2381 lines
66 KiB
C
2381 lines
66 KiB
C
/* $NetBSD: adwlib.c,v 1.41 2013/09/12 11:23:37 martin Exp $ */
|
|
|
|
/*
|
|
* Low level routines for the Advanced Systems Inc. SCSI controllers chips
|
|
*
|
|
* Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Author: Baldassare Dante Profeta <dante@mclink.it>
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*
|
|
* Ported from:
|
|
*/
|
|
/*
|
|
* advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
|
|
*
|
|
* Copyright (c) 1995-2000 Advanced System Products, Inc.
|
|
* All Rights Reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that redistributions of source
|
|
* code retain the above copyright notice and this comment without
|
|
* modification.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.41 2013/09/12 11:23:37 martin Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <sys/bus.h>
|
|
#include <sys/intr.h>
|
|
|
|
#include <dev/scsipi/scsi_all.h>
|
|
#include <dev/scsipi/scsipi_all.h>
|
|
#include <dev/scsipi/scsiconf.h>
|
|
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#include <dev/ic/adwlib.h>
|
|
#include <dev/ic/adwmcode.h>
|
|
#include <dev/ic/adw.h>
|
|
|
|
|
|
/* Static Functions */
|
|
|
|
int AdwRamSelfTest(bus_space_tag_t, bus_space_handle_t, u_int8_t);
|
|
int AdwLoadMCode(bus_space_tag_t, bus_space_handle_t, u_int16_t *, u_int8_t);
|
|
int AdwASC3550Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
|
|
int AdwASC38C0800Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
|
|
int AdwASC38C1600Cabling(bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *);
|
|
|
|
static u_int16_t AdwGetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
|
|
ADW_EEPROM *);
|
|
static void AdwSetEEPROMConfig(bus_space_tag_t, bus_space_handle_t,
|
|
ADW_EEPROM *);
|
|
static u_int16_t AdwReadEEPWord(bus_space_tag_t, bus_space_handle_t, int);
|
|
static void AdwWaitEEPCmd(bus_space_tag_t, bus_space_handle_t);
|
|
|
|
static void AdwInquiryHandling(ADW_SOFTC *, ADW_SCSI_REQ_Q *);
|
|
|
|
static void AdwSleepMilliSecond(u_int32_t);
|
|
static void AdwDelayMicroSecond(u_int32_t);
|
|
|
|
|
|
/*
|
|
* EEPROM Configuration.
|
|
*
|
|
* All drivers should use this structure to set the default EEPROM
|
|
* configuration. The BIOS now uses this structure when it is built.
|
|
* Additional structure information can be found in adwlib.h where
|
|
* the structure is defined.
|
|
*/
|
|
static const ADW_EEPROM adw_3550_Default_EEPROM = {
|
|
ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
|
|
0x0000, /* 01 cfg_msw */
|
|
0xFFFF, /* 02 disc_enable */
|
|
0xFFFF, /* 03 wdtr_able */
|
|
{ 0xFFFF }, /* 04 sdtr_able */
|
|
0xFFFF, /* 05 start_motor */
|
|
0xFFFF, /* 06 tagqng_able */
|
|
0xFFFF, /* 07 bios_scan */
|
|
0, /* 08 scam_tolerant */
|
|
7, /* 09 adapter_scsi_id */
|
|
0, /* bios_boot_delay */
|
|
3, /* 10 scsi_reset_delay */
|
|
0, /* bios_id_lun */
|
|
0, /* 11 termination */
|
|
0, /* reserved1 */
|
|
0xFFE7, /* 12 bios_ctrl */
|
|
{ 0xFFFF }, /* 13 ultra_able */
|
|
{ 0 }, /* 14 reserved2 */
|
|
ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
|
|
ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
|
|
0, /* 16 dvc_cntl */
|
|
{ 0 }, /* 17 bug_fix */
|
|
{ 0,0,0 }, /* 18-20 serial_number[3] */
|
|
0, /* 21 check_sum */
|
|
{ /* 22-29 oem_name[16] */
|
|
0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0
|
|
},
|
|
0, /* 30 dvc_err_code */
|
|
0, /* 31 adv_err_code */
|
|
0, /* 32 adv_err_addr */
|
|
0, /* 33 saved_dvc_err_code */
|
|
0, /* 34 saved_adv_err_code */
|
|
0, /* 35 saved_adv_err_addr */
|
|
{ /* 36-55 reserved1[16] */
|
|
0,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0,0,0
|
|
},
|
|
0, /* 56 cisptr_lsw */
|
|
0, /* 57 cisprt_msw */
|
|
0, /* 58 subsysvid */
|
|
0, /* 59 subsysid */
|
|
{ 0,0,0,0 } /* 60-63 reserved2[4] */
|
|
};
|
|
|
|
static const ADW_EEPROM adw_38C0800_Default_EEPROM = {
|
|
ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
|
|
0x0000, /* 01 cfg_msw */
|
|
0xFFFF, /* 02 disc_enable */
|
|
0xFFFF, /* 03 wdtr_able */
|
|
{ 0x4444 }, /* 04 sdtr_speed1 */
|
|
0xFFFF, /* 05 start_motor */
|
|
0xFFFF, /* 06 tagqng_able */
|
|
0xFFFF, /* 07 bios_scan */
|
|
0, /* 08 scam_tolerant */
|
|
7, /* 09 adapter_scsi_id */
|
|
0, /* bios_boot_delay */
|
|
3, /* 10 scsi_reset_delay */
|
|
0, /* bios_id_lun */
|
|
0, /* 11 termination_se */
|
|
0, /* termination_lvd */
|
|
0xFFE7, /* 12 bios_ctrl */
|
|
{ 0x4444 }, /* 13 sdtr_speed2 */
|
|
{ 0x4444 }, /* 14 sdtr_speed3 */
|
|
ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
|
|
ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
|
|
0, /* 16 dvc_cntl */
|
|
{ 0x4444 }, /* 17 sdtr_speed4 */
|
|
{ 0,0,0 }, /* 18-20 serial_number[3] */
|
|
0, /* 21 check_sum */
|
|
{ /* 22-29 oem_name[16] */
|
|
0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0
|
|
},
|
|
0, /* 30 dvc_err_code */
|
|
0, /* 31 adv_err_code */
|
|
0, /* 32 adv_err_addr */
|
|
0, /* 33 saved_dvc_err_code */
|
|
0, /* 34 saved_adv_err_code */
|
|
0, /* 35 saved_adv_err_addr */
|
|
{ /* 36-55 reserved1[16] */
|
|
0,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0,0,0
|
|
},
|
|
0, /* 56 cisptr_lsw */
|
|
0, /* 57 cisprt_msw */
|
|
PCI_VENDOR_ADVSYS, /* 58 subsysvid */
|
|
PCI_PRODUCT_ADVSYS_U2W, /* 59 subsysid */
|
|
{ 0,0,0,0 } /* 60-63 reserved2[4] */
|
|
};
|
|
|
|
static const ADW_EEPROM adw_38C1600_Default_EEPROM = {
|
|
ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
|
|
0x0000, /* 01 cfg_msw */
|
|
0xFFFF, /* 02 disc_enable */
|
|
0xFFFF, /* 03 wdtr_able */
|
|
{ 0x5555 }, /* 04 sdtr_speed1 */
|
|
0xFFFF, /* 05 start_motor */
|
|
0xFFFF, /* 06 tagqng_able */
|
|
0xFFFF, /* 07 bios_scan */
|
|
0, /* 08 scam_tolerant */
|
|
7, /* 09 adapter_scsi_id */
|
|
0, /* bios_boot_delay */
|
|
3, /* 10 scsi_reset_delay */
|
|
0, /* bios_id_lun */
|
|
0, /* 11 termination_se */
|
|
0, /* termination_lvd */
|
|
0xFFE7, /* 12 bios_ctrl */
|
|
{ 0x5555 }, /* 13 sdtr_speed2 */
|
|
{ 0x5555 }, /* 14 sdtr_speed3 */
|
|
ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
|
|
ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
|
|
0, /* 16 dvc_cntl */
|
|
{ 0x5555 }, /* 17 sdtr_speed4 */
|
|
{ 0,0,0 }, /* 18-20 serial_number[3] */
|
|
0, /* 21 check_sum */
|
|
{ /* 22-29 oem_name[16] */
|
|
0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0
|
|
},
|
|
0, /* 30 dvc_err_code */
|
|
0, /* 31 adv_err_code */
|
|
0, /* 32 adv_err_addr */
|
|
0, /* 33 saved_dvc_err_code */
|
|
0, /* 34 saved_adv_err_code */
|
|
0, /* 35 saved_adv_err_addr */
|
|
{ /* 36-55 reserved1[16] */
|
|
0,0,0,0,0,0,0,0,0,0,
|
|
0,0,0,0,0,0,0,0,0,0
|
|
},
|
|
0, /* 56 cisptr_lsw */
|
|
0, /* 57 cisprt_msw */
|
|
PCI_VENDOR_ADVSYS, /* 58 subsysvid */
|
|
PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
|
|
{ 0,0,0,0 } /* 60-63 reserved2[4] */
|
|
};
|
|
|
|
|
|
/*
|
|
* Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
|
|
* ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
|
|
* all of this is done.
|
|
*
|
|
* For a non-fatal error return a warning code. If there are no warnings
|
|
* then 0 is returned.
|
|
*
|
|
* Note: Chip is stopped on entry.
|
|
*/
|
|
int
|
|
AdwInitFromEEPROM(ADW_SOFTC *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
ADW_EEPROM eep_config;
|
|
u_int16_t warn_code;
|
|
u_int16_t sdtr_speed = 0;
|
|
u_int8_t tid, termination;
|
|
int i, j;
|
|
|
|
|
|
warn_code = 0;
|
|
|
|
/*
|
|
* Read the board's EEPROM configuration.
|
|
*
|
|
* Set default values if a bad checksum is found.
|
|
*
|
|
* XXX - Don't handle big-endian access to EEPROM yet.
|
|
*/
|
|
if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
|
|
warn_code |= ADW_WARN_EEPROM_CHKSUM;
|
|
|
|
/*
|
|
* Set EEPROM default values.
|
|
*/
|
|
switch(sc->chip_type) {
|
|
case ADW_CHIP_ASC3550:
|
|
eep_config = adw_3550_Default_EEPROM;
|
|
break;
|
|
case ADW_CHIP_ASC38C0800:
|
|
eep_config = adw_38C0800_Default_EEPROM;
|
|
break;
|
|
case ADW_CHIP_ASC38C1600:
|
|
eep_config = adw_38C1600_Default_EEPROM;
|
|
|
|
#if 0
|
|
XXX TODO!!! if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
|
|
#endif
|
|
if (sc->cfg.pci_slot_info != 0) {
|
|
u_int8_t lsw_msb;
|
|
|
|
lsw_msb = eep_config.cfg_lsw >> 8;
|
|
/*
|
|
* Set Function 1 EEPROM Word 0 MSB
|
|
*
|
|
* Clear the BIOS_ENABLE (bit 14) and
|
|
* INTAB (bit 11) EEPROM bits.
|
|
*
|
|
* Disable Bit 14 (BIOS_ENABLE) to fix
|
|
* SPARC Ultra 60 and old Mac system booting
|
|
* problem. The Expansion ROM must
|
|
* be disabled in Function 1 for these systems.
|
|
*/
|
|
lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
|
|
ADW_EEPROM_INTAB) >> 8) & 0xFF);
|
|
/*
|
|
* Set the INTAB (bit 11) if the GPIO 0 input
|
|
* indicates the Function 1 interrupt line is
|
|
* wired to INTA.
|
|
*
|
|
* Set/Clear Bit 11 (INTAB) from
|
|
* the GPIO bit 0 input:
|
|
* 1 - Function 1 intr line wired to INT A.
|
|
* 0 - Function 1 intr line wired to INT B.
|
|
*
|
|
* Note: Adapter boards always have Function 0
|
|
* wired to INTA.
|
|
* Put all 5 GPIO bits in input mode and then
|
|
* read their input values.
|
|
*/
|
|
ADW_WRITE_BYTE_REGISTER(iot, ioh,
|
|
IOPB_GPIO_CNTL, 0);
|
|
if (ADW_READ_BYTE_REGISTER(iot, ioh,
|
|
IOPB_GPIO_DATA) & 0x01) {
|
|
/*
|
|
* Function 1 interrupt wired to INTA;
|
|
* Set EEPROM bit.
|
|
*/
|
|
lsw_msb |= (ADW_EEPROM_INTAB >> 8)
|
|
& 0xFF;
|
|
}
|
|
eep_config.cfg_lsw &= 0x00FF;
|
|
eep_config.cfg_lsw |= lsw_msb << 8;
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Assume the 6 byte board serial number that was read
|
|
* from EEPROM is correct even if the EEPROM checksum
|
|
* failed.
|
|
*/
|
|
for (i=2, j=1; i>=0; i--, j++) {
|
|
eep_config.serial_number[i] =
|
|
AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
|
|
}
|
|
|
|
AdwSetEEPROMConfig(iot, ioh, &eep_config);
|
|
}
|
|
/*
|
|
* Set sc and sc->cfg variables from the EEPROM configuration
|
|
* that was read.
|
|
*
|
|
* This is the mapping of EEPROM fields to Adw Library fields.
|
|
*/
|
|
sc->wdtr_able = eep_config.wdtr_able;
|
|
if (sc->chip_type == ADW_CHIP_ASC3550) {
|
|
sc->sdtr_able = eep_config.sdtr1.sdtr_able;
|
|
sc->ultra_able = eep_config.sdtr2.ultra_able;
|
|
} else {
|
|
sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
|
|
sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
|
|
sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
|
|
sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
|
|
}
|
|
sc->ppr_able = 0;
|
|
sc->tagqng_able = eep_config.tagqng_able;
|
|
sc->cfg.disc_enable = eep_config.disc_enable;
|
|
sc->max_host_qng = eep_config.max_host_qng;
|
|
sc->max_dvc_qng = eep_config.max_dvc_qng;
|
|
sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
|
|
sc->start_motor = eep_config.start_motor;
|
|
sc->scsi_reset_wait = eep_config.scsi_reset_delay;
|
|
sc->bios_ctrl = eep_config.bios_ctrl;
|
|
sc->no_scam = eep_config.scam_tolerant;
|
|
sc->cfg.serial1 = eep_config.serial_number[0];
|
|
sc->cfg.serial2 = eep_config.serial_number[1];
|
|
sc->cfg.serial3 = eep_config.serial_number[2];
|
|
|
|
if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
|
|
sc->chip_type == ADW_CHIP_ASC38C1600) {
|
|
sc->sdtr_able = 0;
|
|
for (tid = 0; tid <= ADW_MAX_TID; tid++) {
|
|
if (tid == 0) {
|
|
sdtr_speed = sc->sdtr_speed1;
|
|
} else if (tid == 4) {
|
|
sdtr_speed = sc->sdtr_speed2;
|
|
} else if (tid == 8) {
|
|
sdtr_speed = sc->sdtr_speed3;
|
|
} else if (tid == 12) {
|
|
sdtr_speed = sc->sdtr_speed4;
|
|
}
|
|
if (sdtr_speed & ADW_MAX_TID) {
|
|
sc->sdtr_able |= (1 << tid);
|
|
}
|
|
sdtr_speed >>= 4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set the host maximum queuing (max. 253, min. 16) and the per device
|
|
* maximum queuing (max. 63, min. 4).
|
|
*/
|
|
if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
|
|
eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
|
|
} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
|
|
{
|
|
/* If the value is zero, assume it is uninitialized. */
|
|
if (eep_config.max_host_qng == 0) {
|
|
eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
|
|
} else {
|
|
eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
|
|
}
|
|
}
|
|
|
|
if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
|
|
eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
|
|
} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
|
|
/* If the value is zero, assume it is uninitialized. */
|
|
if (eep_config.max_dvc_qng == 0) {
|
|
eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
|
|
} else {
|
|
eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If 'max_dvc_qng' is greater than 'max_host_qng', then
|
|
* set 'max_dvc_qng' to 'max_host_qng'.
|
|
*/
|
|
if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
|
|
eep_config.max_dvc_qng = eep_config.max_host_qng;
|
|
}
|
|
|
|
/*
|
|
* Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
|
|
* values based on possibly adjusted EEPROM values.
|
|
*/
|
|
sc->max_host_qng = eep_config.max_host_qng;
|
|
sc->max_dvc_qng = eep_config.max_dvc_qng;
|
|
|
|
|
|
/*
|
|
* If the EEPROM 'termination' field is set to automatic (0), then set
|
|
* the ADV_DVC_CFG 'termination' field to automatic also.
|
|
*
|
|
* If the termination is specified with a non-zero 'termination'
|
|
* value check that a legal value is set and set the ADV_DVC_CFG
|
|
* 'termination' field appropriately.
|
|
*/
|
|
|
|
switch(sc->chip_type) {
|
|
case ADW_CHIP_ASC3550:
|
|
sc->cfg.termination = 0; /* auto termination */
|
|
switch(eep_config.termination_se) {
|
|
case 3:
|
|
/* Enable manual control with low on / high on. */
|
|
sc->cfg.termination |= ADW_TERM_CTL_L;
|
|
case 2:
|
|
/* Enable manual control with low off / high on. */
|
|
sc->cfg.termination |= ADW_TERM_CTL_H;
|
|
case 1:
|
|
/* Enable manual control with low off / high off. */
|
|
sc->cfg.termination |= ADW_TERM_CTL_SEL;
|
|
case 0:
|
|
break;
|
|
default:
|
|
warn_code |= ADW_WARN_EEPROM_TERMINATION;
|
|
}
|
|
break;
|
|
|
|
case ADW_CHIP_ASC38C0800:
|
|
case ADW_CHIP_ASC38C1600:
|
|
switch(eep_config.termination_se) {
|
|
case 0:
|
|
/* auto termination for SE */
|
|
termination = 0;
|
|
break;
|
|
case 1:
|
|
/* Enable manual control with low off / high off. */
|
|
termination = 0;
|
|
break;
|
|
case 2:
|
|
/* Enable manual control with low off / high on. */
|
|
termination = ADW_TERM_SE_HI;
|
|
break;
|
|
case 3:
|
|
/* Enable manual control with low on / high on. */
|
|
termination = ADW_TERM_SE;
|
|
break;
|
|
default:
|
|
/*
|
|
* The EEPROM 'termination_se' field contains a
|
|
* bad value. Use automatic termination instead.
|
|
*/
|
|
termination = 0;
|
|
warn_code |= ADW_WARN_EEPROM_TERMINATION;
|
|
}
|
|
|
|
switch(eep_config.termination_lvd) {
|
|
case 0:
|
|
/* auto termination for LVD */
|
|
sc->cfg.termination = termination;
|
|
break;
|
|
case 1:
|
|
/* Enable manual control with low off / high off. */
|
|
sc->cfg.termination = termination;
|
|
break;
|
|
case 2:
|
|
/* Enable manual control with low off / high on. */
|
|
sc->cfg.termination = termination | ADW_TERM_LVD_HI;
|
|
break;
|
|
case 3:
|
|
/* Enable manual control with low on / high on. */
|
|
sc->cfg.termination = termination | ADW_TERM_LVD;
|
|
break;
|
|
default:
|
|
/*
|
|
* The EEPROM 'termination_lvd' field contains a
|
|
* bad value. Use automatic termination instead.
|
|
*/
|
|
sc->cfg.termination = termination;
|
|
warn_code |= ADW_WARN_EEPROM_TERMINATION;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return warn_code;
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
|
|
*
|
|
* On failure return the error code.
|
|
*/
|
|
int
|
|
AdwInitDriver(ADW_SOFTC *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
u_int16_t error_code;
|
|
int word;
|
|
int i;
|
|
u_int16_t bios_mem[ADW_MC_BIOSLEN/2]; /* BIOS RISC Memory
|
|
0x40-0x8F. */
|
|
u_int16_t wdtr_able = 0, sdtr_able, /* ppr_able, */ tagqng_able;
|
|
u_int8_t max_cmd[ADW_MAX_TID + 1];
|
|
u_int8_t tid;
|
|
|
|
|
|
error_code = 0;
|
|
|
|
/*
|
|
* Save the RISC memory BIOS region before writing the microcode.
|
|
* The BIOS may already be loaded and using its RISC LRAM region
|
|
* so its region must be saved and restored.
|
|
*
|
|
* Note: This code makes the assumption, which is currently true,
|
|
* that a chip reset does not clear RISC LRAM.
|
|
*/
|
|
for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
|
|
}
|
|
|
|
/*
|
|
* Save current per TID negotiated values.
|
|
*/
|
|
switch (sc->chip_type) {
|
|
case ADW_CHIP_ASC3550:
|
|
if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
|
|
|
|
u_int16_t bios_version, major, minor;
|
|
|
|
bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
|
|
ADW_MC_BIOSMEM) / 2];
|
|
major = (bios_version >> 12) & 0xF;
|
|
minor = (bios_version >> 8) & 0xF;
|
|
if (major < 3 || (major == 3 && minor == 1)) {
|
|
/*
|
|
* BIOS 3.1 and earlier location of
|
|
* 'wdtr_able' variable.
|
|
*/
|
|
ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
|
|
} else {
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
|
|
wdtr_able);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case ADW_CHIP_ASC38C1600:
|
|
/* ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able); */
|
|
/* FALLTHROUGH */
|
|
case ADW_CHIP_ASC38C0800:
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
|
|
break;
|
|
}
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
|
|
for (tid = 0; tid <= ADW_MAX_TID; tid++) {
|
|
ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
|
|
max_cmd[tid]);
|
|
}
|
|
|
|
/*
|
|
* Perform a RAM Built-In Self Test
|
|
*/
|
|
if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
|
|
return error_code;
|
|
}
|
|
|
|
/*
|
|
* Load the Microcode
|
|
*/
|
|
;
|
|
if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
|
|
return error_code;
|
|
}
|
|
|
|
/*
|
|
* Read microcode version and date.
|
|
*/
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
|
|
|
|
/*
|
|
* If the PCI Configuration Command Register "Parity Error Response
|
|
* Control" Bit was clear (0), then set the microcode variable
|
|
* 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
|
|
* to ignore DMA parity errors.
|
|
*/
|
|
if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
|
|
word | CONTROL_FLAG_IGNORE_PERR);
|
|
}
|
|
|
|
switch (sc->chip_type) {
|
|
case ADW_CHIP_ASC3550:
|
|
/*
|
|
* For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
|
|
* FIFO threshold of 128 bytes.
|
|
* This register is only accessible to the host.
|
|
*/
|
|
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
|
|
START_CTL_EMFU | READ_CMD_MRM);
|
|
break;
|
|
|
|
case ADW_CHIP_ASC38C0800:
|
|
/*
|
|
* Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
|
|
* When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
|
|
* cable detection and then we are able to read C_DET[3:0].
|
|
*
|
|
* Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
|
|
* Microcode Default Value' section below.
|
|
*/
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
|
|
ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
|
|
| ADW_DIS_TERM_DRV);
|
|
|
|
/*
|
|
* For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
|
|
* START_CTL_TH [3:2] bits for the default FIFO threshold.
|
|
*
|
|
* Note: ASC-38C0800 FIFO threshold has been changed to
|
|
* 256 bytes.
|
|
*
|
|
* For DMA Errata #4 set the BC_THRESH_ENB bit.
|
|
*/
|
|
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
|
|
BC_THRESH_ENB | FIFO_THRESH_80B
|
|
| START_CTL_TH | READ_CMD_MRM);
|
|
break;
|
|
|
|
case ADW_CHIP_ASC38C1600:
|
|
/*
|
|
* Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
|
|
* When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
|
|
* cable detection and then we are able to read C_DET[3:0].
|
|
*
|
|
* Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
|
|
* Microcode Default Value' section below.
|
|
*/
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
|
|
ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
|
|
| ADW_DIS_TERM_DRV);
|
|
|
|
/*
|
|
* If the BIOS control flag AIPP (Asynchronous Information
|
|
* Phase Protection) disable bit is not set, then set the
|
|
* firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
|
|
* enable AIPP checking and encoding.
|
|
*/
|
|
if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
|
|
word | CONTROL_FLAG_ENABLE_AIPP);
|
|
}
|
|
|
|
/*
|
|
* For ASC-38C1600 use DMA_CFG0 default values:
|
|
* FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
|
|
*/
|
|
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
|
|
FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Microcode operating variables for WDTR, SDTR, and command tag
|
|
* queuing will be set in AdvInquiryHandling() based on what a
|
|
* device reports it is capable of in Inquiry byte 7.
|
|
*
|
|
* If SCSI Bus Resets have been disabled, then directly set
|
|
* SDTR and WDTR from the EEPROM configuration. This will allow
|
|
* the BIOS and warm boot to work without a SCSI bus hang on
|
|
* the Inquiry caused by host and target mismatched DTR values.
|
|
* Without the SCSI Bus Reset, before an Inquiry a device can't
|
|
* be assumed to be in Asynchronous, Narrow mode.
|
|
*/
|
|
if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
|
|
}
|
|
|
|
/*
|
|
* Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
|
|
* SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
|
|
* bitmask. These values determine the maximum SDTR speed negotiated
|
|
* with a device.
|
|
*
|
|
* The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
|
|
* SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
|
|
* without determining here whether the device supports SDTR.
|
|
*/
|
|
switch (sc->chip_type) {
|
|
case ADW_CHIP_ASC3550:
|
|
word = 0;
|
|
for (tid = 0; tid <= ADW_MAX_TID; tid++) {
|
|
if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
|
|
/* Set Ultra speed for TID 'tid'. */
|
|
word |= (0x3 << (4 * (tid % 4)));
|
|
} else {
|
|
/* Set Fast speed for TID 'tid'. */
|
|
word |= (0x2 << (4 * (tid % 4)));
|
|
}
|
|
/* Check if done with sdtr_speed1. */
|
|
if (tid == 3) {
|
|
ADW_WRITE_WORD_LRAM(iot, ioh,
|
|
ADW_MC_SDTR_SPEED1, word);
|
|
word = 0;
|
|
/* Check if done with sdtr_speed2. */
|
|
} else if (tid == 7) {
|
|
ADW_WRITE_WORD_LRAM(iot, ioh,
|
|
ADW_MC_SDTR_SPEED2, word);
|
|
word = 0;
|
|
/* Check if done with sdtr_speed3. */
|
|
} else if (tid == 11) {
|
|
ADW_WRITE_WORD_LRAM(iot, ioh,
|
|
ADW_MC_SDTR_SPEED3, word);
|
|
word = 0;
|
|
/* Check if done with sdtr_speed4. */
|
|
} else if (tid == 15) {
|
|
ADW_WRITE_WORD_LRAM(iot, ioh,
|
|
ADW_MC_SDTR_SPEED4, word);
|
|
/* End of loop. */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set microcode operating variable for the
|
|
* disconnect per TID bitmask.
|
|
*/
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
|
|
sc->cfg.disc_enable);
|
|
break;
|
|
|
|
case ADW_CHIP_ASC38C0800:
|
|
/* FALLTHROUGH */
|
|
case ADW_CHIP_ASC38C1600:
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
|
|
sc->cfg.disc_enable);
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
|
|
sc->sdtr_speed1);
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
|
|
sc->sdtr_speed2);
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
|
|
sc->sdtr_speed3);
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
|
|
sc->sdtr_speed4);
|
|
break;
|
|
}
|
|
|
|
|
|
/*
|
|
* Set SCSI_CFG0 Microcode Default Value.
|
|
*
|
|
* The microcode will set the SCSI_CFG0 register using this value
|
|
* after it is started below.
|
|
*/
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
|
|
ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
|
|
ADW_OUR_ID_EN | sc->chip_scsi_id);
|
|
|
|
|
|
switch(sc->chip_type) {
|
|
case ADW_CHIP_ASC3550:
|
|
error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
|
|
break;
|
|
|
|
case ADW_CHIP_ASC38C0800:
|
|
error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
|
|
break;
|
|
|
|
case ADW_CHIP_ASC38C1600:
|
|
error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
|
|
break;
|
|
}
|
|
if(error_code) {
|
|
return error_code;
|
|
}
|
|
|
|
/*
|
|
* Set SEL_MASK Microcode Default Value
|
|
*
|
|
* The microcode will set the SEL_MASK register using this value
|
|
* after it is started below.
|
|
*/
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
|
|
ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
|
|
|
|
/*
|
|
* Create and Initialize Host->RISC Carrier lists
|
|
*/
|
|
sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
|
|
sc->sc_control->carriers);
|
|
|
|
/*
|
|
* Set-up the Host->RISC Initiator Command Queue (ICQ).
|
|
*/
|
|
|
|
if ((sc->icq_sp = sc->carr_freelist) == NULL) {
|
|
return ADW_IERR_NO_CARRIER;
|
|
}
|
|
sc->carr_freelist = ADW_CARRIER_VADDR(sc,
|
|
ASC_GET_CARRP(sc->icq_sp->next_ba));
|
|
|
|
/*
|
|
* The first command issued will be placed in the stopper carrier.
|
|
*/
|
|
sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
|
|
|
|
/*
|
|
* Set RISC ICQ physical address start value.
|
|
*/
|
|
ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
|
|
|
|
/*
|
|
* Initialize the COMMA register to the same value otherwise
|
|
* the RISC will prematurely detect a command is available.
|
|
*/
|
|
if(sc->chip_type == ADW_CHIP_ASC38C1600) {
|
|
ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
|
|
le32toh(sc->icq_sp->carr_ba));
|
|
}
|
|
|
|
/*
|
|
* Set-up the RISC->Host Initiator Response Queue (IRQ).
|
|
*/
|
|
if ((sc->irq_sp = sc->carr_freelist) == NULL) {
|
|
return ADW_IERR_NO_CARRIER;
|
|
}
|
|
sc->carr_freelist = ADW_CARRIER_VADDR(sc,
|
|
ASC_GET_CARRP(sc->irq_sp->next_ba));
|
|
|
|
/*
|
|
* The first command completed by the RISC will be placed in
|
|
* the stopper.
|
|
*
|
|
* Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
|
|
* completed the RISC will set the ASC_RQ_DONE bit.
|
|
*/
|
|
sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
|
|
|
|
/*
|
|
* Set RISC IRQ physical address start value.
|
|
*/
|
|
ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
|
|
sc->carr_pending_cnt = 0;
|
|
|
|
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
|
|
(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
|
|
|
|
/* finally, finally, gentlemen, start your engine */
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
|
|
|
|
/*
|
|
* Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
|
|
* Resets should be performed. The RISC has to be running
|
|
* to issue a SCSI Bus Reset.
|
|
*/
|
|
if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
|
|
{
|
|
/*
|
|
* If the BIOS Signature is present in memory, restore the
|
|
* BIOS Handshake Configuration Table and do not perform
|
|
* a SCSI Bus Reset.
|
|
*/
|
|
if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
|
|
0x55AA) {
|
|
/*
|
|
* Restore per TID negotiated values.
|
|
*/
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
|
|
wdtr_able);
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
|
|
sdtr_able);
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
|
|
tagqng_able);
|
|
for (tid = 0; tid <= ADW_MAX_TID; tid++) {
|
|
ADW_WRITE_BYTE_LRAM(iot, ioh,
|
|
ADW_MC_NUMBER_OF_MAX_CMD + tid,
|
|
max_cmd[tid]);
|
|
}
|
|
} else {
|
|
if (AdwResetCCB(sc) != ADW_TRUE) {
|
|
error_code = ADW_WARN_BUSRESET_ERROR;
|
|
}
|
|
}
|
|
}
|
|
|
|
return error_code;
|
|
}
|
|
|
|
|
|
int
|
|
AdwRamSelfTest(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t chip_type)
|
|
{
|
|
int i;
|
|
u_int8_t byte;
|
|
|
|
|
|
if ((chip_type == ADW_CHIP_ASC38C0800) ||
|
|
(chip_type == ADW_CHIP_ASC38C1600)) {
|
|
/*
|
|
* RAM BIST (RAM Built-In Self Test)
|
|
*
|
|
* Address : I/O base + offset 0x38h register (byte).
|
|
* Function: Bit 7-6(RW) : RAM mode
|
|
* Normal Mode : 0x00
|
|
* Pre-test Mode : 0x40
|
|
* RAM Test Mode : 0x80
|
|
* Bit 5 : unused
|
|
* Bit 4(RO) : Done bit
|
|
* Bit 3-0(RO) : Status
|
|
* Host Error : 0x08
|
|
* Int_RAM Error : 0x04
|
|
* RISC Error : 0x02
|
|
* SCSI Error : 0x01
|
|
* No Error : 0x00
|
|
*
|
|
* Note: RAM BIST code should be put right here, before loading
|
|
* the microcode and after saving the RISC memory BIOS region.
|
|
*/
|
|
|
|
/*
|
|
* LRAM Pre-test
|
|
*
|
|
* Write PRE_TEST_MODE (0x40) to register and wait for
|
|
* 10 milliseconds.
|
|
* If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
|
|
* return an error. Reset to NORMAL_MODE (0x00) and do again.
|
|
* If cannot reset to NORMAL_MODE, return an error too.
|
|
*/
|
|
for (i = 0; i < 2; i++) {
|
|
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
|
|
PRE_TEST_MODE);
|
|
/* Wait for 10ms before reading back. */
|
|
AdwSleepMilliSecond(10);
|
|
byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
|
|
if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
|
|
PRE_TEST_VALUE) {
|
|
return ADW_IERR_BIST_PRE_TEST;
|
|
}
|
|
|
|
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
|
|
NORMAL_MODE);
|
|
/* Wait for 10ms before reading back. */
|
|
AdwSleepMilliSecond(10);
|
|
if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
|
|
!= NORMAL_VALUE) {
|
|
return ADW_IERR_BIST_PRE_TEST;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* LRAM Test - It takes about 1.5 ms to run through the test.
|
|
*
|
|
* Write RAM_TEST_MODE (0x80) to register and wait for
|
|
* 10 milliseconds.
|
|
* If Done bit not set or Status not 0, save register byte,
|
|
* set the err_code, and return an error.
|
|
*/
|
|
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
|
|
/* Wait for 10ms before checking status. */
|
|
AdwSleepMilliSecond(10);
|
|
|
|
byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
|
|
if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
|
|
/* Get here if Done bit not set or Status not 0. */
|
|
return ADW_IERR_BIST_RAM_TEST;
|
|
}
|
|
|
|
/* We need to reset back to normal mode after LRAM test passes*/
|
|
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
AdwLoadMCode(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t *bios_mem, u_int8_t chip_type)
|
|
{
|
|
const u_int8_t *mcode_data;
|
|
u_int32_t mcode_chksum;
|
|
u_int16_t mcode_size;
|
|
u_int32_t sum;
|
|
u_int16_t code_sum;
|
|
int begin_addr;
|
|
int end_addr;
|
|
int word;
|
|
int adw_memsize;
|
|
int adw_mcode_expanded_size;
|
|
int i, j;
|
|
|
|
|
|
switch(chip_type) {
|
|
case ADW_CHIP_ASC3550:
|
|
mcode_data = (const u_int8_t *)adw_asc3550_mcode_data.mcode_data;
|
|
mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
|
|
mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
|
|
adw_memsize = ADW_3550_MEMSIZE;
|
|
break;
|
|
|
|
case ADW_CHIP_ASC38C0800:
|
|
mcode_data = (const u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
|
|
mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
|
|
mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
|
|
adw_memsize = ADW_38C0800_MEMSIZE;
|
|
break;
|
|
|
|
case ADW_CHIP_ASC38C1600:
|
|
mcode_data = (const u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
|
|
mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
|
|
mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
|
|
adw_memsize = ADW_38C1600_MEMSIZE;
|
|
break;
|
|
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Write the microcode image to RISC memory starting at address 0.
|
|
*/
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
|
|
|
|
/* Assume the following compressed format of the microcode buffer:
|
|
*
|
|
* 254 word (508 byte) table indexed by byte code followed
|
|
* by the following byte codes:
|
|
*
|
|
* 1-Byte Code:
|
|
* 00: Emit word 0 in table.
|
|
* 01: Emit word 1 in table.
|
|
* .
|
|
* FD: Emit word 253 in table.
|
|
*
|
|
* Multi-Byte Code:
|
|
* FE WW WW: (3 byte code) Word to emit is the next word WW WW.
|
|
* FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
|
|
*/
|
|
word = 0;
|
|
for (i = 253 * 2; i < mcode_size; i++) {
|
|
if (mcode_data[i] == 0xff) {
|
|
for (j = 0; j < mcode_data[i + 1]; j++) {
|
|
ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
|
|
(((u_int16_t)mcode_data[i + 3] << 8) |
|
|
mcode_data[i + 2]));
|
|
word++;
|
|
}
|
|
i += 3;
|
|
} else if (mcode_data[i] == 0xfe) {
|
|
ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
|
|
(((u_int16_t)mcode_data[i + 2] << 8) |
|
|
mcode_data[i + 1]));
|
|
i += 2;
|
|
word++;
|
|
} else {
|
|
ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
|
|
mcode_data[(mcode_data[i] * 2) + 1] <<8) |
|
|
mcode_data[mcode_data[i] * 2]));
|
|
word++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set 'word' for later use to clear the rest of memory and save
|
|
* the expanded mcode size.
|
|
*/
|
|
word *= 2;
|
|
adw_mcode_expanded_size = word;
|
|
|
|
/*
|
|
* Clear the rest of the Internal RAM.
|
|
*/
|
|
for (; word < adw_memsize; word += 2) {
|
|
ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
|
|
}
|
|
|
|
/*
|
|
* Verify the microcode checksum.
|
|
*/
|
|
sum = 0;
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
|
|
|
|
for (word = 0; word < adw_mcode_expanded_size; word += 2) {
|
|
sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
|
|
}
|
|
|
|
if (sum != mcode_chksum) {
|
|
return ADW_IERR_MCODE_CHKSUM;
|
|
}
|
|
|
|
/*
|
|
* Restore the RISC memory BIOS region.
|
|
*/
|
|
for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
|
|
if(chip_type == ADW_CHIP_ASC3550) {
|
|
ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
|
|
bios_mem[i]);
|
|
} else {
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
|
|
bios_mem[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate and write the microcode code checksum to the microcode
|
|
* code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
|
|
*/
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
|
|
code_sum = 0;
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
|
|
for (word = begin_addr; word < end_addr; word += 2) {
|
|
code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
|
|
}
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
|
|
|
|
/*
|
|
* Set the chip type.
|
|
*/
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
AdwASC3550Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
|
|
{
|
|
u_int16_t scsi_cfg1;
|
|
|
|
|
|
/*
|
|
* Determine SCSI_CFG1 Microcode Default Value.
|
|
*
|
|
* The microcode will set the SCSI_CFG1 register using this value
|
|
* after it is started below.
|
|
*/
|
|
|
|
/* Read current SCSI_CFG1 Register value. */
|
|
scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
|
|
|
|
/*
|
|
* If all three connectors are in use in ASC3550, return an error.
|
|
*/
|
|
if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
|
|
(scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
|
|
return ADW_IERR_ILLEGAL_CONNECTION;
|
|
}
|
|
|
|
/*
|
|
* If the cable is reversed all of the SCSI_CTRL register signals
|
|
* will be set. Check for and return an error if this condition is
|
|
* found.
|
|
*/
|
|
if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
|
|
return ADW_IERR_REVERSED_CABLE;
|
|
}
|
|
|
|
/*
|
|
* If this is a differential board and a single-ended device
|
|
* is attached to one of the connectors, return an error.
|
|
*/
|
|
if ((scsi_cfg1 & ADW_DIFF_MODE) &&
|
|
(scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
|
|
return ADW_IERR_SINGLE_END_DEVICE;
|
|
}
|
|
|
|
/*
|
|
* If automatic termination control is enabled, then set the
|
|
* termination value based on a table listed in a_condor.h.
|
|
*
|
|
* If manual termination was specified with an EEPROM setting
|
|
* then 'termination' was set-up in AdwInitFromEEPROM() and
|
|
* is ready to be 'ored' into SCSI_CFG1.
|
|
*/
|
|
if (cfg->termination == 0) {
|
|
/*
|
|
* The software always controls termination by setting
|
|
* TERM_CTL_SEL.
|
|
* If TERM_CTL_SEL were set to 0, the hardware would set
|
|
* termination.
|
|
*/
|
|
cfg->termination |= ADW_TERM_CTL_SEL;
|
|
|
|
switch(scsi_cfg1 & ADW_CABLE_DETECT) {
|
|
/* TERM_CTL_H: on, TERM_CTL_L: on */
|
|
case 0x3: case 0x7: case 0xB:
|
|
case 0xD: case 0xE: case 0xF:
|
|
cfg->termination |=
|
|
(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
|
|
break;
|
|
|
|
/* TERM_CTL_H: on, TERM_CTL_L: off */
|
|
case 0x1: case 0x5: case 0x9:
|
|
case 0xA: case 0xC:
|
|
cfg->termination |= ADW_TERM_CTL_H;
|
|
break;
|
|
|
|
/* TERM_CTL_H: off, TERM_CTL_L: off */
|
|
case 0x2: case 0x6:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear any set TERM_CTL_H and TERM_CTL_L bits.
|
|
*/
|
|
scsi_cfg1 &= ~ADW_TERM_CTL;
|
|
|
|
/*
|
|
* Invert the TERM_CTL_H and TERM_CTL_L bits and then
|
|
* set 'scsi_cfg1'. The TERM_POL bit does not need to be
|
|
* referenced, because the hardware internally inverts
|
|
* the Termination High and Low bits if TERM_POL is set.
|
|
*/
|
|
scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
|
|
|
|
/*
|
|
* Set SCSI_CFG1 Microcode Default Value
|
|
*
|
|
* Set filter value and possibly modified termination control
|
|
* bits in the Microcode SCSI_CFG1 Register Value.
|
|
*
|
|
* The microcode will set the SCSI_CFG1 register using this value
|
|
* after it is started below.
|
|
*/
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
|
|
ADW_FLTR_DISABLE | scsi_cfg1);
|
|
|
|
/*
|
|
* Set MEM_CFG Microcode Default Value
|
|
*
|
|
* The microcode will set the MEM_CFG register using this value
|
|
* after it is started below.
|
|
*
|
|
* MEM_CFG may be accessed as a word or byte, but only bits 0-7
|
|
* are defined.
|
|
*
|
|
* ASC-3550 has 8KB internal memory.
|
|
*/
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
|
|
ADW_BIOS_EN | ADW_RAM_SZ_8KB);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
AdwASC38C0800Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
|
|
{
|
|
u_int16_t scsi_cfg1;
|
|
|
|
|
|
/*
|
|
* Determine SCSI_CFG1 Microcode Default Value.
|
|
*
|
|
* The microcode will set the SCSI_CFG1 register using this value
|
|
* after it is started below.
|
|
*/
|
|
|
|
/* Read current SCSI_CFG1 Register value. */
|
|
scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
|
|
|
|
/*
|
|
* If the cable is reversed all of the SCSI_CTRL register signals
|
|
* will be set. Check for and return an error if this condition is
|
|
* found.
|
|
*/
|
|
if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
|
|
return ADW_IERR_REVERSED_CABLE;
|
|
}
|
|
|
|
/*
|
|
* All kind of combinations of devices attached to one of four
|
|
* connectors are acceptable except HVD device attached.
|
|
* For example, LVD device can be attached to SE connector while
|
|
* SE device attached to LVD connector.
|
|
* If LVD device attached to SE connector, it only runs up to
|
|
* Ultra speed.
|
|
*
|
|
* If an HVD device is attached to one of LVD connectors, return
|
|
* an error.
|
|
* However, there is no way to detect HVD device attached to
|
|
* SE connectors.
|
|
*/
|
|
if (scsi_cfg1 & ADW_HVD) {
|
|
return ADW_IERR_HVD_DEVICE;
|
|
}
|
|
|
|
/*
|
|
* If either SE or LVD automatic termination control is enabled, then
|
|
* set the termination value based on a table listed in a_condor.h.
|
|
*
|
|
* If manual termination was specified with an EEPROM setting then
|
|
* 'termination' was set-up in AdwInitFromEEPROM() and is ready
|
|
* to be 'ored' into SCSI_CFG1.
|
|
*/
|
|
if ((cfg->termination & ADW_TERM_SE) == 0) {
|
|
/* SE automatic termination control is enabled. */
|
|
switch(scsi_cfg1 & ADW_C_DET_SE) {
|
|
/* TERM_SE_HI: on, TERM_SE_LO: on */
|
|
case 0x1: case 0x2: case 0x3:
|
|
cfg->termination |= ADW_TERM_SE;
|
|
break;
|
|
|
|
/* TERM_SE_HI: on, TERM_SE_LO: off */
|
|
case 0x0:
|
|
cfg->termination |= ADW_TERM_SE_HI;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((cfg->termination & ADW_TERM_LVD) == 0) {
|
|
/* LVD automatic termination control is enabled. */
|
|
switch(scsi_cfg1 & ADW_C_DET_LVD) {
|
|
/* TERM_LVD_HI: on, TERM_LVD_LO: on */
|
|
case 0x4: case 0x8: case 0xC:
|
|
cfg->termination |= ADW_TERM_LVD;
|
|
break;
|
|
|
|
/* TERM_LVD_HI: off, TERM_LVD_LO: off */
|
|
case 0x0:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear any set TERM_SE and TERM_LVD bits.
|
|
*/
|
|
scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
|
|
|
|
/*
|
|
* Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
|
|
*/
|
|
scsi_cfg1 |= (~cfg->termination & 0xF0);
|
|
|
|
/*
|
|
* Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
|
|
* HVD/LVD/SE bits and set possibly modified termination control bits
|
|
* in the Microcode SCSI_CFG1 Register Value.
|
|
*/
|
|
scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
|
|
~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
|
|
|
|
/*
|
|
* Set SCSI_CFG1 Microcode Default Value
|
|
*
|
|
* Set possibly modified termination control and reset DIS_TERM_DRV
|
|
* bits in the Microcode SCSI_CFG1 Register Value.
|
|
*
|
|
* The microcode will set the SCSI_CFG1 register using this value
|
|
* after it is started below.
|
|
*/
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
|
|
|
|
/*
|
|
* Set MEM_CFG Microcode Default Value
|
|
*
|
|
* The microcode will set the MEM_CFG register using this value
|
|
* after it is started below.
|
|
*
|
|
* MEM_CFG may be accessed as a word or byte, but only bits 0-7
|
|
* are defined.
|
|
*
|
|
* ASC-38C0800 has 16KB internal memory.
|
|
*/
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
|
|
ADW_BIOS_EN | ADW_RAM_SZ_16KB);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
int
|
|
AdwASC38C1600Cabling(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_DVC_CFG *cfg)
|
|
{
|
|
u_int16_t scsi_cfg1;
|
|
|
|
|
|
/*
|
|
* Determine SCSI_CFG1 Microcode Default Value.
|
|
*
|
|
* The microcode will set the SCSI_CFG1 register using this value
|
|
* after it is started below.
|
|
* Each ASC-38C1600 function has only two cable detect bits.
|
|
* The bus mode override bits are in IOPB_SOFT_OVER_WR.
|
|
*/
|
|
|
|
/* Read current SCSI_CFG1 Register value. */
|
|
scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
|
|
|
|
/*
|
|
* If the cable is reversed all of the SCSI_CTRL register signals
|
|
* will be set. Check for and return an error if this condition is
|
|
* found.
|
|
*/
|
|
if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
|
|
return ADW_IERR_REVERSED_CABLE;
|
|
}
|
|
|
|
/*
|
|
* Each ASC-38C1600 function has two connectors. Only an HVD device
|
|
* cannot be connected to either connector. An LVD device or SE device
|
|
* may be connected to either connector. If an SE device is connected,
|
|
* then at most Ultra speed (20 MHz) can be used on both connectors.
|
|
*
|
|
* If an HVD device is attached, return an error.
|
|
*/
|
|
if (scsi_cfg1 & ADW_HVD) {
|
|
return ADW_IERR_HVD_DEVICE;
|
|
}
|
|
|
|
/*
|
|
* Each function in the ASC-38C1600 uses only the SE cable detect and
|
|
* termination because there are two connectors for each function.
|
|
* Each function may use either LVD or SE mode.
|
|
* Corresponding the SE automatic termination control EEPROM bits are
|
|
* used for each function.
|
|
* Each function has its own EEPROM. If SE automatic control is enabled
|
|
* for the function, then set the termination value based on a table
|
|
* listed in adwlib.h.
|
|
*
|
|
* If manual termination is specified in the EEPROM for the function,
|
|
* then 'termination' was set-up in AdwInitFromEEPROM() and is
|
|
* ready to be 'ored' into SCSI_CFG1.
|
|
*/
|
|
if ((cfg->termination & ADW_TERM_SE) == 0) {
|
|
/* SE automatic termination control is enabled. */
|
|
switch(scsi_cfg1 & ADW_C_DET_SE) {
|
|
/* TERM_SE_HI: on, TERM_SE_LO: on */
|
|
case 0x1: case 0x2: case 0x3:
|
|
cfg->termination |= ADW_TERM_SE;
|
|
break;
|
|
|
|
case 0x0:
|
|
#if 0
|
|
/* !!!!TODO!!!! */
|
|
if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
|
|
/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
|
|
cfg->termination |= ADW_TERM_SE_HI;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clear any set TERM_SE bits.
|
|
*/
|
|
scsi_cfg1 &= ~ADW_TERM_SE;
|
|
|
|
/*
|
|
* Invert the TERM_SE bits and then set 'scsi_cfg1'.
|
|
*/
|
|
scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
|
|
|
|
/*
|
|
* Clear Big Endian and Terminator Polarity bits and set possibly
|
|
* modified termination control bits in the Microcode SCSI_CFG1
|
|
* Register Value.
|
|
*/
|
|
scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
|
|
|
|
/*
|
|
* Set SCSI_CFG1 Microcode Default Value
|
|
*
|
|
* Set possibly modified termination control bits in the Microcode
|
|
* SCSI_CFG1 Register Value.
|
|
*
|
|
* The microcode will set the SCSI_CFG1 register using this value
|
|
* after it is started below.
|
|
*/
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
|
|
|
|
/*
|
|
* Set MEM_CFG Microcode Default Value
|
|
*
|
|
* The microcode will set the MEM_CFG register using this value
|
|
* after it is started below.
|
|
*
|
|
* MEM_CFG may be accessed as a word or byte, but only bits 0-7
|
|
* are defined.
|
|
*
|
|
* ASC-38C1600 has 32KB internal memory.
|
|
*/
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
|
|
ADW_BIOS_EN | ADW_RAM_SZ_32KB);
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Read EEPROM configuration into the specified buffer.
|
|
*
|
|
* Return a checksum based on the EEPROM configuration read.
|
|
*/
|
|
static u_int16_t
|
|
AdwGetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
|
|
{
|
|
u_int16_t wval, chksum;
|
|
u_int16_t *wbuf;
|
|
int eep_addr;
|
|
|
|
|
|
wbuf = (u_int16_t *) cfg_buf;
|
|
chksum = 0;
|
|
|
|
for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
|
|
eep_addr < ASC_EEP_DVC_CFG_END;
|
|
eep_addr++, wbuf++) {
|
|
wval = AdwReadEEPWord(iot, ioh, eep_addr);
|
|
chksum += wval;
|
|
*wbuf = wval;
|
|
}
|
|
|
|
*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
|
|
wbuf++;
|
|
for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
|
|
eep_addr < ASC_EEP_MAX_WORD_ADDR;
|
|
eep_addr++, wbuf++) {
|
|
*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
|
|
}
|
|
|
|
return chksum;
|
|
}
|
|
|
|
|
|
/*
|
|
* Read the EEPROM from specified location
|
|
*/
|
|
static u_int16_t
|
|
AdwReadEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh, int eep_word_addr)
|
|
{
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
|
|
ASC_EEP_CMD_READ | eep_word_addr);
|
|
AdwWaitEEPCmd(iot, ioh);
|
|
|
|
return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
|
|
}
|
|
|
|
|
|
/*
|
|
* Wait for EEPROM command to complete
|
|
*/
|
|
static void
|
|
AdwWaitEEPCmd(bus_space_tag_t iot, bus_space_handle_t ioh)
|
|
{
|
|
int eep_delay_ms;
|
|
|
|
|
|
for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
|
|
if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
|
|
ASC_EEP_CMD_DONE) {
|
|
break;
|
|
}
|
|
AdwSleepMilliSecond(1);
|
|
}
|
|
|
|
(void)ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
|
|
}
|
|
|
|
|
|
/*
|
|
* Write the EEPROM from 'cfg_buf'.
|
|
*/
|
|
static void
|
|
AdwSetEEPROMConfig(bus_space_tag_t iot, bus_space_handle_t ioh, ADW_EEPROM *cfg_buf)
|
|
{
|
|
u_int16_t *wbuf;
|
|
u_int16_t addr, chksum;
|
|
|
|
|
|
wbuf = (u_int16_t *) cfg_buf;
|
|
chksum = 0;
|
|
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
|
|
AdwWaitEEPCmd(iot, ioh);
|
|
|
|
/*
|
|
* Write EEPROM from word 0 to word 20
|
|
*/
|
|
for (addr = ASC_EEP_DVC_CFG_BEGIN;
|
|
addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
|
|
chksum += *wbuf;
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
|
|
ASC_EEP_CMD_WRITE | addr);
|
|
AdwWaitEEPCmd(iot, ioh);
|
|
AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
|
|
}
|
|
|
|
/*
|
|
* Write EEPROM checksum at word 21
|
|
*/
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
|
|
ASC_EEP_CMD_WRITE | addr);
|
|
AdwWaitEEPCmd(iot, ioh);
|
|
wbuf++; /* skip over check_sum */
|
|
|
|
/*
|
|
* Write EEPROM OEM name at words 22 to 29
|
|
*/
|
|
for (addr = ASC_EEP_DVC_CTL_BEGIN;
|
|
addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
|
|
ASC_EEP_CMD_WRITE | addr);
|
|
AdwWaitEEPCmd(iot, ioh);
|
|
}
|
|
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
|
|
ASC_EEP_CMD_WRITE_DISABLE);
|
|
AdwWaitEEPCmd(iot, ioh);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* AdwExeScsiQueue() - Send a request to the RISC microcode program.
|
|
*
|
|
* Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
|
|
* add the carrier to the ICQ (Initiator Command Queue), and tickle the
|
|
* RISC to notify it a new command is ready to be executed.
|
|
*
|
|
* If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
|
|
* set to SCSI_MAX_RETRY.
|
|
*
|
|
* Return:
|
|
* ADW_SUCCESS(1) - The request was successfully queued.
|
|
* ADW_BUSY(0) - Resource unavailable; Retry again after pending
|
|
* request completes.
|
|
* ADW_ERROR(-1) - Invalid ADW_SCSI_REQ_Q request structure
|
|
* host IC error.
|
|
*/
|
|
int
|
|
AdwExeScsiQueue(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
ADW_CCB *ccb;
|
|
u_int32_t req_paddr;
|
|
ADW_CARRIER *new_carrp;
|
|
|
|
/*
|
|
* The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
|
|
*/
|
|
if (scsiq->target_id > ADW_MAX_TID) {
|
|
scsiq->host_status = QHSTA_M_INVALID_DEVICE;
|
|
scsiq->done_status = QD_WITH_ERROR;
|
|
return ADW_ERROR;
|
|
}
|
|
|
|
/*
|
|
* Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
|
|
*/
|
|
|
|
ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
|
|
|
|
/*
|
|
* Allocate a carrier and initialize fields.
|
|
*/
|
|
if ((new_carrp = sc->carr_freelist) == NULL) {
|
|
return ADW_BUSY;
|
|
}
|
|
sc->carr_freelist = ADW_CARRIER_VADDR(sc,
|
|
ASC_GET_CARRP(new_carrp->next_ba));
|
|
sc->carr_pending_cnt++;
|
|
|
|
/*
|
|
* Set the carrier to be a stopper by setting 'next_ba'
|
|
* to the stopper value. The current stopper will be changed
|
|
* below to point to the new stopper.
|
|
*/
|
|
new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
|
|
|
|
req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
|
|
ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
|
|
|
|
/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
|
|
scsiq->scsiq_rptr = htole32(req_paddr);
|
|
|
|
/*
|
|
* Every ADV_CARR_T.carr_ba is byte swapped to little-endian
|
|
* order during initialization.
|
|
*/
|
|
scsiq->carr_ba = sc->icq_sp->carr_ba;
|
|
scsiq->carr_va = sc->icq_sp->carr_ba;
|
|
|
|
/*
|
|
* Use the current stopper to send the ADW_SCSI_REQ_Q command to
|
|
* the microcode. The newly allocated stopper will become the new
|
|
* stopper.
|
|
*/
|
|
sc->icq_sp->areq_ba = htole32(req_paddr);
|
|
|
|
/*
|
|
* Set the 'next_ba' pointer for the old stopper to be the
|
|
* physical address of the new stopper. The RISC can only
|
|
* follow physical addresses.
|
|
*/
|
|
sc->icq_sp->next_ba = new_carrp->carr_ba;
|
|
|
|
#if ADW_DEBUG
|
|
printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
|
|
sc->icq_sp->carr_id,
|
|
sc->icq_sp->carr_ba,
|
|
sc->icq_sp->areq_ba,
|
|
sc->icq_sp->next_ba);
|
|
#endif
|
|
/*
|
|
* Set the host adapter stopper pointer to point to the new carrier.
|
|
*/
|
|
sc->icq_sp = new_carrp;
|
|
|
|
if (sc->chip_type == ADW_CHIP_ASC3550 ||
|
|
sc->chip_type == ADW_CHIP_ASC38C0800) {
|
|
/*
|
|
* Tickle the RISC to tell it to read its Command Queue Head
|
|
* pointer.
|
|
*/
|
|
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
|
|
if (sc->chip_type == ADW_CHIP_ASC3550) {
|
|
/*
|
|
* Clear the tickle value. In the ASC-3550 the RISC flag
|
|
* command 'clr_tickle_a' does not work unless the host
|
|
* value is cleared.
|
|
*/
|
|
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
|
|
ADW_TICKLE_NOP);
|
|
}
|
|
} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
|
|
/*
|
|
* Notify the RISC a carrier is ready by writing the physical
|
|
* address of the new carrier stopper to the COMMA register.
|
|
*/
|
|
ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
|
|
le32toh(new_carrp->carr_ba));
|
|
}
|
|
|
|
/*
|
|
* End of CRITICAL SECTION: Must be protected within splbio/splx pair
|
|
*/
|
|
|
|
return ADW_SUCCESS;
|
|
}
|
|
|
|
|
|
void
|
|
AdwResetChip(bus_space_tag_t iot, bus_space_handle_t ioh)
|
|
{
|
|
|
|
/*
|
|
* Reset Chip.
|
|
*/
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
|
|
ADW_CTRL_REG_CMD_RESET);
|
|
AdwSleepMilliSecond(100);
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
|
|
ADW_CTRL_REG_CMD_WR_IO_REG);
|
|
}
|
|
|
|
|
|
/*
|
|
* Reset SCSI Bus and purge all outstanding requests.
|
|
*
|
|
* Return Value:
|
|
* ADW_TRUE(1) - All requests are purged and SCSI Bus is reset.
|
|
* ADW_FALSE(0) - Microcode command failed.
|
|
* ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
|
|
* may be hung which requires driver recovery.
|
|
*/
|
|
int
|
|
AdwResetCCB(ADW_SOFTC *sc)
|
|
{
|
|
int status;
|
|
|
|
/*
|
|
* Send the SCSI Bus Reset idle start idle command which asserts
|
|
* the SCSI Bus Reset signal.
|
|
*/
|
|
status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
|
|
if (status != ADW_TRUE) {
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Delay for the specified SCSI Bus Reset hold time.
|
|
*
|
|
* The hold time delay is done on the host because the RISC has no
|
|
* microsecond accurate timer.
|
|
*/
|
|
AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
|
|
|
|
/*
|
|
* Send the SCSI Bus Reset end idle command which de-asserts
|
|
* the SCSI Bus Reset signal and purges any pending requests.
|
|
*/
|
|
status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
|
|
if (status != ADW_TRUE) {
|
|
return status;
|
|
}
|
|
|
|
AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
/*
|
|
* Reset chip and SCSI Bus.
|
|
*
|
|
* Return Value:
|
|
* ADW_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
|
|
* ADW_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
|
|
*/
|
|
int
|
|
AdwResetSCSIBus(ADW_SOFTC *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
int status;
|
|
u_int16_t wdtr_able, sdtr_able, tagqng_able;
|
|
u_int16_t ppr_able = 0; /* XXX: gcc */
|
|
u_int8_t tid, max_cmd[ADW_MAX_TID + 1];
|
|
u_int16_t bios_sig;
|
|
|
|
|
|
/*
|
|
* Save current per TID negotiated values.
|
|
*/
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
|
|
if (sc->chip_type == ADW_CHIP_ASC38C1600) {
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
|
|
}
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
|
|
for (tid = 0; tid <= ADW_MAX_TID; tid++) {
|
|
ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
|
|
max_cmd[tid]);
|
|
}
|
|
|
|
/*
|
|
* Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
|
|
* by clearing the BIOS signature word.
|
|
* The initialization functions assumes a SCSI Bus Reset is not
|
|
* needed if the BIOS signature word is present.
|
|
*/
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
|
|
|
|
/*
|
|
* Stop chip and reset it.
|
|
*/
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
|
|
ADW_CTRL_REG_CMD_RESET);
|
|
AdwSleepMilliSecond(100);
|
|
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
|
|
ADW_CTRL_REG_CMD_WR_IO_REG);
|
|
|
|
/*
|
|
* Reset Adv Library error code, if any, and try
|
|
* re-initializing the chip.
|
|
* Then translate initialization return value to status value.
|
|
*/
|
|
status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
|
|
|
|
/*
|
|
* Restore the BIOS signature word.
|
|
*/
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
|
|
|
|
/*
|
|
* Restore per TID negotiated values.
|
|
*/
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
|
|
if (sc->chip_type == ADW_CHIP_ASC38C1600) {
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
|
|
}
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
|
|
for (tid = 0; tid <= ADW_MAX_TID; tid++) {
|
|
ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
|
|
max_cmd[tid]);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
|
|
/*
|
|
* Adv Library Interrupt Service Routine
|
|
*
|
|
* This function is called by a driver's interrupt service routine.
|
|
* The function disables and re-enables interrupts.
|
|
*
|
|
* When a microcode idle command is completed, the ADV_DVC_VAR
|
|
* 'idle_cmd_done' field is set to ADW_TRUE.
|
|
*
|
|
* Note: AdwISR() can be called when interrupts are disabled or even
|
|
* when there is no hardware interrupt condition present. It will
|
|
* always check for completed idle commands and microcode requests.
|
|
* This is an important feature that shouldn't be changed because it
|
|
* allows commands to be completed from polling mode loops.
|
|
*
|
|
* Return:
|
|
* ADW_TRUE(1) - interrupt was pending
|
|
* ADW_FALSE(0) - no interrupt was pending
|
|
*/
|
|
int
|
|
AdwISR(ADW_SOFTC *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
u_int8_t int_stat;
|
|
ADW_CARRIER *free_carrp/*, *ccb_carr*/;
|
|
u_int32_t irq_next_pa;
|
|
ADW_SCSI_REQ_Q *scsiq;
|
|
ADW_CCB *ccb;
|
|
int s;
|
|
|
|
|
|
s = splbio();
|
|
|
|
/* Reading the register clears the interrupt. */
|
|
int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
|
|
|
|
if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
|
|
ADW_INTR_STATUS_INTRC)) == 0) {
|
|
splx(s);
|
|
return ADW_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Notify the driver of an asynchronous microcode condition by
|
|
* calling the ADV_DVC_VAR.async_callback function. The function
|
|
* is passed the microcode ADW_MC_INTRB_CODE byte value.
|
|
*/
|
|
if (int_stat & ADW_INTR_STATUS_INTRB) {
|
|
u_int8_t intrb_code;
|
|
|
|
ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
|
|
|
|
if (sc->chip_type == ADW_CHIP_ASC3550 ||
|
|
sc->chip_type == ADW_CHIP_ASC38C0800) {
|
|
if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
|
|
sc->carr_pending_cnt != 0) {
|
|
ADW_WRITE_BYTE_REGISTER(iot, ioh,
|
|
IOPB_TICKLE, ADW_TICKLE_A);
|
|
if (sc->chip_type == ADW_CHIP_ASC3550) {
|
|
ADW_WRITE_BYTE_REGISTER(iot, ioh,
|
|
IOPB_TICKLE, ADW_TICKLE_NOP);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (sc->async_callback != 0) {
|
|
(*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if the IRQ stopper carrier contains a completed request.
|
|
*/
|
|
while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
|
|
{
|
|
#if ADW_DEBUG
|
|
printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
|
|
sc->irq_sp->carr_id,
|
|
sc->irq_sp->carr_ba,
|
|
sc->irq_sp->areq_ba,
|
|
sc->irq_sp->next_ba);
|
|
#endif
|
|
/*
|
|
* Get a pointer to the newly completed ADW_SCSI_REQ_Q
|
|
* structure.
|
|
* The RISC will have set 'areq_ba' to a virtual address.
|
|
*
|
|
* The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
|
|
* field to the carrier ADV_CARR_T.areq_ba field.
|
|
* The conversion below complements the conversion of
|
|
* ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
|
|
*/
|
|
ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
|
|
scsiq = &ccb->scsiq;
|
|
scsiq->ccb_ptr = sc->irq_sp->areq_ba;
|
|
|
|
/*
|
|
* Request finished with good status and the queue was not
|
|
* DMAed to host memory by the firmware. Set all status fields
|
|
* to indicate good status.
|
|
*/
|
|
if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
|
|
scsiq->done_status = QD_NO_ERROR;
|
|
scsiq->host_status = scsiq->scsi_status = 0;
|
|
scsiq->data_cnt = 0L;
|
|
}
|
|
|
|
/*
|
|
* Advance the stopper pointer to the next carrier
|
|
* ignoring the lower four bits. Free the previous
|
|
* stopper carrier.
|
|
*/
|
|
free_carrp = sc->irq_sp;
|
|
sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
|
|
|
|
free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
|
|
: sc->carr_freelist->carr_ba;
|
|
sc->carr_freelist = free_carrp;
|
|
sc->carr_pending_cnt--;
|
|
|
|
/*
|
|
* Clear request microcode control flag.
|
|
*/
|
|
scsiq->cntl = 0;
|
|
|
|
/*
|
|
* Check Condition handling
|
|
*/
|
|
/*
|
|
* If the command that completed was a SCSI INQUIRY and
|
|
* LUN 0 was sent the command, then process the INQUIRY
|
|
* command information for the device.
|
|
*/
|
|
if (scsiq->done_status == QD_NO_ERROR &&
|
|
scsiq->cdb[0] == INQUIRY &&
|
|
scsiq->target_lun == 0) {
|
|
AdwInquiryHandling(sc, scsiq);
|
|
}
|
|
|
|
/*
|
|
* Notify the driver of the completed request by passing
|
|
* the ADW_SCSI_REQ_Q pointer to its callback function.
|
|
*/
|
|
(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
|
|
/*
|
|
* Note: After the driver callback function is called, 'scsiq'
|
|
* can no longer be referenced.
|
|
*
|
|
* Fall through and continue processing other completed
|
|
* requests...
|
|
*/
|
|
}
|
|
|
|
splx(s);
|
|
|
|
return ADW_TRUE;
|
|
}
|
|
|
|
|
|
/*
|
|
* Send an idle command to the chip and wait for completion.
|
|
*
|
|
* Command completion is polled for once per microsecond.
|
|
*
|
|
* The function can be called from anywhere including an interrupt handler.
|
|
* But the function is not re-entrant, so it uses the splbio/splx()
|
|
* functions to prevent reentrancy.
|
|
*
|
|
* Return Values:
|
|
* ADW_TRUE - command completed successfully
|
|
* ADW_FALSE - command failed
|
|
* ADW_ERROR - command timed out
|
|
*/
|
|
int
|
|
AdwSendIdleCmd(ADW_SOFTC *sc, u_int16_t idle_cmd, u_int32_t idle_cmd_parameter)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
u_int16_t result;
|
|
u_int32_t i, j, s;
|
|
|
|
s = splbio();
|
|
|
|
/*
|
|
* Clear the idle command status which is set by the microcode
|
|
* to a non-zero value to indicate when the command is completed.
|
|
*/
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
|
|
|
|
/*
|
|
* Write the idle command value after the idle command parameter
|
|
* has been written to avoid a race condition. If the order is not
|
|
* followed, the microcode may process the idle command before the
|
|
* parameters have been written to LRAM.
|
|
*/
|
|
ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
|
|
idle_cmd_parameter);
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
|
|
|
|
/*
|
|
* Tickle the RISC to tell it to process the idle command.
|
|
*/
|
|
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
|
|
if (sc->chip_type == ADW_CHIP_ASC3550) {
|
|
/*
|
|
* Clear the tickle value. In the ASC-3550 the RISC flag
|
|
* command 'clr_tickle_b' does not work unless the host
|
|
* value is cleared.
|
|
*/
|
|
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
|
|
}
|
|
|
|
/* Wait for up to 100 millisecond for the idle command to timeout. */
|
|
for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
|
|
/* Poll once each microsecond for command completion. */
|
|
for (j = 0; j < SCSI_US_PER_MSEC; j++) {
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
|
|
result);
|
|
if (result != 0) {
|
|
splx(s);
|
|
return result;
|
|
}
|
|
AdwDelayMicroSecond(1);
|
|
}
|
|
}
|
|
|
|
splx(s);
|
|
return ADW_ERROR;
|
|
}
|
|
|
|
|
|
/*
|
|
* Inquiry Information Byte 7 Handling
|
|
*
|
|
* Handle SCSI Inquiry Command information for a device by setting
|
|
* microcode operating variables that affect WDTR, SDTR, and Tag
|
|
* Queuing.
|
|
*/
|
|
static void
|
|
AdwInquiryHandling(ADW_SOFTC *sc, ADW_SCSI_REQ_Q *scsiq)
|
|
{
|
|
#ifndef FAILSAFE
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
u_int8_t tid;
|
|
struct scsipi_inquiry_data *inq;
|
|
u_int16_t tidmask;
|
|
u_int16_t cfg_word;
|
|
|
|
|
|
/*
|
|
* AdwInquiryHandling() requires up to INQUIRY information Byte 7
|
|
* to be available.
|
|
*
|
|
* If less than 8 bytes of INQUIRY information were requested or less
|
|
* than 8 bytes were transferred, then return. cdb[4] is the request
|
|
* length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
|
|
* microcode to the transfer residual count.
|
|
*/
|
|
|
|
if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
|
|
return;
|
|
}
|
|
|
|
tid = scsiq->target_id;
|
|
|
|
inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
|
|
|
|
/*
|
|
* WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
|
|
*/
|
|
if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
|
|
((inq->version & SID_ANSII) < 2)) {
|
|
return;
|
|
} else {
|
|
/*
|
|
* INQUIRY Byte 7 Handling
|
|
*
|
|
* Use a device's INQUIRY byte 7 to determine whether it
|
|
* supports WDTR, SDTR, and Tag Queuing. If the feature
|
|
* is enabled in the EEPROM and the device supports the
|
|
* feature, then enable it in the microcode.
|
|
*/
|
|
|
|
tidmask = ADW_TID_TO_TIDMASK(tid);
|
|
|
|
/*
|
|
* Wide Transfers
|
|
*
|
|
* If the EEPROM enabled WDTR for the device and the device
|
|
* supports wide bus (16 bit) transfers, then turn on the
|
|
* device's 'wdtr_able' bit and write the new value to the
|
|
* microcode.
|
|
*/
|
|
#ifdef SCSI_ADW_WDTR_DISABLE
|
|
if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
|
|
#endif /* SCSI_ADW_WDTR_DISABLE */
|
|
if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
|
|
cfg_word);
|
|
if ((cfg_word & tidmask) == 0) {
|
|
cfg_word |= tidmask;
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
|
|
cfg_word);
|
|
|
|
/*
|
|
* Clear the microcode "SDTR negotiation" and
|
|
* "WDTR negotiation" done indicators for the
|
|
* target to cause it to negotiate with the new
|
|
* setting set above.
|
|
* WDTR when accepted causes the target to enter
|
|
* asynchronous mode, so SDTR must be negotiated
|
|
*/
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
|
|
cfg_word);
|
|
cfg_word &= ~tidmask;
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
|
|
cfg_word);
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
|
|
cfg_word);
|
|
cfg_word &= ~tidmask;
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
|
|
cfg_word);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Synchronous Transfers
|
|
*
|
|
* If the EEPROM enabled SDTR for the device and the device
|
|
* supports synchronous transfers, then turn on the device's
|
|
* 'sdtr_able' bit. Write the new value to the microcode.
|
|
*/
|
|
#ifdef SCSI_ADW_SDTR_DISABLE
|
|
if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
|
|
#endif /* SCSI_ADW_SDTR_DISABLE */
|
|
if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
|
|
if ((cfg_word & tidmask) == 0) {
|
|
cfg_word |= tidmask;
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
|
|
cfg_word);
|
|
|
|
/*
|
|
* Clear the microcode "SDTR negotiation"
|
|
* done indicator for the target to cause it
|
|
* to negotiate with the new setting set above.
|
|
*/
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
|
|
cfg_word);
|
|
cfg_word &= ~tidmask;
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
|
|
cfg_word);
|
|
}
|
|
}
|
|
/*
|
|
* If the Inquiry data included enough space for the SPI-3
|
|
* Clocking field, then check if DT mode is supported.
|
|
*/
|
|
if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
|
|
(scsiq->cdb[4] >= 57 ||
|
|
(scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
|
|
/*
|
|
* PPR (Parallel Protocol Request) Capable
|
|
*
|
|
* If the device supports DT mode, then it must be
|
|
* PPR capable.
|
|
* The PPR message will be used in place of the SDTR
|
|
* and WDTR messages to negotiate synchronous speed
|
|
* and offset, transfer width, and protocol options.
|
|
*/
|
|
if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
|
|
sc->ppr_able);
|
|
sc->ppr_able |= tidmask;
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
|
|
sc->ppr_able);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the EEPROM enabled Tag Queuing for the device and the
|
|
* device supports Tag Queueing, then turn on the device's
|
|
* 'tagqng_enable' bit in the microcode and set the microcode
|
|
* maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
|
|
* value.
|
|
*
|
|
* Tag Queuing is disabled for the BIOS which runs in polled
|
|
* mode and would see no benefit from Tag Queuing. Also by
|
|
* disabling Tag Queuing in the BIOS devices with Tag Queuing
|
|
* bugs will at least work with the BIOS.
|
|
*/
|
|
#ifdef SCSI_ADW_TAGQ_DISABLE
|
|
if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
|
|
#endif /* SCSI_ADW_TAGQ_DISABLE */
|
|
if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
|
|
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
|
|
cfg_word);
|
|
cfg_word |= tidmask;
|
|
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
|
|
cfg_word);
|
|
|
|
ADW_WRITE_BYTE_LRAM(iot, ioh,
|
|
ADW_MC_NUMBER_OF_MAX_CMD + tid,
|
|
sc->max_dvc_qng);
|
|
}
|
|
}
|
|
#endif /* FAILSAFE */
|
|
}
|
|
|
|
|
|
static void
|
|
AdwSleepMilliSecond(u_int32_t n)
|
|
{
|
|
|
|
DELAY(n * 1000);
|
|
}
|
|
|
|
|
|
static void
|
|
AdwDelayMicroSecond(u_int32_t n)
|
|
{
|
|
|
|
DELAY(n);
|
|
}
|
|
|