NetBSD/sys/dev/ic/rrunner.c

3649 lines
94 KiB
C

/* $NetBSD: rrunner.c,v 1.88 2018/09/03 16:29:31 riastradh Exp $ */
/*
* Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code contributed to The NetBSD Foundation by Kevin M. Lahey
* of the Numerical Aerospace Simulation Facility, NASA Ames Research
* Center.
*
* Partially based on a HIPPI driver written by Essential Communications
* Corporation. Thanks to Jason Thorpe, Matt Jacob, and Fred Templin
* for invaluable advice and encouragement!
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rrunner.c,v 1.88 2018/09/03 16:29:31 riastradh Exp $");
#include "opt_inet.h"
#include "esh.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/buf.h>
#include <sys/bufq.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/syslog.h>
#include <sys/select.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/kauth.h>
#include <uvm/uvm_extern.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/route.h>
#include <net/bpf.h>
#include <net/if_hippi.h>
#include <net/if_media.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#endif
#include <sys/cpu.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <dev/ic/rrunnerreg.h>
#include <dev/ic/rrunnervar.h>
#include "ioconf.h"
/*
#define ESH_PRINTF
*/
struct esh_softc *esh_softc_debug[22]; /* for gdb */
#ifdef DIAGNOSTIC
u_int32_t max_write_len;
#endif
/* Network device driver and initialization framework routines */
void eshinit(struct esh_softc *);
int eshioctl(struct ifnet *, u_long, void *);
void eshreset(struct esh_softc *);
void eshstart(struct ifnet *);
static int eshstatus(struct esh_softc *);
void eshstop(struct esh_softc *);
void eshwatchdog(struct ifnet *);
/* Routines to support FP operation */
dev_type_open(esh_fpopen);
dev_type_close(esh_fpclose);
dev_type_read(esh_fpread);
dev_type_write(esh_fpwrite);
#ifdef MORE_DONE
dev_type_mmap(esh_fpmmap);
#endif
dev_type_strategy(esh_fpstrategy);
const struct cdevsw esh_cdevsw = {
.d_open = esh_fpopen,
.d_close = esh_fpclose,
.d_read = esh_fpread,
.d_write = esh_fpwrite,
.d_ioctl = nullioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = nullpoll,
#ifdef MORE_DONE
.d_mmap = esh_fpmmap,
#else
.d_mmap = nommap,
#endif
.d_kqfilter = nullkqfilter,
.d_discard = nodiscard,
.d_flag = D_OTHER
};
/* General routines, not externally visable */
static struct mbuf *esh_adjust_mbufs(struct esh_softc *, struct mbuf *m);
static void esh_dma_sync(struct esh_softc *, void *,
int, int, int, int, int, int);
static void esh_fill_snap_ring(struct esh_softc *);
static void esh_init_snap_ring(struct esh_softc *);
static void esh_close_snap_ring(struct esh_softc *);
static void esh_read_snap_ring(struct esh_softc *, u_int16_t, int);
static void esh_fill_fp_ring(struct esh_softc *, struct esh_fp_ring_ctl *);
static void esh_flush_fp_ring(struct esh_softc *,
struct esh_fp_ring_ctl *,
struct esh_dmainfo *);
static void esh_init_fp_rings(struct esh_softc *);
static void esh_read_fp_ring(struct esh_softc *, u_int16_t, int, int);
static void esh_reset_runcode(struct esh_softc *);
static void esh_send(struct esh_softc *);
static void esh_send_cmd(struct esh_softc *, u_int8_t, u_int8_t, u_int8_t);
static u_int32_t esh_read_eeprom(struct esh_softc *, u_int32_t);
static void esh_write_addr(bus_space_tag_t, bus_space_handle_t,
bus_addr_t, bus_addr_t);
static int esh_write_eeprom(struct esh_softc *, u_int32_t, u_int32_t);
static void eshstart_cleanup(struct esh_softc *, u_int16_t, int);
static struct esh_dmainfo *esh_new_dmainfo(struct esh_softc *);
static void esh_free_dmainfo(struct esh_softc *, struct esh_dmainfo *);
static int esh_generic_ioctl(struct esh_softc *, u_long, void *, u_long,
struct lwp *);
#ifdef ESH_PRINTF
static int esh_check(struct esh_softc *);
#endif
#define ESHUNIT(x) ((minor(x) & 0xff00) >> 8)
#define ESHULP(x) (minor(x) & 0x00ff)
/*
* Back-end attach and configure. Allocate DMA space and initialize
* all structures.
*/
void
eshconfig(struct esh_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int32_t misc_host_ctl;
u_int32_t misc_local_ctl;
u_int32_t header_format;
u_int32_t ula_tmp;
bus_size_t size;
int rseg;
int error;
int i;
esh_softc_debug[device_unit(sc->sc_dev)] = sc;
sc->sc_flags = 0;
TAILQ_INIT(&sc->sc_dmainfo_freelist);
sc->sc_dmainfo_freelist_count = 0;
/*
* Allocate and divvy up some host side memory that can hold
* data structures that will be DMA'ed over to the NIC
*/
sc->sc_dma_size = sizeof(struct rr_gen_info) +
sizeof(struct rr_ring_ctl) * RR_ULP_COUNT +
sizeof(struct rr_descr) * RR_SEND_RING_SIZE +
sizeof(struct rr_descr) * RR_SNAP_RECV_RING_SIZE +
sizeof(struct rr_event) * RR_EVENT_RING_SIZE;
error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_dma_size,
0, RR_DMA_BOUNDARY, &sc->sc_dmaseg, 1,
&rseg, BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev, "couldn't allocate space for host-side"
"data structures\n");
return;
}
if (rseg > 1) {
aprint_error_dev(sc->sc_dev, "contiguous memory not available\n");
goto bad_dmamem_map;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dmaseg, rseg,
sc->sc_dma_size, (void **)&sc->sc_dma_addr,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
if (error) {
aprint_error_dev(sc->sc_dev,
"couldn't map memory for host-side structures\n");
goto bad_dmamem_map;
}
if (bus_dmamap_create(sc->sc_dmat, sc->sc_dma_size,
1, sc->sc_dma_size, RR_DMA_BOUNDARY,
BUS_DMA_ALLOCNOW | BUS_DMA_NOWAIT,
&sc->sc_dma)) {
aprint_error_dev(sc->sc_dev, "couldn't create DMA map\n");
goto bad_dmamap_create;
}
if (bus_dmamap_load(sc->sc_dmat, sc->sc_dma, sc->sc_dma_addr,
sc->sc_dma_size, NULL, BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->sc_dev, "couldn't load DMA map\n");
goto bad_dmamap_load;
}
memset(sc->sc_dma_addr, 0, sc->sc_dma_size);
sc->sc_gen_info_dma = sc->sc_dma->dm_segs->ds_addr;
sc->sc_gen_info = (struct rr_gen_info *) sc->sc_dma_addr;
size = sizeof(struct rr_gen_info);
sc->sc_recv_ring_table_dma = sc->sc_dma->dm_segs->ds_addr + size;
sc->sc_recv_ring_table =
(struct rr_ring_ctl *) (sc->sc_dma_addr + size);
size += sizeof(struct rr_ring_ctl) * RR_ULP_COUNT;
sc->sc_send_ring_dma = sc->sc_dma->dm_segs->ds_addr + size;
sc->sc_send_ring = (struct rr_descr *) (sc->sc_dma_addr + size);
sc->sc2_send_ring = (struct rr2_descr *) (sc->sc_dma_addr + size);
size += sizeof(struct rr_descr) * RR_SEND_RING_SIZE;
sc->sc_snap_recv_ring_dma = sc->sc_dma->dm_segs->ds_addr + size;
sc->sc_snap_recv_ring = (struct rr_descr *) (sc->sc_dma_addr + size);
sc->sc2_snap_recv_ring = (struct rr2_descr *) (sc->sc_dma_addr + size);
size += sizeof(struct rr_descr) * RR_SNAP_RECV_RING_SIZE;
sc->sc_event_ring_dma = sc->sc_dma->dm_segs->ds_addr + size;
sc->sc_event_ring = (struct rr_event *) (sc->sc_dma_addr + size);
size += sizeof(struct rr_event) * RR_EVENT_RING_SIZE;
#ifdef DIAGNOSTIC
if (size > sc->sc_dmaseg.ds_len) {
aprint_error_dev(sc->sc_dev, "bogus size calculation\n");
goto bad_other;
}
#endif
/*
* Allocate DMA maps for transfers. We do this here and now
* so we won't have to wait for them in the middle of sending
* or receiving something.
*/
if (bus_dmamap_create(sc->sc_dmat, ESH_MAX_NSEGS * RR_DMA_MAX,
ESH_MAX_NSEGS, RR_DMA_MAX, RR_DMA_BOUNDARY,
BUS_DMA_ALLOCNOW | BUS_DMA_NOWAIT,
&sc->sc_send.ec_dma)) {
aprint_error_dev(sc->sc_dev, "failed bus_dmamap_create\n");
goto bad_other;
}
sc->sc_send.ec_offset = 0;
sc->sc_send.ec_descr = sc->sc_send_ring;
TAILQ_INIT(&sc->sc_send.ec_di_queue);
bufq_alloc(&sc->sc_send.ec_buf_queue, "fcfs", 0);
for (i = 0; i < RR_MAX_SNAP_RECV_RING_SIZE; i++)
if (bus_dmamap_create(sc->sc_dmat, RR_DMA_MAX, 1, RR_DMA_MAX,
RR_DMA_BOUNDARY,
BUS_DMA_ALLOCNOW | BUS_DMA_NOWAIT,
&sc->sc_snap_recv.ec_dma[i])) {
aprint_error_dev(sc->sc_dev, "failed bus_dmamap_create\n");
for (i--; i >= 0; i--)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_snap_recv.ec_dma[i]);
goto bad_ring_dmamap_create;
}
/*
* If this is a coldboot, the NIC RunCode should be operational.
* If it is a warmboot, it may or may not be operational.
* Just to be sure, we'll stop the RunCode and reset everything.
*/
/* Halt the processor (preserve NO_SWAP, if set) */
misc_host_ctl = bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL);
bus_space_write_4(iot, ioh, RR_MISC_HOST_CTL,
(misc_host_ctl & RR_MH_NO_SWAP) | RR_MH_HALT_PROC);
/* Make the EEPROM readable */
misc_local_ctl = bus_space_read_4(iot, ioh, RR_MISC_LOCAL_CTL);
bus_space_write_4(iot, ioh, RR_MISC_LOCAL_CTL,
misc_local_ctl & ~(RR_LC_FAST_PROM | RR_LC_ADD_SRAM |
RR_LC_PARITY_ON));
/* Extract interesting information from the EEPROM: */
header_format = esh_read_eeprom(sc, RR_EE_HEADER_FORMAT);
if (header_format != RR_EE_HEADER_FORMAT_MAGIC) {
aprint_error_dev(sc->sc_dev, "bogus EEPROM header format value %x\n",
header_format);
goto bad_other;
}
/*
* As it is now, the runcode version in the EEPROM doesn't
* reflect the actual runcode version number. That is only
* available once the runcode starts up. We should probably
* change the firmware update code to modify this value,
* but Essential itself doesn't do it right now.
*/
sc->sc_sram_size = 4 * esh_read_eeprom(sc, RR_EE_SRAM_SIZE);
sc->sc_runcode_start = esh_read_eeprom(sc, RR_EE_RUNCODE_START);
sc->sc_runcode_version = esh_read_eeprom(sc, RR_EE_RUNCODE_VERSION);
sc->sc_pci_latency = esh_read_eeprom(sc, RR_EE_PCI_LATENCY);
sc->sc_pci_lat_gnt = esh_read_eeprom(sc, RR_EE_PCI_LAT_GNT);
/* General tuning values */
sc->sc_tune.rt_mode_and_status =
esh_read_eeprom(sc, RR_EE_MODE_AND_STATUS);
sc->sc_tune.rt_conn_retry_count =
esh_read_eeprom(sc, RR_EE_CONN_RETRY_COUNT);
sc->sc_tune.rt_conn_retry_timer =
esh_read_eeprom(sc, RR_EE_CONN_RETRY_TIMER);
sc->sc_tune.rt_conn_timeout =
esh_read_eeprom(sc, RR_EE_CONN_TIMEOUT);
sc->sc_tune.rt_interrupt_timer =
esh_read_eeprom(sc, RR_EE_INTERRUPT_TIMER);
sc->sc_tune.rt_tx_timeout =
esh_read_eeprom(sc, RR_EE_TX_TIMEOUT);
sc->sc_tune.rt_rx_timeout =
esh_read_eeprom(sc, RR_EE_RX_TIMEOUT);
sc->sc_tune.rt_stats_timer =
esh_read_eeprom(sc, RR_EE_STATS_TIMER);
sc->sc_tune.rt_stats_timer = ESH_STATS_TIMER_DEFAULT;
/* DMA tuning values */
sc->sc_tune.rt_pci_state =
esh_read_eeprom(sc, RR_EE_PCI_STATE);
sc->sc_tune.rt_dma_write_state =
esh_read_eeprom(sc, RR_EE_DMA_WRITE_STATE);
sc->sc_tune.rt_dma_read_state =
esh_read_eeprom(sc, RR_EE_DMA_READ_STATE);
sc->sc_tune.rt_driver_param =
esh_read_eeprom(sc, RR_EE_DRIVER_PARAM);
/*
* Snag the ULA. The first two bytes are reserved.
* We don't really use it immediately, but it would be good to
* have for building IPv6 addresses, etc.
*/
ula_tmp = esh_read_eeprom(sc, RR_EE_ULA_HI);
sc->sc_ula[0] = (ula_tmp >> 8) & 0xff;
sc->sc_ula[1] = ula_tmp & 0xff;
ula_tmp = esh_read_eeprom(sc, RR_EE_ULA_LO);
sc->sc_ula[2] = (ula_tmp >> 24) & 0xff;
sc->sc_ula[3] = (ula_tmp >> 16) & 0xff;
sc->sc_ula[4] = (ula_tmp >> 8) & 0xff;
sc->sc_ula[5] = ula_tmp & 0xff;
/* Reset EEPROM readability */
bus_space_write_4(iot, ioh, RR_MISC_LOCAL_CTL, misc_local_ctl);
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_start = eshstart;
ifp->if_ioctl = eshioctl;
ifp->if_watchdog = eshwatchdog;
ifp->if_flags = IFF_SIMPLEX | IFF_NOTRAILERS | IFF_NOARP;
IFQ_SET_READY(&ifp->if_snd);
if_attach(ifp);
hippi_ifattach(ifp, sc->sc_ula);
sc->sc_misaligned_bufs = sc->sc_bad_lens = 0;
sc->sc_fp_rings = 0;
return;
bad_ring_dmamap_create:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_send.ec_dma);
bad_other:
bus_dmamap_unload(sc->sc_dmat, sc->sc_dma);
bad_dmamap_load:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dma);
bad_dmamap_create:
bus_dmamem_unmap(sc->sc_dmat, sc->sc_dma_addr, sc->sc_dma_size);
bad_dmamem_map:
bus_dmamem_free(sc->sc_dmat, &sc->sc_dmaseg, rseg);
return;
}
/*
* Bring device up.
*
* Assume that the on-board processor has already been stopped,
* the rings have been cleared of valid buffers, and everything
* is pretty much as it was when the system started.
*
* Stop the processor (just for good measure), clear the SRAM,
* reload the boot code, and start it all up again, with the PC
* pointing at the boot code. Once the boot code has had a chance
* to come up, adjust all of the appropriate parameters, and send
* the 'start firmware' command.
*
* The NIC won't actually be up until it gets an interrupt with an
* event indicating the RunCode is up.
*/
void
eshinit(struct esh_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct rr_ring_ctl *ring;
u_int32_t misc_host_ctl;
u_int32_t misc_local_ctl;
u_int32_t value;
u_int32_t mode;
/* If we're already doing an init, don't try again simultaniously */
if ((sc->sc_flags & ESH_FL_INITIALIZING) != 0)
return;
sc->sc_flags = ESH_FL_INITIALIZING;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma, 0, sc->sc_dma_size,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/* Halt the processor (preserve NO_SWAP, if set) */
misc_host_ctl = bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL);
bus_space_write_4(iot, ioh, RR_MISC_HOST_CTL,
(misc_host_ctl & RR_MH_NO_SWAP)
| RR_MH_HALT_PROC | RR_MH_CLEAR_INT);
/* Make the EEPROM readable */
misc_local_ctl = bus_space_read_4(iot, ioh, RR_MISC_LOCAL_CTL);
bus_space_write_4(iot, ioh, RR_MISC_LOCAL_CTL,
misc_local_ctl & ~(RR_LC_FAST_PROM |
RR_LC_ADD_SRAM |
RR_LC_PARITY_ON));
/* Reset DMA */
bus_space_write_4(iot, ioh, RR_RX_STATE, RR_RS_RESET);
bus_space_write_4(iot, ioh, RR_TX_STATE, 0);
bus_space_write_4(iot, ioh, RR_DMA_READ_STATE, RR_DR_RESET);
bus_space_write_4(iot, ioh, RR_DMA_WRITE_STATE, RR_DW_RESET);
bus_space_write_4(iot, ioh, RR_PCI_STATE, 0);
bus_space_write_4(iot, ioh, RR_TIMER, 0);
bus_space_write_4(iot, ioh, RR_TIMER_REF, 0);
/*
* Reset the assist register that the documentation suggests
* resetting. Too bad that the docs don't mention anything
* else about the register!
*/
bus_space_write_4(iot, ioh, 0x15C, 1);
/* Clear BIST, set the PC to the start of the code and let 'er rip */
value = bus_space_read_4(iot, ioh, RR_PCI_BIST);
bus_space_write_4(iot, ioh, RR_PCI_BIST, (value & ~0xff) | 8);
sc->sc_bist_write(sc, 0);
esh_reset_runcode(sc);
bus_space_write_4(iot, ioh, RR_PROC_PC, sc->sc_runcode_start);
bus_space_write_4(iot, ioh, RR_PROC_BREAKPT, 0x00000001);
misc_host_ctl &= ~RR_MH_HALT_PROC;
bus_space_write_4(iot, ioh, RR_MISC_HOST_CTL, misc_host_ctl);
/* XXX: should we sleep rather than delaying for 1ms!? */
delay(1000); /* Need 500 us, but we'll give it more */
value = sc->sc_bist_read(sc);
if (value != 0) {
aprint_error_dev(sc->sc_dev, "BIST is %d, not 0!\n",
value);
goto bad_init;
}
#ifdef ESH_PRINTF
printf("%s: BIST is %x\n", device_xname(sc->sc_dev), value);
eshstatus(sc);
#endif
/* RunCode is up. Initialize NIC */
esh_write_addr(iot, ioh, RR_GEN_INFO_PTR, sc->sc_gen_info_dma);
esh_write_addr(iot, ioh, RR_RECV_RING_PTR, sc->sc_recv_ring_table_dma);
sc->sc_event_consumer = 0;
bus_space_write_4(iot, ioh, RR_EVENT_CONSUMER, sc->sc_event_consumer);
sc->sc_event_producer = bus_space_read_4(iot, ioh, RR_EVENT_PRODUCER);
sc->sc_cmd_producer = RR_INIT_CMD;
sc->sc_cmd_consumer = 0;
mode = bus_space_read_4(iot, ioh, RR_MODE_AND_STATUS);
mode |= (RR_MS_WARNINGS |
RR_MS_ERR_TERM |
RR_MS_NO_RESTART |
RR_MS_SWAP_DATA);
mode &= ~RR_MS_PH_MODE;
bus_space_write_4(iot, ioh, RR_MODE_AND_STATUS, mode);
#if 0
#ifdef ESH_PRINTF
printf("eshinit: misc_local_ctl %x, SRAM size %d\n", misc_local_ctl,
sc->sc_sram_size);
#endif
/*
misc_local_ctl |= (RR_LC_FAST_PROM | RR_LC_PARITY_ON);
*/
if (sc->sc_sram_size > 256 * 1024) {
misc_local_ctl |= RR_LC_ADD_SRAM;
}
#endif
#ifdef ESH_PRINTF
printf("eshinit: misc_local_ctl %x\n", misc_local_ctl);
#endif
bus_space_write_4(iot, ioh, RR_MISC_LOCAL_CTL, misc_local_ctl);
/* Set tuning parameters */
bus_space_write_4(iot, ioh, RR_CONN_RETRY_COUNT,
sc->sc_tune.rt_conn_retry_count);
bus_space_write_4(iot, ioh, RR_CONN_RETRY_TIMER,
sc->sc_tune.rt_conn_retry_timer);
bus_space_write_4(iot, ioh, RR_CONN_TIMEOUT,
sc->sc_tune.rt_conn_timeout);
bus_space_write_4(iot, ioh, RR_INTERRUPT_TIMER,
sc->sc_tune.rt_interrupt_timer);
bus_space_write_4(iot, ioh, RR_TX_TIMEOUT,
sc->sc_tune.rt_tx_timeout);
bus_space_write_4(iot, ioh, RR_RX_TIMEOUT,
sc->sc_tune.rt_rx_timeout);
bus_space_write_4(iot, ioh, RR_STATS_TIMER,
sc->sc_tune.rt_stats_timer);
bus_space_write_4(iot, ioh, RR_PCI_STATE,
sc->sc_tune.rt_pci_state);
bus_space_write_4(iot, ioh, RR_DMA_WRITE_STATE,
sc->sc_tune.rt_dma_write_state);
bus_space_write_4(iot, ioh, RR_DMA_READ_STATE,
sc->sc_tune.rt_dma_read_state);
sc->sc_max_rings = bus_space_read_4(iot, ioh, RR_MAX_RECV_RINGS);
sc->sc_runcode_version =
bus_space_read_4(iot, ioh, RR_RUNCODE_VERSION);
sc->sc_version = sc->sc_runcode_version >> 16;
if (sc->sc_version != 1 && sc->sc_version != 2) {
aprint_error_dev(sc->sc_dev, "bad version number %d in runcode\n",
sc->sc_version);
goto bad_init;
}
if (sc->sc_version == 1) {
sc->sc_options = 0;
} else {
value = bus_space_read_4(iot, ioh, RR_ULA);
sc->sc_options = value >> 16;
}
if (sc->sc_options & (RR_OP_LONG_TX | RR_OP_LONG_RX)) {
aprint_error_dev(sc->sc_dev, "unsupported firmware -- long descriptors\n");
goto bad_init;
}
printf("%s: startup runcode version %d.%d.%d, options %x\n",
device_xname(sc->sc_dev),
sc->sc_version,
(sc->sc_runcode_version >> 8) & 0xff,
sc->sc_runcode_version & 0xff,
sc->sc_options);
/* Initialize the general ring information */
memset(sc->sc_recv_ring_table, 0,
sizeof(struct rr_ring_ctl) * RR_ULP_COUNT);
ring = &sc->sc_gen_info->ri_event_ring_ctl;
ring->rr_ring_addr = sc->sc_event_ring_dma;
ring->rr_entry_size = sizeof(struct rr_event);
ring->rr_free_bufs = RR_EVENT_RING_SIZE / 4;
ring->rr_entries = RR_EVENT_RING_SIZE;
ring->rr_prod_index = 0;
ring = &sc->sc_gen_info->ri_cmd_ring_ctl;
ring->rr_free_bufs = 8;
ring->rr_entry_size = sizeof(union rr_cmd);
ring->rr_prod_index = RR_INIT_CMD;
ring = &sc->sc_gen_info->ri_send_ring_ctl;
ring->rr_ring_addr = sc->sc_send_ring_dma;
if (sc->sc_version == 1) {
ring->rr_free_bufs = RR_RR_DONT_COMPLAIN;
} else {
ring->rr_free_bufs = 0;
}
ring->rr_entries = RR_SEND_RING_SIZE;
ring->rr_entry_size = sizeof(struct rr_descr);
ring->rr_prod_index = sc->sc_send.ec_producer =
sc->sc_send.ec_consumer = 0;
sc->sc_send.ec_cur_mbuf = NULL;
sc->sc_send.ec_cur_buf = NULL;
sc->sc_snap_recv.ec_descr = sc->sc_snap_recv_ring;
sc->sc_snap_recv.ec_consumer = sc->sc_snap_recv.ec_producer = 0;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma, 0, sc->sc_dma_size,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Set up the watchdog to make sure something happens! */
sc->sc_watchdog = 0;
ifp->if_timer = 5;
/*
* Can't actually turn on interface until we see some events,
* so set initialized flag, but don't start sending.
*/
sc->sc_flags = ESH_FL_INITIALIZED;
esh_send_cmd(sc, RR_CC_START_RUNCODE, 0, 0);
return;
bad_init:
sc->sc_flags = 0;
wakeup((void *) sc);
return;
}
/*
* Code to handle the Framing Protocol (FP) interface to the esh.
* This will allow us to write directly to the wire, with no
* intervening memcpy's to slow us down.
*/
int
esh_fpopen(dev_t dev, int oflags, int devtype,
struct lwp *l)
{
struct esh_softc *sc;
struct rr_ring_ctl *ring_ctl;
struct esh_fp_ring_ctl *recv;
int ulp = ESHULP(dev);
int error = 0;
bus_size_t size;
int rseg;
int s;
sc = device_lookup_private(&esh_cd, ESHUNIT(dev));
if (sc == NULL || ulp == HIPPI_ULP_802)
return (ENXIO);
#ifdef ESH_PRINTF
printf("esh_fpopen: opening board %d, ulp %d\n",
device_unit(sc->sc_dev), ulp);
#endif
/* If the card is not up, initialize it. */
s = splnet();
if (sc->sc_fp_rings >= sc->sc_max_rings - 1) {
splx(s);
return (ENOSPC);
}
if ((sc->sc_flags & ESH_FL_INITIALIZED) == 0) {
eshinit(sc);
if ((sc->sc_flags & ESH_FL_INITIALIZED) == 0) {
splx(s);
return EIO;
}
}
if ((sc->sc_flags & ESH_FL_RUNCODE_UP) == 0) {
/*
* Wait for the runcode to indicate that it is up,
* while watching to make sure we haven't crashed.
*/
error = 0;
while (error == 0 &&
(sc->sc_flags & ESH_FL_INITIALIZED) != 0 &&
(sc->sc_flags & ESH_FL_RUNCODE_UP) == 0) {
error = tsleep((void *) sc, PCATCH | PRIBIO,
"eshinit", 0);
#ifdef ESH_PRINTF
printf("esh_fpopen: tslept\n");
#endif
}
if (error != 0) {
splx(s);
return error;
}
if ((sc->sc_flags & ESH_FL_RUNCODE_UP) == 0) {
splx(s);
return EIO;
}
}
#ifdef ESH_PRINTF
printf("esh_fpopen: card up\n");
#endif
/* Look at the ring descriptor to see if the ULP is in use */
ring_ctl = &sc->sc_recv_ring_table[ulp];
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
(char *) ring_ctl - (char *) sc->sc_dma_addr,
sizeof(*ring_ctl),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
if (ring_ctl->rr_entry_size != 0) {
splx(s);
return (EBUSY);
}
#ifdef ESH_PRINTF
printf("esh_fpopen: ring %d okay\n", ulp);
#endif
/*
* Allocate the DMA space for the ring; space for the
* ring control blocks has already been staticly allocated.
*/
recv = (struct esh_fp_ring_ctl *)
malloc(sizeof(*recv), M_DEVBUF, M_WAITOK|M_ZERO);
TAILQ_INIT(&recv->ec_queue);
size = RR_FP_RECV_RING_SIZE * sizeof(struct rr_descr);
error = bus_dmamem_alloc(sc->sc_dmat, size, 0, RR_DMA_BOUNDARY,
&recv->ec_dmaseg, 1,
&rseg, BUS_DMA_WAITOK);
if (error) {
aprint_error_dev(sc->sc_dev, "couldn't allocate space for FP receive ring"
"data structures\n");
goto bad_fp_dmamem_alloc;
}
if (rseg > 1) {
aprint_error_dev(sc->sc_dev, "contiguous memory not available for "
"FP receive ring\n");
goto bad_fp_dmamem_map;
}
error = bus_dmamem_map(sc->sc_dmat, &recv->ec_dmaseg, rseg,
size, (void **) &recv->ec_descr,
BUS_DMA_WAITOK | BUS_DMA_COHERENT);
if (error) {
aprint_error_dev(sc->sc_dev, "couldn't map memory for FP receive ring\n");
goto bad_fp_dmamem_map;
}
if (bus_dmamap_create(sc->sc_dmat, size, 1, size, RR_DMA_BOUNDARY,
BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
&recv->ec_dma)) {
aprint_error_dev(sc->sc_dev, "couldn't create DMA map for FP receive ring\n");
goto bad_fp_dmamap_create;
}
if (bus_dmamap_load(sc->sc_dmat, recv->ec_dma, recv->ec_descr,
size, NULL, BUS_DMA_WAITOK)) {
aprint_error_dev(sc->sc_dev, "couldn't load DMA map for FP receive ring\n");
goto bad_fp_dmamap_load;
}
memset(recv->ec_descr, 0, size);
/*
* Create the ring:
*
* XXX: HTF are we gonna deal with the fact that we don't know
* if the open succeeded until we get a response from
* the event handler? I guess we could go to sleep waiting
* for the interrupt, and get woken up by the eshintr
* case handling it.
*/
ring_ctl->rr_ring_addr = recv->ec_dma->dm_segs->ds_addr;
ring_ctl->rr_free_bufs = RR_FP_RECV_RING_SIZE / 4;
ring_ctl->rr_entries = RR_FP_RECV_RING_SIZE;
ring_ctl->rr_entry_size = sizeof(struct rr_descr);
ring_ctl->rr_prod_index = recv->ec_producer = recv->ec_consumer = 0;
ring_ctl->rr_mode = RR_RR_CHARACTER;
recv->ec_ulp = ulp;
recv->ec_index = -1;
sc->sc_fp_recv[ulp] = recv;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
(char *) ring_ctl - (char *) sc->sc_dma_addr,
sizeof(*ring_ctl),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, recv->ec_dma, 0, size,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
esh_send_cmd(sc, RR_CC_ENABLE_RING, ulp, recv->ec_producer);
#ifdef ESH_PRINTF
printf("esh_fpopen: sent create ring cmd\n");
#endif
while (recv->ec_index == -1) {
error = tsleep((void *) &recv->ec_ulp, PCATCH | PRIBIO,
"eshfpopen", 0);
if (error != 0 || recv->ec_index == -1) {
goto bad_fp_ring_create;
}
}
#ifdef ESH_PRINTF
printf("esh_fpopen: created ring\n");
#endif
/*
* Ring is created. Set up various pointers to the ring
* information, fill the ring, and get going...
*/
sc->sc_fp_rings++;
splx(s);
return 0;
bad_fp_ring_create:
#ifdef ESH_PRINTF
printf("esh_fpopen: bad ring create\n");
#endif
sc->sc_fp_recv[ulp] = NULL;
memset(ring_ctl, 0, sizeof(*ring_ctl));
bus_dmamap_unload(sc->sc_dmat, recv->ec_dma);
bad_fp_dmamap_load:
bus_dmamap_destroy(sc->sc_dmat, recv->ec_dma);
bad_fp_dmamap_create:
bus_dmamem_unmap(sc->sc_dmat, (void *) recv->ec_descr, size);
bad_fp_dmamem_map:
bus_dmamem_free(sc->sc_dmat, &recv->ec_dmaseg, rseg);
bad_fp_dmamem_alloc:
free(recv, M_DEVBUF);
if (error == 0)
error = ENOMEM;
splx(s);
return (error);
}
int
esh_fpclose(dev_t dev, int fflag, int devtype,
struct lwp *l)
{
struct esh_softc *sc;
struct rr_ring_ctl *ring_ctl;
struct esh_fp_ring_ctl *ring;
int ulp = ESHULP(dev);
int index;
int error = 0;
int s;
sc = device_lookup_private(&esh_cd, ESHUNIT(dev));
if (sc == NULL || ulp == HIPPI_ULP_802)
return (ENXIO);
s = splnet();
ring = sc->sc_fp_recv[ulp];
ring_ctl = &sc->sc_recv_ring_table[ulp];
index = ring->ec_index;
#ifdef ESH_PRINTF
printf("esh_fpclose: closing unit %d, ulp %d\n",
device_unit(sc->sc_dev), ulp);
#endif
assert(ring);
assert(ring_ctl);
/*
* Disable the ring, wait for notification, and get rid of DMA
* stuff and dynamically allocated memory. Loop, waiting to
* learn that the ring has been disabled, or the card
* has been shut down.
*/
do {
esh_send_cmd(sc, RR_CC_DISABLE_RING, ulp, ring->ec_producer);
error = tsleep((void *) &ring->ec_index, PCATCH | PRIBIO,
"esh_fpclose", 0);
if (error != 0 && error != EAGAIN) {
aprint_error_dev(sc->sc_dev, "esh_fpclose: wait on ring disable bad\n");
ring->ec_index = -1;
break;
}
} while (ring->ec_index != -1 && sc->sc_flags != 0);
/*
* XXX: Gotta unload the ring, removing old descriptors!
* *Can* there be outstanding reads with a close issued!?
*/
bus_dmamap_unload(sc->sc_dmat, ring->ec_dma);
bus_dmamap_destroy(sc->sc_dmat, ring->ec_dma);
bus_dmamem_unmap(sc->sc_dmat, (void *) ring->ec_descr,
RR_FP_RECV_RING_SIZE * sizeof(struct rr_descr));
bus_dmamem_free(sc->sc_dmat, &ring->ec_dmaseg, ring->ec_dma->dm_nsegs);
free(ring, M_DEVBUF);
memset(ring_ctl, 0, sizeof(*ring_ctl));
sc->sc_fp_recv[ulp] = NULL;
sc->sc_fp_recv_index[index] = NULL;
sc->sc_fp_rings--;
if (sc->sc_fp_rings == 0)
sc->sc_flags &= ~ESH_FL_FP_RING_UP;
splx(s);
return 0;
}
int
esh_fpread(dev_t dev, struct uio *uio, int ioflag)
{
struct lwp *l = curlwp;
struct proc *p = l->l_proc;
struct iovec *iovp;
struct esh_softc *sc;
struct esh_fp_ring_ctl *ring;
struct esh_dmainfo *di;
int ulp = ESHULP(dev);
int error;
int i;
int s;
#ifdef ESH_PRINTF
printf("esh_fpread: dev %x\n", dev);
#endif
sc = device_lookup_private(&esh_cd, ESHUNIT(dev));
if (sc == NULL || ulp == HIPPI_ULP_802)
return (ENXIO);
s = splnet();
ring = sc->sc_fp_recv[ulp];
if ((sc->sc_flags & ESH_FL_INITIALIZED) == 0) {
error = ENXIO;
goto fpread_done;
}
/* Check for validity */
for (i = 0; i < uio->uio_iovcnt; i++) {
/* Check for valid offsets and sizes */
if (((u_long) uio->uio_iov[i].iov_base & 3) != 0 ||
(i < uio->uio_iovcnt - 1 &&
(uio->uio_iov[i].iov_len & 3) != 0)) {
error = EFAULT;
goto fpread_done;
}
}
/* Lock down the pages */
for (i = 0; i < uio->uio_iovcnt; i++) {
iovp = &uio->uio_iov[i];
error = uvm_vslock(p->p_vmspace, iovp->iov_base, iovp->iov_len,
VM_PROT_WRITE);
if (error) {
/* Unlock what we've locked so far. */
for (--i; i >= 0; i--) {
iovp = &uio->uio_iov[i];
uvm_vsunlock(p->p_vmspace, iovp->iov_base,
iovp->iov_len);
}
goto fpread_done;
}
}
/*
* Perform preliminary DMA mapping and throw the buffers
* onto the queue to be sent.
*/
di = esh_new_dmainfo(sc);
if (di == NULL) {
error = ENOMEM;
goto fpread_done;
}
di->ed_buf = NULL;
di->ed_error = 0;
di->ed_read_len = 0;
#ifdef ESH_PRINTF
printf("esh_fpread: ulp %d, uio offset %qd, resid %d, iovcnt %d\n",
ulp, uio->uio_offset, uio->uio_resid, uio->uio_iovcnt);
#endif
error = bus_dmamap_load_uio(sc->sc_dmat, di->ed_dma,
uio, BUS_DMA_READ|BUS_DMA_WAITOK);
if (error) {
aprint_error_dev(sc->sc_dev, "esh_fpread: bus_dmamap_load_uio "
"failed\terror code %d\n",
error);
error = ENOBUFS;
esh_free_dmainfo(sc, di);
goto fpread_done;
}
bus_dmamap_sync(sc->sc_dmat, di->ed_dma,
0, di->ed_dma->dm_mapsize,
BUS_DMASYNC_PREREAD);
#ifdef ESH_PRINTF
printf("esh_fpread: ulp %d, di %p, nsegs %d, uio len %d\n",
ulp, di, di->ed_dma->dm_nsegs, uio->uio_resid);
#endif
di->ed_flags |= ESH_DI_BUSY;
TAILQ_INSERT_TAIL(&ring->ec_queue, di, ed_list);
esh_fill_fp_ring(sc, ring);
while ((di->ed_flags & ESH_DI_BUSY) != 0 && error == 0) {
error = tsleep((void *) di, PCATCH | PRIBIO, "esh_fpread", 0);
#ifdef ESH_PRINTF
printf("esh_fpread: ulp %d, tslept %d\n", ulp, error);
#endif
if (error) {
/*
* Remove the buffer entries from the ring; this
* is gonna require a DISCARD_PKT command, and
* will certainly disrupt things. This is why we
* can have only one outstanding read on a ring
* at a time. :-(
*/
printf("esh_fpread: was that a ^C!? error %d, ulp %d\n",
error, ulp);
if (error == EINTR || error == ERESTART)
error = 0;
if ((di->ed_flags & ESH_DI_BUSY) != 0) {
esh_flush_fp_ring(sc, ring, di);
error = EINTR;
break;
}
}
}
if (error == 0 && di->ed_error != 0)
error = EIO;
/*
* How do we let the caller know how much has been read?
* Adjust the uio_resid stuff!?
*/
assert(uio->uio_resid >= di->ed_read_len);
uio->uio_resid -= di->ed_read_len;
for (i = 0; i < uio->uio_iovcnt; i++) {
iovp = &uio->uio_iov[i];
uvm_vsunlock(p->p_vmspace, iovp->iov_base, iovp->iov_len);
}
esh_free_dmainfo(sc, di);
fpread_done:
#ifdef ESH_PRINTF
printf("esh_fpread: ulp %d, error %d\n", ulp, error);
#endif
splx(s);
return error;
}
int
esh_fpwrite(dev_t dev, struct uio *uio, int ioflag)
{
struct lwp *l = curlwp;
struct proc *p = l->l_proc;
struct iovec *iovp;
struct esh_softc *sc;
struct esh_send_ring_ctl *ring;
struct esh_dmainfo *di;
int ulp = ESHULP(dev);
int error;
int len;
int i;
int s;
#ifdef ESH_PRINTF
printf("esh_fpwrite: dev %x\n", dev);
#endif
sc = device_lookup_private(&esh_cd, ESHUNIT(dev));
if (sc == NULL || ulp == HIPPI_ULP_802)
return (ENXIO);
s = splnet();
ring = &sc->sc_send;
if ((sc->sc_flags & ESH_FL_INITIALIZED) == 0) {
error = ENXIO;
goto fpwrite_done;
}
/* Check for validity */
for (i = 0; i < uio->uio_iovcnt; i++) {
if (((u_long) uio->uio_iov[i].iov_base & 3) != 0 ||
(i < uio->uio_iovcnt - 1 &&
(uio->uio_iov[i].iov_len & 3) != 0)) {
error = EFAULT;
goto fpwrite_done;
}
}
/* Lock down the pages */
for (i = 0; i < uio->uio_iovcnt; i++) {
iovp = &uio->uio_iov[i];
error = uvm_vslock(p->p_vmspace, iovp->iov_base, iovp->iov_len,
VM_PROT_READ);
if (error) {
/* Unlock what we've locked so far. */
for (--i; i >= 0; i--) {
iovp = &uio->uio_iov[i];
uvm_vsunlock(p->p_vmspace, iovp->iov_base,
iovp->iov_len);
}
goto fpwrite_done;
}
}
/*
* Perform preliminary DMA mapping and throw the buffers
* onto the queue to be sent.
*/
di = esh_new_dmainfo(sc);
if (di == NULL) {
error = ENOMEM;
goto fpwrite_done;
}
di->ed_buf = NULL;
di->ed_error = 0;
#ifdef ESH_PRINTF
printf("esh_fpwrite: uio offset %qd, resid %d, iovcnt %d\n",
uio->uio_offset, uio->uio_resid, uio->uio_iovcnt);
#endif
error = bus_dmamap_load_uio(sc->sc_dmat, di->ed_dma,
uio, BUS_DMA_WRITE|BUS_DMA_WAITOK);
if (error) {
aprint_error_dev(sc->sc_dev, "esh_fpwrite: bus_dmamap_load_uio "
"failed\terror code %d\n",
error);
error = ENOBUFS;
esh_free_dmainfo(sc, di);
goto fpwrite_done;
}
bus_dmamap_sync(sc->sc_dmat, di->ed_dma,
0, di->ed_dma->dm_mapsize,
BUS_DMASYNC_PREWRITE);
#ifdef ESH_PRINTF
printf("esh_fpwrite: di %p, nsegs %d, uio len %d\n",
di, di->ed_dma->dm_nsegs, uio->uio_resid);
#endif
len = di->ed_dma->dm_mapsize;
di->ed_flags |= ESH_DI_BUSY;
TAILQ_INSERT_TAIL(&ring->ec_di_queue, di, ed_list);
eshstart(&sc->sc_if);
while ((di->ed_flags & ESH_DI_BUSY) != 0 && error == 0) {
error = tsleep((void *) di, PRIBIO, "esh_fpwrite", 0);
#ifdef ESH_PRINTF
printf("esh_fpwrite: tslept %d\n", error);
#endif
if (error) {
printf("esh_fpwrite: was that a ^C!? Shouldn't be! Error %d\n",
error);
if (error == EINTR || error == ERESTART)
error = 0;
if ((di->ed_flags & ESH_DI_BUSY) != 0) {
panic("interrupted eshwrite!");
#if 0
/* Better do *something* here! */
esh_flush_send_ring(sc, di);
#endif
error = EINTR;
break;
}
}
}
if (error == 0 && di->ed_error != 0)
error = EIO;
/*
* How do we let the caller know how much has been written?
* Adjust the uio_resid stuff!?
*/
uio->uio_resid -= len;
uio->uio_offset += len;
for (i = 0; i < uio->uio_iovcnt; i++) {
iovp = &uio->uio_iov[i];
uvm_vsunlock(p->p_vmspace, iovp->iov_base, iovp->iov_len);
}
esh_free_dmainfo(sc, di);
fpwrite_done:
#ifdef ESH_PRINTF
printf("esh_fpwrite: error %d\n", error);
#endif
splx(s);
return error;
}
void
esh_fpstrategy(struct buf *bp)
{
struct esh_softc *sc;
int ulp = ESHULP(bp->b_dev);
int error = 0;
int s;
#ifdef ESH_PRINTF
printf("esh_fpstrategy: starting, bcount %ld, flags %lx, dev %x\n"
"\tunit %x, ulp %d\n",
bp->b_bcount, bp->b_flags, bp->b_dev, unit, ulp);
#endif
sc = device_lookup_private(&esh_cd, ESHUNIT(bp->b_dev));
s = splnet();
if (sc == NULL || ulp == HIPPI_ULP_802) {
bp->b_error = ENXIO;
goto done;
}
if (bp->b_bcount == 0)
goto done;
#define UP_FLAGS (ESH_FL_INITIALIZED | ESH_FL_RUNCODE_UP)
if ((sc->sc_flags & UP_FLAGS) != UP_FLAGS) {
bp->b_error = EBUSY;
goto done;
}
#undef UP_FLAGS
if (bp->b_flags & B_READ) {
/*
* Perform preliminary DMA mapping and throw the buffers
* onto the queue to be sent.
*/
struct esh_fp_ring_ctl *ring = sc->sc_fp_recv[ulp];
struct esh_dmainfo *di = esh_new_dmainfo(sc);
if (di == NULL) {
bp->b_error = ENOMEM;
goto done;
}
di->ed_buf = bp;
error = bus_dmamap_load(sc->sc_dmat, di->ed_dma,
bp->b_data, bp->b_bcount,
bp->b_proc,
BUS_DMA_READ|BUS_DMA_WAITOK);
if (error) {
aprint_error_dev(sc->sc_dev, "esh_fpstrategy: "
"bus_dmamap_load "
"failed\terror code %d\n",
error);
bp->b_error = ENOBUFS;
esh_free_dmainfo(sc, di);
goto done;
}
bus_dmamap_sync(sc->sc_dmat, di->ed_dma,
0, di->ed_dma->dm_mapsize,
BUS_DMASYNC_PREREAD);
#ifdef ESH_PRINTF
printf("fpstrategy: di %p\n", di);
#endif
TAILQ_INSERT_TAIL(&ring->ec_queue, di, ed_list);
esh_fill_fp_ring(sc, ring);
} else {
/*
* Queue up the buffer for future sending. If the card
* isn't already transmitting, give it a kick.
*/
struct esh_send_ring_ctl *ring = &sc->sc_send;
bufq_put(ring->ec_buf_queue, bp);
#ifdef ESH_PRINTF
printf("esh_fpstrategy: ready to call eshstart to write!\n");
#endif
eshstart(&sc->sc_if);
}
splx(s);
return;
done:
splx(s);
#ifdef ESH_PRINTF
printf("esh_fpstrategy: failing, bp->b_error %d!\n",
bp->b_error);
#endif
biodone(bp);
}
/*
* Handle interrupts. This is basicly event handling code; version two
* firmware tries to speed things up by just telling us the location
* of the producer and consumer indices, rather than sending us an event.
*/
int
eshintr(void *arg)
{
struct esh_softc *sc = arg;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct ifnet *ifp = &sc->sc_if;
u_int32_t rc_offsets;
u_int32_t misc_host_ctl;
int rc_send_consumer = 0; /* shut up compiler */
int rc_snap_ring_consumer = 0; /* ditto */
u_int8_t fp_ring_consumer[RR_MAX_RECV_RING];
int start_consumer;
int ret = 0;
int okay = 0;
int blah = 0;
char sbuf[100];
char t[100];
/* Check to see if this is our interrupt. */
misc_host_ctl = bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL);
if ((misc_host_ctl & RR_MH_INTERRUPT) == 0)
return 0;
/* If we can't do anything with the interrupt, just drop it */
if (sc->sc_flags == 0)
return 1;
rc_offsets = bus_space_read_4(iot, ioh, RR_EVENT_PRODUCER);
sc->sc_event_producer = rc_offsets & 0xff;
if (sc->sc_version == 2) {
int i;
sbuf[0] = '\0';
strlcat(sbuf, "rc: ", sizeof(sbuf));
rc_send_consumer = (rc_offsets >> 8) & 0xff;
rc_snap_ring_consumer = (rc_offsets >> 16) & 0xff;
for (i = 0; i < RR_MAX_RECV_RING; i += 4) {
rc_offsets =
bus_space_read_4(iot, ioh,
RR_RUNCODE_RECV_CONS + i);
/* XXX: should do this right! */
NTOHL(rc_offsets);
*((u_int32_t *) &fp_ring_consumer[i]) = rc_offsets;
snprintf(t, sizeof(t), "%.8x|", rc_offsets);
strlcat(sbuf, t, sizeof(sbuf));
}
}
start_consumer = sc->sc_event_consumer;
/* Take care of synchronizing DMA with entries we read... */
esh_dma_sync(sc, sc->sc_event_ring,
start_consumer, sc->sc_event_producer,
RR_EVENT_RING_SIZE, sizeof(struct rr_event), 0,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (sc->sc_event_consumer != sc->sc_event_producer) {
struct rr_event *event =
&sc->sc_event_ring[sc->sc_event_consumer];
#ifdef ESH_PRINTF
if (event->re_code != RR_EC_WATCHDOG &&
event->re_code != RR_EC_STATS_UPDATE &&
event->re_code != RR_EC_SET_CMD_CONSUMER) {
printf("%s: event code %x, ring %d, index %d\n",
device_xname(sc->sc_dev), event->re_code,
event->re_ring, event->re_index);
if (okay == 0)
printf("%s\n", sbuf);
okay = 1;
}
#endif
ret = 1; /* some action was taken by card */
switch(event->re_code) {
case RR_EC_RUNCODE_UP:
printf("%s: firmware up\n", device_xname(sc->sc_dev));
sc->sc_flags |= ESH_FL_RUNCODE_UP;
esh_send_cmd(sc, RR_CC_WATCHDOG, 0, 0);
esh_send_cmd(sc, RR_CC_UPDATE_STATS, 0, 0);
#ifdef ESH_PRINTF
eshstatus(sc);
#endif
if ((ifp->if_flags & IFF_UP) != 0)
esh_init_snap_ring(sc);
if (sc->sc_fp_rings > 0)
esh_init_fp_rings(sc);
/*
* XXX: crank up FP rings that might be
* in use after a reset!
*/
wakeup((void *) sc);
break;
case RR_EC_WATCHDOG:
/*
* Record the watchdog event.
* This is checked by eshwatchdog
*/
sc->sc_watchdog = 1;
break;
case RR_EC_SET_CMD_CONSUMER:
sc->sc_cmd_consumer = event->re_index;
break;
case RR_EC_LINK_ON:
printf("%s: link up\n", device_xname(sc->sc_dev));
sc->sc_flags |= ESH_FL_LINK_UP;
esh_send_cmd(sc, RR_CC_WATCHDOG, 0, 0);
esh_send_cmd(sc, RR_CC_UPDATE_STATS, 0, 0);
if ((sc->sc_flags & ESH_FL_SNAP_RING_UP) != 0) {
/*
* Interface is now `running', with no
* output active.
*/
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/* Attempt to start output, if any. */
}
eshstart(ifp);
break;
case RR_EC_LINK_OFF:
sc->sc_flags &= ~ESH_FL_LINK_UP;
printf("%s: link down\n", device_xname(sc->sc_dev));
break;
/*
* These are all unexpected. We need to handle all
* of them, though.
*/
case RR_EC_INVALID_CMD:
case RR_EC_INTERNAL_ERROR:
case RR2_EC_INTERNAL_ERROR:
case RR_EC_BAD_SEND_RING:
case RR_EC_BAD_SEND_BUF:
case RR_EC_BAD_SEND_DESC:
case RR_EC_RECV_RING_FLUSH:
case RR_EC_RECV_ERROR_INFO:
case RR_EC_BAD_RECV_BUF:
case RR_EC_BAD_RECV_DESC:
case RR_EC_BAD_RECV_RING:
case RR_EC_UNIMPLEMENTED:
aprint_error_dev(sc->sc_dev, "unexpected event %x;"
"shutting down interface\n",
event->re_code);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
sc->sc_flags = ESH_FL_CRASHED;
#ifdef ESH_PRINTF
eshstatus(sc);
#endif
break;
#define CALLOUT(a) case a: \
printf("%s: Event " #a " received -- " \
"ring %d index %d timestamp %x\n", \
device_xname(sc->sc_dev), event->re_ring, event->re_index, \
event->re_timestamp); \
break;
CALLOUT(RR_EC_NO_RING_FOR_ULP);
CALLOUT(RR_EC_REJECTING); /* dropping packets */
#undef CALLOUT
/* Send events */
case RR_EC_PACKET_SENT: /* not used in firmware 2.x */
ifp->if_opackets++;
/* FALLTHROUGH */
case RR_EC_SET_SND_CONSUMER:
assert(sc->sc_version == 1);
/* FALLTHROUGH */
case RR_EC_SEND_RING_LOW:
eshstart_cleanup(sc, event->re_index, 0);
break;
case RR_EC_CONN_REJECT:
case RR_EC_CAMPON_TIMEOUT:
case RR_EC_CONN_TIMEOUT:
case RR_EC_DISCONN_ERR:
case RR_EC_INTERNAL_PARITY:
case RR_EC_TX_IDLE:
case RR_EC_SEND_LINK_OFF:
eshstart_cleanup(sc, event->re_index, event->re_code);
break;
/* Receive events */
case RR_EC_RING_ENABLED:
if (event->re_ring == HIPPI_ULP_802) {
rc_snap_ring_consumer = 0; /* prevent read */
sc->sc_flags |= ESH_FL_SNAP_RING_UP;
esh_fill_snap_ring(sc);
if (sc->sc_flags & ESH_FL_LINK_UP) {
/*
* Interface is now `running', with no
* output active.
*/
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/* Attempt to start output, if any. */
eshstart(ifp);
}
#ifdef ESH_PRINTF
if (event->re_index != 0)
printf("ENABLE snap ring -- index %d instead of 0!\n",
event->re_index);
#endif
} else {
struct esh_fp_ring_ctl *ring =
sc->sc_fp_recv[event->re_ring];
sc->sc_flags |= ESH_FL_FP_RING_UP;
#ifdef ESH_PRINTF
printf("eshintr: FP ring %d up\n",
event->re_ring);
#endif
sc->sc_fp_recv_index[event->re_index] = ring;
ring->ec_index = event->re_index;
wakeup((void *) &ring->ec_ulp);
}
break;
case RR_EC_RING_DISABLED:
#ifdef ESH_PRINTF
printf("eshintr: disabling ring %d\n",
event->re_ring);
#endif
if (event->re_ring == HIPPI_ULP_802) {
struct rr_ring_ctl *ring =
sc->sc_recv_ring_table + HIPPI_ULP_802;
memset(ring, 0, sizeof(*ring));
sc->sc_flags &= ~ESH_FL_CLOSING_SNAP;
sc->sc_flags &= ~ESH_FL_SNAP_RING_UP;
while (sc->sc_snap_recv.ec_consumer
!= sc->sc_snap_recv.ec_producer) {
u_int16_t offset = sc->sc_snap_recv.ec_consumer;
bus_dmamap_unload(sc->sc_dmat,
sc->sc_snap_recv.ec_dma[offset]);
m_free(sc->sc_snap_recv.ec_m[offset]);
sc->sc_snap_recv.ec_m[offset] = NULL;
sc->sc_snap_recv.ec_consumer =
NEXT_RECV(sc->sc_snap_recv.ec_consumer);
}
sc->sc_snap_recv.ec_consumer =
rc_snap_ring_consumer;
sc->sc_snap_recv.ec_producer =
rc_snap_ring_consumer;
wakeup((void *) &sc->sc_snap_recv);
} else {
struct esh_fp_ring_ctl *recv =
sc->sc_fp_recv[event->re_ring];
assert(recv != NULL);
recv->ec_consumer = recv->ec_producer =
fp_ring_consumer[recv->ec_index];
recv->ec_index = -1;
wakeup((void *) &recv->ec_index);
}
break;
case RR_EC_RING_ENABLE_ERR:
if (event->re_ring == HIPPI_ULP_802) {
aprint_error_dev(sc->sc_dev, "unable to enable SNAP ring!?\n\t"
"shutting down interface\n");
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
#ifdef ESH_PRINTF
eshstatus(sc);
#endif
} else {
/*
* If we just leave the ring index as-is,
* the driver will figure out that
* we failed to open the ring.
*/
wakeup((void *) &(sc->sc_fp_recv[event->re_ring]->ec_ulp));
}
break;
case RR_EC_PACKET_DISCARDED:
/*
* Determine the dmainfo for the current packet
* we just discarded and wake up the waiting
* process.
*
* This should never happen on the network ring!
*/
if (event->re_ring == HIPPI_ULP_802) {
aprint_error_dev(sc->sc_dev, "discard on SNAP ring!?\n\t"
"shutting down interface\n");
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
sc->sc_flags = ESH_FL_CRASHED;
} else {
struct esh_fp_ring_ctl *ring =
sc->sc_fp_recv[event->re_ring];
struct esh_dmainfo *di =
ring->ec_cur_dmainfo;
if (di == NULL)
di = ring->ec_dmainfo[ring->ec_producer];
printf("eshintr: DISCARD: index %d,"
"ring prod %d, di %p, ring[index] %p\n",
event->re_index, ring->ec_producer, di,
ring->ec_dmainfo[event->re_index]);
if (di == NULL)
di = ring->ec_dmainfo[event->re_index];
if (di == NULL) {
printf("eshintr: DISCARD: NULL di, skipping...\n");
break;
}
di->ed_flags &=
~(ESH_DI_READING | ESH_DI_BUSY);
wakeup((void *) &di->ed_flags);
}
break;
case RR_EC_OUT_OF_BUF:
case RR_EC_RECV_RING_OUT:
case RR_EC_RECV_RING_LOW:
break;
case RR_EC_SET_RECV_CONSUMER:
case RR_EC_PACKET_RECVED:
if (event->re_ring == HIPPI_ULP_802)
esh_read_snap_ring(sc, event->re_index, 0);
else if (sc->sc_fp_recv[event->re_ring] != NULL)
esh_read_fp_ring(sc, event->re_index, 0,
event->re_ring);
break;
case RR_EC_RECV_IDLE:
case RR_EC_PARITY_ERR:
case RR_EC_LLRC_ERR:
case RR_EC_PKT_LENGTH_ERR:
case RR_EC_IP_HDR_CKSUM_ERR:
case RR_EC_DATA_CKSUM_ERR:
case RR_EC_SHORT_BURST_ERR:
case RR_EC_RECV_LINK_OFF:
case RR_EC_FLAG_SYNC_ERR:
case RR_EC_FRAME_ERR:
case RR_EC_STATE_TRANS_ERR:
case RR_EC_NO_READY_PULSE:
if (event->re_ring == HIPPI_ULP_802) {
esh_read_snap_ring(sc, event->re_index,
event->re_code);
} else {
struct esh_fp_ring_ctl *r;
r = sc->sc_fp_recv[event->re_ring];
if (r)
r->ec_error = event->re_code;
}
break;
/*
* Statistics events can be ignored for now. They might become
* necessary if we have to deliver stats on demand, rather than
* just returning the statistics block of memory.
*/
case RR_EC_STATS_UPDATE:
case RR_EC_STATS_RETRIEVED:
case RR_EC_TRACE:
break;
default:
aprint_error_dev(sc->sc_dev, "Bogus event code %x, "
"ring %d, index %d, timestamp %x\n",
event->re_code,
event->re_ring, event->re_index,
event->re_timestamp);
break;
}
sc->sc_event_consumer = NEXT_EVENT(sc->sc_event_consumer);
}
/* Do the receive and send ring processing for version 2 RunCode */
if (sc->sc_version == 2) {
int i;
if (sc->sc_send.ec_consumer != rc_send_consumer) {
eshstart_cleanup(sc, rc_send_consumer, 0);
ret = 1;
blah++;
}
if (sc->sc_snap_recv.ec_consumer != rc_snap_ring_consumer &&
(sc->sc_flags & ESH_FL_SNAP_RING_UP) != 0) {
esh_read_snap_ring(sc, rc_snap_ring_consumer, 0);
ret = 1;
blah++;
}
for (i = 0; i < RR_MAX_RECV_RING; i++) {
struct esh_fp_ring_ctl *r = sc->sc_fp_recv_index[i];
if (r != NULL &&
r->ec_consumer != fp_ring_consumer[i]) {
#ifdef ESH_PRINTF
printf("eshintr: performed read on ring %d, index %d\n",
r->ec_ulp, i);
#endif
blah++;
esh_read_fp_ring(sc, fp_ring_consumer[i],
0, r->ec_ulp);
fp_ring_consumer[i] = r->ec_consumer;
}
}
if (blah != 0 && okay == 0) {
okay = 1;
#ifdef ESH_PRINTF
printf("%s\n", sbuf);
#endif
}
rc_offsets = (sc->sc_snap_recv.ec_consumer << 16) |
(sc->sc_send.ec_consumer << 8) | sc->sc_event_consumer;
} else {
rc_offsets = sc->sc_event_consumer;
}
esh_dma_sync(sc, sc->sc_event_ring,
start_consumer, sc->sc_event_producer,
RR_EVENT_RING_SIZE, sizeof(struct rr_event), 0,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/* Write out new values for the FP segments... */
if (sc->sc_version == 2) {
int i;
u_int32_t u;
sbuf[0] = '\0';
strlcat(sbuf, "drv: ", sizeof(sbuf));
for (i = 0; i < RR_MAX_RECV_RING; i += 4) {
/* XXX: should do this right! */
u = *((u_int32_t *) &fp_ring_consumer[i]);
snprintf(t, sizeof(t), "%.8x|", u);
strlcat(sbuf, t, sizeof(sbuf));
NTOHL(u);
bus_space_write_4(iot, ioh,
RR_DRIVER_RECV_CONS + i, u);
}
#ifdef ESH_PRINTF
if (okay == 1)
printf("%s\n", sbuf);
#endif
sbuf[0] = '\0';
strlcat(sbuf, "rcn: ", sizeof(sbuf));
for (i = 0; i < RR_MAX_RECV_RING; i += 4) {
u = bus_space_read_4(iot, ioh,
RR_RUNCODE_RECV_CONS + i);
/* XXX: should do this right! */
NTOHL(u);
snprintf(t, sizeof(t), "%.8x|", u);
strlcat(sbuf, t, sizeof(sbuf));
}
#ifdef ESH_PRINTF
if (okay == 1)
printf("%s\n", sbuf);
#endif
}
/* Clear interrupt */
bus_space_write_4(iot, ioh, RR_EVENT_CONSUMER, rc_offsets);
return (ret);
}
/*
* Start output on the interface. Always called at splnet().
* Check to see if there are any mbufs that didn't get sent the
* last time this was called. If there are none, get more mbufs
* and send 'em.
*
* For now, we only send one packet at a time.
*/
void
eshstart(struct ifnet *ifp)
{
struct esh_softc *sc = ifp->if_softc;
struct esh_send_ring_ctl *send = &sc->sc_send;
struct mbuf *m = NULL;
int error;
/* Don't transmit if interface is busy or not running */
#ifdef ESH_PRINTF
printf("eshstart: ready to look; flags %x\n", sc->sc_flags);
#endif
#define LINK_UP_FLAGS (ESH_FL_LINK_UP | ESH_FL_INITIALIZED | ESH_FL_RUNCODE_UP)
if ((sc->sc_flags & LINK_UP_FLAGS) != LINK_UP_FLAGS)
return;
#undef LINK_UP_FLAGS
#ifdef ESH_PRINTF
if (esh_check(sc))
return;
#endif
/* If we have sent the current packet, get another */
while ((sc->sc_flags & ESH_FL_SNAP_RING_UP) != 0 &&
(m = send->ec_cur_mbuf) == NULL && send->ec_cur_buf == NULL &&
send->ec_cur_dmainfo == NULL) {
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == 0) /* not really needed */
break;
if (ifp->if_bpf) {
/*
* On output, the raw packet has a eight-byte CCI
* field prepended. On input, there is no such field.
* The bpf expects the packet to look the same in both
* places, so we temporarily lop off the prepended CCI
* field here, then replace it. Ugh.
*
* XXX: Need to use standard mbuf manipulation
* functions, first mbuf may be less than
* 8 bytes long.
*/
m->m_len -= 8;
m->m_data += 8;
m->m_pkthdr.len -= 8;
bpf_mtap(ifp, m, BPF_D_OUT);
m->m_len += 8;
m->m_data -= 8;
m->m_pkthdr.len += 8;
}
send->ec_len = m->m_pkthdr.len;
m = send->ec_cur_mbuf = esh_adjust_mbufs(sc, m);
if (m == NULL)
continue;
error = bus_dmamap_load_mbuf(sc->sc_dmat, send->ec_dma,
m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
if (error)
panic("%s: eshstart: "
"bus_dmamap_load_mbuf failed err %d\n",
device_xname(sc->sc_dev), error);
send->ec_offset = 0;
}
/*
* If there are no network packets to send, see if there
* are any FP packets to send.
*
* XXX: Some users may disagree with these priorities;
* this reduces network latency by increasing FP latency...
* Note that it also means that FP packets can get
* locked out so that they *never* get sent, if the
* network constantly fills up the pipe. Not good!
*/
if ((sc->sc_flags & ESH_FL_FP_RING_UP) != 0 &&
send->ec_cur_mbuf == NULL && send->ec_cur_buf == NULL &&
send->ec_cur_dmainfo == NULL &&
bufq_peek(send->ec_buf_queue) != NULL) {
struct buf *bp;
#ifdef ESH_PRINTF
printf("eshstart: getting a buf from send->ec_queue %p\n",
send->ec_queue);
#endif
bp = send->ec_cur_buf = bufq_get(send->ec_buf_queue);
send->ec_offset = 0;
send->ec_len = bp->b_bcount;
/*
* Determine the DMA mapping for the buffer.
* If this is too large, what do we do!?
*/
error = bus_dmamap_load(sc->sc_dmat, send->ec_dma,
bp->b_data, bp->b_bcount,
bp->b_proc,
BUS_DMA_WRITE|BUS_DMA_NOWAIT);
if (error)
panic("%s: eshstart: "
"bus_dmamap_load failed err %d\n",
device_xname(sc->sc_dev), error);
}
/*
* If there are no packets from strategy to send, see if there
* are any FP packets to send from fpwrite.
*/
if ((sc->sc_flags & ESH_FL_FP_RING_UP) != 0 &&
send->ec_cur_mbuf == NULL && send->ec_cur_buf == NULL &&
send->ec_cur_dmainfo == NULL) {
struct esh_dmainfo *di;
di = TAILQ_FIRST(&send->ec_di_queue);
if (di == NULL)
return;
TAILQ_REMOVE(&send->ec_di_queue, di, ed_list);
#ifdef ESH_PRINTF
printf("eshstart: getting a di from send->ec_di_queue %p\n",
&send->ec_di_queue);
#endif
send->ec_cur_dmainfo = di;
send->ec_offset = 0;
send->ec_len = di->ed_dma->dm_mapsize;
}
if (send->ec_cur_mbuf == NULL && send->ec_cur_buf == NULL &&
send->ec_cur_dmainfo == NULL)
return;
assert(send->ec_len);
assert(send->ec_dma->dm_nsegs ||
send->ec_cur_dmainfo->ed_dma->dm_nsegs);
assert(send->ec_cur_mbuf || send->ec_cur_buf || send->ec_cur_dmainfo);
esh_send(sc);
return;
}
/*
* Put the buffers from the send dmamap into the descriptors and
* send 'em off...
*/
static void
esh_send(struct esh_softc *sc)
{
struct esh_send_ring_ctl *send = &sc->sc_send;
u_int start_producer = send->ec_producer;
bus_dmamap_t dma;
if (send->ec_cur_dmainfo != NULL)
dma = send->ec_cur_dmainfo->ed_dma;
else
dma = send->ec_dma;
#ifdef ESH_PRINTF
printf("esh_send: producer %x consumer %x nsegs %d\n",
send->ec_producer, send->ec_consumer, dma->dm_nsegs);
#endif
esh_dma_sync(sc, send->ec_descr, send->ec_producer, send->ec_consumer,
RR_SEND_RING_SIZE, sizeof(struct rr_descr), 1,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (NEXT_SEND(send->ec_producer) != send->ec_consumer &&
send->ec_offset < dma->dm_nsegs) {
int offset = send->ec_producer;
send->ec_descr[offset].rd_buffer_addr =
dma->dm_segs[send->ec_offset].ds_addr;
send->ec_descr[offset].rd_length =
dma->dm_segs[send->ec_offset].ds_len;
send->ec_descr[offset].rd_control = 0;
if (send->ec_offset == 0) {
/* Start of the dmamap... */
send->ec_descr[offset].rd_control |=
RR_CT_PACKET_START;
}
if (send->ec_offset + 1 == dma->dm_nsegs) {
send->ec_descr[offset].rd_control |= RR_CT_PACKET_END;
}
send->ec_offset++;
send->ec_producer = NEXT_SEND(send->ec_producer);
}
/*
* XXX: we could optimize the dmamap_sync to just get what we've
* just set up, rather than the whole buffer...
*/
bus_dmamap_sync(sc->sc_dmat, dma, 0, dma->dm_mapsize,
BUS_DMASYNC_PREWRITE);
esh_dma_sync(sc, send->ec_descr,
start_producer, send->ec_consumer,
RR_SEND_RING_SIZE, sizeof(struct rr_descr), 1,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
#ifdef ESH_PRINTF
if (send->ec_offset != dma->dm_nsegs)
printf("eshstart: couldn't fit packet in send ring!\n");
#endif
if (sc->sc_version == 1) {
esh_send_cmd(sc, RR_CC_SET_SEND_PRODUCER,
0, send->ec_producer);
} else {
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
RR_SEND_PRODUCER, send->ec_producer);
}
return;
}
/*
* Cleanup for the send routine. When the NIC sends us an event to
* let us know that it has consumed our buffers, we need to free the
* buffers, and possibly send another packet.
*/
static void
eshstart_cleanup(struct esh_softc *sc, u_int16_t consumer, int error)
{
struct esh_send_ring_ctl *send = &sc->sc_send;
int start_consumer = send->ec_consumer;
bus_dmamap_t dma;
if (send->ec_cur_dmainfo != NULL)
dma = send->ec_cur_dmainfo->ed_dma;
else
dma = send->ec_dma;
#ifdef ESH_PRINTF
printf("eshstart_cleanup: consumer %x, send->consumer %x\n",
consumer, send->ec_consumer);
#endif
esh_dma_sync(sc, send->ec_descr,
send->ec_consumer, consumer,
RR_SEND_RING_SIZE, sizeof(struct rr_descr), 0,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (send->ec_consumer != consumer) {
assert(dma->dm_nsegs);
assert(send->ec_cur_mbuf || send->ec_cur_buf ||
send->ec_cur_dmainfo);
if (send->ec_descr[send->ec_consumer].rd_control &
RR_CT_PACKET_END) {
#ifdef ESH_PRINT
printf("eshstart_cleanup: dmamap_sync mapsize %d\n",
send->ec_dma->dm_mapsize);
#endif
bus_dmamap_sync(sc->sc_dmat, dma, 0, dma->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, dma);
if (send->ec_cur_mbuf) {
m_freem(send->ec_cur_mbuf);
send->ec_cur_mbuf = NULL;
} else if (send->ec_cur_dmainfo) {
send->ec_cur_dmainfo->ed_flags &= ~ESH_DI_BUSY;
send->ec_cur_dmainfo->ed_error =
(send->ec_error ? send->ec_error : error);
send->ec_error = 0;
wakeup((void *) send->ec_cur_dmainfo);
send->ec_cur_dmainfo = NULL;
} else if (send->ec_cur_buf) {
biodone(send->ec_cur_buf);
send->ec_cur_buf = NULL;
} else {
panic("%s: eshstart_cleanup: "
"no current mbuf, buf, or dmainfo!\n",
device_xname(sc->sc_dev));
}
/*
* Version 1 of the firmware sent an event each
* time it sent out a packet. Later versions do not
* (which results in a considerable speedup), so we
* have to keep track here.
*/
if (sc->sc_version != 1)
sc->sc_if.if_opackets++;
}
if (error != 0)
send->ec_error = error;
send->ec_consumer = NEXT_SEND(send->ec_consumer);
}
esh_dma_sync(sc, send->ec_descr,
start_consumer, consumer,
RR_SEND_RING_SIZE, sizeof(struct rr_descr), 0,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
eshstart(&sc->sc_if);
}
/*
* XXX: Ouch: The NIC can only send word-aligned buffers, and only
* the last buffer in the packet can have a length that is not
* a multiple of four!
*
* Here we traverse the packet, pick out the bogus mbufs, and fix 'em
* if possible. The fix is amazingly expensive, so we sure hope that
* this is a rare occurance (it seems to be).
*/
static struct mbuf *
esh_adjust_mbufs(struct esh_softc *sc, struct mbuf *m)
{
struct mbuf *m0, *n, *n0;
u_int32_t write_len;
write_len = m->m_pkthdr.len;
#ifdef DIAGNOSTIC
if (write_len > max_write_len)
max_write_len = write_len;
#endif
for (n0 = n = m; n; n = n->m_next) {
while (n && n->m_len == 0) {
m0 = m_free(n);
if (n == m)
n = n0 = m = m0;
else
n = n0->m_next = m0;
}
if (n == NULL)
break;
if (mtod(n, long) & 3 || (n->m_next && n->m_len & 3)) {
/* Gotta clean it up */
struct mbuf *o;
u_int32_t len;
sc->sc_misaligned_bufs++;
MGETHDR(o, M_DONTWAIT, MT_DATA);
if (!o)
goto bogosity;
MCLGET(o, M_DONTWAIT);
if (!(o->m_flags & M_EXT)) {
m0 = m_free(o);
goto bogosity;
}
/*
* XXX: Copy as much as we can into the
* cluster. For now we can't have more
* than a cluster in there. May change.
* I'd prefer not to get this
* down-n-dirty, but we have to be able
* to do this kind of funky copy.
*/
len = uimin(MCLBYTES, write_len);
#ifdef DIAGNOSTIC
assert(n->m_len <= len);
assert(len <= MCLBYTES);
#endif
m_copydata(n, 0, len, mtod(o, void *));
o->m_pkthdr.len = len;
m_adj(n, len);
o->m_len = len;
o->m_next = n;
if (n == m)
m = o;
else
n0->m_next = o;
n = o;
}
n0 = n;
write_len -= n->m_len;
}
return m;
bogosity:
aprint_error_dev(sc->sc_dev, "esh_adjust_mbuf: unable to allocate cluster for "
"mbuf %p, len %x\n",
mtod(m, void *), m->m_len);
m_freem(m);
return NULL;
}
/*
* Read in the current valid entries from the ring and forward
* them to the upper layer protocols. It is possible that we
* haven't received the whole packet yet, in which case we just
* add each of the buffers into the packet until we have the whole
* thing.
*/
static void
esh_read_snap_ring(struct esh_softc *sc, u_int16_t consumer, int error)
{
struct ifnet *ifp = &sc->sc_if;
struct esh_snap_ring_ctl *recv = &sc->sc_snap_recv;
int start_consumer = recv->ec_consumer;
u_int16_t control;
if ((sc->sc_flags & ESH_FL_SNAP_RING_UP) == 0)
return;
if (error)
recv->ec_error = error;
esh_dma_sync(sc, recv->ec_descr,
start_consumer, consumer,
RR_SNAP_RECV_RING_SIZE,
sizeof(struct rr_descr), 0,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (recv->ec_consumer != consumer) {
u_int16_t offset = recv->ec_consumer;
struct mbuf *m;
m = recv->ec_m[offset];
m->m_len = recv->ec_descr[offset].rd_length;
control = recv->ec_descr[offset].rd_control;
bus_dmamap_sync(sc->sc_dmat, recv->ec_dma[offset], 0, m->m_len,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, recv->ec_dma[offset]);
#ifdef ESH_PRINTF
printf("esh_read_snap_ring: offset %x addr %p len %x flags %x\n",
offset, mtod(m, void *), m->m_len, control);
#endif
if (control & RR_CT_PACKET_START || !recv->ec_cur_mbuf) {
if (recv->ec_cur_pkt) {
m_freem(recv->ec_cur_pkt);
recv->ec_cur_pkt = NULL;
printf("%s: possible skipped packet!\n",
device_xname(sc->sc_dev));
}
recv->ec_cur_pkt = recv->ec_cur_mbuf = m;
/* allocated buffers all have pkthdrs... */
m_set_rcvif(m, ifp);
m->m_pkthdr.len = m->m_len;
} else {
if (!recv->ec_cur_pkt)
panic("esh_read_snap_ring: no cur_pkt");
recv->ec_cur_mbuf->m_next = m;
recv->ec_cur_mbuf = m;
recv->ec_cur_pkt->m_pkthdr.len += m->m_len;
}
recv->ec_m[offset] = NULL;
recv->ec_descr[offset].rd_length = 0;
recv->ec_descr[offset].rd_buffer_addr = 0;
/* Note that we can START and END on the same buffer */
if (control & RR_CT_PACKET_END) { /* XXX: RR2_ matches */
m = recv->ec_cur_pkt;
if (!error && !recv->ec_error) {
if ((ifp->if_flags & IFF_RUNNING) == 0) {
m_freem(m);
} else {
m = m_pullup(m,
sizeof(struct hippi_header));
if_percpuq_enqueue(ifp->if_percpuq, m);
}
} else {
ifp->if_ierrors++;
recv->ec_error = 0;
m_freem(m);
}
recv->ec_cur_pkt = recv->ec_cur_mbuf = NULL;
}
recv->ec_descr[offset].rd_control = 0;
recv->ec_consumer = NEXT_RECV(recv->ec_consumer);
}
esh_dma_sync(sc, recv->ec_descr,
start_consumer, consumer,
RR_SNAP_RECV_RING_SIZE,
sizeof(struct rr_descr), 0,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
esh_fill_snap_ring(sc);
}
/*
* Add the SNAP (IEEE 802) receive ring to the NIC. It is possible
* that we are doing this after resetting the card, in which case
* the structures have already been filled in and we may need to
* resume sending data.
*/
static void
esh_init_snap_ring(struct esh_softc *sc)
{
struct rr_ring_ctl *ring = sc->sc_recv_ring_table + HIPPI_ULP_802;
if ((sc->sc_flags & ESH_FL_CLOSING_SNAP) != 0) {
aprint_error_dev(sc->sc_dev, "can't reopen SNAP ring until ring disable is completed\n");
return;
}
if (ring->rr_entry_size == 0) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
(char *) ring - (char *) sc->sc_dma_addr,
sizeof(*ring),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
ring->rr_ring_addr = sc->sc_snap_recv_ring_dma;
ring->rr_free_bufs = RR_SNAP_RECV_RING_SIZE / 4;
ring->rr_entries = RR_SNAP_RECV_RING_SIZE;
ring->rr_entry_size = sizeof(struct rr_descr);
ring->rr_prod_index = 0;
sc->sc_snap_recv.ec_producer = 0;
sc->sc_snap_recv.ec_consumer = 0;
ring->rr_mode = RR_RR_IP;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
(char *) ring - (char *) sc->sc_dma_addr,
sizeof(ring),
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
esh_send_cmd(sc, RR_CC_ENABLE_RING, HIPPI_ULP_802,
sc->sc_snap_recv.ec_producer);
} else {
printf("%s: snap receive ring already initialized!\n",
device_xname(sc->sc_dev));
}
}
static void
esh_close_snap_ring(struct esh_softc *sc)
{
#ifdef ESH_PRINTF
printf("esh_close_snap_ring: starting\n");
#endif
if ((sc->sc_flags & ESH_FL_SNAP_RING_UP) == 0)
return;
sc->sc_flags |= ESH_FL_CLOSING_SNAP;
esh_send_cmd(sc, RR_CC_DISABLE_RING, HIPPI_ULP_802, 0);
/* Disable event will trigger the rest of the cleanup. */
}
/*
* Fill in the snap ring with more mbuf buffers so that we can
* receive traffic.
*/
static void
esh_fill_snap_ring(struct esh_softc *sc)
{
struct esh_snap_ring_ctl *recv = &sc->sc_snap_recv;
int start_producer = recv->ec_producer;
int error;
esh_dma_sync(sc, recv->ec_descr,
recv->ec_producer, recv->ec_consumer,
RR_SNAP_RECV_RING_SIZE,
sizeof(struct rr_descr), 1,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (NEXT_RECV(recv->ec_producer) != recv->ec_consumer) {
int offset = recv->ec_producer;
struct mbuf *m;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (!m)
break;
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(m);
break;
}
error = bus_dmamap_load(sc->sc_dmat, recv->ec_dma[offset],
mtod(m, void *), MCLBYTES,
NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
if (error) {
printf("%s: esh_fill_recv_ring: bus_dmamap_load "
"failed\toffset %x, error code %d\n",
device_xname(sc->sc_dev), offset, error);
m_free(m);
break;
}
/*
* In this implementation, we should only see one segment
* per DMA.
*/
assert(recv->ec_dma[offset]->dm_nsegs == 1);
/*
* Load into the descriptors.
*/
recv->ec_descr[offset].rd_ring =
(sc->sc_version == 1) ? HIPPI_ULP_802 : 0;
recv->ec_descr[offset].rd_buffer_addr =
recv->ec_dma[offset]->dm_segs->ds_addr;
recv->ec_descr[offset].rd_length =
recv->ec_dma[offset]->dm_segs->ds_len;
recv->ec_descr[offset].rd_control = 0;
bus_dmamap_sync(sc->sc_dmat, recv->ec_dma[offset], 0, MCLBYTES,
BUS_DMASYNC_PREREAD);
recv->ec_m[offset] = m;
recv->ec_producer = NEXT_RECV(recv->ec_producer);
}
esh_dma_sync(sc, recv->ec_descr,
start_producer, recv->ec_consumer,
RR_SNAP_RECV_RING_SIZE,
sizeof(struct rr_descr), 1,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (sc->sc_version == 1)
esh_send_cmd(sc, RR_CC_SET_RECV_PRODUCER, HIPPI_ULP_802,
recv->ec_producer);
else
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
RR_SNAP_RECV_PRODUCER, recv->ec_producer);
}
static void
esh_init_fp_rings(struct esh_softc *sc)
{
struct esh_fp_ring_ctl *recv;
struct rr_ring_ctl *ring_ctl;
int ulp;
for (ulp = 0; ulp < RR_ULP_COUNT; ulp++) {
ring_ctl = &sc->sc_recv_ring_table[ulp];
recv = sc->sc_fp_recv[ulp];
if (recv == NULL)
continue;
ring_ctl->rr_ring_addr = recv->ec_dma->dm_segs->ds_addr;
ring_ctl->rr_free_bufs = RR_FP_RECV_RING_SIZE / 4;
ring_ctl->rr_entries = RR_FP_RECV_RING_SIZE;
ring_ctl->rr_entry_size = sizeof(struct rr_descr);
ring_ctl->rr_prod_index = 0;
ring_ctl->rr_mode = RR_RR_CHARACTER;
recv->ec_producer = 0;
recv->ec_consumer = 0;
recv->ec_index = -1;
esh_send_cmd(sc, RR_CC_ENABLE_RING, ulp, recv->ec_producer);
}
}
static void
esh_read_fp_ring(struct esh_softc *sc, u_int16_t consumer, int error, int ulp)
{
struct esh_fp_ring_ctl *recv = sc->sc_fp_recv[ulp];
int start_consumer = recv->ec_consumer;
u_int16_t control;
#ifdef ESH_PRINTF
printf("esh_read_fp_ring: ulp %d, consumer %d, producer %d, old consumer %d\n",
recv->ec_ulp, consumer, recv->ec_producer, recv->ec_consumer);
#endif
if ((sc->sc_flags & ESH_FL_FP_RING_UP) == 0)
return;
if (error != 0)
recv->ec_error = error;
esh_dma_sync(sc, recv->ec_descr,
start_consumer, consumer,
RR_FP_RECV_RING_SIZE,
sizeof(struct rr_descr), 0,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (recv->ec_consumer != consumer) {
u_int16_t offset = recv->ec_consumer;
control = recv->ec_descr[offset].rd_control;
if (control & RR_CT_PACKET_START) {
if (recv->ec_read_len) {
recv->ec_error = 0;
printf("%s: ulp %d: possible skipped FP packet!\n",
device_xname(sc->sc_dev), recv->ec_ulp);
}
recv->ec_seen_end = 0;
recv->ec_read_len = 0;
}
if (recv->ec_seen_end == 0)
recv->ec_read_len += recv->ec_descr[offset].rd_length;
#if NOT_LAME
recv->ec_descr[offset].rd_length = 0;
recv->ec_descr[offset].rd_buffer_addr = 0;
#endif
#ifdef ESH_PRINTF
printf("esh_read_fp_ring: offset %d addr %d len %d flags %x, total %d\n",
offset, recv->ec_descr[offset].rd_buffer_addr,
recv->ec_descr[offset].rd_length, control, recv->ec_read_len);
#endif
/* Note that we can START and END on the same buffer */
if ((control & RR_CT_PACKET_END) == RR_CT_PACKET_END) {
if (recv->ec_dmainfo[offset] != NULL) {
struct esh_dmainfo *di =
recv->ec_dmainfo[offset];
recv->ec_dmainfo[offset] = NULL;
bus_dmamap_sync(sc->sc_dmat, di->ed_dma,
0, recv->ec_read_len,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, di->ed_dma);
if (!error && !recv->ec_error) {
/*
* XXX: we oughta do this right, with full
* BPF support and the rest...
*/
if (di->ed_buf != NULL) {
di->ed_buf->b_resid =
di->ed_buf->b_bcount -
recv->ec_read_len;
} else {
di->ed_read_len =
recv->ec_read_len;
}
} else {
if (di->ed_buf != NULL) {
di->ed_buf->b_resid =
di->ed_buf->b_bcount;
di->ed_buf->b_error = EIO;
} else {
di->ed_error = EIO;
recv->ec_error = 0;
}
}
#ifdef ESH_PRINTF
printf("esh_read_fp_ring: ulp %d, read %d, resid %ld\n",
recv->ec_ulp, recv->ec_read_len, (di->ed_buf ? di->ed_buf->b_resid : di->ed_read_len));
#endif
di->ed_flags &=
~(ESH_DI_BUSY | ESH_DI_READING);
if (di->ed_buf != NULL)
biodone(di->ed_buf);
else
wakeup((void *) di);
recv->ec_read_len = 0;
} else {
#ifdef ESH_PRINTF
printf("esh_read_fp_ring: ulp %d, seen end at %d\n",
recv->ec_ulp, offset);
#endif
recv->ec_seen_end = 1;
}
}
#if NOT_LAME
recv->ec_descr[offset].rd_control = 0;
#endif
recv->ec_consumer = NEXT_RECV(recv->ec_consumer);
}
esh_dma_sync(sc, recv->ec_descr,
start_consumer, consumer,
RR_SNAP_RECV_RING_SIZE,
sizeof(struct rr_descr), 0,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
esh_fill_fp_ring(sc, recv);
}
static void
esh_fill_fp_ring(struct esh_softc *sc, struct esh_fp_ring_ctl *recv)
{
struct esh_dmainfo *di = recv->ec_cur_dmainfo;
int start_producer = recv->ec_producer;
#ifdef ESH_PRINTF
printf("esh_fill_fp_ring: ulp %d, di %p, producer %d\n",
recv->ec_ulp, di, start_producer);
#endif
esh_dma_sync(sc, recv->ec_descr,
recv->ec_producer, recv->ec_consumer,
RR_SNAP_RECV_RING_SIZE,
sizeof(struct rr_descr), 1,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (NEXT_RECV(recv->ec_producer) != recv->ec_consumer) {
int offset = recv->ec_producer;
if (di == NULL) {
/*
* Must allow only one reader at a time; see
* esh_flush_fp_ring().
*/
if (offset != start_producer)
goto fp_fill_done;
di = TAILQ_FIRST(&recv->ec_queue);
if (di == NULL)
goto fp_fill_done;
TAILQ_REMOVE(&recv->ec_queue, di, ed_list);
recv->ec_offset = 0;
recv->ec_cur_dmainfo = di;
di->ed_flags |= ESH_DI_READING;
#ifdef ESH_PRINTF
printf("\toffset %d nsegs %d\n",
recv->ec_offset, di->ed_dma->dm_nsegs);
#endif
}
/*
* Load into the descriptors.
*/
recv->ec_descr[offset].rd_ring = 0;
recv->ec_descr[offset].rd_buffer_addr =
di->ed_dma->dm_segs[recv->ec_offset].ds_addr;
recv->ec_descr[offset].rd_length =
di->ed_dma->dm_segs[recv->ec_offset].ds_len;
recv->ec_descr[offset].rd_control = 0;
recv->ec_dmainfo[offset] = NULL;
if (recv->ec_offset == 0) {
/* Start of the dmamap... */
recv->ec_descr[offset].rd_control |=
RR_CT_PACKET_START;
}
assert(recv->ec_offset < di->ed_dma->dm_nsegs);
recv->ec_offset++;
if (recv->ec_offset == di->ed_dma->dm_nsegs) {
recv->ec_descr[offset].rd_control |= RR_CT_PACKET_END;
recv->ec_dmainfo[offset] = di;
di = NULL;
recv->ec_offset = 0;
recv->ec_cur_dmainfo = NULL;
}
recv->ec_producer = NEXT_RECV(recv->ec_producer);
}
fp_fill_done:
esh_dma_sync(sc, recv->ec_descr,
start_producer, recv->ec_consumer,
RR_SNAP_RECV_RING_SIZE,
sizeof(struct rr_descr), 1,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
if (sc->sc_version == 1) {
esh_send_cmd(sc, RR_CC_SET_RECV_PRODUCER, recv->ec_ulp,
recv->ec_producer);
} else {
union {
u_int32_t producer;
u_int8_t indices[4];
} v;
int which;
int i;
struct esh_fp_ring_ctl *r;
which = (recv->ec_index / 4) * 4;
#if BAD_PRODUCER
v.producer = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
RR_RECVS_PRODUCER + which);
NTOHL(v.producer);
#endif
for (i = 0; i < 4; i++) {
r = sc->sc_fp_recv_index[i + which];
if (r != NULL)
v.indices[i] = r->ec_producer;
else
v.indices[i] = 0;
}
#ifdef ESH_PRINTF
printf("esh_fill_fp_ring: ulp %d, updating producer %d: %.8x\n",
recv->ec_ulp, which, v.producer);
#endif
HTONL(v.producer);
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
RR_RECVS_PRODUCER + which, v.producer);
}
#ifdef ESH_PRINTF
printf("esh_fill_fp_ring: ulp %d, final producer %d\n",
recv->ec_ulp, recv->ec_producer);
#endif
}
/*
* When a read is interrupted, we need to flush the buffers out of
* the ring; otherwise, a driver error could lock a process up,
* with no way to exit.
*/
static void
esh_flush_fp_ring(struct esh_softc *sc, struct esh_fp_ring_ctl *recv, struct esh_dmainfo *di)
{
int error = 0;
/*
* If the read request hasn't yet made it to the top of the queue,
* just remove it from the queue, and return.
*/
if ((di->ed_flags & ESH_DI_READING) != ESH_DI_READING) {
TAILQ_REMOVE(&recv->ec_queue, di, ed_list);
return;
}
#ifdef ESH_PRINTF
printf("esh_flush_fp_ring: di->ed_flags %x, ulp %d, producer %x\n",
di->ed_flags, recv->ec_ulp, recv->ec_producer);
#endif
/* Now we gotta get tough. Issue a discard packet command */
esh_send_cmd(sc, RR_CC_DISCARD_PKT, recv->ec_ulp,
recv->ec_producer - 1);
/* Wait for it to finish */
while ((di->ed_flags & ESH_DI_READING) != ESH_DI_READING &&
error == 0) {
error = tsleep((void *) &di->ed_flags, PRIBIO,
"esh_flush_fp_ring", hz);
printf("esh_flush_fp_ring: di->ed_flags %x, error %d\n",
di->ed_flags, error);
/*
* What do I do if this times out or gets interrupted?
* Reset the card? I could get an interrupt before
* giving it a chance to check. Perhaps I oughta wait
* awhile? What about not giving the user a chance
* to interrupt, and just expecting a quick answer?
* That way I could reset the card if it doesn't
* come back right away!
*/
if (error != 0) {
eshreset(sc);
break;
}
}
/* XXX: Do we need to clear out the dmainfo pointers */
}
int
eshioctl(struct ifnet *ifp, u_long cmd, void *data)
{
int error = 0;
struct esh_softc *sc = ifp->if_softc;
struct ifaddr *ifa = (struct ifaddr *)data;
struct ifdrv *ifd = (struct ifdrv *) data;
u_long len;
int s;
s = splnet();
while (sc->sc_flags & ESH_FL_EEPROM_BUSY) {
error = tsleep(&sc->sc_flags, PCATCH | PRIBIO,
"esheeprom", 0);
if (error != 0)
goto ioctl_done;
}
switch (cmd) {
case SIOCINITIFADDR:
ifp->if_flags |= IFF_UP;
if ((sc->sc_flags & ESH_FL_INITIALIZED) == 0) {
eshinit(sc);
if ((sc->sc_flags & ESH_FL_INITIALIZED) == 0) {
error = EIO;
goto ioctl_done;
}
}
if ((sc->sc_flags & (ESH_FL_RUNCODE_UP | ESH_FL_SNAP_RING_UP))
== ESH_FL_RUNCODE_UP) {
while (sc->sc_flags & ESH_FL_CLOSING_SNAP) {
error = tsleep((void *) &sc->sc_snap_recv,
PRIBIO, "esh_closing_fp_ring",
hz);
if (error != 0)
goto ioctl_done;
}
esh_init_snap_ring(sc);
}
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
/* The driver doesn't really care about IP addresses */
break;
#endif
default:
break;
}
break;
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
ifp->if_flags &= ~IFF_RUNNING;
esh_close_snap_ring(sc);
while (sc->sc_flags & ESH_FL_CLOSING_SNAP) {
error = tsleep((void *) &sc->sc_snap_recv,
PRIBIO, "esh_closing_fp_ring",
hz);
if (error != 0)
goto ioctl_done;
}
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
if ((sc->sc_flags & ESH_FL_INITIALIZED) == 0) {
eshinit(sc);
if ((sc->sc_flags & ESH_FL_INITIALIZED) == 0) {
error = EIO;
goto ioctl_done;
}
}
if ((sc->sc_flags & (ESH_FL_RUNCODE_UP | ESH_FL_SNAP_RING_UP)) == ESH_FL_RUNCODE_UP) {
while (sc->sc_flags & ESH_FL_CLOSING_SNAP) {
error = tsleep((void *) &sc->sc_snap_recv, PRIBIO, "esh_closing_fp_ring", hz);
if (error != 0)
goto ioctl_done;
}
esh_init_snap_ring(sc);
}
}
break;
case SIOCSDRVSPEC: /* Driver-specific configuration calls */
cmd = ifd->ifd_cmd;
len = ifd->ifd_len;
data = ifd->ifd_data;
esh_generic_ioctl(sc, cmd, data, len, NULL);
break;
default:
error = ether_ioctl(ifp, cmd, data);
break;
}
ioctl_done:
splx(s);
return (error);
}
static int
esh_generic_ioctl(struct esh_softc *sc, u_long cmd, void *data,
u_long len, struct lwp *l)
{
struct ifnet *ifp = &sc->sc_if;
struct rr_eeprom rr_eeprom;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int32_t misc_host_ctl;
u_int32_t misc_local_ctl;
u_int32_t address;
u_int32_t value;
u_int32_t offset;
u_int32_t length;
int error = 0;
int i;
/*
* If we have a LWP pointer, check to make sure that the
* user is privileged before performing any destruction operations.
*/
if (l != NULL) {
switch (cmd) {
case EIOCGTUNE:
case EIOCGEEPROM:
case EIOCGSTATS:
break;
default:
error = kauth_authorize_network(l->l_cred,
KAUTH_NETWORK_INTERFACE,
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV,
ifp, KAUTH_ARG(cmd), NULL);
if (error)
return (error);
}
}
switch (cmd) {
case EIOCGTUNE:
if (len != sizeof(struct rr_tuning))
error = EMSGSIZE;
else {
error = copyout((void *) &sc->sc_tune, data,
sizeof(struct rr_tuning));
}
break;
case EIOCSTUNE:
if ((ifp->if_flags & IFF_UP) == 0) {
if (len != sizeof(struct rr_tuning)) {
error = EMSGSIZE;
} else {
error = copyin(data, (void *) &sc->sc_tune,
sizeof(struct rr_tuning));
}
} else {
error = EBUSY;
}
break;
case EIOCGSTATS:
if (len != sizeof(struct rr_stats))
error = EMSGSIZE;
else
error = copyout((void *) &sc->sc_gen_info->ri_stats,
data, sizeof(struct rr_stats));
break;
case EIOCGEEPROM:
case EIOCSEEPROM:
if ((ifp->if_flags & IFF_UP) != 0) {
error = EBUSY;
break;
}
if (len != sizeof(struct rr_eeprom)) {
error = EMSGSIZE;
break;
}
error = copyin(data, (void *) &rr_eeprom, sizeof(rr_eeprom));
if (error != 0)
break;
offset = rr_eeprom.ifr_offset;
length = rr_eeprom.ifr_length;
if (length > RR_EE_MAX_LEN * sizeof(u_int32_t)) {
error = EFBIG;
break;
}
if (offset + length > RR_EE_MAX_LEN * sizeof(u_int32_t)) {
error = EFAULT;
break;
}
if (offset % 4 || length % 4) {
error = EIO;
break;
}
/* Halt the processor (preserve NO_SWAP, if set) */
misc_host_ctl = bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL);
bus_space_write_4(iot, ioh, RR_MISC_HOST_CTL,
(misc_host_ctl & RR_MH_NO_SWAP) |
RR_MH_HALT_PROC);
/* Make the EEPROM accessible */
misc_local_ctl = bus_space_read_4(iot, ioh, RR_MISC_LOCAL_CTL);
value = misc_local_ctl &
~(RR_LC_FAST_PROM | RR_LC_ADD_SRAM | RR_LC_PARITY_ON);
if (cmd == EIOCSEEPROM) /* make writable! */
value |= RR_LC_WRITE_PROM;
bus_space_write_4(iot, ioh, RR_MISC_LOCAL_CTL, value);
if (cmd == EIOCSEEPROM) {
printf("%s: writing EEPROM\n", device_xname(sc->sc_dev));
sc->sc_flags |= ESH_FL_EEPROM_BUSY;
}
/* Do that EEPROM voodoo that you do so well... */
address = offset * RR_EE_BYTE_LEN;
for (i = 0; i < length; i += 4) {
if (cmd == EIOCGEEPROM) {
value = esh_read_eeprom(sc, address);
address += RR_EE_WORD_LEN;
if (copyout(&value,
(char *) rr_eeprom.ifr_buffer + i,
sizeof(u_int32_t)) != 0) {
error = EFAULT;
break;
}
} else {
if (copyin((char *) rr_eeprom.ifr_buffer + i,
&value, sizeof(u_int32_t)) != 0) {
error = EFAULT;
break;
}
if (esh_write_eeprom(sc, address,
value) != 0) {
error = EIO;
break;
}
/*
* Have to give up control now and
* then, so sleep for a clock tick.
* Might be good to figure out how
* long a tick is, so that we could
* intelligently chose the frequency
* of these pauses.
*/
if (i % 40 == 0) {
tsleep(&sc->sc_flags,
PRIBIO, "eshweeprom", 1);
}
address += RR_EE_WORD_LEN;
}
}
bus_space_write_4(iot, ioh, RR_MISC_LOCAL_CTL, misc_local_ctl);
if (cmd == EIOCSEEPROM) {
sc->sc_flags &= ~ESH_FL_EEPROM_BUSY;
wakeup(&sc->sc_flags);
printf("%s: done writing EEPROM\n",
device_xname(sc->sc_dev));
}
break;
case EIOCRESET:
eshreset(sc);
break;
default:
error = EINVAL;
break;
}
return error;
}
void
eshreset(struct esh_softc *sc)
{
int s;
s = splnet();
eshstop(sc);
eshinit(sc);
splx(s);
}
/*
* The NIC expects a watchdog command every 10 seconds. If it doesn't
* get the watchdog, it figures the host is dead and stops. When it does
* get the command, it'll generate a watchdog event to let the host know
* that it is still alive. We watch for this.
*/
void
eshwatchdog(struct ifnet *ifp)
{
struct esh_softc *sc = ifp->if_softc;
if (!sc->sc_watchdog) {
printf("%s: watchdog timer expired. "
"Should reset interface!\n",
device_xname(sc->sc_dev));
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
eshstatus(sc);
#if 0
eshstop(sc); /* DON'T DO THIS, it'll clear data we
could use to debug it! */
#endif
} else {
sc->sc_watchdog = 0;
esh_send_cmd(sc, RR_CC_WATCHDOG, 0, 0);
ifp->if_timer = 5;
}
}
/*
* Stop the NIC and throw away packets that have started to be sent,
* but didn't make it all the way. Re-adjust the various queue
* pointers to account for this.
*/
void
eshstop(struct esh_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int32_t misc_host_ctl;
int i;
if (!(sc->sc_flags & ESH_FL_INITIALIZED))
return;
/* Just shut it all down. This isn't pretty, but it works */
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma, 0, sc->sc_dma_size,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
misc_host_ctl = bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL);
bus_space_write_4(iot, ioh, RR_MISC_HOST_CTL,
(misc_host_ctl & RR_MH_NO_SWAP) | RR_MH_HALT_PROC);
sc->sc_flags = 0;
ifp->if_timer = 0; /* turn off watchdog timer */
while (sc->sc_snap_recv.ec_consumer
!= sc->sc_snap_recv.ec_producer) {
u_int16_t offset = sc->sc_snap_recv.ec_consumer;
bus_dmamap_unload(sc->sc_dmat,
sc->sc_snap_recv.ec_dma[offset]);
m_free(sc->sc_snap_recv.ec_m[offset]);
sc->sc_snap_recv.ec_m[offset] = NULL;
sc->sc_snap_recv.ec_consumer =
NEXT_RECV(sc->sc_snap_recv.ec_consumer);
wakeup((void *) &sc->sc_snap_recv);
}
/* Handle FP rings */
for (i = 0; i < RR_ULP_COUNT; i++) {
struct esh_fp_ring_ctl *ring = sc->sc_fp_recv[i];
struct esh_dmainfo *di = NULL;
if (ring == NULL)
continue;
/* Get rid of outstanding buffers */
esh_dma_sync(sc, ring->ec_descr,
ring->ec_consumer, ring->ec_producer,
RR_FP_RECV_RING_SIZE, sizeof(struct rr_descr), 0,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
while (ring->ec_consumer != ring->ec_producer) {
di = ring->ec_dmainfo[ring->ec_consumer];
if (di != NULL)
break;
ring->ec_consumer = NEXT_RECV(ring->ec_consumer);
}
if (di == NULL)
di = ring->ec_cur_dmainfo;
if (di != NULL) {
bus_dmamap_unload(sc->sc_dmat, di->ed_dma);
di->ed_error = EIO;
di->ed_flags = 0;
wakeup((void *) &di->ed_flags); /* packet discard */
wakeup((void *) di); /* wait on read */
}
wakeup((void *) &ring->ec_ulp); /* ring create */
wakeup((void *) &ring->ec_index); /* ring disable */
}
/* XXX: doesn't clear bufs being sent */
bus_dmamap_unload(sc->sc_dmat, sc->sc_send.ec_dma);
if (sc->sc_send.ec_cur_mbuf) {
m_freem(sc->sc_send.ec_cur_mbuf);
} else if (sc->sc_send.ec_cur_buf) {
struct buf *bp = sc->sc_send.ec_cur_buf;
bp->b_resid = bp->b_bcount;
bp->b_error = EIO;
biodone(bp);
} else if (sc->sc_send.ec_cur_dmainfo) {
struct esh_dmainfo *di = sc->sc_send.ec_cur_dmainfo;
di->ed_flags &= ~ESH_DI_BUSY;
di->ed_error = EIO;
wakeup((void *) di);
}
sc->sc_send.ec_cur_mbuf = NULL;
sc->sc_send.ec_cur_buf = NULL;
sc->sc_send.ec_cur_dmainfo = NULL;
/*
* Clear out the index values, since they'll be useless
* when we restart.
*/
memset(sc->sc_fp_recv_index, 0,
sizeof(struct esh_fp_ring_ctl *) * RR_MAX_RECV_RING);
/* Be sure to wake up any other processes waiting on driver action. */
wakeup(sc); /* Wait on initialization */
wakeup(&sc->sc_flags); /* Wait on EEPROM write */
/*
* XXX: I have to come up with a way to avoid handling interrupts
* received before this shuts down the card, but processed
* afterwards!
*/
}
/*
* Read a value from the eeprom. This expects that the NIC has already
* been tweaked to put it into the right state for reading from the
* EEPROM -- the HALT bit is set in the MISC_HOST_CTL register,
* and the FAST_PROM, ADD_SRAM, and PARITY flags have been cleared
* in the MISC_LOCAL_CTL register.
*
* The EEPROM layout is a little weird. There is a valid byte every
* eight bytes. Words are then smeared out over 32 bytes.
* All addresses listed here are the actual starting addresses.
*/
static u_int32_t
esh_read_eeprom(struct esh_softc *sc, u_int32_t addr)
{
int i;
u_int32_t tmp;
u_int32_t value = 0;
/* If the offset hasn't been added, add it. Otherwise pass through */
if (!(addr & RR_EE_OFFSET))
addr += RR_EE_OFFSET;
for (i = 0; i < 4; i++, addr += RR_EE_BYTE_LEN) {
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
RR_WINDOW_BASE, addr);
tmp = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
RR_WINDOW_DATA);
value = (value << 8) | ((tmp >> 24) & 0xff);
}
return value;
}
/*
* Write a value to the eeprom. Just like esh_read_eeprom, this routine
* expects that the NIC has already been tweaked to put it into the right
* state for reading from the EEPROM. Things are further complicated
* in that we need to read each byte after we write it to ensure that
* the new value has been successfully written. It can take as long
* as 1ms (!) to write a byte.
*/
static int
esh_write_eeprom(struct esh_softc *sc, u_int32_t addr, u_int32_t value)
{
int i, j;
u_int32_t shifted_value, tmp = 0;
/* If the offset hasn't been added, add it. Otherwise pass through */
if (!(addr & RR_EE_OFFSET))
addr += RR_EE_OFFSET;
for (i = 0; i < 4; i++, addr += RR_EE_BYTE_LEN) {
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
RR_WINDOW_BASE, addr);
/*
* Get the byte out of value, starting with the top, and
* put it into the top byte of the word to write.
*/
shifted_value = ((value >> ((3 - i) * 8)) & 0xff) << 24;
bus_space_write_4(sc->sc_iot, sc->sc_ioh, RR_WINDOW_DATA,
shifted_value);
for (j = 0; j < 50; j++) {
tmp = bus_space_read_4(sc->sc_iot, sc->sc_ioh,
RR_WINDOW_DATA);
if (tmp == shifted_value)
break;
delay(500); /* 50us break * 20 = 1ms */
}
if (tmp != shifted_value)
return -1;
}
return 0;
}
/*
* Send a command to the NIC. If there is no room in the command ring,
* panic.
*/
static void
esh_send_cmd(struct esh_softc *sc, u_int8_t cmd, u_int8_t ring, u_int8_t index)
{
union rr_cmd c;
#define NEXT_CMD(i) (((i) + 0x10 - 1) & 0x0f)
c.l = 0;
c.b.rc_code = cmd;
c.b.rc_ring = ring;
c.b.rc_index = index;
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
RR_COMMAND_RING + sizeof(c) * sc->sc_cmd_producer,
c.l);
#ifdef ESH_PRINTF
/* avoid annoying messages when possible */
if (cmd != RR_CC_WATCHDOG)
printf("esh_send_cmd: cmd %x ring %d index %d slot %x\n",
cmd, ring, index, sc->sc_cmd_producer);
#endif
sc->sc_cmd_producer = NEXT_CMD(sc->sc_cmd_producer);
}
/*
* Write an address to the device.
* XXX: This belongs in bus-dependent land!
*/
static void
esh_write_addr(bus_space_tag_t iot, bus_space_handle_t ioh, bus_addr_t addr, bus_addr_t value)
{
bus_space_write_4(iot, ioh, addr, 0);
bus_space_write_4(iot, ioh, addr + sizeof(u_int32_t), value);
}
/* Copy the RunCode from EEPROM to SRAM. Ughly. */
static void
esh_reset_runcode(struct esh_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int32_t value;
u_int32_t len;
u_int32_t i;
u_int32_t segments;
u_int32_t ee_addr;
u_int32_t rc_addr;
u_int32_t sram_addr;
/* Zero the SRAM */
for (i = 0; i < sc->sc_sram_size; i += 4) {
bus_space_write_4(iot, ioh, RR_WINDOW_BASE, i);
bus_space_write_4(iot, ioh, RR_WINDOW_DATA, 0);
}
/* Find the address of the segment description section */
rc_addr = esh_read_eeprom(sc, RR_EE_RUNCODE_SEGMENTS);
segments = esh_read_eeprom(sc, rc_addr);
for (i = 0; i < segments; i++) {
rc_addr += RR_EE_WORD_LEN;
sram_addr = esh_read_eeprom(sc, rc_addr);
rc_addr += RR_EE_WORD_LEN;
len = esh_read_eeprom(sc, rc_addr);
rc_addr += RR_EE_WORD_LEN;
ee_addr = esh_read_eeprom(sc, rc_addr);
while (len--) {
value = esh_read_eeprom(sc, ee_addr);
bus_space_write_4(iot, ioh, RR_WINDOW_BASE, sram_addr);
bus_space_write_4(iot, ioh, RR_WINDOW_DATA, value);
ee_addr += RR_EE_WORD_LEN;
sram_addr += 4;
}
}
}
/*
* Perform bus DMA syncing operations on various rings.
* We have to worry about our relative position in the ring,
* and whether the ring has wrapped. All of this code should take
* care of those worries.
*/
static void
esh_dma_sync(struct esh_softc *sc, void *mem, int start, int end, int entries, int size, int do_equal, int ops)
{
int offset = (char *)mem - (char *)sc->sc_dma_addr;
if (start < end) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
offset + start * size,
(end - start) * size, ops);
} else if (do_equal || start != end) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
offset,
end * size, ops);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dma,
offset + start * size,
(entries - start) * size, ops);
}
}
static struct esh_dmainfo *
esh_new_dmainfo(struct esh_softc *sc)
{
struct esh_dmainfo *di;
int s;
s = splnet();
di = TAILQ_FIRST(&sc->sc_dmainfo_freelist);
if (di != NULL) {
TAILQ_REMOVE(&sc->sc_dmainfo_freelist, di, ed_list);
sc->sc_dmainfo_freelist_count--;
splx(s);
return di;
}
/* None sitting around, so build one now... */
di = (struct esh_dmainfo *) malloc(sizeof(*di), M_DEVBUF,
M_WAITOK|M_ZERO);
assert(di != NULL);
if (bus_dmamap_create(sc->sc_dmat, ESH_MAX_NSEGS * RR_DMA_MAX,
ESH_MAX_NSEGS, RR_DMA_MAX, RR_DMA_BOUNDARY,
BUS_DMA_ALLOCNOW | BUS_DMA_WAITOK,
&di->ed_dma)) {
printf("%s: failed dmainfo bus_dmamap_create\n",
device_xname(sc->sc_dev));
free(di, M_DEVBUF);
di = NULL;
}
splx(s);
return di;
}
static void
esh_free_dmainfo(struct esh_softc *sc, struct esh_dmainfo *di)
{
int s = splnet();
assert(di != NULL);
di->ed_buf = NULL;
TAILQ_INSERT_TAIL(&sc->sc_dmainfo_freelist, di, ed_list);
sc->sc_dmainfo_freelist_count++;
#ifdef ESH_PRINTF
printf("esh_free_dmainfo: freelist count %d\n", sc->sc_dmainfo_freelist_count);
#endif
splx(s);
}
/* ------------------------- debugging functions --------------------------- */
/*
* Print out status information about the NIC and the driver.
*/
static int
eshstatus(struct esh_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i;
/* XXX: This looks pathetic, and should be improved! */
printf("%s: status -- fail1 %x fail2 %x\n",
device_xname(sc->sc_dev),
bus_space_read_4(iot, ioh, RR_RUNCODE_FAIL1),
bus_space_read_4(iot, ioh, RR_RUNCODE_FAIL2));
printf("\tmisc host ctl %x misc local ctl %x\n",
bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL),
bus_space_read_4(iot, ioh, RR_MISC_LOCAL_CTL));
printf("\toperating mode %x event producer %x\n",
bus_space_read_4(iot, ioh, RR_MODE_AND_STATUS),
bus_space_read_4(iot, ioh, RR_EVENT_PRODUCER));
printf("\tPC %x max rings %x\n",
bus_space_read_4(iot, ioh, RR_PROC_PC),
bus_space_read_4(iot, ioh, RR_MAX_RECV_RINGS));
printf("\tHIPPI tx state %x rx state %x\n",
bus_space_read_4(iot, ioh, RR_TX_STATE),
bus_space_read_4(iot, ioh, RR_RX_STATE));
printf("\tDMA write state %x read state %x\n",
bus_space_read_4(iot, ioh, RR_DMA_WRITE_STATE),
bus_space_read_4(iot, ioh, RR_DMA_READ_STATE));
printf("\tDMA write addr %x%x read addr %x%x\n",
bus_space_read_4(iot, ioh, RR_WRITE_HOST),
bus_space_read_4(iot, ioh, RR_WRITE_HOST + 4),
bus_space_read_4(iot, ioh, RR_READ_HOST),
bus_space_read_4(iot, ioh, RR_READ_HOST + 4));
for (i = 0; i < 64; i++)
if (sc->sc_gen_info->ri_stats.rs_stats[i])
printf("stat %x is %x\n", i * 4,
sc->sc_gen_info->ri_stats.rs_stats[i]);
return 0;
}
#ifdef ESH_PRINTF
/* Check to make sure that the NIC is still running */
static int
esh_check(struct esh_softc *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
if (bus_space_read_4(iot, ioh, RR_MISC_HOST_CTL) & RR_MH_HALT_PROC) {
printf("esh_check: NIC stopped\n");
eshstatus(sc);
return 1;
} else {
return 0;
}
}
#endif