NetBSD/sys/dev/ic/advlib.c

3196 lines
89 KiB
C

/* $NetBSD: advlib.c,v 1.27 2010/11/13 13:52:00 uebayasi Exp $ */
/*
* Low level routines for the Advanced Systems Inc. SCSI controllers chips
*
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* Author: Baldassare Dante Profeta <dante@mclink.it>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Ported from:
*/
/*
* advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
*
* Copyright (c) 1995-1998 Advanced System Products, Inc.
* All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that redistributions of source
* code retain the above copyright notice and this comment without
* modification.
*
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: advlib.c,v 1.27 2010/11/13 13:52:00 uebayasi Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/queue.h>
#include <sys/device.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/ic/advlib.h>
#include <dev/ic/adv.h>
#include <dev/ic/advmcode.h>
/* #define ASC_DEBUG */
/******************************************************************************/
/* Static functions */
/******************************************************************************/
/* Initialization routines */
static u_int32_t AscLoadMicroCode(bus_space_tag_t, bus_space_handle_t,
u_int16_t, const u_int16_t *, u_int16_t);
static void AscInitLram(ASC_SOFTC *);
static void AscInitQLinkVar(ASC_SOFTC *);
static int AscResetChipAndScsiBus(bus_space_tag_t, bus_space_handle_t);
static u_int16_t AscGetChipBusType(bus_space_tag_t, bus_space_handle_t);
#if 0
static u_int16_t AscGetEisaChipCfg(bus_space_tag_t, bus_space_handle_t);
#endif
/* Chip register routines */
static void AscSetBank(bus_space_tag_t, bus_space_handle_t, u_int8_t);
/* RISC Chip routines */
static int AscStartChip(bus_space_tag_t, bus_space_handle_t);
static int AscStopChip(bus_space_tag_t, bus_space_handle_t);
static u_int8_t AscSetChipScsiID(bus_space_tag_t, bus_space_handle_t, u_int8_t);
static u_int8_t AscGetChipScsiCtrl(bus_space_tag_t, bus_space_handle_t);
static int AscSetRunChipSynRegAtID(bus_space_tag_t, bus_space_handle_t,
u_int8_t, u_int8_t);
static int AscSetChipSynRegAtID(bus_space_tag_t, bus_space_handle_t,
u_int8_t, u_int8_t);
static int AscHostReqRiscHalt(bus_space_tag_t, bus_space_handle_t);
static int AscIsChipHalted(bus_space_tag_t, bus_space_handle_t);
static void AscSetChipIH(bus_space_tag_t, bus_space_handle_t, u_int16_t);
/* Lram routines */
static u_int8_t AscReadLramByte(bus_space_tag_t, bus_space_handle_t, u_int16_t);
static void AscWriteLramByte(bus_space_tag_t, bus_space_handle_t,
u_int16_t, u_int8_t);
static u_int16_t AscReadLramWord(bus_space_tag_t, bus_space_handle_t,
u_int16_t);
static void AscWriteLramWord(bus_space_tag_t, bus_space_handle_t,
u_int16_t, u_int16_t);
static u_int32_t AscReadLramDWord(bus_space_tag_t, bus_space_handle_t,
u_int16_t);
static void AscWriteLramDWord(bus_space_tag_t, bus_space_handle_t,
u_int16_t, u_int32_t);
static void AscMemWordSetLram(bus_space_tag_t, bus_space_handle_t,
u_int16_t, u_int16_t, int);
static void AscMemWordCopyToLram(bus_space_tag_t, bus_space_handle_t,
u_int16_t, const u_int16_t *, int);
static void AscMemWordCopyFromLram(bus_space_tag_t, bus_space_handle_t,
u_int16_t, u_int16_t *, int);
static void AscMemDWordCopyToLram(bus_space_tag_t, bus_space_handle_t,
u_int16_t, u_int32_t *, int);
static u_int32_t AscMemSumLramWord(bus_space_tag_t, bus_space_handle_t,
u_int16_t, int);
static int AscTestExternalLram(bus_space_tag_t, bus_space_handle_t);
/* MicroCode routines */
static u_int16_t AscInitMicroCodeVar(ASC_SOFTC *);
/* EEProm routines */
static int AscWriteEEPCmdReg(bus_space_tag_t, bus_space_handle_t, u_int8_t);
static int AscWriteEEPDataReg(bus_space_tag_t, bus_space_handle_t, u_int16_t);
static void AscWaitEEPRead(void);
static void AscWaitEEPWrite(void);
static u_int16_t AscReadEEPWord(bus_space_tag_t, bus_space_handle_t, u_int8_t);
static u_int16_t AscWriteEEPWord(bus_space_tag_t, bus_space_handle_t,
u_int8_t, u_int16_t);
static u_int16_t AscGetEEPConfig(bus_space_tag_t, bus_space_handle_t,
ASCEEP_CONFIG *, u_int16_t);
static int AscSetEEPConfig(bus_space_tag_t, bus_space_handle_t,
ASCEEP_CONFIG *, u_int16_t);
static int AscSetEEPConfigOnce(bus_space_tag_t, bus_space_handle_t,
ASCEEP_CONFIG *, u_int16_t);
#ifdef ASC_DEBUG
static void AscPrintEEPConfig(ASCEEP_CONFIG *, u_int16_t);
#endif
/* Interrupt routines */
static void AscIsrChipHalted(ASC_SOFTC *);
static int AscIsrQDone(ASC_SOFTC *);
static int AscWaitTixISRDone(ASC_SOFTC *, u_int8_t);
static int AscWaitISRDone(ASC_SOFTC *);
static u_int8_t _AscCopyLramScsiDoneQ(bus_space_tag_t, bus_space_handle_t,
u_int16_t, ASC_QDONE_INFO *, u_int32_t);
static void AscGetQDoneInfo(bus_space_tag_t, bus_space_handle_t, u_int16_t,
ASC_QDONE_INFO *);
static void AscToggleIRQAct(bus_space_tag_t, bus_space_handle_t);
static void AscDisableInterrupt(bus_space_tag_t, bus_space_handle_t);
static void AscEnableInterrupt(bus_space_tag_t, bus_space_handle_t);
static u_int8_t AscSetChipIRQ(bus_space_tag_t, bus_space_handle_t,
u_int8_t, u_int16_t);
static void AscAckInterrupt(bus_space_tag_t, bus_space_handle_t);
static u_int32_t AscGetMaxDmaCount(u_int16_t);
static u_int16_t AscSetIsaDmaChannel(bus_space_tag_t, bus_space_handle_t,
u_int16_t);
static u_int8_t AscGetIsaDmaSpeed(bus_space_tag_t, bus_space_handle_t);
static u_int8_t AscSetIsaDmaSpeed(bus_space_tag_t, bus_space_handle_t,
u_int8_t);
/* Messages routines */
static void AscHandleExtMsgIn(ASC_SOFTC *, u_int16_t, u_int8_t,
ASC_SCSI_BIT_ID_TYPE, int, u_int8_t);
static u_int8_t AscMsgOutSDTR(ASC_SOFTC *, u_int8_t, u_int8_t);
/* SDTR routines */
static void AscSetChipSDTR(bus_space_tag_t, bus_space_handle_t,
u_int8_t, u_int8_t);
static u_int8_t AscCalSDTRData(ASC_SOFTC *, u_int8_t, u_int8_t);
static u_int8_t AscGetSynPeriodIndex(ASC_SOFTC *, u_int8_t);
/* Queue routines */
static int AscSendScsiQueue(ASC_SOFTC *, ASC_SCSI_Q *, u_int8_t);
static int AscSgListToQueue(int);
static u_int AscGetNumOfFreeQueue(ASC_SOFTC *, u_int8_t, u_int8_t);
static int AscPutReadyQueue(ASC_SOFTC *, ASC_SCSI_Q *, u_int8_t);
static void AscPutSCSIQ(bus_space_tag_t, bus_space_handle_t,
u_int16_t, ASC_SCSI_Q *);
static int AscPutReadySgListQueue(ASC_SOFTC *, ASC_SCSI_Q *, u_int8_t);
static u_int8_t AscAllocFreeQueue(bus_space_tag_t, bus_space_handle_t,
u_int8_t);
static u_int8_t AscAllocMultipleFreeQueue(bus_space_tag_t, bus_space_handle_t,
u_int8_t, u_int8_t);
static int AscStopQueueExe(bus_space_tag_t, bus_space_handle_t);
static void AscStartQueueExe(bus_space_tag_t, bus_space_handle_t);
static void AscCleanUpBusyQueue(bus_space_tag_t, bus_space_handle_t);
static int _AscWaitQDone(bus_space_tag_t, bus_space_handle_t,
ASC_SCSI_Q *);
static int AscCleanUpDiscQueue(bus_space_tag_t, bus_space_handle_t);
/* Abort and Reset CCB routines */
static int AscRiscHaltedAbortCCB(ASC_SOFTC *, ADV_CCB *);
static int AscRiscHaltedAbortTIX(ASC_SOFTC *, u_int8_t);
/* Error Handling routines */
static int AscSetLibErrorCode(ASC_SOFTC *, u_int16_t);
/* Handle bugged borads routines */
static int AscTagQueuingSafe(ASC_SCSI_INQUIRY *);
static void AscAsyncFix(ASC_SOFTC *, u_int8_t, ASC_SCSI_INQUIRY *);
/* Miscellaneous routines */
static int AscCompareString(const u_char *, const u_char *, int);
/* Device oriented routines */
static int DvcEnterCritical(void);
static void DvcLeaveCritical(int);
static void DvcSleepMilliSecond(u_int32_t);
#if 0
static void DvcDelayMicroSecond(u_int32_t);
#endif
static void DvcDelayNanoSecond(u_int32_t);
/******************************************************************************/
/* Initialization routines */
/******************************************************************************/
/*
* This function perform the following steps:
* - initialize ASC_SOFTC structure with defaults values.
* - inquire board registers to know what kind of board it is.
* - keep track of bugged borads.
*/
void
AscInitASC_SOFTC(ASC_SOFTC *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i;
ASC_SET_CHIP_CONTROL(iot, ioh, ASC_CC_HALT);
ASC_SET_CHIP_STATUS(iot, ioh, 0);
sc->bug_fix_cntl = 0;
sc->pci_fix_asyn_xfer = 0;
sc->pci_fix_asyn_xfer_always = 0;
sc->sdtr_done = 0;
sc->cur_total_qng = 0;
sc->last_q_shortage = 0;
sc->use_tagged_qng = 0;
sc->unit_not_ready = 0;
sc->queue_full_or_busy = 0;
sc->host_init_sdtr_index = 0;
sc->can_tagged_qng = 0;
sc->cmd_qng_enabled = 0;
sc->dvc_cntl = ASC_DEF_DVC_CNTL;
sc->init_sdtr = 0;
sc->max_total_qng = ASC_DEF_MAX_TOTAL_QNG;
sc->scsi_reset_wait = 3;
sc->start_motor = ASC_SCSI_WIDTH_BIT_SET;
sc->max_dma_count = AscGetMaxDmaCount(sc->bus_type);
sc->sdtr_enable = ASC_SCSI_WIDTH_BIT_SET;
sc->disc_enable = ASC_SCSI_WIDTH_BIT_SET;
sc->chip_scsi_id = ASC_DEF_CHIP_SCSI_ID;
sc->lib_serial_no = ASC_LIB_SERIAL_NUMBER;
sc->lib_version = (ASC_LIB_VERSION_MAJOR << 8) | ASC_LIB_VERSION_MINOR;
if ((sc->bus_type & ASC_IS_PCI) &&
(sc->chip_version >= ASC_CHIP_VER_PCI_ULTRA_3150)) {
sc->bus_type = ASC_IS_PCI_ULTRA;
sc->sdtr_period_tbl[0] = SYN_ULTRA_XFER_NS_0;
sc->sdtr_period_tbl[1] = SYN_ULTRA_XFER_NS_1;
sc->sdtr_period_tbl[2] = SYN_ULTRA_XFER_NS_2;
sc->sdtr_period_tbl[3] = SYN_ULTRA_XFER_NS_3;
sc->sdtr_period_tbl[4] = SYN_ULTRA_XFER_NS_4;
sc->sdtr_period_tbl[5] = SYN_ULTRA_XFER_NS_5;
sc->sdtr_period_tbl[6] = SYN_ULTRA_XFER_NS_6;
sc->sdtr_period_tbl[7] = SYN_ULTRA_XFER_NS_7;
sc->sdtr_period_tbl[8] = SYN_ULTRA_XFER_NS_8;
sc->sdtr_period_tbl[9] = SYN_ULTRA_XFER_NS_9;
sc->sdtr_period_tbl[10] = SYN_ULTRA_XFER_NS_10;
sc->sdtr_period_tbl[11] = SYN_ULTRA_XFER_NS_11;
sc->sdtr_period_tbl[12] = SYN_ULTRA_XFER_NS_12;
sc->sdtr_period_tbl[13] = SYN_ULTRA_XFER_NS_13;
sc->sdtr_period_tbl[14] = SYN_ULTRA_XFER_NS_14;
sc->sdtr_period_tbl[15] = SYN_ULTRA_XFER_NS_15;
sc->max_sdtr_index = 15;
if (sc->chip_version == ASC_CHIP_VER_PCI_ULTRA_3150)
ASC_SET_EXTRA_CONTROL(iot, ioh,
(SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
else if (sc->chip_version >= ASC_CHIP_VER_PCI_ULTRA_3050)
ASC_SET_EXTRA_CONTROL(iot, ioh,
(SEC_ACTIVE_NEGATE | SEC_ENABLE_FILTER));
} else {
sc->sdtr_period_tbl[0] = SYN_XFER_NS_0;
sc->sdtr_period_tbl[1] = SYN_XFER_NS_1;
sc->sdtr_period_tbl[2] = SYN_XFER_NS_2;
sc->sdtr_period_tbl[3] = SYN_XFER_NS_3;
sc->sdtr_period_tbl[4] = SYN_XFER_NS_4;
sc->sdtr_period_tbl[5] = SYN_XFER_NS_5;
sc->sdtr_period_tbl[6] = SYN_XFER_NS_6;
sc->sdtr_period_tbl[7] = SYN_XFER_NS_7;
sc->max_sdtr_index = 7;
}
if (sc->bus_type == ASC_IS_PCI)
ASC_SET_EXTRA_CONTROL(iot, ioh,
(SEC_ACTIVE_NEGATE | SEC_SLEW_RATE));
sc->isa_dma_speed = ASC_DEF_ISA_DMA_SPEED;
if (AscGetChipBusType(iot, ioh) == ASC_IS_ISAPNP) {
ASC_SET_CHIP_IFC(iot, ioh, ASC_IFC_INIT_DEFAULT);
sc->bus_type = ASC_IS_ISAPNP;
}
if ((sc->bus_type & ASC_IS_ISA) != 0)
sc->isa_dma_channel = AscGetIsaDmaChannel(iot, ioh);
for (i = 0; i <= ASC_MAX_TID; i++) {
sc->cur_dvc_qng[i] = 0;
sc->max_dvc_qng[i] = ASC_MAX_SCSI1_QNG;
sc->max_tag_qng[i] = ASC_MAX_INRAM_TAG_QNG;
}
}
/*
* This function initialize some ASC_SOFTC fields with values read from
* on-board EEProm.
*/
int16_t
AscInitFromEEP(ASC_SOFTC *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
ASCEEP_CONFIG eep_config_buf;
ASCEEP_CONFIG *eep_config;
u_int16_t chksum;
u_int16_t warn_code;
u_int16_t cfg_msw, cfg_lsw;
int i;
int write_eep = 0;
warn_code = 0;
AscWriteLramWord(iot, ioh, ASCV_HALTCODE_W, 0x00FE);
AscStopQueueExe(iot, ioh);
AscStopChip(iot, ioh);
AscResetChipAndScsiBus(iot, ioh);
DvcSleepMilliSecond(sc->scsi_reset_wait * 1000);
if ((AscStopChip(iot, ioh) == FALSE) ||
(AscGetChipScsiCtrl(iot, ioh) != 0)) {
AscResetChipAndScsiBus(iot, ioh);
DvcSleepMilliSecond(sc->scsi_reset_wait * 1000);
}
if (AscIsChipHalted(iot, ioh) == FALSE)
return (-1);
ASC_SET_PC_ADDR(iot, ioh, ASC_MCODE_START_ADDR);
if (ASC_GET_PC_ADDR(iot, ioh) != ASC_MCODE_START_ADDR)
return (-2);
eep_config = &eep_config_buf;
cfg_msw = ASC_GET_CHIP_CFG_MSW(iot, ioh);
cfg_lsw = ASC_GET_CHIP_CFG_LSW(iot, ioh);
if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
cfg_msw &= (~(ASC_CFG_MSW_CLR_MASK));
warn_code |= ASC_WARN_CFG_MSW_RECOVER;
ASC_SET_CHIP_CFG_MSW(iot, ioh, cfg_msw);
}
chksum = AscGetEEPConfig(iot, ioh, eep_config, sc->bus_type);
#ifdef ASC_DEBUG
AscPrintEEPConfig(eep_config, chksum);
#endif
if (chksum == 0)
chksum = 0xAA55;
if (ASC_GET_CHIP_STATUS(iot, ioh) & ASC_CSW_AUTO_CONFIG) {
warn_code |= ASC_WARN_AUTO_CONFIG;
if (sc->chip_version == 3) {
if (eep_config->cfg_lsw != cfg_lsw) {
warn_code |= ASC_WARN_EEPROM_RECOVER;
eep_config->cfg_lsw = ASC_GET_CHIP_CFG_LSW(iot, ioh);
}
if (eep_config->cfg_msw != cfg_msw) {
warn_code |= ASC_WARN_EEPROM_RECOVER;
eep_config->cfg_msw = ASC_GET_CHIP_CFG_MSW(iot, ioh);
}
}
}
eep_config->cfg_msw &= ~ASC_CFG_MSW_CLR_MASK;
eep_config->cfg_lsw |= ASC_CFG0_HOST_INT_ON;
if (chksum != eep_config->chksum) {
if (sc->chip_version == ASC_CHIP_VER_PCI_ULTRA_3050) {
eep_config->init_sdtr = 0xFF;
eep_config->disc_enable = 0xFF;
eep_config->start_motor = 0xFF;
eep_config->use_cmd_qng = 0;
eep_config->max_total_qng = 0xF0;
eep_config->max_tag_qng = 0x20;
eep_config->cntl = 0xBFFF;
eep_config->chip_scsi_id = 7;
eep_config->no_scam = 0;
eep_config->adapter_info[0] = 0;
eep_config->adapter_info[1] = 0;
eep_config->adapter_info[2] = 0;
eep_config->adapter_info[3] = 0;
#if BYTE_ORDER == BIG_ENDIAN
eep_config->adapter_info[5] = 0;
/* Indicate EEPROM-less board. */
eep_config->adapter_info[4] = 0xBB;
#else
eep_config->adapter_info[4] = 0;
/* Indicate EEPROM-less board. */
eep_config->adapter_info[5] = 0xBB;
#endif
} else {
write_eep = 1;
warn_code |= ASC_WARN_EEPROM_CHKSUM;
}
}
sc->sdtr_enable = eep_config->init_sdtr;
sc->disc_enable = eep_config->disc_enable;
sc->cmd_qng_enabled = eep_config->use_cmd_qng;
sc->isa_dma_speed = eep_config->isa_dma_speed;
sc->start_motor = eep_config->start_motor;
sc->dvc_cntl = eep_config->cntl;
#if BYTE_ORDER == BIG_ENDIAN
sc->adapter_info[0] = eep_config->adapter_info[1];
sc->adapter_info[1] = eep_config->adapter_info[0];
sc->adapter_info[2] = eep_config->adapter_info[3];
sc->adapter_info[3] = eep_config->adapter_info[2];
sc->adapter_info[4] = eep_config->adapter_info[5];
sc->adapter_info[5] = eep_config->adapter_info[4];
#else
sc->adapter_info[0] = eep_config->adapter_info[0];
sc->adapter_info[1] = eep_config->adapter_info[1];
sc->adapter_info[2] = eep_config->adapter_info[2];
sc->adapter_info[3] = eep_config->adapter_info[3];
sc->adapter_info[4] = eep_config->adapter_info[4];
sc->adapter_info[5] = eep_config->adapter_info[5];
#endif
if (!AscTestExternalLram(iot, ioh)) {
if (((sc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA)) {
eep_config->max_total_qng = ASC_MAX_PCI_ULTRA_INRAM_TOTAL_QNG;
eep_config->max_tag_qng = ASC_MAX_PCI_ULTRA_INRAM_TAG_QNG;
} else {
eep_config->cfg_msw |= 0x0800;
cfg_msw |= 0x0800;
ASC_SET_CHIP_CFG_MSW(iot, ioh, cfg_msw);
eep_config->max_total_qng = ASC_MAX_PCI_INRAM_TOTAL_QNG;
eep_config->max_tag_qng = ASC_MAX_INRAM_TAG_QNG;
}
}
if (eep_config->max_total_qng < ASC_MIN_TOTAL_QNG)
eep_config->max_total_qng = ASC_MIN_TOTAL_QNG;
if (eep_config->max_total_qng > ASC_MAX_TOTAL_QNG)
eep_config->max_total_qng = ASC_MAX_TOTAL_QNG;
if (eep_config->max_tag_qng > eep_config->max_total_qng)
eep_config->max_tag_qng = eep_config->max_total_qng;
if (eep_config->max_tag_qng < ASC_MIN_TAG_Q_PER_DVC)
eep_config->max_tag_qng = ASC_MIN_TAG_Q_PER_DVC;
sc->max_total_qng = eep_config->max_total_qng;
if ((eep_config->use_cmd_qng & eep_config->disc_enable) !=
eep_config->use_cmd_qng) {
eep_config->disc_enable = eep_config->use_cmd_qng;
warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
}
if (sc->bus_type & (ASC_IS_ISA | ASC_IS_VL | ASC_IS_EISA))
sc->irq_no = AscGetChipIRQ(iot, ioh, sc->bus_type);
eep_config->chip_scsi_id &= ASC_MAX_TID;
sc->chip_scsi_id = eep_config->chip_scsi_id;
if (((sc->bus_type & ASC_IS_PCI_ULTRA) == ASC_IS_PCI_ULTRA) &&
!(sc->dvc_cntl & ASC_CNTL_SDTR_ENABLE_ULTRA)) {
sc->host_init_sdtr_index = ASC_SDTR_ULTRA_PCI_10MB_INDEX;
}
for (i = 0; i <= ASC_MAX_TID; i++) {
sc->max_tag_qng[i] = eep_config->max_tag_qng;
sc->sdtr_period_offset[i] = ASC_DEF_SDTR_OFFSET |
(sc->host_init_sdtr_index << 4);
}
eep_config->cfg_msw = ASC_GET_CHIP_CFG_MSW(iot, ioh);
if (write_eep) {
AscSetEEPConfig(iot, ioh, eep_config, sc->bus_type);
#ifdef ASC_DEBUG
AscPrintEEPConfig(eep_config, 0);
#endif
}
return (warn_code);
}
u_int16_t
AscInitFromASC_SOFTC(ASC_SOFTC *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int16_t cfg_msw;
u_int16_t warn_code;
u_int16_t pci_device_id = sc->pci_device_id;
warn_code = 0;
cfg_msw = ASC_GET_CHIP_CFG_MSW(iot, ioh);
if ((cfg_msw & ASC_CFG_MSW_CLR_MASK) != 0) {
cfg_msw &= (~(ASC_CFG_MSW_CLR_MASK));
warn_code |= ASC_WARN_CFG_MSW_RECOVER;
ASC_SET_CHIP_CFG_MSW(iot, ioh, cfg_msw);
}
if ((sc->cmd_qng_enabled & sc->disc_enable) != sc->cmd_qng_enabled) {
sc->disc_enable = sc->cmd_qng_enabled;
warn_code |= ASC_WARN_CMD_QNG_CONFLICT;
}
if (ASC_GET_CHIP_STATUS(iot, ioh) & ASC_CSW_AUTO_CONFIG) {
warn_code |= ASC_WARN_AUTO_CONFIG;
}
if ((sc->bus_type & (ASC_IS_ISA | ASC_IS_VL)) != 0) {
AscSetChipIRQ(iot, ioh, sc->irq_no, sc->bus_type);
}
if (sc->bus_type & ASC_IS_PCI) {
cfg_msw &= 0xFFC0;
ASC_SET_CHIP_CFG_MSW(iot, ioh, cfg_msw);
if ((sc->bus_type & ASC_IS_PCI_ULTRA) != ASC_IS_PCI_ULTRA) {
if ((pci_device_id == ASC_PCI_DEVICE_ID_REV_A) ||
(pci_device_id == ASC_PCI_DEVICE_ID_REV_B)) {
sc->bug_fix_cntl |= ASC_BUG_FIX_IF_NOT_DWB;
sc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
}
}
} else if (sc->bus_type == ASC_IS_ISAPNP) {
if (sc->chip_version == ASC_CHIP_VER_ASYN_BUG) {
sc->bug_fix_cntl |= ASC_BUG_FIX_ASYN_USE_SYN;
}
}
AscSetChipScsiID(iot, ioh, sc->chip_scsi_id);
if (sc->bus_type & ASC_IS_ISA) {
AscSetIsaDmaChannel(iot, ioh, sc->isa_dma_channel);
AscSetIsaDmaSpeed(iot, ioh, sc->isa_dma_speed);
}
return (warn_code);
}
/*
* - Initialize RISC chip
* - Initialize Lram
* - Load uCode into Lram
* - Enable Interrupts
*/
int
AscInitDriver(ASC_SOFTC *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int32_t chksum;
if (!AscFindSignature(iot, ioh))
return (1);
AscDisableInterrupt(iot, ioh);
AscInitLram(sc);
chksum = AscLoadMicroCode(iot, ioh, 0, (const u_int16_t *) asc_mcode,
asc_mcode_size);
if (chksum != asc_mcode_chksum)
return (2);
if (AscInitMicroCodeVar(sc) == 0)
return (3);
AscEnableInterrupt(iot, ioh);
return (0);
}
int
AscFindSignature(bus_space_tag_t iot, bus_space_handle_t ioh)
{
u_int16_t sig_word;
if (ASC_GET_CHIP_SIGNATURE_BYTE(iot, ioh) == ASC_1000_ID1B) {
sig_word = ASC_GET_CHIP_SIGNATURE_WORD(iot, ioh);
if (sig_word == ASC_1000_ID0W ||
sig_word == ASC_1000_ID0W_FIX)
return (1);
}
return (0);
}
static void
AscInitLram(ASC_SOFTC *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int8_t i;
u_int16_t s_addr;
AscMemWordSetLram(iot, ioh, ASC_QADR_BEG, 0,
(((sc->max_total_qng + 2 + 1) * 64) >> 1));
i = ASC_MIN_ACTIVE_QNO;
s_addr = ASC_QADR_BEG + ASC_QBLK_SIZE;
AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_FWD, i + 1);
AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_BWD, sc->max_total_qng);
AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_QNO, i);
i++;
s_addr += ASC_QBLK_SIZE;
for (; i < sc->max_total_qng; i++, s_addr += ASC_QBLK_SIZE) {
AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_FWD, i + 1);
AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_BWD, i - 1);
AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_QNO, i);
}
AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_FWD, ASC_QLINK_END);
AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_BWD, sc->max_total_qng - 1);
AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_QNO, sc->max_total_qng);
i++;
s_addr += ASC_QBLK_SIZE;
for (; i <= (u_int8_t) (sc->max_total_qng + 3); i++, s_addr += ASC_QBLK_SIZE) {
AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_FWD, i);
AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_BWD, i);
AscWriteLramByte(iot, ioh, s_addr + ASC_SCSIQ_B_QNO, i);
}
}
void
AscReInitLram(ASC_SOFTC *sc)
{
AscInitLram(sc);
AscInitQLinkVar(sc);
}
static void
AscInitQLinkVar(ASC_SOFTC *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int8_t i;
u_int16_t lram_addr;
ASC_PUT_RISC_VAR_FREE_QHEAD(iot, ioh, 1);
ASC_PUT_RISC_VAR_DONE_QTAIL(iot, ioh, sc->max_total_qng);
ASC_PUT_VAR_FREE_QHEAD(iot, ioh, 1);
ASC_PUT_VAR_DONE_QTAIL(iot, ioh, sc->max_total_qng);
AscWriteLramByte(iot, ioh, ASCV_BUSY_QHEAD_B, sc->max_total_qng + 1);
AscWriteLramByte(iot, ioh, ASCV_DISC1_QHEAD_B, sc->max_total_qng + 2);
AscWriteLramByte(iot, ioh, ASCV_TOTAL_READY_Q_B, sc->max_total_qng);
AscWriteLramWord(iot, ioh, ASCV_ASCDVC_ERR_CODE_W, 0);
AscWriteLramWord(iot, ioh, ASCV_HALTCODE_W, 0);
AscWriteLramByte(iot, ioh, ASCV_STOP_CODE_B, 0);
AscWriteLramByte(iot, ioh, ASCV_SCSIBUSY_B, 0);
AscWriteLramByte(iot, ioh, ASCV_WTM_FLAG_B, 0);
ASC_PUT_QDONE_IN_PROGRESS(iot, ioh, 0);
lram_addr = ASC_QADR_BEG;
for (i = 0; i < 32; i++, lram_addr += 2)
AscWriteLramWord(iot, ioh, lram_addr, 0);
}
static int
AscResetChipAndScsiBus(bus_space_tag_t iot, bus_space_handle_t ioh)
{
while (ASC_GET_CHIP_STATUS(iot, ioh) & ASC_CSW_SCSI_RESET_ACTIVE);
AscStopChip(iot, ioh);
ASC_SET_CHIP_CONTROL(iot, ioh, ASC_CC_CHIP_RESET | ASC_CC_SCSI_RESET | ASC_CC_HALT);
DvcDelayNanoSecond(60000);
AscSetChipIH(iot, ioh, ASC_INS_RFLAG_WTM);
AscSetChipIH(iot, ioh, ASC_INS_HALT);
ASC_SET_CHIP_CONTROL(iot, ioh, ASC_CC_CHIP_RESET | ASC_CC_HALT);
ASC_SET_CHIP_CONTROL(iot, ioh, ASC_CC_HALT);
DvcSleepMilliSecond(200);
ASC_SET_CHIP_STATUS(iot, ioh, ASC_CIW_CLR_SCSI_RESET_INT);
ASC_SET_CHIP_STATUS(iot, ioh, 0);
DvcSleepMilliSecond(200);
return (AscIsChipHalted(iot, ioh));
}
static u_int16_t
AscGetChipBusType(bus_space_tag_t iot, bus_space_handle_t ioh)
{
u_int16_t chip_ver;
chip_ver = ASC_GET_CHIP_VER_NO(iot, ioh);
#if 0
if ((chip_ver >= ASC_CHIP_MIN_VER_VL) &&
(chip_ver <= ASC_CHIP_MAX_VER_VL)) {
if(((ioh & 0x0C30) == 0x0C30) || ((ioh & 0x0C50) == 0x0C50)) {
return (ASC_IS_EISA);
}
else {
return (ASC_IS_VL);
}
}
#endif
if ((chip_ver >= ASC_CHIP_MIN_VER_ISA) &&
(chip_ver <= ASC_CHIP_MAX_VER_ISA)) {
if (chip_ver >= ASC_CHIP_MIN_VER_ISA_PNP)
return (ASC_IS_ISAPNP);
return (ASC_IS_ISA);
} else if ((chip_ver >= ASC_CHIP_MIN_VER_PCI) &&
(chip_ver <= ASC_CHIP_MAX_VER_PCI))
return (ASC_IS_PCI);
return (0);
}
/*
static u_int16_t
AscGetEisaChipCfg(bus_space_tag_t iot, bus_space_handle_t ioh)
{
int eisa_cfg_iop;
eisa_cfg_iop = ASC_GET_EISA_SLOT(ioh) | (ASC_EISA_CFG_IOP_MASK);
return (inw(eisa_cfg_iop));
}
*/
/******************************************************************************/
/* Chip register routines */
/******************************************************************************/
static void
AscSetBank(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t bank)
{
u_int8_t val;
val = ASC_GET_CHIP_CONTROL(iot, ioh) &
(~(ASC_CC_SINGLE_STEP | ASC_CC_TEST |
ASC_CC_DIAG | ASC_CC_SCSI_RESET |
ASC_CC_CHIP_RESET));
switch (bank) {
case 1:
val |= ASC_CC_BANK_ONE;
break;
case 2:
val |= ASC_CC_DIAG | ASC_CC_BANK_ONE;
break;
default:
val &= ~ASC_CC_BANK_ONE;
}
ASC_SET_CHIP_CONTROL(iot, ioh, val);
return;
}
/******************************************************************************/
/* Chip routines */
/******************************************************************************/
static int
AscStartChip(bus_space_tag_t iot, bus_space_handle_t ioh)
{
ASC_SET_CHIP_CONTROL(iot, ioh, 0);
if ((ASC_GET_CHIP_STATUS(iot, ioh) & ASC_CSW_HALTED) != 0)
return (0);
return (1);
}
static int
AscStopChip(bus_space_tag_t iot, bus_space_handle_t ioh)
{
u_int8_t cc_val;
cc_val = ASC_GET_CHIP_CONTROL(iot, ioh) &
(~(ASC_CC_SINGLE_STEP | ASC_CC_TEST | ASC_CC_DIAG));
ASC_SET_CHIP_CONTROL(iot, ioh, cc_val | ASC_CC_HALT);
AscSetChipIH(iot, ioh, ASC_INS_HALT);
AscSetChipIH(iot, ioh, ASC_INS_RFLAG_WTM);
if ((ASC_GET_CHIP_STATUS(iot, ioh) & ASC_CSW_HALTED) == 0)
return (0);
return (1);
}
static u_int8_t
AscSetChipScsiID(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t new_id)
{
u_int16_t cfg_lsw;
if (ASC_GET_CHIP_SCSI_ID(iot, ioh) == new_id)
return (new_id);
cfg_lsw = ASC_GET_CHIP_SCSI_ID(iot, ioh);
cfg_lsw &= 0xF8FF;
cfg_lsw |= (new_id & ASC_MAX_TID) << 8;
ASC_SET_CHIP_CFG_LSW(iot, ioh, cfg_lsw);
return (ASC_GET_CHIP_SCSI_ID(iot, ioh));
}
static u_int8_t
AscGetChipScsiCtrl(bus_space_tag_t iot, bus_space_handle_t ioh)
{
u_int8_t scsi_ctrl;
AscSetBank(iot, ioh, 1);
scsi_ctrl = bus_space_read_1(iot, ioh, ASC_IOP_REG_SC);
AscSetBank(iot, ioh, 0);
return (scsi_ctrl);
}
static int
AscSetRunChipSynRegAtID(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int8_t tid_no, u_int8_t sdtr_data)
{
int retval = FALSE;
if (AscHostReqRiscHalt(iot, ioh)) {
retval = AscSetChipSynRegAtID(iot, ioh, tid_no, sdtr_data);
AscStartChip(iot, ioh);
}
return (retval);
}
static int
AscSetChipSynRegAtID(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int8_t id, u_int8_t sdtr_data)
{
ASC_SCSI_BIT_ID_TYPE org_id;
int i;
int stax = TRUE;
AscSetBank(iot, ioh, 1);
org_id = ASC_READ_CHIP_DVC_ID(iot, ioh);
for (i = 0; i <= ASC_MAX_TID; i++)
if (org_id == (0x01 << i))
break;
org_id = i;
ASC_WRITE_CHIP_DVC_ID(iot, ioh, id);
if (ASC_READ_CHIP_DVC_ID(iot, ioh) == (0x01 << id)) {
AscSetBank(iot, ioh, 0);
ASC_SET_CHIP_SYN(iot, ioh, sdtr_data);
if (ASC_GET_CHIP_SYN(iot, ioh) != sdtr_data)
stax = FALSE;
} else
stax = FALSE;
AscSetBank(iot, ioh, 1);
ASC_WRITE_CHIP_DVC_ID(iot, ioh, org_id);
AscSetBank(iot, ioh, 0);
return (stax);
}
static int
AscHostReqRiscHalt(bus_space_tag_t iot, bus_space_handle_t ioh)
{
int count = 0;
int retval = 0;
u_int8_t saved_stop_code;
if (AscIsChipHalted(iot, ioh))
return (1);
saved_stop_code = AscReadLramByte(iot, ioh, ASCV_STOP_CODE_B);
AscWriteLramByte(iot, ioh, ASCV_STOP_CODE_B,
ASC_STOP_HOST_REQ_RISC_HALT | ASC_STOP_REQ_RISC_STOP);
do {
if (AscIsChipHalted(iot, ioh)) {
retval = 1;
break;
}
DvcSleepMilliSecond(100);
} while (count++ < 20);
AscWriteLramByte(iot, ioh, ASCV_STOP_CODE_B, saved_stop_code);
return (retval);
}
static int
AscIsChipHalted(bus_space_tag_t iot, bus_space_handle_t ioh)
{
if ((ASC_GET_CHIP_STATUS(iot, ioh) & ASC_CSW_HALTED) != 0)
if ((ASC_GET_CHIP_CONTROL(iot, ioh) & ASC_CC_HALT) != 0)
return (1);
return (0);
}
static void
AscSetChipIH(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t ins_code)
{
AscSetBank(iot, ioh, 1);
ASC_WRITE_CHIP_IH(iot, ioh, ins_code);
AscSetBank(iot, ioh, 0);
return;
}
/******************************************************************************/
/* Lram routines */
/******************************************************************************/
static u_int8_t
AscReadLramByte(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t addr)
{
u_int8_t byte_data;
u_int16_t word_data;
ASC_SET_CHIP_LRAM_ADDR(iot, ioh, addr & 0xFFFE);
word_data = ASC_GET_CHIP_LRAM_DATA(iot, ioh);
if (addr & 1) {
/* odd address */
byte_data = (u_int8_t) ((word_data >> 8) & 0xFF);
} else {
/* even address */
byte_data = (u_int8_t) (word_data & 0xFF);
}
return (byte_data);
}
static void
AscWriteLramByte(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int16_t addr, u_int8_t data)
{
u_int16_t word_data;
word_data = AscReadLramWord(iot, ioh, addr & 0xFFFE);
if (addr & 1) {
/* odd address */
word_data &= 0x00FF;
word_data |= (((u_int16_t) data) << 8) & 0xFF00;
} else {
/* even address */
word_data &= 0xFF00;
word_data |= ((u_int16_t) data) & 0x00FF;
}
AscWriteLramWord(iot, ioh, addr & 0xFFFE, word_data);
}
static u_int16_t
AscReadLramWord(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t addr)
{
ASC_SET_CHIP_LRAM_ADDR(iot, ioh, addr);
return (ASC_GET_CHIP_LRAM_DATA(iot, ioh));
}
static void
AscWriteLramWord(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int16_t addr, u_int16_t data)
{
ASC_SET_CHIP_LRAM_ADDR(iot, ioh, addr);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, data);
}
static u_int32_t
AscReadLramDWord(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t addr)
{
u_int16_t low_word, hi_word;
ASC_SET_CHIP_LRAM_ADDR(iot, ioh, addr);
low_word = ASC_GET_CHIP_LRAM_DATA(iot, ioh);
hi_word = ASC_GET_CHIP_LRAM_DATA(iot, ioh);
return ((((u_int32_t) hi_word) << 16) | (u_int32_t) low_word);
}
static void
AscWriteLramDWord(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int16_t addr, u_int32_t data)
{
ASC_SET_CHIP_LRAM_ADDR(iot, ioh, addr);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, (u_int16_t) (data & 0x0000FFFF));
ASC_SET_CHIP_LRAM_DATA(iot, ioh, (u_int16_t) (data >> 16));
}
static void
AscMemWordSetLram(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int16_t s_addr, u_int16_t s_words, int count)
{
int i;
ASC_SET_CHIP_LRAM_ADDR(iot, ioh, s_addr);
for (i = 0; i < count; i++)
ASC_SET_CHIP_LRAM_DATA(iot, ioh, s_words);
}
static void
AscMemWordCopyToLram(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int16_t s_addr, const u_int16_t *s_buffer, int words)
{
int i;
ASC_SET_CHIP_LRAM_ADDR(iot, ioh, s_addr);
for (i = 0; i < words; i++, s_buffer++)
ASC_SET_CHIP_LRAM_DATA_NO_SWAP(iot, ioh, *s_buffer);
}
static void
AscMemWordCopyFromLram(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int16_t s_addr, u_int16_t *s_buffer, int words)
{
int i;
ASC_SET_CHIP_LRAM_ADDR(iot, ioh, s_addr);
for (i = 0; i < words; i++, s_buffer++)
*s_buffer = ASC_GET_CHIP_LRAM_DATA_NO_SWAP(iot, ioh);
}
static void
AscMemDWordCopyToLram(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int16_t s_addr, u_int32_t *s_buffer, int dwords)
{
int i;
u_int32_t *pw;
ASC_SET_CHIP_LRAM_ADDR(iot, ioh, s_addr);
pw = s_buffer;
for (i = 0; i < dwords; i++, pw++) {
ASC_SET_CHIP_LRAM_DATA(iot, ioh, LO_WORD(*pw));
DELAY(1);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, HI_WORD(*pw));
}
}
static u_int32_t
AscMemSumLramWord(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int16_t s_addr, int words)
{
u_int32_t sum = 0L;
u_int16_t i;
for (i = 0; i < words; i++, s_addr += 2)
sum += AscReadLramWord(iot, ioh, s_addr);
return (sum);
}
static int
AscTestExternalLram(bus_space_tag_t iot, bus_space_handle_t ioh)
{
u_int16_t q_addr;
u_int16_t saved_word;
int retval;
retval = 0;
q_addr = ASC_QNO_TO_QADDR(241);
saved_word = AscReadLramWord(iot, ioh, q_addr);
ASC_SET_CHIP_LRAM_ADDR(iot, ioh, q_addr);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, 0x55AA);
DvcSleepMilliSecond(10);
ASC_SET_CHIP_LRAM_ADDR(iot, ioh, q_addr);
if (ASC_GET_CHIP_LRAM_DATA(iot, ioh) == 0x55AA) {
retval = 1;
AscWriteLramWord(iot, ioh, q_addr, saved_word);
}
return (retval);
}
/******************************************************************************/
/* MicroCode routines */
/******************************************************************************/
static u_int16_t
AscInitMicroCodeVar(ASC_SOFTC *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int32_t phy_addr;
int i;
for (i = 0; i <= ASC_MAX_TID; i++)
ASC_PUT_MCODE_INIT_SDTR_AT_ID(iot, ioh, i,
sc->sdtr_period_offset[i]);
AscInitQLinkVar(sc);
AscWriteLramByte(iot, ioh, ASCV_DISC_ENABLE_B, sc->disc_enable);
AscWriteLramByte(iot, ioh, ASCV_HOSTSCSI_ID_B,
ASC_TID_TO_TARGET_ID(sc->chip_scsi_id));
phy_addr = (sc->overrun_buf & 0xfffffff8) + 8;
AscWriteLramDWord(iot, ioh, ASCV_OVERRUN_PADDR_D, phy_addr);
AscWriteLramDWord(iot, ioh, ASCV_OVERRUN_BSIZE_D,
ASC_OVERRUN_BSIZE - 8);
sc->mcode_date = AscReadLramWord(iot, ioh, ASCV_MC_DATE_W);
sc->mcode_version = AscReadLramWord(iot, ioh, ASCV_MC_VER_W);
ASC_SET_PC_ADDR(iot, ioh, ASC_MCODE_START_ADDR);
if (ASC_GET_PC_ADDR(iot, ioh) != ASC_MCODE_START_ADDR) {
return (0);
}
if (AscStartChip(iot, ioh) != 1) {
return (0);
}
return (1);
}
static u_int32_t
AscLoadMicroCode(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int16_t s_addr, const u_int16_t *mcode_buf, u_int16_t mcode_size)
{
u_int32_t chksum;
u_int16_t mcode_word_size;
u_int16_t mcode_chksum;
mcode_word_size = mcode_size >> 1;
/* clear board memory */
AscMemWordSetLram(iot, ioh, s_addr, 0, mcode_word_size);
/* copy uCode to board memory */
AscMemWordCopyToLram(iot, ioh, s_addr, mcode_buf, mcode_word_size);
chksum = AscMemSumLramWord(iot, ioh, s_addr, mcode_word_size);
mcode_chksum = AscMemSumLramWord(iot, ioh, ASC_CODE_SEC_BEG,
((mcode_size - s_addr - ASC_CODE_SEC_BEG) >> 1));
AscWriteLramWord(iot, ioh, ASCV_MCODE_CHKSUM_W, mcode_chksum);
AscWriteLramWord(iot, ioh, ASCV_MCODE_SIZE_W, mcode_size);
return (chksum);
}
/******************************************************************************/
/* EEProm routines */
/******************************************************************************/
static int
AscWriteEEPCmdReg(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t cmd_reg)
{
u_int8_t read_back;
int retry;
retry = 0;
while (TRUE) {
ASC_SET_CHIP_EEP_CMD(iot, ioh, cmd_reg);
DvcSleepMilliSecond(1);
read_back = ASC_GET_CHIP_EEP_CMD(iot, ioh);
if (read_back == cmd_reg)
return (1);
if (retry++ > ASC_EEP_MAX_RETRY)
return (0);
}
}
static int
AscWriteEEPDataReg(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int16_t data_reg)
{
u_int16_t read_back;
int retry;
retry = 0;
while (TRUE) {
ASC_SET_CHIP_EEP_DATA(iot, ioh, data_reg);
DvcSleepMilliSecond(1);
read_back = ASC_GET_CHIP_EEP_DATA(iot, ioh);
if (read_back == data_reg)
return (1);
if (retry++ > ASC_EEP_MAX_RETRY)
return (0);
}
}
static void
AscWaitEEPRead(void)
{
DvcSleepMilliSecond(1);
}
static void
AscWaitEEPWrite(void)
{
DvcSleepMilliSecond(1);
}
static u_int16_t
AscReadEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh, u_int8_t addr)
{
u_int16_t read_wval;
u_int8_t cmd_reg;
AscWriteEEPCmdReg(iot, ioh, ASC_EEP_CMD_WRITE_DISABLE);
AscWaitEEPRead();
cmd_reg = addr | ASC_EEP_CMD_READ;
AscWriteEEPCmdReg(iot, ioh, cmd_reg);
AscWaitEEPRead();
read_wval = ASC_GET_CHIP_EEP_DATA(iot, ioh);
AscWaitEEPRead();
return (read_wval);
}
static u_int16_t
AscWriteEEPWord(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int8_t addr, u_int16_t word_val)
{
u_int16_t read_wval;
read_wval = AscReadEEPWord(iot, ioh, addr);
if (read_wval != word_val) {
AscWriteEEPCmdReg(iot, ioh, ASC_EEP_CMD_WRITE_ABLE);
AscWaitEEPRead();
AscWriteEEPDataReg(iot, ioh, word_val);
AscWaitEEPRead();
AscWriteEEPCmdReg(iot, ioh, ASC_EEP_CMD_WRITE | addr);
AscWaitEEPWrite();
AscWriteEEPCmdReg(iot, ioh, ASC_EEP_CMD_WRITE_DISABLE);
AscWaitEEPRead();
return (AscReadEEPWord(iot, ioh, addr));
}
return (read_wval);
}
static u_int16_t
AscGetEEPConfig(bus_space_tag_t iot, bus_space_handle_t ioh,
ASCEEP_CONFIG *cfg_buf, u_int16_t bus_type)
{
u_int16_t wval;
u_int16_t sum;
u_int16_t *wbuf;
int cfg_beg;
int cfg_end;
int s_addr;
int isa_pnp_wsize;
wbuf = (u_int16_t *) cfg_buf;
sum = 0;
isa_pnp_wsize = 0;
for (s_addr = 0; s_addr < (2 + isa_pnp_wsize); s_addr++, wbuf++) {
wval = AscReadEEPWord(iot, ioh, s_addr);
sum += wval;
*wbuf = wval;
}
if (bus_type & ASC_IS_VL) {
cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
} else {
cfg_beg = ASC_EEP_DVC_CFG_BEG;
cfg_end = ASC_EEP_MAX_DVC_ADDR;
}
for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
wval = AscReadEEPWord(iot, ioh, s_addr);
sum += wval;
*wbuf = wval;
}
*wbuf = AscReadEEPWord(iot, ioh, s_addr);
return (sum);
}
static int
AscSetEEPConfig(bus_space_tag_t iot, bus_space_handle_t ioh,
ASCEEP_CONFIG *cfg_buf, u_int16_t bus_type)
{
int retry;
int n_error;
retry = 0;
while (TRUE) {
if ((n_error = AscSetEEPConfigOnce(iot, ioh, cfg_buf, bus_type)) == 0)
break;
if (++retry > ASC_EEP_MAX_RETRY)
break;
}
return (n_error);
}
static int
AscSetEEPConfigOnce(bus_space_tag_t iot, bus_space_handle_t ioh,
ASCEEP_CONFIG *cfg_buf, u_int16_t bus_type)
{
int n_error;
u_int16_t *wbuf;
u_int16_t sum;
int s_addr;
int cfg_beg;
int cfg_end;
wbuf = (u_int16_t *) cfg_buf;
n_error = 0;
sum = 0;
for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
sum += *wbuf;
if (*wbuf != AscWriteEEPWord(iot, ioh, s_addr, *wbuf))
n_error++;
}
if (bus_type & ASC_IS_VL) {
cfg_beg = ASC_EEP_DVC_CFG_BEG_VL;
cfg_end = ASC_EEP_MAX_DVC_ADDR_VL;
} else {
cfg_beg = ASC_EEP_DVC_CFG_BEG;
cfg_end = ASC_EEP_MAX_DVC_ADDR;
}
for (s_addr = cfg_beg; s_addr <= (cfg_end - 1); s_addr++, wbuf++) {
sum += *wbuf;
if (*wbuf != AscWriteEEPWord(iot, ioh, s_addr, *wbuf))
n_error++;
}
*wbuf = sum;
if (sum != AscWriteEEPWord(iot, ioh, s_addr, sum))
n_error++;
wbuf = (u_int16_t *) cfg_buf;
for (s_addr = 0; s_addr < 2; s_addr++, wbuf++) {
if (*wbuf != AscReadEEPWord(iot, ioh, s_addr))
n_error++;
}
for (s_addr = cfg_beg; s_addr <= cfg_end; s_addr++, wbuf++) {
if (*wbuf != AscReadEEPWord(iot, ioh, s_addr))
n_error++;
}
return (n_error);
}
#ifdef ASC_DEBUG
static void
AscPrintEEPConfig(ASCEEP_CONFIG *eep_config, u_int16_t chksum)
{
printf("---- ASC EEprom settings ----\n");
printf("cfg_lsw = 0x%x\n", eep_config->cfg_lsw);
printf("cfg_msw = 0x%x\n", eep_config->cfg_msw);
printf("init_sdtr = 0x%x\n", eep_config->init_sdtr);
printf("disc_enable = 0x%x\n", eep_config->disc_enable);
printf("use_cmd_qng = %d\n", eep_config->use_cmd_qng);
printf("start_motor = 0x%x\n", eep_config->start_motor);
printf("max_total_qng = 0x%x\n", eep_config->max_total_qng);
printf("max_tag_qng = 0x%x\n", eep_config->max_tag_qng);
printf("bios_scan = 0x%x\n", eep_config->bios_scan);
printf("power_up_wait = 0x%x\n", eep_config->power_up_wait);
printf("no_scam = %d\n", eep_config->no_scam);
printf("chip_scsi_id = %d\n", eep_config->chip_scsi_id);
printf("isa_dma_speed = %d\n", eep_config->isa_dma_speed);
printf("cntl = 0x%x\n", eep_config->cntl);
#if BYTE_ORDER == BIG_ENDIAN
printf("adapter_info[0] = 0x%x\n", eep_config->adapter_info[1]);
printf("adapter_info[1] = 0x%x\n", eep_config->adapter_info[0]);
printf("adapter_info[2] = 0x%x\n", eep_config->adapter_info[3]);
printf("adapter_info[3] = 0x%x\n", eep_config->adapter_info[2]);
printf("adapter_info[4] = 0x%x\n", eep_config->adapter_info[5]);
printf("adapter_info[5] = 0x%x\n", eep_config->adapter_info[4]);
#else
printf("adapter_info[0] = 0x%x\n", eep_config->adapter_info[0]);
printf("adapter_info[1] = 0x%x\n", eep_config->adapter_info[1]);
printf("adapter_info[2] = 0x%x\n", eep_config->adapter_info[2]);
printf("adapter_info[3] = 0x%x\n", eep_config->adapter_info[3]);
printf("adapter_info[4] = 0x%x\n", eep_config->adapter_info[4]);
printf("adapter_info[5] = 0x%x\n", eep_config->adapter_info[5]);
#endif
printf("checksum = 0x%x\n", eep_config->chksum);
printf("calculated checksum = 0x%x\n", chksum);
printf("-----------------------------\n");
}
#endif
/******************************************************************************/
/* Interrupt routines */
/******************************************************************************/
int
AscISR(ASC_SOFTC *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int16_t chipstat;
u_int16_t saved_ram_addr;
u_int8_t ctrl_reg;
u_int8_t saved_ctrl_reg;
int int_pending;
int status;
u_int8_t host_flag;
int_pending = FALSE;
ctrl_reg = ASC_GET_CHIP_CONTROL(iot, ioh);
saved_ctrl_reg = ctrl_reg & (~(ASC_CC_SCSI_RESET | ASC_CC_CHIP_RESET |
ASC_CC_SINGLE_STEP | ASC_CC_DIAG | ASC_CC_TEST));
chipstat = ASC_GET_CHIP_STATUS(iot, ioh);
if (chipstat & ASC_CSW_SCSI_RESET_LATCH) {
if (!(sc->bus_type & (ASC_IS_VL | ASC_IS_EISA))) {
int_pending = TRUE;
sc->sdtr_done = 0;
saved_ctrl_reg &= (u_int8_t) (~ASC_CC_HALT);
while (ASC_GET_CHIP_STATUS(iot, ioh) & ASC_CSW_SCSI_RESET_ACTIVE);
ASC_SET_CHIP_CONTROL(iot, ioh, (ASC_CC_CHIP_RESET | ASC_CC_HALT));
ASC_SET_CHIP_CONTROL(iot, ioh, ASC_CC_HALT);
ASC_SET_CHIP_STATUS(iot, ioh, ASC_CIW_CLR_SCSI_RESET_INT);
ASC_SET_CHIP_STATUS(iot, ioh, 0);
chipstat = ASC_GET_CHIP_STATUS(iot, ioh);
}
}
saved_ram_addr = ASC_GET_CHIP_LRAM_ADDR(iot, ioh);
host_flag = AscReadLramByte(iot, ioh, ASCV_HOST_FLAG_B) &
(u_int8_t) (~ASC_HOST_FLAG_IN_ISR);
AscWriteLramByte(iot, ioh, ASCV_HOST_FLAG_B,
(host_flag | ASC_HOST_FLAG_IN_ISR));
if ((chipstat & ASC_CSW_INT_PENDING) || (int_pending)) {
AscAckInterrupt(iot, ioh);
int_pending = TRUE;
if ((chipstat & ASC_CSW_HALTED) &&
(ctrl_reg & ASC_CC_SINGLE_STEP)) {
AscIsrChipHalted(sc);
saved_ctrl_reg &= ~ASC_CC_HALT;
} else {
if (sc->dvc_cntl & ASC_CNTL_INT_MULTI_Q) {
while (((status = AscIsrQDone(sc)) & 0x01) != 0);
} else {
do {
if ((status = AscIsrQDone(sc)) == 1)
break;
} while (status == 0x11);
}
if (status & 0x80)
int_pending = -1;
}
}
AscWriteLramByte(iot, ioh, ASCV_HOST_FLAG_B, host_flag);
ASC_SET_CHIP_LRAM_ADDR(iot, ioh, saved_ram_addr);
ASC_SET_CHIP_CONTROL(iot, ioh, saved_ctrl_reg);
return (1);
/* return(int_pending); */
}
static int
AscIsrQDone(ASC_SOFTC *sc)
{
u_int8_t next_qp;
u_int8_t n_q_used;
u_int8_t sg_list_qp;
u_int8_t sg_queue_cnt;
u_int8_t q_cnt;
u_int8_t done_q_tail;
u_int8_t tid_no;
ASC_SCSI_BIT_ID_TYPE scsi_busy;
ASC_SCSI_BIT_ID_TYPE target_id;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int16_t q_addr;
u_int16_t sg_q_addr;
u_int8_t cur_target_qng;
ASC_QDONE_INFO scsiq_buf;
ASC_QDONE_INFO *scsiq;
ASC_ISR_CALLBACK asc_isr_callback;
asc_isr_callback = (ASC_ISR_CALLBACK) sc->isr_callback;
n_q_used = 1;
scsiq = (ASC_QDONE_INFO *) & scsiq_buf;
done_q_tail = ASC_GET_VAR_DONE_QTAIL(iot, ioh);
q_addr = ASC_QNO_TO_QADDR(done_q_tail);
next_qp = AscReadLramByte(iot, ioh, (q_addr + ASC_SCSIQ_B_FWD));
if (next_qp != ASC_QLINK_END) {
ASC_PUT_VAR_DONE_QTAIL(iot, ioh, next_qp);
q_addr = ASC_QNO_TO_QADDR(next_qp);
sg_queue_cnt = _AscCopyLramScsiDoneQ(iot, ioh, q_addr, scsiq,
sc->max_dma_count);
AscWriteLramByte(iot, ioh, (q_addr + ASC_SCSIQ_B_STATUS),
(scsiq->q_status & ~(ASC_QS_READY | ASC_QS_ABORTED)));
tid_no = ASC_TIX_TO_TID(scsiq->d2.target_ix);
target_id = ASC_TIX_TO_TARGET_ID(scsiq->d2.target_ix);
if ((scsiq->cntl & ASC_QC_SG_HEAD) != 0) {
sg_q_addr = q_addr;
sg_list_qp = next_qp;
for (q_cnt = 0; q_cnt < sg_queue_cnt; q_cnt++) {
sg_list_qp = AscReadLramByte(iot, ioh,
sg_q_addr + ASC_SCSIQ_B_FWD);
sg_q_addr = ASC_QNO_TO_QADDR(sg_list_qp);
if (sg_list_qp == ASC_QLINK_END) {
AscSetLibErrorCode(sc, ASCQ_ERR_SG_Q_LINKS);
scsiq->d3.done_stat = ASC_QD_WITH_ERROR;
scsiq->d3.host_stat = ASC_QHSTA_D_QDONE_SG_LIST_CORRUPTED;
panic("AscIsrQDone: Corrupted SG list encountered");
}
AscWriteLramByte(iot, ioh,
sg_q_addr + ASC_SCSIQ_B_STATUS, ASC_QS_FREE);
}
n_q_used = sg_queue_cnt + 1;
ASC_PUT_VAR_DONE_QTAIL(iot, ioh, sg_list_qp);
}
if (sc->queue_full_or_busy & target_id) {
cur_target_qng = AscReadLramByte(iot, ioh,
ASC_QADR_BEG + scsiq->d2.target_ix);
if (cur_target_qng < sc->max_dvc_qng[tid_no]) {
scsi_busy = AscReadLramByte(iot, ioh, ASCV_SCSIBUSY_B);
scsi_busy &= ~target_id;
AscWriteLramByte(iot, ioh, ASCV_SCSIBUSY_B, scsi_busy);
sc->queue_full_or_busy &= ~target_id;
}
}
if (sc->cur_total_qng >= n_q_used) {
sc->cur_total_qng -= n_q_used;
if (sc->cur_dvc_qng[tid_no] != 0) {
sc->cur_dvc_qng[tid_no]--;
}
} else {
AscSetLibErrorCode(sc, ASCQ_ERR_CUR_QNG);
scsiq->d3.done_stat = ASC_QD_WITH_ERROR;
panic("AscIsrQDone: Attempting to free more queues than are active");
}
if ((adv_ccb_phys_kv(sc, scsiq->d2.ccb_ptr) == 0UL) ||
((scsiq->q_status & ASC_QS_ABORTED) != 0)) {
return (0x11);
} else if (scsiq->q_status == ASC_QS_DONE) {
scsiq->remain_bytes += scsiq->extra_bytes;
if (scsiq->d3.done_stat == ASC_QD_WITH_ERROR) {
if (scsiq->d3.host_stat == ASC_QHSTA_M_DATA_OVER_RUN) {
if ((scsiq->cntl & (ASC_QC_DATA_IN | ASC_QC_DATA_OUT)) == 0) {
scsiq->d3.done_stat = ASC_QD_NO_ERROR;
scsiq->d3.host_stat = ASC_QHSTA_NO_ERROR;
}
} else if (scsiq->d3.host_stat == ASC_QHSTA_M_HUNG_REQ_SCSI_BUS_RESET) {
AscStopChip(iot, ioh);
ASC_SET_CHIP_CONTROL(iot, ioh, (ASC_CC_SCSI_RESET | ASC_CC_HALT));
DvcDelayNanoSecond(60000);
ASC_SET_CHIP_CONTROL(iot, ioh, ASC_CC_HALT);
ASC_SET_CHIP_STATUS(iot, ioh, ASC_CIW_CLR_SCSI_RESET_INT);
ASC_SET_CHIP_STATUS(iot, ioh, 0);
ASC_SET_CHIP_CONTROL(iot, ioh, 0);
}
}
(*asc_isr_callback) (sc, scsiq);
return (1);
} else {
AscSetLibErrorCode(sc, ASCQ_ERR_Q_STATUS);
panic("AscIsrQDone: completed scsiq with unknown status");
return (0x80);
}
}
return (0);
}
/*
* handle all the conditions that may halt the board
* waiting us to intervene
*/
static void
AscIsrChipHalted(ASC_SOFTC *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
EXT_MSG out_msg;
u_int16_t int_halt_code;
u_int16_t halt_q_addr;
u_int8_t halt_qp;
u_int8_t target_ix;
u_int8_t tag_code;
u_int8_t q_status;
u_int8_t q_cntl;
u_int8_t tid_no;
u_int8_t cur_dvc_qng;
u_int8_t asyn_sdtr;
u_int8_t scsi_status;
u_int8_t sdtr_data;
ASC_SCSI_BIT_ID_TYPE scsi_busy;
ASC_SCSI_BIT_ID_TYPE target_id;
int_halt_code = AscReadLramWord(iot, ioh, ASCV_HALTCODE_W);
halt_qp = AscReadLramByte(iot, ioh, ASCV_CURCDB_B);
halt_q_addr = ASC_QNO_TO_QADDR(halt_qp);
target_ix = AscReadLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_TARGET_IX);
q_cntl = AscReadLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_CNTL);
tid_no = ASC_TIX_TO_TID(target_ix);
target_id = ASC_TID_TO_TARGET_ID(tid_no);
if (sc->pci_fix_asyn_xfer & target_id) {
asyn_sdtr = ASYN_SDTR_DATA_FIX_PCI_REV_AB;
} else {
asyn_sdtr = 0;
}
if (int_halt_code == ASC_HALT_DISABLE_ASYN_USE_SYN_FIX) {
if (sc->pci_fix_asyn_xfer & target_id) {
AscSetChipSDTR(iot, ioh, 0, tid_no);
sc->sdtr_data[tid_no] = 0;
}
AscWriteLramWord(iot, ioh, ASCV_HALTCODE_W, 0);
} else if (int_halt_code == ASC_HALT_ENABLE_ASYN_USE_SYN_FIX) {
if (sc->pci_fix_asyn_xfer & target_id) {
AscSetChipSDTR(iot, ioh, asyn_sdtr, tid_no);
sc->sdtr_data[tid_no] = asyn_sdtr;
}
AscWriteLramWord(iot, ioh, ASCV_HALTCODE_W, 0);
} else if (int_halt_code == ASC_HALT_EXTMSG_IN) {
AscHandleExtMsgIn(sc, halt_q_addr, q_cntl, target_id,
tid_no, asyn_sdtr);
AscWriteLramWord(iot, ioh, ASCV_HALTCODE_W, 0);
} else if (int_halt_code == ASC_HALT_CHK_CONDITION) {
q_cntl |= ASC_QC_REQ_SENSE;
if (sc->init_sdtr & target_id) {
sc->sdtr_done &= ~target_id;
sdtr_data = ASC_GET_MCODE_INIT_SDTR_AT_ID(iot, ioh, tid_no);
q_cntl |= ASC_QC_MSG_OUT;
AscMsgOutSDTR(sc, sc->sdtr_period_tbl[(sdtr_data >> 4) &
(sc->max_sdtr_index - 1)],
(sdtr_data & ASC_SYN_MAX_OFFSET));
}
AscWriteLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_CNTL, q_cntl);
tag_code = AscReadLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_TAG_CODE);
tag_code &= 0xDC;
if ((sc->pci_fix_asyn_xfer & target_id) &&
!(sc->pci_fix_asyn_xfer_always & target_id)) {
tag_code |= (ASC_TAG_FLAG_DISABLE_DISCONNECT |
ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX);
}
AscWriteLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_TAG_CODE, tag_code);
q_status = AscReadLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_STATUS);
q_status |= ASC_QS_READY | ASC_QS_BUSY;
AscWriteLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_STATUS, q_status);
scsi_busy = AscReadLramByte(iot, ioh, ASCV_SCSIBUSY_B);
scsi_busy &= ~target_id;
AscWriteLramByte(iot, ioh, ASCV_SCSIBUSY_B, scsi_busy);
AscWriteLramWord(iot, ioh, ASCV_HALTCODE_W, 0);
} else if (int_halt_code == ASC_HALT_SDTR_REJECTED) {
AscMemWordCopyFromLram(iot, ioh, ASCV_MSGOUT_BEG,
(u_int16_t *) & out_msg, sizeof(EXT_MSG) >> 1);
if ((out_msg.msg_type == MS_EXTEND) &&
(out_msg.msg_len == MS_SDTR_LEN) &&
(out_msg.msg_req == MS_SDTR_CODE)) {
sc->init_sdtr &= ~target_id;
sc->sdtr_done &= ~target_id;
AscSetChipSDTR(iot, ioh, asyn_sdtr, tid_no);
sc->sdtr_data[tid_no] = asyn_sdtr;
}
q_cntl &= ~ASC_QC_MSG_OUT;
AscWriteLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_CNTL, q_cntl);
AscWriteLramWord(iot, ioh, ASCV_HALTCODE_W, 0);
} else if (int_halt_code == ASC_HALT_SS_QUEUE_FULL) {
scsi_status = AscReadLramByte(iot, ioh,
halt_q_addr + ASC_SCSIQ_SCSI_STATUS);
cur_dvc_qng = AscReadLramByte(iot, ioh, target_ix + ASC_QADR_BEG);
if ((cur_dvc_qng > 0) && (sc->cur_dvc_qng[tid_no] > 0)) {
scsi_busy = AscReadLramByte(iot, ioh, ASCV_SCSIBUSY_B);
scsi_busy |= target_id;
AscWriteLramByte(iot, ioh, ASCV_SCSIBUSY_B, scsi_busy);
sc->queue_full_or_busy |= target_id;
if (scsi_status == SS_QUEUE_FULL) {
if (cur_dvc_qng > ASC_MIN_TAGGED_CMD) {
cur_dvc_qng -= 1;
sc->max_dvc_qng[tid_no] = cur_dvc_qng;
AscWriteLramByte(iot, ioh,
tid_no + ASCV_MAX_DVC_QNG_BEG, cur_dvc_qng);
#if ASC_QUEUE_FLOW_CONTROL
if ((sc->device[tid_no] != NULL) &&
(sc->device[tid_no]->queue_curr_depth > cur_dvc_qng)) {
sc->device[tid_no]->queue_curr_depth = cur_dvc_qng;
}
#endif /* ASC_QUEUE_FLOW_CONTROL */
}
}
}
AscWriteLramWord(iot, ioh, ASCV_HALTCODE_W, 0);
}
return;
}
static int
AscWaitTixISRDone(ASC_SOFTC *sc, u_int8_t target_ix)
{
u_int8_t cur_req;
u_int8_t tid_no;
int i = 0;
tid_no = ASC_TIX_TO_TID(target_ix);
while (i++ < 10) {
if ((cur_req = sc->cur_dvc_qng[tid_no]) == 0)
break;
DvcSleepMilliSecond(1000L);
if (sc->cur_dvc_qng[tid_no] == cur_req)
break;
}
return (1);
}
static int
AscWaitISRDone(ASC_SOFTC *sc)
{
int tid;
for (tid = 0; tid <= ASC_MAX_TID; tid++)
AscWaitTixISRDone(sc, ASC_TID_TO_TIX(tid));
return (1);
}
static u_int8_t
_AscCopyLramScsiDoneQ(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int16_t q_addr, ASC_QDONE_INFO *scsiq, u_int32_t max_dma_count)
{
u_int16_t _val;
u_int8_t sg_queue_cnt;
AscGetQDoneInfo(iot, ioh, q_addr + ASC_SCSIQ_DONE_INFO_BEG, scsiq);
_val = AscReadLramWord(iot, ioh, q_addr + ASC_SCSIQ_B_STATUS);
scsiq->q_status = LO_BYTE(_val);
scsiq->q_no = HI_BYTE(_val);
_val = AscReadLramWord(iot, ioh, q_addr + ASC_SCSIQ_B_CNTL);
scsiq->cntl = LO_BYTE(_val);
sg_queue_cnt = HI_BYTE(_val);
_val = AscReadLramWord(iot, ioh, q_addr + ASC_SCSIQ_B_SENSE_LEN);
scsiq->sense_len = LO_BYTE(_val);
scsiq->extra_bytes = HI_BYTE(_val);
scsiq->remain_bytes = AscReadLramWord(iot, ioh,
q_addr + ASC_SCSIQ_DW_REMAIN_XFER_CNT);
scsiq->remain_bytes &= max_dma_count;
return (sg_queue_cnt);
}
static void
AscGetQDoneInfo(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int16_t addr, ASC_QDONE_INFO *scsiq)
{
u_int16_t val;
ASC_SET_CHIP_LRAM_ADDR(iot, ioh, addr);
val = ASC_GET_CHIP_LRAM_DATA(iot, ioh);
scsiq->d2.ccb_ptr = MAKELONG(val, ASC_GET_CHIP_LRAM_DATA(iot, ioh));
val = ASC_GET_CHIP_LRAM_DATA(iot, ioh);
scsiq->d2.target_ix = LO_BYTE(val);
scsiq->d2.flag = HI_BYTE(val);
val = ASC_GET_CHIP_LRAM_DATA(iot, ioh);
scsiq->d2.cdb_len = LO_BYTE(val);
scsiq->d2.tag_code = HI_BYTE(val);
scsiq->d2.vm_id = ASC_GET_CHIP_LRAM_DATA(iot, ioh);
val = ASC_GET_CHIP_LRAM_DATA(iot, ioh);
scsiq->d3.done_stat = LO_BYTE(val);
scsiq->d3.host_stat = HI_BYTE(val);
val = ASC_GET_CHIP_LRAM_DATA(iot, ioh);
scsiq->d3.scsi_stat = LO_BYTE(val);
scsiq->d3.scsi_msg = HI_BYTE(val);
}
static void
AscToggleIRQAct(bus_space_tag_t iot, bus_space_handle_t ioh)
{
ASC_SET_CHIP_STATUS(iot, ioh, ASC_CIW_IRQ_ACT);
ASC_SET_CHIP_STATUS(iot, ioh, 0);
}
static void
AscDisableInterrupt(bus_space_tag_t iot, bus_space_handle_t ioh)
{
u_int16_t cfg;
cfg = ASC_GET_CHIP_CFG_LSW(iot, ioh);
ASC_SET_CHIP_CFG_LSW(iot, ioh, cfg & (~ASC_CFG0_HOST_INT_ON));
}
static void
AscEnableInterrupt(bus_space_tag_t iot, bus_space_handle_t ioh)
{
u_int16_t cfg;
cfg = ASC_GET_CHIP_CFG_LSW(iot, ioh);
ASC_SET_CHIP_CFG_LSW(iot, ioh, cfg | ASC_CFG0_HOST_INT_ON);
}
u_int8_t
AscGetChipIRQ(bus_space_tag_t iot, bus_space_handle_t ioh, u_int16_t bus_type)
{
u_int16_t cfg_lsw;
u_int8_t chip_irq;
#if 0
if (bus_type & ASC_IS_EISA) {
cfg_lsw = AscGetEisaChipCfg(iot, ioh);
chip_irq = ((cfg_lsw >> 8) & 0x07) + 10;
if((chip_irq == 13) || (chip_irq > 15))
return (0);
return(chip_irq);
}
#endif
if ((bus_type & ASC_IS_VL) != 0) {
cfg_lsw = ASC_GET_CHIP_CFG_LSW(iot, ioh);
chip_irq = (cfg_lsw >> 2) & 0x07;
if ((chip_irq == 0) ||
(chip_irq == 4) ||
(chip_irq == 7)) {
return (0);
}
return (chip_irq + (ASC_MIN_IRQ_NO - 1));
}
cfg_lsw = ASC_GET_CHIP_CFG_LSW(iot, ioh);
chip_irq = (cfg_lsw >> 2) & 0x03;
if (chip_irq == 3)
chip_irq += 2;
return (chip_irq + ASC_MIN_IRQ_NO);
}
static u_int8_t
AscSetChipIRQ(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int8_t irq_no, u_int16_t bus_type)
{
u_int16_t cfg_lsw;
if (bus_type & ASC_IS_VL) {
if (irq_no) {
if ((irq_no < ASC_MIN_IRQ_NO) || (irq_no > ASC_MAX_IRQ_NO))
irq_no = 0;
else
irq_no -= ASC_MIN_IRQ_NO - 1;
}
cfg_lsw = ASC_GET_CHIP_CFG_LSW(iot, ioh) & 0xFFE3;
cfg_lsw |= 0x0010;
ASC_SET_CHIP_CFG_LSW(iot, ioh, cfg_lsw);
AscToggleIRQAct(iot, ioh);
cfg_lsw = ASC_GET_CHIP_CFG_LSW(iot, ioh) & 0xFFE0;
cfg_lsw |= (irq_no & 0x07) << 2;
ASC_SET_CHIP_CFG_LSW(iot, ioh, cfg_lsw);
AscToggleIRQAct(iot, ioh);
return (AscGetChipIRQ(iot, ioh, bus_type));
}
if (bus_type & ASC_IS_ISA) {
if (irq_no == 15)
irq_no -= 2;
irq_no -= ASC_MIN_IRQ_NO;
cfg_lsw = ASC_GET_CHIP_CFG_LSW(iot, ioh) & 0xFFF3;
cfg_lsw |= (irq_no & 0x03) << 2;
ASC_SET_CHIP_CFG_LSW(iot, ioh, cfg_lsw);
return (AscGetChipIRQ(iot, ioh, bus_type));
}
return (0);
}
static void
AscAckInterrupt(bus_space_tag_t iot, bus_space_handle_t ioh)
{
u_int8_t host_flag;
u_int8_t risc_flag;
u_int16_t loop;
loop = 0;
do {
risc_flag = AscReadLramByte(iot, ioh, ASCV_RISC_FLAG_B);
if (loop++ > 0x7FFF)
break;
} while ((risc_flag & ASC_RISC_FLAG_GEN_INT) != 0);
host_flag = AscReadLramByte(iot, ioh, ASCV_HOST_FLAG_B) &
(~ASC_HOST_FLAG_ACK_INT);
AscWriteLramByte(iot, ioh, ASCV_HOST_FLAG_B,
host_flag | ASC_HOST_FLAG_ACK_INT);
ASC_SET_CHIP_STATUS(iot, ioh, ASC_CIW_INT_ACK);
loop = 0;
while (ASC_GET_CHIP_STATUS(iot, ioh) & ASC_CSW_INT_PENDING) {
ASC_SET_CHIP_STATUS(iot, ioh, ASC_CIW_INT_ACK);
if (loop++ > 3)
break;
}
AscWriteLramByte(iot, ioh, ASCV_HOST_FLAG_B, host_flag);
}
static u_int32_t
AscGetMaxDmaCount(u_int16_t bus_type)
{
if (bus_type & ASC_IS_ISA)
return (ASC_MAX_ISA_DMA_COUNT);
else if (bus_type & (ASC_IS_EISA | ASC_IS_VL))
return (ASC_MAX_VL_DMA_COUNT);
return (ASC_MAX_PCI_DMA_COUNT);
}
u_int16_t
AscGetIsaDmaChannel(bus_space_tag_t iot, bus_space_handle_t ioh)
{
u_int16_t channel;
channel = ASC_GET_CHIP_CFG_LSW(iot, ioh) & 0x0003;
if (channel == 0x03)
return (0);
else if (channel == 0x00)
return (7);
return (channel + 4);
}
static u_int16_t
AscSetIsaDmaChannel(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int16_t dma_channel)
{
u_int16_t cfg_lsw;
u_int8_t value;
if ((dma_channel >= 5) && (dma_channel <= 7)) {
if (dma_channel == 7)
value = 0x00;
else
value = dma_channel - 4;
cfg_lsw = ASC_GET_CHIP_CFG_LSW(iot, ioh) & 0xFFFC;
cfg_lsw |= value;
ASC_SET_CHIP_CFG_LSW(iot, ioh, cfg_lsw);
return (AscGetIsaDmaChannel(iot, ioh));
}
return (0);
}
static u_int8_t
AscGetIsaDmaSpeed(bus_space_tag_t iot, bus_space_handle_t ioh)
{
u_int8_t speed_value;
AscSetBank(iot, ioh, 1);
speed_value = ASC_READ_CHIP_DMA_SPEED(iot, ioh);
speed_value &= 0x07;
AscSetBank(iot, ioh, 0);
return (speed_value);
}
static u_int8_t
AscSetIsaDmaSpeed(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int8_t speed_value)
{
speed_value &= 0x07;
AscSetBank(iot, ioh, 1);
ASC_WRITE_CHIP_DMA_SPEED(iot, ioh, speed_value);
AscSetBank(iot, ioh, 0);
return (AscGetIsaDmaSpeed(iot, ioh));
}
/******************************************************************************/
/* Messages routines */
/******************************************************************************/
static void
AscHandleExtMsgIn(ASC_SOFTC *sc, u_int16_t halt_q_addr, u_int8_t q_cntl,
ASC_SCSI_BIT_ID_TYPE target_id, int tid_no, u_int8_t asyn_sdtr)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
EXT_MSG ext_msg;
u_int8_t sdtr_data;
int sdtr_accept;
AscMemWordCopyFromLram(iot, ioh, ASCV_MSGIN_BEG,
(u_int16_t *) & ext_msg, sizeof(EXT_MSG) >> 1);
if (ext_msg.msg_type == MS_EXTEND &&
ext_msg.msg_req == MS_SDTR_CODE &&
ext_msg.msg_len == MS_SDTR_LEN) {
sdtr_accept = TRUE;
if (ext_msg.req_ack_offset > ASC_SYN_MAX_OFFSET) {
sdtr_accept = FALSE;
ext_msg.req_ack_offset = ASC_SYN_MAX_OFFSET;
}
if ((ext_msg.xfer_period <
sc->sdtr_period_tbl[sc->host_init_sdtr_index]) ||
(ext_msg.xfer_period >
sc->sdtr_period_tbl[sc->max_sdtr_index])) {
sdtr_accept = FALSE;
ext_msg.xfer_period = sc->sdtr_period_tbl[sc->host_init_sdtr_index];
}
if (sdtr_accept) {
sdtr_data = AscCalSDTRData(sc, ext_msg.xfer_period,
ext_msg.req_ack_offset);
if (sdtr_data == 0xFF) {
q_cntl |= ASC_QC_MSG_OUT;
sc->init_sdtr &= ~target_id;
sc->sdtr_done &= ~target_id;
AscSetChipSDTR(iot, ioh, asyn_sdtr, tid_no);
sc->sdtr_data[tid_no] = asyn_sdtr;
}
}
if (ext_msg.req_ack_offset == 0) {
q_cntl &= ~ASC_QC_MSG_OUT;
sc->init_sdtr &= ~target_id;
sc->sdtr_done &= ~target_id;
AscSetChipSDTR(iot, ioh, asyn_sdtr, tid_no);
} else {
if (sdtr_accept && (q_cntl & ASC_QC_MSG_OUT)) {
q_cntl &= ~ASC_QC_MSG_OUT;
sc->sdtr_done |= target_id;
sc->init_sdtr |= target_id;
sc->pci_fix_asyn_xfer &= ~target_id;
sdtr_data = AscCalSDTRData(sc, ext_msg.xfer_period,
ext_msg.req_ack_offset);
AscSetChipSDTR(iot, ioh, sdtr_data, tid_no);
sc->sdtr_data[tid_no] = sdtr_data;
} else {
q_cntl |= ASC_QC_MSG_OUT;
AscMsgOutSDTR(sc, ext_msg.xfer_period,
ext_msg.req_ack_offset);
sc->pci_fix_asyn_xfer &= ~target_id;
sdtr_data = AscCalSDTRData(sc, ext_msg.xfer_period,
ext_msg.req_ack_offset);
AscSetChipSDTR(iot, ioh, sdtr_data, tid_no);
sc->sdtr_data[tid_no] = sdtr_data;
sc->sdtr_done |= target_id;
sc->init_sdtr |= target_id;
}
}
} else if (ext_msg.msg_type == MS_EXTEND &&
ext_msg.msg_req == MS_WDTR_CODE &&
ext_msg.msg_len == MS_WDTR_LEN) {
ext_msg.wdtr_width = 0;
AscMemWordCopyToLram(iot, ioh, ASCV_MSGOUT_BEG,
(const u_int16_t *) & ext_msg, sizeof(EXT_MSG) >> 1);
q_cntl |= ASC_QC_MSG_OUT;
} else {
ext_msg.msg_type = M1_MSG_REJECT;
AscMemWordCopyToLram(iot, ioh, ASCV_MSGOUT_BEG,
(const u_int16_t *) & ext_msg, sizeof(EXT_MSG) >> 1);
q_cntl |= ASC_QC_MSG_OUT;
}
AscWriteLramByte(iot, ioh, halt_q_addr + ASC_SCSIQ_B_CNTL, q_cntl);
}
static u_int8_t
AscMsgOutSDTR(ASC_SOFTC *sc, u_int8_t sdtr_period, u_int8_t sdtr_offset)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
EXT_MSG sdtr_buf;
u_int8_t sdtr_period_index;
sdtr_buf.msg_type = MS_EXTEND;
sdtr_buf.msg_len = MS_SDTR_LEN;
sdtr_buf.msg_req = MS_SDTR_CODE;
sdtr_buf.xfer_period = sdtr_period;
sdtr_offset &= ASC_SYN_MAX_OFFSET;
sdtr_buf.req_ack_offset = sdtr_offset;
if ((sdtr_period_index = AscGetSynPeriodIndex(sc, sdtr_period)) <=
sc->max_sdtr_index) {
AscMemWordCopyToLram(iot, ioh, ASCV_MSGOUT_BEG,
(const u_int16_t *) & sdtr_buf, sizeof(EXT_MSG) >> 1);
return ((sdtr_period_index << 4) | sdtr_offset);
} else {
sdtr_buf.req_ack_offset = 0;
AscMemWordCopyToLram(iot, ioh, ASCV_MSGOUT_BEG,
(const u_int16_t *) & sdtr_buf, sizeof(EXT_MSG) >> 1);
return (0);
}
}
/******************************************************************************/
/* SDTR routines */
/******************************************************************************/
static void
AscSetChipSDTR(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int8_t sdtr_data, u_int8_t tid_no)
{
AscSetChipSynRegAtID(iot, ioh, tid_no, sdtr_data);
AscWriteLramByte(iot, ioh, tid_no + ASCV_SDTR_DONE_BEG, sdtr_data);
}
static u_int8_t
AscCalSDTRData(ASC_SOFTC *sc, u_int8_t sdtr_period, u_int8_t syn_offset)
{
u_int8_t byte;
u_int8_t sdtr_period_ix;
sdtr_period_ix = AscGetSynPeriodIndex(sc, sdtr_period);
if (sdtr_period_ix > sc->max_sdtr_index)
return (0xFF);
byte = (sdtr_period_ix << 4) | (syn_offset & ASC_SYN_MAX_OFFSET);
return (byte);
}
static u_int8_t
AscGetSynPeriodIndex(ASC_SOFTC *sc, u_int8_t syn_time)
{
u_int8_t *period_table;
int max_index;
int min_index;
int i;
period_table = sc->sdtr_period_tbl;
max_index = sc->max_sdtr_index;
min_index = sc->host_init_sdtr_index;
if ((syn_time <= period_table[max_index])) {
for (i = min_index; i < (max_index - 1); i++) {
if (syn_time <= period_table[i])
return (i);
}
return (max_index);
} else
return (max_index + 1);
}
/******************************************************************************/
/* Queue routines */
/******************************************************************************/
/*
* Send a command to the board
*/
int
AscExeScsiQueue(ASC_SOFTC *sc, ASC_SCSI_Q *scsiq)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
ASC_SG_HEAD *sg_head = scsiq->sg_head;
int retval;
int n_q_required;
int disable_syn_offset_one_fix;
int i;
u_int32_t addr;
u_int16_t sg_entry_cnt = 0;
u_int16_t sg_entry_cnt_minus_one = 0;
u_int8_t target_ix;
u_int8_t tid_no;
u_int8_t sdtr_data;
u_int8_t extra_bytes;
u_int8_t scsi_cmd;
u_int32_t data_cnt;
scsiq->q1.q_no = 0;
if ((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0)
scsiq->q1.extra_bytes = 0;
retval = ASC_BUSY;
target_ix = scsiq->q2.target_ix;
tid_no = ASC_TIX_TO_TID(target_ix);
n_q_required = 1;
if (scsiq->cdbptr[0] == SCSICMD_RequestSense)
if ((sc->init_sdtr & scsiq->q1.target_id) != 0) {
sc->sdtr_done &= ~scsiq->q1.target_id;
sdtr_data = ASC_GET_MCODE_INIT_SDTR_AT_ID(iot, ioh, tid_no);
AscMsgOutSDTR(sc, sc->sdtr_period_tbl[(sdtr_data >> 4) &
(sc->max_sdtr_index - 1)],
sdtr_data & ASC_SYN_MAX_OFFSET);
scsiq->q1.cntl |= (ASC_QC_MSG_OUT | ASC_QC_URGENT);
}
/*
* if there is just one segment into S/G list then
* map it as it was a single request, filling
* data_addr and data_cnt of ASC_SCSIQ structure.
*/
if ((scsiq->q1.cntl & ASC_QC_SG_HEAD) != 0) {
sg_entry_cnt = sg_head->entry_cnt;
if (sg_entry_cnt < 1)
panic("AscExeScsiQueue: Queue with QC_SG_HEAD set but %d segs.",
sg_entry_cnt);
if (sg_entry_cnt > ASC_MAX_SG_LIST)
panic("AscExeScsiQueue: Queue with too many segs.");
if (sg_entry_cnt == 1) {
scsiq->q1.data_addr = sg_head->sg_list[0].addr;
scsiq->q1.data_cnt = sg_head->sg_list[0].bytes;
scsiq->q1.cntl &= ~(ASC_QC_SG_HEAD | ASC_QC_SG_SWAP_QUEUE);
}
sg_entry_cnt_minus_one = sg_entry_cnt - 1;
}
scsi_cmd = scsiq->cdbptr[0];
disable_syn_offset_one_fix = FALSE;
if ((sc->pci_fix_asyn_xfer & scsiq->q1.target_id) &&
!(sc->pci_fix_asyn_xfer_always & scsiq->q1.target_id)) {
if (scsiq->q1.cntl & ASC_QC_SG_HEAD) {
data_cnt = 0;
for (i = 0; i < sg_entry_cnt; i++)
data_cnt += sg_head->sg_list[i].bytes;
} else {
data_cnt = scsiq->q1.data_cnt;
}
if (data_cnt != 0ul) {
if (data_cnt < 512ul) {
disable_syn_offset_one_fix = TRUE;
} else {
if (scsi_cmd == SCSICMD_Inquiry ||
scsi_cmd == SCSICMD_RequestSense ||
scsi_cmd == SCSICMD_ReadCapacity ||
scsi_cmd == SCSICMD_ReadTOC ||
scsi_cmd == SCSICMD_ModeSelect6 ||
scsi_cmd == SCSICMD_ModeSense6 ||
scsi_cmd == SCSICMD_ModeSelect10 ||
scsi_cmd == SCSICMD_ModeSense10) {
disable_syn_offset_one_fix = TRUE;
}
}
}
}
if (disable_syn_offset_one_fix) {
scsiq->q2.tag_code &= ~M2_QTAG_MSG_SIMPLE;
scsiq->q2.tag_code |= (ASC_TAG_FLAG_DISABLE_ASYN_USE_SYN_FIX |
ASC_TAG_FLAG_DISABLE_DISCONNECT);
} else {
scsiq->q2.tag_code &= 0x23;
}
if ((scsiq->q1.cntl & ASC_QC_SG_HEAD) != 0) {
if (sc->bug_fix_cntl) {
if (sc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
if ((scsi_cmd == SCSICMD_Read6) || (scsi_cmd == SCSICMD_Read10)) {
addr = sg_head->sg_list[sg_entry_cnt_minus_one].addr +
sg_head->sg_list[sg_entry_cnt_minus_one].bytes;
extra_bytes = addr & 0x0003;
if ((extra_bytes != 0) &&
((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0)) {
scsiq->q2.tag_code |= ASC_TAG_FLAG_EXTRA_BYTES;
scsiq->q1.extra_bytes = extra_bytes;
sg_head->sg_list[sg_entry_cnt_minus_one].bytes -=
extra_bytes;
}
}
}
}
sg_head->entry_to_copy = sg_head->entry_cnt;
n_q_required = AscSgListToQueue(sg_entry_cnt);
if ((AscGetNumOfFreeQueue(sc, target_ix, n_q_required) >= n_q_required)
|| ((scsiq->q1.cntl & ASC_QC_URGENT) != 0)) {
retval = AscSendScsiQueue(sc, scsiq, n_q_required);
}
} else {
if (sc->bug_fix_cntl) {
if (sc->bug_fix_cntl & ASC_BUG_FIX_IF_NOT_DWB) {
if ((scsi_cmd == SCSICMD_Read6) || (scsi_cmd == SCSICMD_Read10)) {
addr = scsiq->q1.data_addr + scsiq->q1.data_cnt;
extra_bytes = addr & 0x0003;
if ((extra_bytes != 0) &&
((scsiq->q2.tag_code & ASC_TAG_FLAG_EXTRA_BYTES) == 0)) {
if ((scsiq->q1.data_cnt & 0x01FF) == 0) {
scsiq->q2.tag_code |= ASC_TAG_FLAG_EXTRA_BYTES;
scsiq->q1.data_cnt -= extra_bytes;
scsiq->q1.extra_bytes = extra_bytes;
}
}
}
}
}
n_q_required = 1;
if ((AscGetNumOfFreeQueue(sc, target_ix, 1) >= 1) ||
((scsiq->q1.cntl & ASC_QC_URGENT) != 0)) {
retval = AscSendScsiQueue(sc, scsiq, n_q_required);
}
}
return (retval);
}
static int
AscSendScsiQueue(ASC_SOFTC *sc, ASC_SCSI_Q *scsiq, u_int8_t n_q_required)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int8_t free_q_head;
u_int8_t next_qp;
u_int8_t tid_no;
u_int8_t target_ix;
int retval;
target_ix = scsiq->q2.target_ix;
tid_no = ASC_TIX_TO_TID(target_ix);
retval = ASC_BUSY;
free_q_head = ASC_GET_VAR_FREE_QHEAD(iot, ioh);
if ((next_qp = AscAllocMultipleFreeQueue(iot, ioh, free_q_head, n_q_required))
!= ASC_QLINK_END) {
if (n_q_required > 1) {
sc->last_q_shortage = 0;
scsiq->sg_head->queue_cnt = n_q_required - 1;
}
scsiq->q1.q_no = free_q_head;
if ((retval = AscPutReadySgListQueue(sc, scsiq, free_q_head)) == ASC_NOERROR) {
ASC_PUT_VAR_FREE_QHEAD(iot, ioh, next_qp);
sc->cur_total_qng += n_q_required;
sc->cur_dvc_qng[tid_no]++;
}
}
return (retval);
}
static int
AscPutReadySgListQueue(ASC_SOFTC *sc, ASC_SCSI_Q *scsiq, u_int8_t q_no)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int retval;
int i;
ASC_SG_HEAD *sg_head;
ASC_SG_LIST_Q scsi_sg_q;
u_int32_t saved_data_addr;
u_int32_t saved_data_cnt;
u_int16_t sg_list_dwords;
u_int16_t sg_index;
u_int16_t sg_entry_cnt;
u_int16_t q_addr;
u_int8_t next_qp;
saved_data_addr = scsiq->q1.data_addr;
saved_data_cnt = scsiq->q1.data_cnt;
if ((sg_head = scsiq->sg_head) != 0) {
scsiq->q1.data_addr = sg_head->sg_list[0].addr;
scsiq->q1.data_cnt = sg_head->sg_list[0].bytes;
sg_entry_cnt = sg_head->entry_cnt - 1;
if (sg_entry_cnt != 0) {
q_addr = ASC_QNO_TO_QADDR(q_no);
sg_index = 1;
scsiq->q1.sg_queue_cnt = sg_head->queue_cnt;
scsi_sg_q.sg_head_qp = q_no;
scsi_sg_q.cntl = ASC_QCSG_SG_XFER_LIST;
for (i = 0; i < sg_head->queue_cnt; i++) {
scsi_sg_q.seq_no = i + 1;
if (sg_entry_cnt > ASC_SG_LIST_PER_Q) {
sg_list_dwords = ASC_SG_LIST_PER_Q * 2;
sg_entry_cnt -= ASC_SG_LIST_PER_Q;
if (i == 0) {
scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q;
scsi_sg_q.sg_cur_list_cnt = ASC_SG_LIST_PER_Q;
} else {
scsi_sg_q.sg_list_cnt = ASC_SG_LIST_PER_Q - 1;
scsi_sg_q.sg_cur_list_cnt = ASC_SG_LIST_PER_Q - 1;
}
} else {
scsi_sg_q.cntl |= ASC_QCSG_SG_XFER_END;
sg_list_dwords = sg_entry_cnt << 1;
if (i == 0) {
scsi_sg_q.sg_list_cnt = sg_entry_cnt;
scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt;
} else {
scsi_sg_q.sg_list_cnt = sg_entry_cnt - 1;
scsi_sg_q.sg_cur_list_cnt = sg_entry_cnt - 1;
}
sg_entry_cnt = 0;
}
next_qp = AscReadLramByte(iot, ioh, q_addr + ASC_SCSIQ_B_FWD);
scsi_sg_q.q_no = next_qp;
q_addr = ASC_QNO_TO_QADDR(next_qp);
/*
* Tell the board how many entries are in the S/G list
*/
AscMemWordCopyToLram(iot, ioh, q_addr + ASC_SCSIQ_SGHD_CPY_BEG,
(const u_int16_t *) & scsi_sg_q,
sizeof(ASC_SG_LIST_Q) >> 1);
/*
* Tell the board the addresses of the S/G list segments
*/
AscMemDWordCopyToLram(iot, ioh, q_addr + ASC_SGQ_LIST_BEG,
(u_int32_t *) & sg_head->sg_list[sg_index],
sg_list_dwords);
sg_index += ASC_SG_LIST_PER_Q;
}
}
}
retval = AscPutReadyQueue(sc, scsiq, q_no);
scsiq->q1.data_addr = saved_data_addr;
scsiq->q1.data_cnt = saved_data_cnt;
return (retval);
}
static int
AscPutReadyQueue(ASC_SOFTC *sc, ASC_SCSI_Q *scsiq, u_int8_t q_no)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int16_t q_addr;
u_int8_t tid_no;
u_int8_t sdtr_data;
u_int8_t syn_period_ix;
u_int8_t syn_offset;
if (((sc->init_sdtr & scsiq->q1.target_id) != 0) &&
((sc->sdtr_done & scsiq->q1.target_id) == 0)) {
tid_no = ASC_TIX_TO_TID(scsiq->q2.target_ix);
sdtr_data = ASC_GET_MCODE_INIT_SDTR_AT_ID(iot, ioh, tid_no);
syn_period_ix = (sdtr_data >> 4) & (sc->max_sdtr_index - 1);
syn_offset = sdtr_data & ASC_SYN_MAX_OFFSET;
AscMsgOutSDTR(sc, sc->sdtr_period_tbl[syn_period_ix], syn_offset);
scsiq->q1.cntl |= ASC_QC_MSG_OUT;
}
q_addr = ASC_QNO_TO_QADDR(q_no);
if ((scsiq->q1.target_id & sc->use_tagged_qng) == 0) {
scsiq->q2.tag_code &= ~M2_QTAG_MSG_SIMPLE;
}
scsiq->q1.status = ASC_QS_FREE;
AscMemWordCopyToLram(iot, ioh, q_addr + ASC_SCSIQ_CDB_BEG,
(const u_int16_t *) scsiq->cdbptr, scsiq->q2.cdb_len >> 1);
AscPutSCSIQ(iot, ioh, q_addr + ASC_SCSIQ_CPY_BEG, scsiq);
/*
* Let's start the command
*/
AscWriteLramWord(iot, ioh, q_addr + ASC_SCSIQ_B_STATUS,
(scsiq->q1.q_no << 8) | ASC_QS_READY);
return (ASC_NOERROR);
}
static void
AscPutSCSIQ(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int16_t addr, ASC_SCSI_Q *scsiq)
{
u_int16_t val;
ASC_SET_CHIP_LRAM_ADDR(iot, ioh, addr);
/* ASC_SCSIQ_1 */
val = MAKEWORD(scsiq->q1.cntl, scsiq->q1.sg_queue_cnt);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, val);
val = MAKEWORD(scsiq->q1.target_id, scsiq->q1.target_lun);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, val);
val = LO_WORD(scsiq->q1.data_addr);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, val);
val = HI_WORD(scsiq->q1.data_addr);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, val);
val = LO_WORD(scsiq->q1.data_cnt);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, val);
val = HI_WORD(scsiq->q1.data_cnt);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, val);
val = LO_WORD(scsiq->q1.sense_addr);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, val);
val = HI_WORD(scsiq->q1.sense_addr);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, val);
val = MAKEWORD(scsiq->q1.sense_len, scsiq->q1.extra_bytes);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, val);
/* ASC_SCSIQ_2 */
val = LO_WORD(scsiq->q2.ccb_ptr);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, val);
val = HI_WORD(scsiq->q2.ccb_ptr);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, val);
val = MAKEWORD(scsiq->q2.target_ix, scsiq->q2.flag);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, val);
val = MAKEWORD(scsiq->q2.cdb_len, scsiq->q2.tag_code);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, val);
ASC_SET_CHIP_LRAM_DATA(iot, ioh, scsiq->q2.vm_id);
}
static int
AscSgListToQueue(int sg_list)
{
int n_sg_list_qs;
n_sg_list_qs = ((sg_list - 1) / ASC_SG_LIST_PER_Q);
if (((sg_list - 1) % ASC_SG_LIST_PER_Q) != 0)
n_sg_list_qs++;
return (n_sg_list_qs + 1);
}
static u_int
AscGetNumOfFreeQueue(ASC_SOFTC *sc, u_int8_t target_ix, u_int8_t n_qs)
{
u_int cur_used_qs;
u_int cur_free_qs;
if (n_qs == 1) {
cur_used_qs = sc->cur_total_qng +
sc->last_q_shortage +
ASC_MIN_FREE_Q;
} else {
cur_used_qs = sc->cur_total_qng + ASC_MIN_FREE_Q;
}
if ((cur_used_qs + n_qs) <= sc->max_total_qng) {
cur_free_qs = sc->max_total_qng - cur_used_qs;
return (cur_free_qs);
}
if (n_qs > 1)
if ((n_qs > sc->last_q_shortage) &&
(n_qs <= (sc->max_total_qng - ASC_MIN_FREE_Q))) {
sc->last_q_shortage = n_qs;
}
return (0);
}
static u_int8_t
AscAllocFreeQueue(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int8_t free_q_head)
{
u_int16_t q_addr;
u_int8_t next_qp;
u_int8_t q_status;
q_addr = ASC_QNO_TO_QADDR(free_q_head);
q_status = AscReadLramByte(iot, ioh, q_addr + ASC_SCSIQ_B_STATUS);
next_qp = AscReadLramByte(iot, ioh, q_addr + ASC_SCSIQ_B_FWD);
if (((q_status & ASC_QS_READY) == 0) && (next_qp != ASC_QLINK_END))
return (next_qp);
return (ASC_QLINK_END);
}
static u_int8_t
AscAllocMultipleFreeQueue(bus_space_tag_t iot, bus_space_handle_t ioh,
u_int8_t free_q_head, u_int8_t n_free_q)
{
u_int8_t i;
for (i = 0; i < n_free_q; i++) {
free_q_head = AscAllocFreeQueue(iot, ioh, free_q_head);
if (free_q_head == ASC_QLINK_END)
break;
}
return (free_q_head);
}
static int
AscStopQueueExe(bus_space_tag_t iot, bus_space_handle_t ioh)
{
int count = 0;
if (AscReadLramByte(iot, ioh, ASCV_STOP_CODE_B) == 0) {
AscWriteLramByte(iot, ioh, ASCV_STOP_CODE_B, ASC_STOP_REQ_RISC_STOP);
do {
if (AscReadLramByte(iot, ioh, ASCV_STOP_CODE_B) &
ASC_STOP_ACK_RISC_STOP)
return (1);
DvcSleepMilliSecond(100);
} while (count++ < 20);
}
return (0);
}
static void
AscStartQueueExe(bus_space_tag_t iot, bus_space_handle_t ioh)
{
if (AscReadLramByte(iot, ioh, ASCV_STOP_CODE_B) != 0)
AscWriteLramByte(iot, ioh, ASCV_STOP_CODE_B, 0);
}
static void
AscCleanUpBusyQueue(bus_space_tag_t iot, bus_space_handle_t ioh)
{
int count = 0;
u_int8_t stop_code;
if (AscReadLramByte(iot, ioh, ASCV_STOP_CODE_B) != 0) {
AscWriteLramByte(iot, ioh, ASCV_STOP_CODE_B, ASC_STOP_CLEAN_UP_BUSY_Q);
do {
stop_code = AscReadLramByte(iot, ioh, ASCV_STOP_CODE_B);
if ((stop_code & ASC_STOP_CLEAN_UP_BUSY_Q) == 0)
break;
DvcSleepMilliSecond(100);
} while (count++ < 20);
}
}
static int
_AscWaitQDone(bus_space_tag_t iot, bus_space_handle_t ioh, ASC_SCSI_Q *scsiq)
{
u_int16_t q_addr;
u_int8_t q_status;
int count = 0;
while (scsiq->q1.q_no == 0);
q_addr = ASC_QNO_TO_QADDR(scsiq->q1.q_no);
do {
q_status = AscReadLramByte(iot, ioh, q_addr + ASC_SCSIQ_B_STATUS);
DvcSleepMilliSecond(100L);
if (count++ > 30)
return (0);
} while ((q_status & ASC_QS_READY) != 0);
return (1);
}
static int
AscCleanUpDiscQueue(bus_space_tag_t iot, bus_space_handle_t ioh)
{
int count;
u_int8_t stop_code;
count = 0;
if (AscReadLramByte(iot, ioh, ASCV_STOP_CODE_B) != 0) {
AscWriteLramByte(iot, ioh, ASCV_STOP_CODE_B, ASC_STOP_CLEAN_UP_DISC_Q);
do {
stop_code = AscReadLramByte(iot, ioh, ASCV_STOP_CODE_B);
if ((stop_code & ASC_STOP_CLEAN_UP_DISC_Q) == 0)
break;
DvcSleepMilliSecond(100);
} while (count++ < 20);
}
return (1);
}
/******************************************************************************/
/* Abort and Reset CCB routines */
/******************************************************************************/
int
AscAbortCCB(ASC_SOFTC *sc, ADV_CCB *ccb)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int retval;
ASC_SCSI_BIT_ID_TYPE saved_unit_not_ready;
retval = -1;
saved_unit_not_ready = sc->unit_not_ready;
sc->unit_not_ready = 0xFF;
AscWaitISRDone(sc);
if (AscStopQueueExe(iot, ioh) == 1) {
if (AscRiscHaltedAbortCCB(sc, ccb) == 1) {
retval = 1;
AscCleanUpBusyQueue(iot, ioh);
AscStartQueueExe(iot, ioh);
} else {
retval = 0;
AscStartQueueExe(iot, ioh);
}
}
sc->unit_not_ready = saved_unit_not_ready;
return (retval);
}
static int
AscRiscHaltedAbortCCB(ASC_SOFTC *sc, ADV_CCB *ccb)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int16_t q_addr;
u_int8_t q_no;
ASC_QDONE_INFO scsiq_buf;
ASC_QDONE_INFO *scsiq;
ASC_ISR_CALLBACK asc_isr_callback;
int last_int_level;
asc_isr_callback = (ASC_ISR_CALLBACK) sc->isr_callback;
last_int_level = DvcEnterCritical();
scsiq = (ASC_QDONE_INFO *) & scsiq_buf;
for (q_no = ASC_MIN_ACTIVE_QNO; q_no <= sc->max_total_qng; q_no++) {
q_addr = ASC_QNO_TO_QADDR(q_no);
scsiq->d2.ccb_ptr = AscReadLramDWord(iot, ioh,
q_addr + ASC_SCSIQ_D_CCBPTR);
if (adv_ccb_phys_kv(sc, scsiq->d2.ccb_ptr) == ccb) {
_AscCopyLramScsiDoneQ(iot, ioh, q_addr, scsiq, sc->max_dma_count);
if (((scsiq->q_status & ASC_QS_READY) != 0)
&& ((scsiq->q_status & ASC_QS_ABORTED) == 0)
&& ((scsiq->cntl & ASC_QCSG_SG_XFER_LIST) == 0)) {
scsiq->q_status |= ASC_QS_ABORTED;
scsiq->d3.done_stat = ASC_QD_ABORTED_BY_HOST;
AscWriteLramDWord(iot, ioh, q_addr + ASC_SCSIQ_D_CCBPTR, 0L);
AscWriteLramByte(iot, ioh, q_addr + ASC_SCSIQ_B_STATUS,
scsiq->q_status);
(*asc_isr_callback) (sc, scsiq);
return (1);
}
}
}
DvcLeaveCritical(last_int_level);
return (0);
}
static int
AscRiscHaltedAbortTIX(ASC_SOFTC *sc, u_int8_t target_ix)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int16_t q_addr;
u_int8_t q_no;
ASC_QDONE_INFO scsiq_buf;
ASC_QDONE_INFO *scsiq;
ASC_ISR_CALLBACK asc_isr_callback;
int last_int_level;
asc_isr_callback = (ASC_ISR_CALLBACK) sc->isr_callback;
last_int_level = DvcEnterCritical();
scsiq = (ASC_QDONE_INFO *) & scsiq_buf;
for (q_no = ASC_MIN_ACTIVE_QNO; q_no <= sc->max_total_qng; q_no++) {
q_addr = ASC_QNO_TO_QADDR(q_no);
_AscCopyLramScsiDoneQ(iot, ioh, q_addr, scsiq, sc->max_dma_count);
if (((scsiq->q_status & ASC_QS_READY) != 0) &&
((scsiq->q_status & ASC_QS_ABORTED) == 0) &&
((scsiq->cntl & ASC_QCSG_SG_XFER_LIST) == 0)) {
if (scsiq->d2.target_ix == target_ix) {
scsiq->q_status |= ASC_QS_ABORTED;
scsiq->d3.done_stat = ASC_QD_ABORTED_BY_HOST;
AscWriteLramDWord(iot, ioh, q_addr + ASC_SCSIQ_D_CCBPTR, 0L);
AscWriteLramByte(iot, ioh, q_addr + ASC_SCSIQ_B_STATUS,
scsiq->q_status);
(*asc_isr_callback) (sc, scsiq);
}
}
}
DvcLeaveCritical(last_int_level);
return (1);
}
/*
* AscResetDevice calls _AscWaitQDone which requires interrupt enabled,
* so we cannot use this function with the actual NetBSD SCSI layer
* because at boot time interrupts are disabled.
*/
int
AscResetDevice(ASC_SOFTC *sc, u_char target_ix)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int retval;
u_int8_t tid_no;
ASC_SCSI_BIT_ID_TYPE target_id;
int i;
ASC_SCSI_REQ_Q scsiq_buf;
ASC_SCSI_REQ_Q *scsiq;
u_int8_t *buf;
ASC_SCSI_BIT_ID_TYPE saved_unit_not_ready;
tid_no = ASC_TIX_TO_TID(target_ix);
target_id = ASC_TID_TO_TARGET_ID(tid_no);
saved_unit_not_ready = sc->unit_not_ready;
sc->unit_not_ready = target_id;
retval = ASC_ERROR;
AscWaitTixISRDone(sc, target_ix);
if (AscStopQueueExe(iot, ioh) == 1) {
if (AscRiscHaltedAbortTIX(sc, target_ix) == 1) {
AscCleanUpBusyQueue(iot, ioh);
AscStartQueueExe(iot, ioh);
AscWaitTixISRDone(sc, target_ix);
retval = ASC_NOERROR;
scsiq = (ASC_SCSI_REQ_Q *) & scsiq_buf;
buf = (u_char *) & scsiq_buf;
for (i = 0; i < sizeof(ASC_SCSI_REQ_Q); i++)
*buf++ = 0x00;
scsiq->q1.status = (u_char) ASC_QS_READY;
scsiq->q2.cdb_len = 6;
scsiq->q2.tag_code = M2_QTAG_MSG_SIMPLE;
scsiq->q1.target_id = target_id;
scsiq->q2.target_ix = ASC_TIDLUN_TO_IX(tid_no, 0);
scsiq->cdbptr = scsiq->cdb;
scsiq->q1.cntl = ASC_QC_NO_CALLBACK | ASC_QC_MSG_OUT | ASC_QC_URGENT;
AscWriteLramByte(iot, ioh, ASCV_MSGOUT_BEG, M1_BUS_DVC_RESET);
sc->unit_not_ready &= ~target_id;
sc->sdtr_done |= target_id;
if (AscExeScsiQueue(sc, (ASC_SCSI_Q *) scsiq) == ASC_NOERROR) {
sc->unit_not_ready = target_id;
DvcSleepMilliSecond(1000);
_AscWaitQDone(iot, ioh, (ASC_SCSI_Q *) scsiq);
if (AscStopQueueExe(iot, ioh) == ASC_NOERROR) {
AscCleanUpDiscQueue(iot, ioh);
AscStartQueueExe(iot, ioh);
if (sc->pci_fix_asyn_xfer & target_id)
AscSetRunChipSynRegAtID(iot, ioh, tid_no,
ASYN_SDTR_DATA_FIX_PCI_REV_AB);
AscWaitTixISRDone(sc, target_ix);
}
} else
retval = ASC_BUSY;
sc->sdtr_done &= ~target_id;
} else {
retval = ASC_ERROR;
AscStartQueueExe(iot, ioh);
}
}
sc->unit_not_ready = saved_unit_not_ready;
return (retval);
}
int
AscResetBus(ASC_SOFTC *sc)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int retval;
int i;
sc->unit_not_ready = 0xFF;
retval = ASC_NOERROR;
AscWaitISRDone(sc);
AscStopQueueExe(iot, ioh);
sc->sdtr_done = 0;
AscResetChipAndScsiBus(iot, ioh);
DvcSleepMilliSecond((u_long) ((u_int16_t) sc->scsi_reset_wait * 1000));
AscReInitLram(sc);
for (i = 0; i <= ASC_MAX_TID; i++) {
sc->cur_dvc_qng[i] = 0;
if (sc->pci_fix_asyn_xfer & (ASC_SCSI_BIT_ID_TYPE) (0x01 << i))
AscSetChipSynRegAtID(iot, ioh, i, ASYN_SDTR_DATA_FIX_PCI_REV_AB);
}
ASC_SET_PC_ADDR(iot, ioh, ASC_MCODE_START_ADDR);
if (ASC_GET_PC_ADDR(iot, ioh) != ASC_MCODE_START_ADDR)
retval = ASC_ERROR;
if (AscStartChip(iot, ioh) == 0)
retval = ASC_ERROR;
AscStartQueueExe(iot, ioh);
sc->unit_not_ready = 0;
sc->queue_full_or_busy = 0;
return (retval);
}
/******************************************************************************/
/* Error Handling routines */
/******************************************************************************/
static int
AscSetLibErrorCode(ASC_SOFTC *sc, u_int16_t err_code)
{
/*
* if(sc->err_code == 0) { sc->err_code = err_code;
*/ AscWriteLramWord(sc->sc_iot, sc->sc_ioh, ASCV_ASCDVC_ERR_CODE_W,
err_code);
/*
* }
*/
return (err_code);
}
/******************************************************************************/
/* Handle bugged borads routines */
/******************************************************************************/
void
AscInquiryHandling(ASC_SOFTC *sc, u_int8_t tid_no, ASC_SCSI_INQUIRY *inq)
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
ASC_SCSI_BIT_ID_TYPE tid_bit = ASC_TIX_TO_TARGET_ID(tid_no);
ASC_SCSI_BIT_ID_TYPE orig_init_sdtr, orig_use_tagged_qng;
orig_init_sdtr = sc->init_sdtr;
orig_use_tagged_qng = sc->use_tagged_qng;
sc->init_sdtr &= ~tid_bit;
sc->can_tagged_qng &= ~tid_bit;
sc->use_tagged_qng &= ~tid_bit;
if (inq->byte3.rsp_data_fmt >= 2 || inq->byte2.ansi_apr_ver >= 2) {
if ((sc->sdtr_enable & tid_bit) && inq->byte7.Sync)
sc->init_sdtr |= tid_bit;
if ((sc->cmd_qng_enabled & tid_bit) && inq->byte7.CmdQue)
if (AscTagQueuingSafe(inq)) {
sc->use_tagged_qng |= tid_bit;
sc->can_tagged_qng |= tid_bit;
}
}
if (orig_use_tagged_qng != sc->use_tagged_qng) {
AscWriteLramByte(iot, ioh, ASCV_DISC_ENABLE_B,
sc->disc_enable);
AscWriteLramByte(iot, ioh, ASCV_USE_TAGGED_QNG_B,
sc->use_tagged_qng);
AscWriteLramByte(iot, ioh, ASCV_CAN_TAGGED_QNG_B,
sc->can_tagged_qng);
sc->max_dvc_qng[tid_no] =
sc->max_tag_qng[tid_no];
AscWriteLramByte(iot, ioh, ASCV_MAX_DVC_QNG_BEG + tid_no,
sc->max_dvc_qng[tid_no]);
}
if (orig_init_sdtr != sc->init_sdtr)
AscAsyncFix(sc, tid_no, inq);
}
static int
AscTagQueuingSafe(ASC_SCSI_INQUIRY *inq)
{
if ((inq->add_len >= 32) &&
(AscCompareString(inq->vendor_id, "QUANTUM XP34301", 15) == 0) &&
(AscCompareString(inq->product_rev_level, "1071", 4) == 0)) {
return 0;
}
return 1;
}
static void
AscAsyncFix(ASC_SOFTC *sc, u_int8_t tid_no, ASC_SCSI_INQUIRY *inq)
{
u_int8_t dvc_type;
ASC_SCSI_BIT_ID_TYPE tid_bits;
dvc_type = inq->byte0.peri_dvc_type;
tid_bits = ASC_TIX_TO_TARGET_ID(tid_no);
if (sc->bug_fix_cntl & ASC_BUG_FIX_ASYN_USE_SYN) {
if (!(sc->init_sdtr & tid_bits)) {
if ((dvc_type == SCSI_TYPE_CDROM) &&
(AscCompareString(inq->vendor_id, "HP ", 3) == 0)) {
sc->pci_fix_asyn_xfer_always |= tid_bits;
}
sc->pci_fix_asyn_xfer |= tid_bits;
if ((dvc_type == SCSI_TYPE_PROC) ||
(dvc_type == SCSI_TYPE_SCANNER)) {
sc->pci_fix_asyn_xfer &= ~tid_bits;
}
if ((dvc_type == SCSI_TYPE_SASD) &&
(AscCompareString(inq->vendor_id, "TANDBERG", 8) == 0) &&
(AscCompareString(inq->product_id, " TDC 36", 7) == 0)) {
sc->pci_fix_asyn_xfer &= ~tid_bits;
}
if ((dvc_type == SCSI_TYPE_SASD) &&
(AscCompareString(inq->vendor_id, "WANGTEK ", 8) == 0)) {
sc->pci_fix_asyn_xfer &= ~tid_bits;
}
if ((dvc_type == SCSI_TYPE_CDROM) &&
(AscCompareString(inq->vendor_id, "NEC ", 8) == 0) &&
(AscCompareString(inq->product_id, "CD-ROM DRIVE ", 16) == 0)) {
sc->pci_fix_asyn_xfer &= ~tid_bits;
}
if ((dvc_type == SCSI_TYPE_CDROM) &&
(AscCompareString(inq->vendor_id, "YAMAHA", 6) == 0) &&
(AscCompareString(inq->product_id, "CDR400", 6) == 0)) {
sc->pci_fix_asyn_xfer &= ~tid_bits;
}
if (sc->pci_fix_asyn_xfer & tid_bits) {
AscSetRunChipSynRegAtID(sc->sc_iot, sc->sc_ioh, tid_no,
ASYN_SDTR_DATA_FIX_PCI_REV_AB);
}
}
}
}
/******************************************************************************/
/* Miscellaneous routines */
/******************************************************************************/
static int
AscCompareString(const u_char *str1, const u_char *str2, int len)
{
int i;
int diff;
for (i = 0; i < len; i++) {
diff = (int) (str1[i] - str2[i]);
if (diff != 0)
return (diff);
}
return (0);
}
/******************************************************************************/
/* Device oriented routines */
/******************************************************************************/
static int
DvcEnterCritical(void)
{
int s;
s = splbio();
return (s);
}
static void
DvcLeaveCritical(int s)
{
splx(s);
}
static void
DvcSleepMilliSecond(u_int32_t n)
{
DELAY(n * 1000);
}
#ifdef UNUSED
static void
DvcDelayMicroSecond(u_int32_t n)
{
DELAY(n);
}
#endif
static void
DvcDelayNanoSecond(u_int32_t n)
{
DELAY((n + 999) / 1000);
}