NetBSD/sys/dev/ic/nvme.c

1922 lines
47 KiB
C

/* $NetBSD: nvme.c,v 1.39 2018/04/18 10:11:45 nonaka Exp $ */
/* $OpenBSD: nvme.c,v 1.49 2016/04/18 05:59:50 dlg Exp $ */
/*
* Copyright (c) 2014 David Gwynne <dlg@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: nvme.c,v 1.39 2018/04/18 10:11:45 nonaka Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/atomic.h>
#include <sys/bus.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/kmem.h>
#include <sys/once.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/mutex.h>
#include <uvm/uvm_extern.h>
#include <dev/ic/nvmereg.h>
#include <dev/ic/nvmevar.h>
#include <dev/ic/nvmeio.h>
#include "ioconf.h"
#define B4_CHK_RDY_DELAY_MS 2300 /* workaround controller bug */
int nvme_adminq_size = 32;
int nvme_ioq_size = 1024;
static int nvme_print(void *, const char *);
static int nvme_ready(struct nvme_softc *, uint32_t);
static int nvme_enable(struct nvme_softc *, u_int);
static int nvme_disable(struct nvme_softc *);
static int nvme_shutdown(struct nvme_softc *);
#ifdef NVME_DEBUG
static void nvme_dumpregs(struct nvme_softc *);
#endif
static int nvme_identify(struct nvme_softc *, u_int);
static void nvme_fill_identify(struct nvme_queue *, struct nvme_ccb *,
void *);
static int nvme_ccbs_alloc(struct nvme_queue *, uint16_t);
static void nvme_ccbs_free(struct nvme_queue *);
static struct nvme_ccb *
nvme_ccb_get(struct nvme_queue *, bool);
static void nvme_ccb_put(struct nvme_queue *, struct nvme_ccb *);
static int nvme_poll(struct nvme_softc *, struct nvme_queue *,
struct nvme_ccb *, void (*)(struct nvme_queue *,
struct nvme_ccb *, void *), int);
static void nvme_poll_fill(struct nvme_queue *, struct nvme_ccb *, void *);
static void nvme_poll_done(struct nvme_queue *, struct nvme_ccb *,
struct nvme_cqe *);
static void nvme_sqe_fill(struct nvme_queue *, struct nvme_ccb *, void *);
static void nvme_empty_done(struct nvme_queue *, struct nvme_ccb *,
struct nvme_cqe *);
static struct nvme_queue *
nvme_q_alloc(struct nvme_softc *, uint16_t, u_int, u_int);
static int nvme_q_create(struct nvme_softc *, struct nvme_queue *);
static int nvme_q_delete(struct nvme_softc *, struct nvme_queue *);
static void nvme_q_submit(struct nvme_softc *, struct nvme_queue *,
struct nvme_ccb *, void (*)(struct nvme_queue *,
struct nvme_ccb *, void *));
static int nvme_q_complete(struct nvme_softc *, struct nvme_queue *q);
static void nvme_q_free(struct nvme_softc *, struct nvme_queue *);
static void nvme_q_wait_complete(struct nvme_softc *, struct nvme_queue *,
bool (*)(void *), void *);
static struct nvme_dmamem *
nvme_dmamem_alloc(struct nvme_softc *, size_t);
static void nvme_dmamem_free(struct nvme_softc *, struct nvme_dmamem *);
static void nvme_dmamem_sync(struct nvme_softc *, struct nvme_dmamem *,
int);
static void nvme_ns_io_fill(struct nvme_queue *, struct nvme_ccb *,
void *);
static void nvme_ns_io_done(struct nvme_queue *, struct nvme_ccb *,
struct nvme_cqe *);
static void nvme_ns_sync_fill(struct nvme_queue *, struct nvme_ccb *,
void *);
static void nvme_ns_sync_done(struct nvme_queue *, struct nvme_ccb *,
struct nvme_cqe *);
static void nvme_getcache_fill(struct nvme_queue *, struct nvme_ccb *,
void *);
static void nvme_getcache_done(struct nvme_queue *, struct nvme_ccb *,
struct nvme_cqe *);
static void nvme_pt_fill(struct nvme_queue *, struct nvme_ccb *,
void *);
static void nvme_pt_done(struct nvme_queue *, struct nvme_ccb *,
struct nvme_cqe *);
static int nvme_command_passthrough(struct nvme_softc *,
struct nvme_pt_command *, uint16_t, struct lwp *, bool);
static int nvme_get_number_of_queues(struct nvme_softc *, u_int *);
#define NVME_TIMO_QOP 5 /* queue create and delete timeout */
#define NVME_TIMO_IDENT 10 /* probe identify timeout */
#define NVME_TIMO_PT -1 /* passthrough cmd timeout */
#define NVME_TIMO_SY 60 /* sync cache timeout */
#define nvme_read4(_s, _r) \
bus_space_read_4((_s)->sc_iot, (_s)->sc_ioh, (_r))
#define nvme_write4(_s, _r, _v) \
bus_space_write_4((_s)->sc_iot, (_s)->sc_ioh, (_r), (_v))
/*
* Some controllers, at least Apple NVMe, always require split
* transfers, so don't use bus_space_{read,write}_8() on LP64.
*/
static inline uint64_t
nvme_read8(struct nvme_softc *sc, bus_size_t r)
{
uint64_t v;
uint32_t *a = (uint32_t *)&v;
#if _BYTE_ORDER == _LITTLE_ENDIAN
a[0] = nvme_read4(sc, r);
a[1] = nvme_read4(sc, r + 4);
#else /* _BYTE_ORDER == _LITTLE_ENDIAN */
a[1] = nvme_read4(sc, r);
a[0] = nvme_read4(sc, r + 4);
#endif
return v;
}
static inline void
nvme_write8(struct nvme_softc *sc, bus_size_t r, uint64_t v)
{
uint32_t *a = (uint32_t *)&v;
#if _BYTE_ORDER == _LITTLE_ENDIAN
nvme_write4(sc, r, a[0]);
nvme_write4(sc, r + 4, a[1]);
#else /* _BYTE_ORDER == _LITTLE_ENDIAN */
nvme_write4(sc, r, a[1]);
nvme_write4(sc, r + 4, a[0]);
#endif
}
#define nvme_barrier(_s, _r, _l, _f) \
bus_space_barrier((_s)->sc_iot, (_s)->sc_ioh, (_r), (_l), (_f))
#ifdef NVME_DEBUG
static __used void
nvme_dumpregs(struct nvme_softc *sc)
{
uint64_t r8;
uint32_t r4;
#define DEVNAME(_sc) device_xname((_sc)->sc_dev)
r8 = nvme_read8(sc, NVME_CAP);
printf("%s: cap 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_CAP));
printf("%s: mpsmax %u (%u)\n", DEVNAME(sc),
(u_int)NVME_CAP_MPSMAX(r8), (1 << NVME_CAP_MPSMAX(r8)));
printf("%s: mpsmin %u (%u)\n", DEVNAME(sc),
(u_int)NVME_CAP_MPSMIN(r8), (1 << NVME_CAP_MPSMIN(r8)));
printf("%s: css %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CSS(r8));
printf("%s: nssrs %"PRIu64"\n", DEVNAME(sc), NVME_CAP_NSSRS(r8));
printf("%s: dstrd %"PRIu64"\n", DEVNAME(sc), NVME_CAP_DSTRD(r8));
printf("%s: to %"PRIu64" msec\n", DEVNAME(sc), NVME_CAP_TO(r8));
printf("%s: ams %"PRIu64"\n", DEVNAME(sc), NVME_CAP_AMS(r8));
printf("%s: cqr %"PRIu64"\n", DEVNAME(sc), NVME_CAP_CQR(r8));
printf("%s: mqes %"PRIu64"\n", DEVNAME(sc), NVME_CAP_MQES(r8));
printf("%s: vs 0x%04x\n", DEVNAME(sc), nvme_read4(sc, NVME_VS));
r4 = nvme_read4(sc, NVME_CC);
printf("%s: cc 0x%04x\n", DEVNAME(sc), r4);
printf("%s: iocqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOCQES_R(r4),
(1 << NVME_CC_IOCQES_R(r4)));
printf("%s: iosqes %u (%u)\n", DEVNAME(sc), NVME_CC_IOSQES_R(r4),
(1 << NVME_CC_IOSQES_R(r4)));
printf("%s: shn %u\n", DEVNAME(sc), NVME_CC_SHN_R(r4));
printf("%s: ams %u\n", DEVNAME(sc), NVME_CC_AMS_R(r4));
printf("%s: mps %u (%u)\n", DEVNAME(sc), NVME_CC_MPS_R(r4),
(1 << NVME_CC_MPS_R(r4)));
printf("%s: css %u\n", DEVNAME(sc), NVME_CC_CSS_R(r4));
printf("%s: en %u\n", DEVNAME(sc), ISSET(r4, NVME_CC_EN) ? 1 : 0);
r4 = nvme_read4(sc, NVME_CSTS);
printf("%s: csts 0x%08x\n", DEVNAME(sc), r4);
printf("%s: rdy %u\n", DEVNAME(sc), r4 & NVME_CSTS_RDY);
printf("%s: cfs %u\n", DEVNAME(sc), r4 & NVME_CSTS_CFS);
printf("%s: shst %x\n", DEVNAME(sc), r4 & NVME_CSTS_SHST_MASK);
r4 = nvme_read4(sc, NVME_AQA);
printf("%s: aqa 0x%08x\n", DEVNAME(sc), r4);
printf("%s: acqs %u\n", DEVNAME(sc), NVME_AQA_ACQS_R(r4));
printf("%s: asqs %u\n", DEVNAME(sc), NVME_AQA_ASQS_R(r4));
printf("%s: asq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ASQ));
printf("%s: acq 0x%016"PRIx64"\n", DEVNAME(sc), nvme_read8(sc, NVME_ACQ));
#undef DEVNAME
}
#endif /* NVME_DEBUG */
static int
nvme_ready(struct nvme_softc *sc, uint32_t rdy)
{
u_int i = 0;
while ((nvme_read4(sc, NVME_CSTS) & NVME_CSTS_RDY) != rdy) {
if (i++ > sc->sc_rdy_to)
return ENXIO;
delay(1000);
nvme_barrier(sc, NVME_CSTS, 4, BUS_SPACE_BARRIER_READ);
}
return 0;
}
static int
nvme_enable(struct nvme_softc *sc, u_int mps)
{
uint32_t cc, csts;
int error;
cc = nvme_read4(sc, NVME_CC);
csts = nvme_read4(sc, NVME_CSTS);
/*
* See note in nvme_disable. Short circuit if we're already enabled.
*/
if (ISSET(cc, NVME_CC_EN)) {
if (ISSET(csts, NVME_CSTS_RDY))
return 0;
goto waitready;
} else {
/* EN == 0 already wait for RDY == 0 or fail */
error = nvme_ready(sc, 0);
if (error)
return error;
}
nvme_write8(sc, NVME_ASQ, NVME_DMA_DVA(sc->sc_admin_q->q_sq_dmamem));
nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
delay(5000);
nvme_write8(sc, NVME_ACQ, NVME_DMA_DVA(sc->sc_admin_q->q_cq_dmamem));
nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
delay(5000);
nvme_write4(sc, NVME_AQA, NVME_AQA_ACQS(sc->sc_admin_q->q_entries) |
NVME_AQA_ASQS(sc->sc_admin_q->q_entries));
nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_WRITE);
delay(5000);
CLR(cc, NVME_CC_IOCQES_MASK | NVME_CC_IOSQES_MASK | NVME_CC_SHN_MASK |
NVME_CC_AMS_MASK | NVME_CC_MPS_MASK | NVME_CC_CSS_MASK);
SET(cc, NVME_CC_IOSQES(ffs(64) - 1) | NVME_CC_IOCQES(ffs(16) - 1));
SET(cc, NVME_CC_SHN(NVME_CC_SHN_NONE));
SET(cc, NVME_CC_CSS(NVME_CC_CSS_NVM));
SET(cc, NVME_CC_AMS(NVME_CC_AMS_RR));
SET(cc, NVME_CC_MPS(mps));
SET(cc, NVME_CC_EN);
nvme_write4(sc, NVME_CC, cc);
nvme_barrier(sc, 0, sc->sc_ios,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
waitready:
return nvme_ready(sc, NVME_CSTS_RDY);
}
static int
nvme_disable(struct nvme_softc *sc)
{
uint32_t cc, csts;
int error;
cc = nvme_read4(sc, NVME_CC);
csts = nvme_read4(sc, NVME_CSTS);
/*
* Per 3.1.5 in NVME 1.3 spec, transitioning CC.EN from 0 to 1
* when CSTS.RDY is 1 or transitioning CC.EN from 1 to 0 when
* CSTS.RDY is 0 "has undefined results" So make sure that CSTS.RDY
* isn't the desired value. Short circuit if we're already disabled.
*/
if (ISSET(cc, NVME_CC_EN)) {
if (!ISSET(csts, NVME_CSTS_RDY)) {
/* EN == 1, wait for RDY == 1 or fail */
error = nvme_ready(sc, NVME_CSTS_RDY);
if (error)
return error;
}
} else {
/* EN == 0 already wait for RDY == 0 */
if (!ISSET(csts, NVME_CSTS_RDY))
return 0;
goto waitready;
}
CLR(cc, NVME_CC_EN);
nvme_write4(sc, NVME_CC, cc);
nvme_barrier(sc, 0, sc->sc_ios, BUS_SPACE_BARRIER_READ);
/*
* Some drives have issues with accessing the mmio after we disable,
* so delay for a bit after we write the bit to cope with these issues.
*/
if (ISSET(sc->sc_quirks, NVME_QUIRK_DELAY_B4_CHK_RDY))
delay(B4_CHK_RDY_DELAY_MS);
waitready:
return nvme_ready(sc, 0);
}
int
nvme_attach(struct nvme_softc *sc)
{
uint64_t cap;
uint32_t reg;
u_int dstrd;
u_int mps = PAGE_SHIFT;
u_int ioq_allocated;
uint16_t adminq_entries = nvme_adminq_size;
uint16_t ioq_entries = nvme_ioq_size;
int i;
reg = nvme_read4(sc, NVME_VS);
if (reg == 0xffffffff) {
aprint_error_dev(sc->sc_dev, "invalid mapping\n");
return 1;
}
if (NVME_VS_TER(reg) == 0)
aprint_normal_dev(sc->sc_dev, "NVMe %d.%d\n", NVME_VS_MJR(reg),
NVME_VS_MNR(reg));
else
aprint_normal_dev(sc->sc_dev, "NVMe %d.%d.%d\n", NVME_VS_MJR(reg),
NVME_VS_MNR(reg), NVME_VS_TER(reg));
cap = nvme_read8(sc, NVME_CAP);
dstrd = NVME_CAP_DSTRD(cap);
if (NVME_CAP_MPSMIN(cap) > PAGE_SHIFT) {
aprint_error_dev(sc->sc_dev, "NVMe minimum page size %u "
"is greater than CPU page size %u\n",
1 << NVME_CAP_MPSMIN(cap), 1 << PAGE_SHIFT);
return 1;
}
if (NVME_CAP_MPSMAX(cap) < mps)
mps = NVME_CAP_MPSMAX(cap);
if (ioq_entries > NVME_CAP_MQES(cap))
ioq_entries = NVME_CAP_MQES(cap);
/* set initial values to be used for admin queue during probe */
sc->sc_rdy_to = NVME_CAP_TO(cap);
sc->sc_mps = 1 << mps;
sc->sc_mdts = MAXPHYS;
sc->sc_max_sgl = 2;
if (nvme_disable(sc) != 0) {
aprint_error_dev(sc->sc_dev, "unable to disable controller\n");
return 1;
}
sc->sc_admin_q = nvme_q_alloc(sc, NVME_ADMIN_Q, adminq_entries, dstrd);
if (sc->sc_admin_q == NULL) {
aprint_error_dev(sc->sc_dev,
"unable to allocate admin queue\n");
return 1;
}
if (sc->sc_intr_establish(sc, NVME_ADMIN_Q, sc->sc_admin_q))
goto free_admin_q;
if (nvme_enable(sc, mps) != 0) {
aprint_error_dev(sc->sc_dev, "unable to enable controller\n");
goto disestablish_admin_q;
}
if (nvme_identify(sc, NVME_CAP_MPSMIN(cap)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to identify controller\n");
goto disable;
}
/* we know how big things are now */
sc->sc_max_sgl = sc->sc_mdts / sc->sc_mps;
/* reallocate ccbs of admin queue with new max sgl. */
nvme_ccbs_free(sc->sc_admin_q);
nvme_ccbs_alloc(sc->sc_admin_q, sc->sc_admin_q->q_entries);
if (sc->sc_use_mq) {
/* Limit the number of queues to the number allocated in HW */
if (nvme_get_number_of_queues(sc, &ioq_allocated) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to get number of queues\n");
goto disable;
}
if (sc->sc_nq > ioq_allocated)
sc->sc_nq = ioq_allocated;
}
sc->sc_q = kmem_zalloc(sizeof(*sc->sc_q) * sc->sc_nq, KM_SLEEP);
for (i = 0; i < sc->sc_nq; i++) {
sc->sc_q[i] = nvme_q_alloc(sc, i + 1, ioq_entries, dstrd);
if (sc->sc_q[i] == NULL) {
aprint_error_dev(sc->sc_dev,
"unable to allocate io queue\n");
goto free_q;
}
if (nvme_q_create(sc, sc->sc_q[i]) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create io queue\n");
nvme_q_free(sc, sc->sc_q[i]);
goto free_q;
}
}
if (!sc->sc_use_mq)
nvme_write4(sc, NVME_INTMC, 1);
/* probe subdevices */
sc->sc_namespaces = kmem_zalloc(sizeof(*sc->sc_namespaces) * sc->sc_nn,
KM_SLEEP);
nvme_rescan(sc->sc_dev, "nvme", &i);
return 0;
free_q:
while (--i >= 0) {
nvme_q_delete(sc, sc->sc_q[i]);
nvme_q_free(sc, sc->sc_q[i]);
}
disable:
nvme_disable(sc);
disestablish_admin_q:
sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
free_admin_q:
nvme_q_free(sc, sc->sc_admin_q);
return 1;
}
int
nvme_rescan(device_t self, const char *attr, const int *flags)
{
struct nvme_softc *sc = device_private(self);
struct nvme_attach_args naa;
uint64_t cap;
int ioq_entries = nvme_ioq_size;
int i;
cap = nvme_read8(sc, NVME_CAP);
if (ioq_entries > NVME_CAP_MQES(cap))
ioq_entries = NVME_CAP_MQES(cap);
for (i = 0; i < sc->sc_nn; i++) {
if (sc->sc_namespaces[i].dev)
continue;
memset(&naa, 0, sizeof(naa));
naa.naa_nsid = i + 1;
naa.naa_qentries = (ioq_entries - 1) * sc->sc_nq;
naa.naa_maxphys = sc->sc_mdts;
sc->sc_namespaces[i].dev = config_found(sc->sc_dev, &naa,
nvme_print);
}
return 0;
}
static int
nvme_print(void *aux, const char *pnp)
{
struct nvme_attach_args *naa = aux;
if (pnp)
aprint_normal("at %s", pnp);
if (naa->naa_nsid > 0)
aprint_normal(" nsid %d", naa->naa_nsid);
return UNCONF;
}
int
nvme_detach(struct nvme_softc *sc, int flags)
{
int i, error;
error = config_detach_children(sc->sc_dev, flags);
if (error)
return error;
error = nvme_shutdown(sc);
if (error)
return error;
/* from now on we are committed to detach, following will never fail */
for (i = 0; i < sc->sc_nq; i++)
nvme_q_free(sc, sc->sc_q[i]);
kmem_free(sc->sc_q, sizeof(*sc->sc_q) * sc->sc_nq);
nvme_q_free(sc, sc->sc_admin_q);
return 0;
}
static int
nvme_shutdown(struct nvme_softc *sc)
{
uint32_t cc, csts;
bool disabled = false;
int i;
if (!sc->sc_use_mq)
nvme_write4(sc, NVME_INTMS, 1);
for (i = 0; i < sc->sc_nq; i++) {
if (nvme_q_delete(sc, sc->sc_q[i]) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to delete io queue %d, disabling\n", i + 1);
disabled = true;
}
}
sc->sc_intr_disestablish(sc, NVME_ADMIN_Q);
if (disabled)
goto disable;
cc = nvme_read4(sc, NVME_CC);
CLR(cc, NVME_CC_SHN_MASK);
SET(cc, NVME_CC_SHN(NVME_CC_SHN_NORMAL));
nvme_write4(sc, NVME_CC, cc);
for (i = 0; i < 4000; i++) {
nvme_barrier(sc, 0, sc->sc_ios,
BUS_SPACE_BARRIER_READ | BUS_SPACE_BARRIER_WRITE);
csts = nvme_read4(sc, NVME_CSTS);
if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_DONE)
return 0;
delay(1000);
}
aprint_error_dev(sc->sc_dev, "unable to shudown, disabling\n");
disable:
nvme_disable(sc);
return 0;
}
void
nvme_childdet(device_t self, device_t child)
{
struct nvme_softc *sc = device_private(self);
int i;
for (i = 0; i < sc->sc_nn; i++) {
if (sc->sc_namespaces[i].dev == child) {
/* Already freed ns->ident. */
sc->sc_namespaces[i].dev = NULL;
break;
}
}
}
int
nvme_ns_identify(struct nvme_softc *sc, uint16_t nsid)
{
struct nvme_sqe sqe;
struct nvm_identify_namespace *identify;
struct nvme_dmamem *mem;
struct nvme_ccb *ccb;
struct nvme_namespace *ns;
int rv;
KASSERT(nsid > 0);
ccb = nvme_ccb_get(sc->sc_admin_q, false);
KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
mem = nvme_dmamem_alloc(sc, sizeof(*identify));
if (mem == NULL) {
nvme_ccb_put(sc->sc_admin_q, ccb);
return ENOMEM;
}
memset(&sqe, 0, sizeof(sqe));
sqe.opcode = NVM_ADMIN_IDENTIFY;
htolem32(&sqe.nsid, nsid);
htolem64(&sqe.entry.prp[0], NVME_DMA_DVA(mem));
htolem32(&sqe.cdw10, 0);
ccb->ccb_done = nvme_empty_done;
ccb->ccb_cookie = &sqe;
nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_IDENT);
nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
nvme_ccb_put(sc->sc_admin_q, ccb);
if (rv != 0) {
rv = EIO;
goto done;
}
/* commit */
identify = kmem_zalloc(sizeof(*identify), KM_SLEEP);
*identify = *((volatile struct nvm_identify_namespace *)NVME_DMA_KVA(mem));
/* Convert data to host endian */
nvme_identify_namespace_swapbytes(identify);
ns = nvme_ns_get(sc, nsid);
KASSERT(ns);
KASSERT(ns->ident == NULL);
ns->ident = identify;
done:
nvme_dmamem_free(sc, mem);
return rv;
}
int
nvme_ns_dobio(struct nvme_softc *sc, uint16_t nsid, void *cookie,
struct buf *bp, void *data, size_t datasize,
int secsize, daddr_t blkno, int flags, nvme_nnc_done nnc_done)
{
struct nvme_queue *q = nvme_get_q(sc);
struct nvme_ccb *ccb;
bus_dmamap_t dmap;
int i, error;
ccb = nvme_ccb_get(q, false);
if (ccb == NULL)
return EAGAIN;
ccb->ccb_done = nvme_ns_io_done;
ccb->ccb_cookie = cookie;
/* namespace context */
ccb->nnc_nsid = nsid;
ccb->nnc_flags = flags;
ccb->nnc_buf = bp;
ccb->nnc_datasize = datasize;
ccb->nnc_secsize = secsize;
ccb->nnc_blkno = blkno;
ccb->nnc_done = nnc_done;
dmap = ccb->ccb_dmamap;
error = bus_dmamap_load(sc->sc_dmat, dmap, data,
datasize, NULL,
(ISSET(flags, NVME_NS_CTX_F_POLL) ?
BUS_DMA_NOWAIT : BUS_DMA_WAITOK) |
(ISSET(flags, NVME_NS_CTX_F_READ) ?
BUS_DMA_READ : BUS_DMA_WRITE));
if (error) {
nvme_ccb_put(q, ccb);
return error;
}
bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
ISSET(flags, NVME_NS_CTX_F_READ) ?
BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
if (dmap->dm_nsegs > 2) {
for (i = 1; i < dmap->dm_nsegs; i++) {
htolem64(&ccb->ccb_prpl[i - 1],
dmap->dm_segs[i].ds_addr);
}
bus_dmamap_sync(sc->sc_dmat,
NVME_DMA_MAP(q->q_ccb_prpls),
ccb->ccb_prpl_off,
sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
BUS_DMASYNC_PREWRITE);
}
if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
if (nvme_poll(sc, q, ccb, nvme_ns_io_fill, NVME_TIMO_PT) != 0)
return EIO;
return 0;
}
nvme_q_submit(sc, q, ccb, nvme_ns_io_fill);
return 0;
}
static void
nvme_ns_io_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
{
struct nvme_sqe_io *sqe = slot;
bus_dmamap_t dmap = ccb->ccb_dmamap;
sqe->opcode = ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
NVM_CMD_READ : NVM_CMD_WRITE;
htolem32(&sqe->nsid, ccb->nnc_nsid);
htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
switch (dmap->dm_nsegs) {
case 1:
break;
case 2:
htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
break;
default:
/* the prp list is already set up and synced */
htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
break;
}
htolem64(&sqe->slba, ccb->nnc_blkno);
if (ISSET(ccb->nnc_flags, NVME_NS_CTX_F_FUA))
htolem16(&sqe->ioflags, NVM_SQE_IO_FUA);
/* guaranteed by upper layers, but check just in case */
KASSERT((ccb->nnc_datasize % ccb->nnc_secsize) == 0);
htolem16(&sqe->nlb, (ccb->nnc_datasize / ccb->nnc_secsize) - 1);
}
static void
nvme_ns_io_done(struct nvme_queue *q, struct nvme_ccb *ccb,
struct nvme_cqe *cqe)
{
struct nvme_softc *sc = q->q_sc;
bus_dmamap_t dmap = ccb->ccb_dmamap;
void *nnc_cookie = ccb->ccb_cookie;
nvme_nnc_done nnc_done = ccb->nnc_done;
struct buf *bp = ccb->nnc_buf;
if (dmap->dm_nsegs > 2) {
bus_dmamap_sync(sc->sc_dmat,
NVME_DMA_MAP(q->q_ccb_prpls),
ccb->ccb_prpl_off,
sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
BUS_DMASYNC_POSTWRITE);
}
bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
ISSET(ccb->nnc_flags, NVME_NS_CTX_F_READ) ?
BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, dmap);
nvme_ccb_put(q, ccb);
nnc_done(nnc_cookie, bp, lemtoh16(&cqe->flags), lemtoh32(&cqe->cdw0));
}
/*
* If there is no volatile write cache, it makes no sense to issue
* flush commands or query for the status.
*/
static bool
nvme_has_volatile_write_cache(struct nvme_softc *sc)
{
/* sc_identify is filled during attachment */
return ((sc->sc_identify.vwc & NVME_ID_CTRLR_VWC_PRESENT) != 0);
}
static bool
nvme_ns_sync_finished(void *cookie)
{
int *result = cookie;
return (*result != 0);
}
int
nvme_ns_sync(struct nvme_softc *sc, uint16_t nsid, int flags)
{
struct nvme_queue *q = nvme_get_q(sc);
struct nvme_ccb *ccb;
int result = 0;
if (!nvme_has_volatile_write_cache(sc)) {
/* cache not present, no value in trying to flush it */
return 0;
}
ccb = nvme_ccb_get(q, true);
if (ccb == NULL)
return EAGAIN;
ccb->ccb_done = nvme_ns_sync_done;
ccb->ccb_cookie = &result;
/* namespace context */
ccb->nnc_nsid = nsid;
ccb->nnc_flags = flags;
ccb->nnc_done = NULL;
if (ISSET(flags, NVME_NS_CTX_F_POLL)) {
if (nvme_poll(sc, q, ccb, nvme_ns_sync_fill, NVME_TIMO_SY) != 0)
return EIO;
return 0;
}
nvme_q_submit(sc, q, ccb, nvme_ns_sync_fill);
/* wait for completion */
nvme_q_wait_complete(sc, q, nvme_ns_sync_finished, &result);
KASSERT(result != 0);
return (result > 0) ? 0 : EIO;
}
static void
nvme_ns_sync_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
{
struct nvme_sqe *sqe = slot;
sqe->opcode = NVM_CMD_FLUSH;
htolem32(&sqe->nsid, ccb->nnc_nsid);
}
static void
nvme_ns_sync_done(struct nvme_queue *q, struct nvme_ccb *ccb,
struct nvme_cqe *cqe)
{
int *result = ccb->ccb_cookie;
uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
if (status == NVME_CQE_SC_SUCCESS)
*result = 1;
else
*result = -1;
nvme_ccb_put(q, ccb);
}
static bool
nvme_getcache_finished(void *xc)
{
int *addr = xc;
return (*addr != 0);
}
/*
* Get status of volatile write cache. Always asynchronous.
*/
int
nvme_admin_getcache(struct nvme_softc *sc, int *addr)
{
struct nvme_ccb *ccb;
struct nvme_queue *q = sc->sc_admin_q;
int result = 0, error;
if (!nvme_has_volatile_write_cache(sc)) {
/* cache simply not present */
*addr = 0;
return 0;
}
ccb = nvme_ccb_get(q, true);
KASSERT(ccb != NULL);
ccb->ccb_done = nvme_getcache_done;
ccb->ccb_cookie = &result;
/* namespace context */
ccb->nnc_flags = 0;
ccb->nnc_done = NULL;
nvme_q_submit(sc, q, ccb, nvme_getcache_fill);
/* wait for completion */
nvme_q_wait_complete(sc, q, nvme_getcache_finished, &result);
KASSERT(result != 0);
if (result > 0) {
*addr = result;
error = 0;
} else
error = EINVAL;
return error;
}
static void
nvme_getcache_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
{
struct nvme_sqe *sqe = slot;
sqe->opcode = NVM_ADMIN_GET_FEATURES;
htolem32(&sqe->cdw10, NVM_FEATURE_VOLATILE_WRITE_CACHE);
}
static void
nvme_getcache_done(struct nvme_queue *q, struct nvme_ccb *ccb,
struct nvme_cqe *cqe)
{
int *addr = ccb->ccb_cookie;
uint16_t status = NVME_CQE_SC(lemtoh16(&cqe->flags));
uint32_t cdw0 = lemtoh32(&cqe->cdw0);
int result;
if (status == NVME_CQE_SC_SUCCESS) {
result = 0;
/*
* DPO not supported, Dataset Management (DSM) field doesn't
* specify the same semantics. FUA is always supported.
*/
result = DKCACHE_FUA;
if (cdw0 & NVME_CQE_CDW0_VWC_WCE)
result |= DKCACHE_WRITE;
/*
* If volatile write cache is present, the flag shall also be
* settable.
*/
result |= DKCACHE_WCHANGE;
} else {
result = -1;
}
*addr = result;
nvme_ccb_put(q, ccb);
}
void
nvme_ns_free(struct nvme_softc *sc, uint16_t nsid)
{
struct nvme_namespace *ns;
struct nvm_identify_namespace *identify;
ns = nvme_ns_get(sc, nsid);
KASSERT(ns);
identify = ns->ident;
ns->ident = NULL;
if (identify != NULL)
kmem_free(identify, sizeof(*identify));
}
struct nvme_pt_state {
struct nvme_pt_command *pt;
bool finished;
};
static void
nvme_pt_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
{
struct nvme_softc *sc = q->q_sc;
struct nvme_sqe *sqe = slot;
struct nvme_pt_state *state = ccb->ccb_cookie;
struct nvme_pt_command *pt = state->pt;
bus_dmamap_t dmap = ccb->ccb_dmamap;
int i;
sqe->opcode = pt->cmd.opcode;
htolem32(&sqe->nsid, pt->cmd.nsid);
if (pt->buf != NULL && pt->len > 0) {
htolem64(&sqe->entry.prp[0], dmap->dm_segs[0].ds_addr);
switch (dmap->dm_nsegs) {
case 1:
break;
case 2:
htolem64(&sqe->entry.prp[1], dmap->dm_segs[1].ds_addr);
break;
default:
for (i = 1; i < dmap->dm_nsegs; i++) {
htolem64(&ccb->ccb_prpl[i - 1],
dmap->dm_segs[i].ds_addr);
}
bus_dmamap_sync(sc->sc_dmat,
NVME_DMA_MAP(q->q_ccb_prpls),
ccb->ccb_prpl_off,
sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
BUS_DMASYNC_PREWRITE);
htolem64(&sqe->entry.prp[1], ccb->ccb_prpl_dva);
break;
}
}
htolem32(&sqe->cdw10, pt->cmd.cdw10);
htolem32(&sqe->cdw11, pt->cmd.cdw11);
htolem32(&sqe->cdw12, pt->cmd.cdw12);
htolem32(&sqe->cdw13, pt->cmd.cdw13);
htolem32(&sqe->cdw14, pt->cmd.cdw14);
htolem32(&sqe->cdw15, pt->cmd.cdw15);
}
static void
nvme_pt_done(struct nvme_queue *q, struct nvme_ccb *ccb, struct nvme_cqe *cqe)
{
struct nvme_softc *sc = q->q_sc;
struct nvme_pt_state *state = ccb->ccb_cookie;
struct nvme_pt_command *pt = state->pt;
bus_dmamap_t dmap = ccb->ccb_dmamap;
if (pt->buf != NULL && pt->len > 0) {
if (dmap->dm_nsegs > 2) {
bus_dmamap_sync(sc->sc_dmat,
NVME_DMA_MAP(q->q_ccb_prpls),
ccb->ccb_prpl_off,
sizeof(*ccb->ccb_prpl) * (dmap->dm_nsegs - 1),
BUS_DMASYNC_POSTWRITE);
}
bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
pt->is_read ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, dmap);
}
pt->cpl.cdw0 = lemtoh32(&cqe->cdw0);
pt->cpl.flags = lemtoh16(&cqe->flags) & ~NVME_CQE_PHASE;
state->finished = true;
nvme_ccb_put(q, ccb);
}
static bool
nvme_pt_finished(void *cookie)
{
struct nvme_pt_state *state = cookie;
return state->finished;
}
static int
nvme_command_passthrough(struct nvme_softc *sc, struct nvme_pt_command *pt,
uint16_t nsid, struct lwp *l, bool is_adminq)
{
struct nvme_queue *q;
struct nvme_ccb *ccb;
void *buf = NULL;
struct nvme_pt_state state;
int error;
/* limit command size to maximum data transfer size */
if ((pt->buf == NULL && pt->len > 0) ||
(pt->buf != NULL && (pt->len == 0 || pt->len > sc->sc_mdts)))
return EINVAL;
q = is_adminq ? sc->sc_admin_q : nvme_get_q(sc);
ccb = nvme_ccb_get(q, true);
KASSERT(ccb != NULL);
if (pt->buf != NULL) {
KASSERT(pt->len > 0);
buf = kmem_alloc(pt->len, KM_SLEEP);
if (!pt->is_read) {
error = copyin(pt->buf, buf, pt->len);
if (error)
goto kmem_free;
}
error = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap, buf,
pt->len, NULL,
BUS_DMA_WAITOK |
(pt->is_read ? BUS_DMA_READ : BUS_DMA_WRITE));
if (error)
goto kmem_free;
bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap,
0, ccb->ccb_dmamap->dm_mapsize,
pt->is_read ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
}
memset(&state, 0, sizeof(state));
state.pt = pt;
state.finished = false;
ccb->ccb_done = nvme_pt_done;
ccb->ccb_cookie = &state;
pt->cmd.nsid = nsid;
nvme_q_submit(sc, q, ccb, nvme_pt_fill);
/* wait for completion */
nvme_q_wait_complete(sc, q, nvme_pt_finished, &state);
KASSERT(state.finished);
error = 0;
if (buf != NULL) {
if (error == 0 && pt->is_read)
error = copyout(buf, pt->buf, pt->len);
kmem_free:
kmem_free(buf, pt->len);
}
return error;
}
static void
nvme_q_submit(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *))
{
struct nvme_sqe *sqe = NVME_DMA_KVA(q->q_sq_dmamem);
uint32_t tail;
mutex_enter(&q->q_sq_mtx);
tail = q->q_sq_tail;
if (++q->q_sq_tail >= q->q_entries)
q->q_sq_tail = 0;
sqe += tail;
bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_POSTWRITE);
memset(sqe, 0, sizeof(*sqe));
(*fill)(q, ccb, sqe);
htolem16(&sqe->cid, ccb->ccb_id);
bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(q->q_sq_dmamem),
sizeof(*sqe) * tail, sizeof(*sqe), BUS_DMASYNC_PREWRITE);
nvme_write4(sc, q->q_sqtdbl, q->q_sq_tail);
mutex_exit(&q->q_sq_mtx);
}
struct nvme_poll_state {
struct nvme_sqe s;
struct nvme_cqe c;
void *cookie;
void (*done)(struct nvme_queue *, struct nvme_ccb *, struct nvme_cqe *);
};
static int
nvme_poll(struct nvme_softc *sc, struct nvme_queue *q, struct nvme_ccb *ccb,
void (*fill)(struct nvme_queue *, struct nvme_ccb *, void *), int timo_sec)
{
struct nvme_poll_state state;
uint16_t flags;
int step = 10;
int maxloop = timo_sec * 1000000 / step;
int error = 0;
memset(&state, 0, sizeof(state));
(*fill)(q, ccb, &state.s);
state.done = ccb->ccb_done;
state.cookie = ccb->ccb_cookie;
ccb->ccb_done = nvme_poll_done;
ccb->ccb_cookie = &state;
nvme_q_submit(sc, q, ccb, nvme_poll_fill);
while (!ISSET(state.c.flags, htole16(NVME_CQE_PHASE))) {
if (nvme_q_complete(sc, q) == 0)
delay(step);
if (timo_sec >= 0 && --maxloop <= 0) {
error = ETIMEDOUT;
break;
}
}
if (error == 0) {
flags = lemtoh16(&state.c.flags);
return flags & ~NVME_CQE_PHASE;
} else {
/*
* If it succeds later, it would hit ccb which will have been
* already reused for something else. Not good. Cross
* fingers and hope for best. XXX do controller reset?
*/
aprint_error_dev(sc->sc_dev, "polled command timed out\n");
/* Invoke the callback to clean state anyway */
struct nvme_cqe cqe;
memset(&cqe, 0, sizeof(cqe));
ccb->ccb_done(q, ccb, &cqe);
return 1;
}
}
static void
nvme_poll_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
{
struct nvme_sqe *sqe = slot;
struct nvme_poll_state *state = ccb->ccb_cookie;
*sqe = state->s;
}
static void
nvme_poll_done(struct nvme_queue *q, struct nvme_ccb *ccb,
struct nvme_cqe *cqe)
{
struct nvme_poll_state *state = ccb->ccb_cookie;
SET(cqe->flags, htole16(NVME_CQE_PHASE));
state->c = *cqe;
ccb->ccb_cookie = state->cookie;
state->done(q, ccb, &state->c);
}
static void
nvme_sqe_fill(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
{
struct nvme_sqe *src = ccb->ccb_cookie;
struct nvme_sqe *dst = slot;
*dst = *src;
}
static void
nvme_empty_done(struct nvme_queue *q, struct nvme_ccb *ccb,
struct nvme_cqe *cqe)
{
}
static int
nvme_q_complete(struct nvme_softc *sc, struct nvme_queue *q)
{
struct nvme_ccb *ccb;
struct nvme_cqe *ring = NVME_DMA_KVA(q->q_cq_dmamem), *cqe;
uint16_t flags;
int rv = 0;
mutex_enter(&q->q_cq_mtx);
nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
for (;;) {
cqe = &ring[q->q_cq_head];
flags = lemtoh16(&cqe->flags);
if ((flags & NVME_CQE_PHASE) != q->q_cq_phase)
break;
ccb = &q->q_ccbs[cqe->cid];
if (++q->q_cq_head >= q->q_entries) {
q->q_cq_head = 0;
q->q_cq_phase ^= NVME_CQE_PHASE;
}
#ifdef DEBUG
/*
* If we get spurious completion notification, something
* is seriously hosed up. Very likely DMA to some random
* memory place happened, so just bail out.
*/
if ((intptr_t)ccb->ccb_cookie == NVME_CCB_FREE) {
panic("%s: invalid ccb detected",
device_xname(sc->sc_dev));
/* NOTREACHED */
}
#endif
rv++;
/*
* Unlock the mutex before calling the ccb_done callback
* and re-lock afterwards. The callback triggers lddone()
* which schedules another i/o, and also calls nvme_ccb_put().
* Unlock/relock avoids possibility of deadlock.
*/
mutex_exit(&q->q_cq_mtx);
ccb->ccb_done(q, ccb, cqe);
mutex_enter(&q->q_cq_mtx);
}
nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
if (rv)
nvme_write4(sc, q->q_cqhdbl, q->q_cq_head);
mutex_exit(&q->q_cq_mtx);
return rv;
}
static void
nvme_q_wait_complete(struct nvme_softc *sc,
struct nvme_queue *q, bool (*finished)(void *), void *cookie)
{
mutex_enter(&q->q_ccb_mtx);
if (finished(cookie))
goto out;
for(;;) {
q->q_ccb_waiting = true;
cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
if (finished(cookie))
break;
}
out:
mutex_exit(&q->q_ccb_mtx);
}
static int
nvme_identify(struct nvme_softc *sc, u_int mps)
{
char sn[41], mn[81], fr[17];
struct nvm_identify_controller *identify;
struct nvme_dmamem *mem;
struct nvme_ccb *ccb;
u_int mdts;
int rv = 1;
ccb = nvme_ccb_get(sc->sc_admin_q, false);
KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
mem = nvme_dmamem_alloc(sc, sizeof(*identify));
if (mem == NULL)
return 1;
ccb->ccb_done = nvme_empty_done;
ccb->ccb_cookie = mem;
nvme_dmamem_sync(sc, mem, BUS_DMASYNC_PREREAD);
rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_fill_identify,
NVME_TIMO_IDENT);
nvme_dmamem_sync(sc, mem, BUS_DMASYNC_POSTREAD);
nvme_ccb_put(sc->sc_admin_q, ccb);
if (rv != 0)
goto done;
identify = NVME_DMA_KVA(mem);
sc->sc_identify = *identify;
identify = NULL;
/* Convert data to host endian */
nvme_identify_controller_swapbytes(&sc->sc_identify);
strnvisx(sn, sizeof(sn), (const char *)sc->sc_identify.sn,
sizeof(sc->sc_identify.sn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
strnvisx(mn, sizeof(mn), (const char *)sc->sc_identify.mn,
sizeof(sc->sc_identify.mn), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
strnvisx(fr, sizeof(fr), (const char *)sc->sc_identify.fr,
sizeof(sc->sc_identify.fr), VIS_TRIM|VIS_SAFE|VIS_OCTAL);
aprint_normal_dev(sc->sc_dev, "%s, firmware %s, serial %s\n", mn, fr,
sn);
if (sc->sc_identify.mdts > 0) {
mdts = (1 << sc->sc_identify.mdts) * (1 << mps);
if (mdts < sc->sc_mdts)
sc->sc_mdts = mdts;
}
sc->sc_nn = sc->sc_identify.nn;
done:
nvme_dmamem_free(sc, mem);
return rv;
}
static int
nvme_q_create(struct nvme_softc *sc, struct nvme_queue *q)
{
struct nvme_sqe_q sqe;
struct nvme_ccb *ccb;
int rv;
if (sc->sc_use_mq && sc->sc_intr_establish(sc, q->q_id, q) != 0)
return 1;
ccb = nvme_ccb_get(sc->sc_admin_q, false);
KASSERT(ccb != NULL);
ccb->ccb_done = nvme_empty_done;
ccb->ccb_cookie = &sqe;
memset(&sqe, 0, sizeof(sqe));
sqe.opcode = NVM_ADMIN_ADD_IOCQ;
htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_cq_dmamem));
htolem16(&sqe.qsize, q->q_entries - 1);
htolem16(&sqe.qid, q->q_id);
sqe.qflags = NVM_SQE_CQ_IEN | NVM_SQE_Q_PC;
if (sc->sc_use_mq)
htolem16(&sqe.cqid, q->q_id); /* qid == vector */
rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
if (rv != 0)
goto fail;
ccb->ccb_done = nvme_empty_done;
ccb->ccb_cookie = &sqe;
memset(&sqe, 0, sizeof(sqe));
sqe.opcode = NVM_ADMIN_ADD_IOSQ;
htolem64(&sqe.prp1, NVME_DMA_DVA(q->q_sq_dmamem));
htolem16(&sqe.qsize, q->q_entries - 1);
htolem16(&sqe.qid, q->q_id);
htolem16(&sqe.cqid, q->q_id);
sqe.qflags = NVM_SQE_Q_PC;
rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
if (rv != 0)
goto fail;
fail:
nvme_ccb_put(sc->sc_admin_q, ccb);
return rv;
}
static int
nvme_q_delete(struct nvme_softc *sc, struct nvme_queue *q)
{
struct nvme_sqe_q sqe;
struct nvme_ccb *ccb;
int rv;
ccb = nvme_ccb_get(sc->sc_admin_q, false);
KASSERT(ccb != NULL);
ccb->ccb_done = nvme_empty_done;
ccb->ccb_cookie = &sqe;
memset(&sqe, 0, sizeof(sqe));
sqe.opcode = NVM_ADMIN_DEL_IOSQ;
htolem16(&sqe.qid, q->q_id);
rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
if (rv != 0)
goto fail;
ccb->ccb_done = nvme_empty_done;
ccb->ccb_cookie = &sqe;
memset(&sqe, 0, sizeof(sqe));
sqe.opcode = NVM_ADMIN_DEL_IOCQ;
htolem16(&sqe.qid, q->q_id);
rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_sqe_fill, NVME_TIMO_QOP);
if (rv != 0)
goto fail;
fail:
nvme_ccb_put(sc->sc_admin_q, ccb);
if (rv == 0 && sc->sc_use_mq) {
if (sc->sc_intr_disestablish(sc, q->q_id))
rv = 1;
}
return rv;
}
static void
nvme_fill_identify(struct nvme_queue *q, struct nvme_ccb *ccb, void *slot)
{
struct nvme_sqe *sqe = slot;
struct nvme_dmamem *mem = ccb->ccb_cookie;
sqe->opcode = NVM_ADMIN_IDENTIFY;
htolem64(&sqe->entry.prp[0], NVME_DMA_DVA(mem));
htolem32(&sqe->cdw10, 1);
}
static int
nvme_get_number_of_queues(struct nvme_softc *sc, u_int *nqap)
{
struct nvme_pt_state state;
struct nvme_pt_command pt;
struct nvme_ccb *ccb;
uint16_t ncqa, nsqa;
int rv;
ccb = nvme_ccb_get(sc->sc_admin_q, false);
KASSERT(ccb != NULL); /* it's a bug if we don't have spare ccb here */
memset(&pt, 0, sizeof(pt));
pt.cmd.opcode = NVM_ADMIN_GET_FEATURES;
pt.cmd.cdw10 = NVM_FEATURE_NUMBER_OF_QUEUES;
memset(&state, 0, sizeof(state));
state.pt = &pt;
state.finished = false;
ccb->ccb_done = nvme_pt_done;
ccb->ccb_cookie = &state;
rv = nvme_poll(sc, sc->sc_admin_q, ccb, nvme_pt_fill, NVME_TIMO_QOP);
if (rv != 0) {
*nqap = 0;
return EIO;
}
ncqa = pt.cpl.cdw0 >> 16;
nsqa = pt.cpl.cdw0 & 0xffff;
*nqap = MIN(ncqa, nsqa) + 1;
return 0;
}
static int
nvme_ccbs_alloc(struct nvme_queue *q, uint16_t nccbs)
{
struct nvme_softc *sc = q->q_sc;
struct nvme_ccb *ccb;
bus_addr_t off;
uint64_t *prpl;
u_int i;
mutex_init(&q->q_ccb_mtx, MUTEX_DEFAULT, IPL_BIO);
cv_init(&q->q_ccb_wait, "nvmeqw");
q->q_ccb_waiting = false;
SIMPLEQ_INIT(&q->q_ccb_list);
q->q_ccbs = kmem_alloc(sizeof(*ccb) * nccbs, KM_SLEEP);
q->q_nccbs = nccbs;
q->q_ccb_prpls = nvme_dmamem_alloc(sc,
sizeof(*prpl) * sc->sc_max_sgl * nccbs);
prpl = NVME_DMA_KVA(q->q_ccb_prpls);
off = 0;
for (i = 0; i < nccbs; i++) {
ccb = &q->q_ccbs[i];
if (bus_dmamap_create(sc->sc_dmat, sc->sc_mdts,
sc->sc_max_sgl + 1 /* we get a free prp in the sqe */,
sc->sc_mps, sc->sc_mps, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
&ccb->ccb_dmamap) != 0)
goto free_maps;
ccb->ccb_id = i;
ccb->ccb_prpl = prpl;
ccb->ccb_prpl_off = off;
ccb->ccb_prpl_dva = NVME_DMA_DVA(q->q_ccb_prpls) + off;
SIMPLEQ_INSERT_TAIL(&q->q_ccb_list, ccb, ccb_entry);
prpl += sc->sc_max_sgl;
off += sizeof(*prpl) * sc->sc_max_sgl;
}
return 0;
free_maps:
nvme_ccbs_free(q);
return 1;
}
static struct nvme_ccb *
nvme_ccb_get(struct nvme_queue *q, bool wait)
{
struct nvme_ccb *ccb = NULL;
mutex_enter(&q->q_ccb_mtx);
again:
ccb = SIMPLEQ_FIRST(&q->q_ccb_list);
if (ccb != NULL) {
SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
#ifdef DEBUG
ccb->ccb_cookie = NULL;
#endif
} else {
if (__predict_false(wait)) {
q->q_ccb_waiting = true;
cv_wait(&q->q_ccb_wait, &q->q_ccb_mtx);
goto again;
}
}
mutex_exit(&q->q_ccb_mtx);
return ccb;
}
static void
nvme_ccb_put(struct nvme_queue *q, struct nvme_ccb *ccb)
{
mutex_enter(&q->q_ccb_mtx);
#ifdef DEBUG
ccb->ccb_cookie = (void *)NVME_CCB_FREE;
#endif
SIMPLEQ_INSERT_HEAD(&q->q_ccb_list, ccb, ccb_entry);
/* It's unlikely there are any waiters, it's not used for regular I/O */
if (__predict_false(q->q_ccb_waiting)) {
q->q_ccb_waiting = false;
cv_broadcast(&q->q_ccb_wait);
}
mutex_exit(&q->q_ccb_mtx);
}
static void
nvme_ccbs_free(struct nvme_queue *q)
{
struct nvme_softc *sc = q->q_sc;
struct nvme_ccb *ccb;
mutex_enter(&q->q_ccb_mtx);
while ((ccb = SIMPLEQ_FIRST(&q->q_ccb_list)) != NULL) {
SIMPLEQ_REMOVE_HEAD(&q->q_ccb_list, ccb_entry);
bus_dmamap_destroy(sc->sc_dmat, ccb->ccb_dmamap);
}
mutex_exit(&q->q_ccb_mtx);
nvme_dmamem_free(sc, q->q_ccb_prpls);
kmem_free(q->q_ccbs, sizeof(*ccb) * q->q_nccbs);
q->q_ccbs = NULL;
cv_destroy(&q->q_ccb_wait);
mutex_destroy(&q->q_ccb_mtx);
}
static struct nvme_queue *
nvme_q_alloc(struct nvme_softc *sc, uint16_t id, u_int entries, u_int dstrd)
{
struct nvme_queue *q;
q = kmem_alloc(sizeof(*q), KM_SLEEP);
q->q_sc = sc;
q->q_sq_dmamem = nvme_dmamem_alloc(sc,
sizeof(struct nvme_sqe) * entries);
if (q->q_sq_dmamem == NULL)
goto free;
q->q_cq_dmamem = nvme_dmamem_alloc(sc,
sizeof(struct nvme_cqe) * entries);
if (q->q_cq_dmamem == NULL)
goto free_sq;
memset(NVME_DMA_KVA(q->q_sq_dmamem), 0, NVME_DMA_LEN(q->q_sq_dmamem));
memset(NVME_DMA_KVA(q->q_cq_dmamem), 0, NVME_DMA_LEN(q->q_cq_dmamem));
mutex_init(&q->q_sq_mtx, MUTEX_DEFAULT, IPL_BIO);
mutex_init(&q->q_cq_mtx, MUTEX_DEFAULT, IPL_BIO);
q->q_sqtdbl = NVME_SQTDBL(id, dstrd);
q->q_cqhdbl = NVME_CQHDBL(id, dstrd);
q->q_id = id;
q->q_entries = entries;
q->q_sq_tail = 0;
q->q_cq_head = 0;
q->q_cq_phase = NVME_CQE_PHASE;
nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_PREWRITE);
nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_PREREAD);
/*
* Due to definition of full and empty queue (queue is empty
* when head == tail, full when tail is one less then head),
* we can actually only have (entries - 1) in-flight commands.
*/
if (nvme_ccbs_alloc(q, entries - 1) != 0) {
aprint_error_dev(sc->sc_dev, "unable to allocate ccbs\n");
goto free_cq;
}
return q;
free_cq:
nvme_dmamem_free(sc, q->q_cq_dmamem);
free_sq:
nvme_dmamem_free(sc, q->q_sq_dmamem);
free:
kmem_free(q, sizeof(*q));
return NULL;
}
static void
nvme_q_free(struct nvme_softc *sc, struct nvme_queue *q)
{
nvme_ccbs_free(q);
mutex_destroy(&q->q_sq_mtx);
mutex_destroy(&q->q_cq_mtx);
nvme_dmamem_sync(sc, q->q_cq_dmamem, BUS_DMASYNC_POSTREAD);
nvme_dmamem_sync(sc, q->q_sq_dmamem, BUS_DMASYNC_POSTWRITE);
nvme_dmamem_free(sc, q->q_cq_dmamem);
nvme_dmamem_free(sc, q->q_sq_dmamem);
kmem_free(q, sizeof(*q));
}
int
nvme_intr(void *xsc)
{
struct nvme_softc *sc = xsc;
/*
* INTx is level triggered, controller deasserts the interrupt only
* when we advance command queue head via write to the doorbell.
* Tell the controller to block the interrupts while we process
* the queue(s).
*/
nvme_write4(sc, NVME_INTMS, 1);
softint_schedule(sc->sc_softih[0]);
/* don't know, might not have been for us */
return 1;
}
void
nvme_softintr_intx(void *xq)
{
struct nvme_queue *q = xq;
struct nvme_softc *sc = q->q_sc;
nvme_q_complete(sc, sc->sc_admin_q);
if (sc->sc_q != NULL)
nvme_q_complete(sc, sc->sc_q[0]);
/*
* Processing done, tell controller to issue interrupts again. There
* is no race, as NVMe spec requires the controller to maintain state,
* and assert the interrupt whenever there are unacknowledged
* completion queue entries.
*/
nvme_write4(sc, NVME_INTMC, 1);
}
int
nvme_intr_msi(void *xq)
{
struct nvme_queue *q = xq;
KASSERT(q && q->q_sc && q->q_sc->sc_softih
&& q->q_sc->sc_softih[q->q_id]);
/*
* MSI/MSI-X are edge triggered, so can handover processing to softint
* without masking the interrupt.
*/
softint_schedule(q->q_sc->sc_softih[q->q_id]);
return 1;
}
void
nvme_softintr_msi(void *xq)
{
struct nvme_queue *q = xq;
struct nvme_softc *sc = q->q_sc;
nvme_q_complete(sc, q);
}
static struct nvme_dmamem *
nvme_dmamem_alloc(struct nvme_softc *sc, size_t size)
{
struct nvme_dmamem *ndm;
int nsegs;
ndm = kmem_zalloc(sizeof(*ndm), KM_SLEEP);
if (ndm == NULL)
return NULL;
ndm->ndm_size = size;
if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &ndm->ndm_map) != 0)
goto ndmfree;
if (bus_dmamem_alloc(sc->sc_dmat, size, sc->sc_mps, 0, &ndm->ndm_seg,
1, &nsegs, BUS_DMA_WAITOK) != 0)
goto destroy;
if (bus_dmamem_map(sc->sc_dmat, &ndm->ndm_seg, nsegs, size,
&ndm->ndm_kva, BUS_DMA_WAITOK) != 0)
goto free;
memset(ndm->ndm_kva, 0, size);
if (bus_dmamap_load(sc->sc_dmat, ndm->ndm_map, ndm->ndm_kva, size,
NULL, BUS_DMA_WAITOK) != 0)
goto unmap;
return ndm;
unmap:
bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, size);
free:
bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
destroy:
bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
ndmfree:
kmem_free(ndm, sizeof(*ndm));
return NULL;
}
static void
nvme_dmamem_sync(struct nvme_softc *sc, struct nvme_dmamem *mem, int ops)
{
bus_dmamap_sync(sc->sc_dmat, NVME_DMA_MAP(mem),
0, NVME_DMA_LEN(mem), ops);
}
void
nvme_dmamem_free(struct nvme_softc *sc, struct nvme_dmamem *ndm)
{
bus_dmamap_unload(sc->sc_dmat, ndm->ndm_map);
bus_dmamem_unmap(sc->sc_dmat, ndm->ndm_kva, ndm->ndm_size);
bus_dmamem_free(sc->sc_dmat, &ndm->ndm_seg, 1);
bus_dmamap_destroy(sc->sc_dmat, ndm->ndm_map);
kmem_free(ndm, sizeof(*ndm));
}
/*
* ioctl
*/
dev_type_open(nvmeopen);
dev_type_close(nvmeclose);
dev_type_ioctl(nvmeioctl);
const struct cdevsw nvme_cdevsw = {
.d_open = nvmeopen,
.d_close = nvmeclose,
.d_read = noread,
.d_write = nowrite,
.d_ioctl = nvmeioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = nopoll,
.d_mmap = nommap,
.d_kqfilter = nokqfilter,
.d_discard = nodiscard,
.d_flag = D_OTHER,
};
/*
* Accept an open operation on the control device.
*/
int
nvmeopen(dev_t dev, int flag, int mode, struct lwp *l)
{
struct nvme_softc *sc;
int unit = minor(dev) / 0x10000;
int nsid = minor(dev) & 0xffff;
int nsidx;
if ((sc = device_lookup_private(&nvme_cd, unit)) == NULL)
return ENXIO;
if ((sc->sc_flags & NVME_F_ATTACHED) == 0)
return ENXIO;
if (nsid == 0) {
/* controller */
if (ISSET(sc->sc_flags, NVME_F_OPEN))
return EBUSY;
SET(sc->sc_flags, NVME_F_OPEN);
} else {
/* namespace */
nsidx = nsid - 1;
if (nsidx >= sc->sc_nn || sc->sc_namespaces[nsidx].dev == NULL)
return ENXIO;
if (ISSET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN))
return EBUSY;
SET(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
}
return 0;
}
/*
* Accept the last close on the control device.
*/
int
nvmeclose(dev_t dev, int flag, int mode, struct lwp *l)
{
struct nvme_softc *sc;
int unit = minor(dev) / 0x10000;
int nsid = minor(dev) & 0xffff;
int nsidx;
sc = device_lookup_private(&nvme_cd, unit);
if (sc == NULL)
return ENXIO;
if (nsid == 0) {
/* controller */
CLR(sc->sc_flags, NVME_F_OPEN);
} else {
/* namespace */
nsidx = nsid - 1;
if (nsidx >= sc->sc_nn)
return ENXIO;
CLR(sc->sc_namespaces[nsidx].flags, NVME_NS_F_OPEN);
}
return 0;
}
/*
* Handle control operations.
*/
int
nvmeioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
{
struct nvme_softc *sc;
int unit = minor(dev) / 0x10000;
int nsid = minor(dev) & 0xffff;
struct nvme_pt_command *pt;
sc = device_lookup_private(&nvme_cd, unit);
if (sc == NULL)
return ENXIO;
switch (cmd) {
case NVME_PASSTHROUGH_CMD:
pt = data;
return nvme_command_passthrough(sc, data,
nsid == 0 ? pt->cmd.nsid : nsid, l, nsid == 0);
}
return ENOTTY;
}