|BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(self,
"can't load recv buffer DMA map, error = %d\n", error);
goto fail_3;
}
for (i = 0; i < RTK_TX_LIST_CNT; i++) {
txd = &sc->rtk_tx_descs[i];
if ((error = bus_dmamap_create(sc->sc_dmat,
MCLBYTES, 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
&txd->txd_dmamap)) != 0) {
aprint_error_dev(self,
"can't create snd buffer DMA map, error = %d\n",
error);
goto fail_4;
}
txd->txd_txaddr = RTK_TXADDR0 + (i * 4);
txd->txd_txstat = RTK_TXSTAT0 + (i * 4);
}
SIMPLEQ_INIT(&sc->rtk_tx_free);
SIMPLEQ_INIT(&sc->rtk_tx_dirty);
/*
* From this point forward, the attachment cannot fail. A failure
* before this releases all resources thar may have been
* allocated.
*/
sc->sc_flags |= RTK_ATTACHED;
/* Reset the adapter. */
rtk_reset(sc);
aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(eaddr));
ifp = &sc->ethercom.ec_if;
ifp->if_softc = sc;
strcpy(ifp->if_xname, device_xname(self));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = rtk_ioctl;
ifp->if_start = rtk_start;
ifp->if_watchdog = rtk_watchdog;
ifp->if_init = rtk_init;
ifp->if_stop = rtk_stop;
IFQ_SET_READY(&ifp->if_snd);
/*
* Do ifmedia setup.
*/
sc->mii.mii_ifp = ifp;
sc->mii.mii_readreg = rtk_phy_readreg;
sc->mii.mii_writereg = rtk_phy_writereg;
sc->mii.mii_statchg = rtk_phy_statchg;
sc->ethercom.ec_mii = &sc->mii;
ifmedia_init(&sc->mii.mii_media, IFM_IMASK, ether_mediachange,
ether_mediastatus);
mii_attach(self, &sc->mii, 0xffffffff,
MII_PHY_ANY, MII_OFFSET_ANY, 0);
/* Choose a default media. */
if (LIST_FIRST(&sc->mii.mii_phys) == NULL) {
ifmedia_add(&sc->mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_NONE);
} else {
ifmedia_set(&sc->mii.mii_media, IFM_ETHER|IFM_AUTO);
}
/*
* Call MI attach routines.
*/
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, eaddr);
rnd_attach_source(&sc->rnd_source, device_xname(self),
RND_TYPE_NET, RND_FLAG_DEFAULT);
return;
fail_4:
for (i = 0; i < RTK_TX_LIST_CNT; i++) {
txd = &sc->rtk_tx_descs[i];
if (txd->txd_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
}
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, sc->rtk_rx_buf,
RTK_RXBUFLEN + 16);
fail_1:
bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
fail_0:
return;
}
/*
* Initialize the transmit descriptors.
*/
static void
rtk_list_tx_init(struct rtk_softc *sc)
{
struct rtk_tx_desc *txd;
int i;
while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL)
SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL)
SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
for (i = 0; i < RTK_TX_LIST_CNT; i++) {
txd = &sc->rtk_tx_descs[i];
CSR_WRITE_4(sc, txd->txd_txaddr, 0);
SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
}
}
/*
* rtk_activate:
* Handle device activation/deactivation requests.
*/
int
rtk_activate(device_t self, enum devact act)
{
struct rtk_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
if_deactivate(&sc->ethercom.ec_if);
return 0;
default:
return EOPNOTSUPP;
}
}
/*
* rtk_detach:
* Detach a rtk interface.
*/
int
rtk_detach(struct rtk_softc *sc)
{
struct ifnet *ifp = &sc->ethercom.ec_if;
struct rtk_tx_desc *txd;
int i;
/*
* Succeed now if there isn't any work to do.
*/
if ((sc->sc_flags & RTK_ATTACHED) == 0)
return 0;
/* Unhook our tick handler. */
callout_stop(&sc->rtk_tick_ch);
/* Detach all PHYs. */
mii_detach(&sc->mii, MII_PHY_ANY, MII_OFFSET_ANY);
/* Delete all remaining media. */
ifmedia_delete_instance(&sc->mii.mii_media, IFM_INST_ANY);
rnd_detach_source(&sc->rnd_source);
ether_ifdetach(ifp);
if_detach(ifp);
for (i = 0; i < RTK_TX_LIST_CNT; i++) {
txd = &sc->rtk_tx_descs[i];
if (txd->txd_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat, txd->txd_dmamap);
}
bus_dmamap_destroy(sc->sc_dmat, sc->recv_dmamap);
bus_dmamem_unmap(sc->sc_dmat, sc->rtk_rx_buf,
RTK_RXBUFLEN + 16);
bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, sc->sc_dmanseg);
/* we don't want to run again */
sc->sc_flags &= ~RTK_ATTACHED;
return 0;
}
/*
* rtk_enable:
* Enable the RTL81X9 chip.
*/
int
rtk_enable(struct rtk_softc *sc)
{
if (RTK_IS_ENABLED(sc) == 0 && sc->sc_enable != NULL) {
if ((*sc->sc_enable)(sc) != 0) {
printf("%s: device enable failed\n",
device_xname(sc->sc_dev));
return EIO;
}
sc->sc_flags |= RTK_ENABLED;
}
return 0;
}
/*
* rtk_disable:
* Disable the RTL81X9 chip.
*/
void
rtk_disable(struct rtk_softc *sc)
{
if (RTK_IS_ENABLED(sc) && sc->sc_disable != NULL) {
(*sc->sc_disable)(sc);
sc->sc_flags &= ~RTK_ENABLED;
}
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*
* You know there's something wrong with a PCI bus-master chip design.
*
* The receive operation is badly documented in the datasheet, so I'll
* attempt to document it here. The driver provides a buffer area and
* places its base address in the RX buffer start address register.
* The chip then begins copying frames into the RX buffer. Each frame
* is preceded by a 32-bit RX status word which specifies the length
* of the frame and certain other status bits. Each frame (starting with
* the status word) is also 32-bit aligned. The frame length is in the
* first 16 bits of the status word; the lower 15 bits correspond with
* the 'rx status register' mentioned in the datasheet.
*
* Note: to make the Alpha happy, the frame payload needs to be aligned
* on a 32-bit boundary. To achieve this, we copy the data to mbuf
* shifted forward 2 bytes.
*/
static void
rtk_rxeof(struct rtk_softc *sc)
{
struct mbuf *m;
struct ifnet *ifp;
uint8_t *rxbufpos, *dst;
u_int total_len, wrap;
uint32_t rxstat;
uint16_t cur_rx, new_rx;
uint16_t limit;
uint16_t rx_bytes, max_bytes;
ifp = &sc->ethercom.ec_if;
cur_rx = (CSR_READ_2(sc, RTK_CURRXADDR) + 16) % RTK_RXBUFLEN;
/* Do not try to read past this point. */
limit = CSR_READ_2(sc, RTK_CURRXBUF) % RTK_RXBUFLEN;
if (limit < cur_rx)
max_bytes = (RTK_RXBUFLEN - cur_rx) + limit;
else
max_bytes = limit - cur_rx;
rx_bytes = 0;
while ((CSR_READ_1(sc, RTK_COMMAND) & RTK_CMD_EMPTY_RXBUF) == 0) {
rxbufpos = sc->rtk_rx_buf + cur_rx;
bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
RTK_RXSTAT_LEN, BUS_DMASYNC_POSTREAD);
rxstat = le32toh(*(uint32_t *)rxbufpos);
bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, cur_rx,
RTK_RXSTAT_LEN, BUS_DMASYNC_PREREAD);
/*
* Here's a totally undocumented fact for you. When the
* RealTek chip is in the process of copying a packet into
* RAM for you, the length will be 0xfff0. If you spot a
* packet header with this value, you need to stop. The
* datasheet makes absolutely no mention of this and
* RealTek should be shot for this.
*/
total_len = rxstat >> 16;
if (total_len == RTK_RXSTAT_UNFINISHED)
break;
if ((rxstat & RTK_RXSTAT_RXOK) == 0 ||
total_len < ETHER_MIN_LEN ||
total_len > (MCLBYTES - RTK_ETHER_ALIGN)) {
ifp->if_ierrors++;
/*
* submitted by:[netbsd-pcmcia:00484]
* Takahiro Kambe <taca@sky.yamashina.kyoto.jp>
* obtain from:
* FreeBSD if_rl.c rev 1.24->1.25
*
*/
#if 0
if (rxstat & (RTK_RXSTAT_BADSYM|RTK_RXSTAT_RUNT|
RTK_RXSTAT_GIANT|RTK_RXSTAT_CRCERR|
RTK_RXSTAT_ALIGNERR)) {
CSR_WRITE_2(sc, RTK_COMMAND, RTK_CMD_TX_ENB);
CSR_WRITE_2(sc, RTK_COMMAND,
RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
CSR_WRITE_4(sc, RTK_RXADDR,
sc->recv_dmamap->dm_segs[0].ds_addr);
cur_rx = 0;
}
break;
#else
rtk_init(ifp);
return;
#endif
}
/* No errors; receive the packet. */
rx_bytes += total_len + RTK_RXSTAT_LEN;
/*
* Avoid trying to read more bytes than we know
* the chip has prepared for us.
*/
if (rx_bytes > max_bytes)
break;
/*
* Skip the status word, wrapping around to the beginning
* of the Rx area, if necessary.
*/
cur_rx = (cur_rx + RTK_RXSTAT_LEN) % RTK_RXBUFLEN;
rxbufpos = sc->rtk_rx_buf + cur_rx;
/*
* Compute the number of bytes at which the packet
* will wrap to the beginning of the ring buffer.
*/
wrap = RTK_RXBUFLEN - cur_rx;
/*
* Compute where the next pending packet is.
*/
if (total_len > wrap)
new_rx = total_len - wrap;
else
new_rx = cur_rx + total_len;
/* Round up to 32-bit boundary. */
new_rx = roundup2(new_rx, sizeof(uint32_t)) % RTK_RXBUFLEN;
/*
* The RealTek chip includes the CRC with every
* incoming packet; trim it off here.
*/
total_len -= ETHER_CRC_LEN;
/*
* Now allocate an mbuf (and possibly a cluster) to hold
* the packet. Note we offset the packet 2 bytes so that
* data after the Ethernet header will be 4-byte aligned.
*/
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
printf("%s: unable to allocate Rx mbuf\n",
device_xname(sc->sc_dev));
ifp->if_ierrors++;
goto next_packet;
}
if (total_len > (MHLEN - RTK_ETHER_ALIGN)) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
printf("%s: unable to allocate Rx cluster\n",
device_xname(sc->sc_dev));
ifp->if_ierrors++;
m_freem(m);
m = NULL;
goto next_packet;
}
}
m->m_data += RTK_ETHER_ALIGN; /* for alignment */
m_set_rcvif(m, ifp);
m->m_pkthdr.len = m->m_len = total_len;
dst = mtod(m, void *);
/*
* If the packet wraps, copy up to the wrapping point.
*/
if (total_len > wrap) {
bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
cur_rx, wrap, BUS_DMASYNC_POSTREAD);
memcpy(dst, rxbufpos, wrap);
bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
cur_rx, wrap, BUS_DMASYNC_PREREAD);
cur_rx = 0;
rxbufpos = sc->rtk_rx_buf;
total_len -= wrap;
dst += wrap;
}
/*
* ...and now the rest.
*/
bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
cur_rx, total_len, BUS_DMASYNC_POSTREAD);
memcpy(dst, rxbufpos, total_len);
bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap,
cur_rx, total_len, BUS_DMASYNC_PREREAD);
next_packet:
CSR_WRITE_2(sc, RTK_CURRXADDR, (new_rx - 16) % RTK_RXBUFLEN);
cur_rx = new_rx;
if (m == NULL)
continue;
/* pass it on. */
if_percpuq_enqueue(ifp->if_percpuq, m);
}
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
rtk_txeof(struct rtk_softc *sc)
{
struct ifnet *ifp;
struct rtk_tx_desc *txd;
uint32_t txstat;
ifp = &sc->ethercom.ec_if;
/*
* Go through our tx list and free mbufs for those
* frames that have been uploaded.
*/
while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
txstat = CSR_READ_4(sc, txd->txd_txstat);
if ((txstat & (RTK_TXSTAT_TX_OK|
RTK_TXSTAT_TX_UNDERRUN|RTK_TXSTAT_TXABRT)) == 0)
break;
SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
bus_dmamap_sync(sc->sc_dmat, txd->txd_dmamap, 0,
txd->txd_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
m_freem(txd->txd_mbuf);
txd->txd_mbuf = NULL;
ifp->if_collisions += (txstat & RTK_TXSTAT_COLLCNT) >> 24;
if (txstat & RTK_TXSTAT_TX_OK)
ifp->if_opackets++;
else {
ifp->if_oerrors++;
/*
* Increase Early TX threshold if underrun occurred.
* Increase step 64 bytes.
*/
if (txstat & RTK_TXSTAT_TX_UNDERRUN) {
#ifdef DEBUG
printf("%s: transmit underrun;",
device_xname(sc->sc_dev));
#endif
if (sc->sc_txthresh < RTK_TXTH_MAX) {
sc->sc_txthresh += 2;
#ifdef DEBUG
printf(" new threshold: %d bytes",
sc->sc_txthresh * 32);
#endif
}
#ifdef DEBUG
printf("\n");
#endif
}
if (txstat & (RTK_TXSTAT_TXABRT|RTK_TXSTAT_OUTOFWIN))
CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
}
SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_free, txd, txd_q);
ifp->if_flags &= ~IFF_OACTIVE;
}
/* Clear the timeout timer if there is no pending packet. */
if (SIMPLEQ_EMPTY(&sc->rtk_tx_dirty))
ifp->if_timer = 0;
}
int
rtk_intr(void *arg)
{
struct rtk_softc *sc;
struct ifnet *ifp;
uint16_t status;
int handled;
sc = arg;
ifp = &sc->ethercom.ec_if;
if (!device_has_power(sc->sc_dev))
return 0;
/* Disable interrupts. */
CSR_WRITE_2(sc, RTK_IMR, 0x0000);
handled = 0;
for (;;) {
status = CSR_READ_2(sc, RTK_ISR);
if (status == 0xffff)
break; /* Card is gone... */
if (status)
CSR_WRITE_2(sc, RTK_ISR, status);
if ((status & RTK_INTRS) == 0)
break;
handled = 1;
if (status & RTK_ISR_RX_OK)
rtk_rxeof(sc);
if (status & RTK_ISR_RX_ERR)
rtk_rxeof(sc);
if (status & (RTK_ISR_TX_OK|RTK_ISR_TX_ERR))
rtk_txeof(sc);
if (status & RTK_ISR_SYSTEM_ERR) {
rtk_reset(sc);
rtk_init(ifp);
}
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
if_schedule_deferred_start(ifp);
rnd_add_uint32(&sc->rnd_source, status);
return handled;
}
/*
* Main transmit routine.
*/
static void
rtk_start(struct ifnet *ifp)
{
struct rtk_softc *sc;
struct rtk_tx_desc *txd;
struct mbuf *m_head, *m_new;
int error, len;
sc = ifp->if_softc;
while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_free)) != NULL) {
IFQ_POLL(&ifp->if_snd, m_head);
if (m_head == NULL)
break;
m_new = NULL;
/*
* Load the DMA map. If this fails, the packet didn't
* fit in one DMA segment, and we need to copy. Note,
* the packet must also be aligned.
* if the packet is too small, copy it too, so we're sure
* so have enough room for the pad buffer.
*/
if ((mtod(m_head, uintptr_t) & 3) != 0 ||
m_head->m_pkthdr.len < ETHER_PAD_LEN ||
bus_dmamap_load_mbuf(sc->sc_dmat, txd->txd_dmamap,
m_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL) {
printf("%s: unable to allocate Tx mbuf\n",
device_xname(sc->sc_dev));
break;
}
if (m_head->m_pkthdr.len > MHLEN) {
MCLGET(m_new, M_DONTWAIT);
if ((m_new->m_flags & M_EXT) == 0) {
printf("%s: unable to allocate Tx "
"cluster\n",
device_xname(sc->sc_dev));
m_freem(m_new);
break;
}
}
m_copydata(m_head, 0, m_head->m_pkthdr.len,
mtod(m_new, void *));
m_new->m_pkthdr.len = m_new->m_len =
m_head->m_pkthdr.len;
if (m_head->m_pkthdr.len < ETHER_PAD_LEN) {
memset(
mtod(m_new, char *) + m_head->m_pkthdr.len,
0, ETHER_PAD_LEN - m_head->m_pkthdr.len);
m_new->m_pkthdr.len = m_new->m_len =
ETHER_PAD_LEN;
}
error = bus_dmamap_load_mbuf(sc->sc_dmat,
txd->txd_dmamap, m_new,
BUS_DMA_WRITE|BUS_DMA_NOWAIT);
if (error) {
printf("%s: unable to load Tx buffer, "
"error = %d\n",
device_xname(sc->sc_dev), error);
break;
}
}
IFQ_DEQUEUE(&ifp->if_snd, m_head);
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
bpf_mtap(ifp, m_head, BPF_D_OUT);
if (m_new != NULL) {
m_freem(m_head);
m_head = m_new;
}
txd->txd_mbuf = m_head;
SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_free, txd_q);
SIMPLEQ_INSERT_TAIL(&sc->rtk_tx_dirty, txd, txd_q);
/*
* Transmit the frame.
*/
bus_dmamap_sync(sc->sc_dmat,
txd->txd_dmamap, 0, txd->txd_dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
len = txd->txd_dmamap->dm_segs[0].ds_len;
CSR_WRITE_4(sc, txd->txd_txaddr,
txd->txd_dmamap->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, txd->txd_txstat,
RTK_TXSTAT_THRESH(sc->sc_txthresh) | len);
/*
* Set a timeout in case the chip goes out to lunch.
*/
ifp->if_timer = 5;
}
/*
* We broke out of the loop because all our TX slots are
* full. Mark the NIC as busy until it drains some of the
* packets from the queue.
*/
if (SIMPLEQ_EMPTY(&sc->rtk_tx_free))
ifp->if_flags |= IFF_OACTIVE;
}
static int
rtk_init(struct ifnet *ifp)
{
struct rtk_softc *sc = ifp->if_softc;
int error, i;
uint32_t rxcfg;
if ((error = rtk_enable(sc)) != 0)
goto out;
/*
* Cancel pending I/O.
*/
rtk_stop(ifp, 0);
/* Init our MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i++) {
CSR_WRITE_1(sc, RTK_IDR0 + i, CLLADDR(ifp->if_sadl)[i]);
}
/* Init the RX buffer pointer register. */
bus_dmamap_sync(sc->sc_dmat, sc->recv_dmamap, 0,
sc->recv_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
CSR_WRITE_4(sc, RTK_RXADDR, sc->recv_dmamap->dm_segs[0].ds_addr);
/* Init TX descriptors. */
rtk_list_tx_init(sc);
/* Init Early TX threshold. */
sc->sc_txthresh = RTK_TXTH_256;
/*
* Enable transmit and receive.
*/
CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
/*
* Set the initial TX and RX configuration.
*/
CSR_WRITE_4(sc, RTK_TXCFG, RTK_TXCFG_CONFIG);
CSR_WRITE_4(sc, RTK_RXCFG, RTK_RXCFG_CONFIG);
/* Set the individual bit to receive frames for this host only. */
rxcfg = CSR_READ_4(sc, RTK_RXCFG);
rxcfg |= RTK_RXCFG_RX_INDIV;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC) {
rxcfg |= RTK_RXCFG_RX_ALLPHYS;
CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
} else {
rxcfg &= ~RTK_RXCFG_RX_ALLPHYS;
CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
}
/*
* Set capture broadcast bit to capture broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
rxcfg |= RTK_RXCFG_RX_BROAD;
CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
} else {
rxcfg &= ~RTK_RXCFG_RX_BROAD;
CSR_WRITE_4(sc, RTK_RXCFG, rxcfg);
}
/*
* Program the multicast filter, if necessary.
*/
rtk_setmulti(sc);
/*
* Enable interrupts.
*/
CSR_WRITE_2(sc, RTK_IMR, RTK_INTRS);
/* Start RX/TX process. */
CSR_WRITE_4(sc, RTK_MISSEDPKT, 0);
/* Enable receiver and transmitter. */
CSR_WRITE_1(sc, RTK_COMMAND, RTK_CMD_TX_ENB|RTK_CMD_RX_ENB);
CSR_WRITE_1(sc, RTK_CFG1, RTK_CFG1_DRVLOAD|RTK_CFG1_FULLDUPLEX);
/*
* Set current media.
*/
if ((error = ether_mediachange(ifp)) != 0)
goto out;
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
out:
if (error) {
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
printf("%s: interface not running\n", device_xname(sc->sc_dev));
}
return error;
}
static int
rtk_ioctl(struct ifnet *ifp, u_long command, void *data)
{
struct rtk_softc *sc = ifp->if_softc;
int s, error;
s = splnet();
error = ether_ioctl(ifp, command, data);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING) {
/*
* Multicast list has changed. Set the
* hardware filter accordingly.
*/
rtk_setmulti(sc);
}
error = 0;
}
splx(s);
return error;
}
static void
rtk_watchdog(struct ifnet *ifp)
{
struct rtk_softc *sc;
sc = ifp->if_softc;
printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
ifp->if_oerrors++;
rtk_txeof(sc);
rtk_rxeof(sc);
rtk_init(ifp);
}
/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
rtk_stop(struct ifnet *ifp, int disable)
{
struct rtk_softc *sc = ifp->if_softc;
struct rtk_tx_desc *txd;
callout_stop(&sc->rtk_tick_ch);
mii_down(&sc->mii);
CSR_WRITE_1(sc, RTK_COMMAND, 0x00);
CSR_WRITE_2(sc, RTK_IMR, 0x0000);
/*
* Free the TX list buffers.
*/
while ((txd = SIMPLEQ_FIRST(&sc->rtk_tx_dirty)) != NULL) {
SIMPLEQ_REMOVE_HEAD(&sc->rtk_tx_dirty, txd_q);
bus_dmamap_unload(sc->sc_dmat, txd->txd_dmamap);
m_freem(txd->txd_mbuf);
txd->txd_mbuf = NULL;
CSR_WRITE_4(sc, txd->txd_txaddr, 0);
}
if (disable)
rtk_disable(sc);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}
static void
rtk_tick(void *arg)
{
struct rtk_softc *sc = arg;
int s;
s = splnet();
mii_tick(&sc->mii);
splx(s);
callout_reset(&sc->rtk_tick_ch, hz, rtk_tick, sc);
}