NetBSD/sys/kern/subr_kmem.c
2010-01-31 11:54:32 +00:00

459 lines
12 KiB
C

/* $NetBSD: subr_kmem.c,v 1.32 2010/01/31 11:54:32 skrll Exp $ */
/*-
* Copyright (c) 2009 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c)2006 YAMAMOTO Takashi,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* allocator of kernel wired memory.
*
* TODO:
* - worth to have "intrsafe" version? maybe..
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.32 2010/01/31 11:54:32 skrll Exp $");
#include <sys/param.h>
#include <sys/callback.h>
#include <sys/kmem.h>
#include <sys/vmem.h>
#include <sys/debug.h>
#include <sys/lockdebug.h>
#include <sys/cpu.h>
#include <uvm/uvm_extern.h>
#include <uvm/uvm_map.h>
#include <uvm/uvm_kmguard.h>
#include <lib/libkern/libkern.h>
#define KMEM_QUANTUM_SIZE (ALIGNBYTES + 1)
#define KMEM_QCACHE_MAX (KMEM_QUANTUM_SIZE * 32)
#define KMEM_CACHE_COUNT 16
typedef struct kmem_cache {
pool_cache_t kc_cache;
struct pool_allocator kc_pa;
char kc_name[12];
} kmem_cache_t;
static vmem_t *kmem_arena;
static struct callback_entry kmem_kva_reclaim_entry;
static kmem_cache_t kmem_cache[KMEM_CACHE_COUNT + 1];
static size_t kmem_cache_max;
static size_t kmem_cache_min;
static size_t kmem_cache_mask;
static int kmem_cache_shift;
#if defined(DEBUG)
int kmem_guard_depth;
size_t kmem_guard_size;
static struct uvm_kmguard kmem_guard;
static void *kmem_freecheck;
#define KMEM_POISON
#define KMEM_REDZONE
#define KMEM_SIZE
#define KMEM_GUARD
#endif /* defined(DEBUG) */
#if defined(KMEM_POISON)
static void kmem_poison_fill(void *, size_t);
static void kmem_poison_check(void *, size_t);
#else /* defined(KMEM_POISON) */
#define kmem_poison_fill(p, sz) /* nothing */
#define kmem_poison_check(p, sz) /* nothing */
#endif /* defined(KMEM_POISON) */
#if defined(KMEM_REDZONE)
#define REDZONE_SIZE 1
#else /* defined(KMEM_REDZONE) */
#define REDZONE_SIZE 0
#endif /* defined(KMEM_REDZONE) */
#if defined(KMEM_SIZE)
#define SIZE_SIZE (max(KMEM_QUANTUM_SIZE, sizeof(size_t)))
static void kmem_size_set(void *, size_t);
static void kmem_size_check(const void *, size_t);
#else
#define SIZE_SIZE 0
#define kmem_size_set(p, sz) /* nothing */
#define kmem_size_check(p, sz) /* nothing */
#endif
static vmem_addr_t kmem_backend_alloc(vmem_t *, vmem_size_t, vmem_size_t *,
vm_flag_t);
static void kmem_backend_free(vmem_t *, vmem_addr_t, vmem_size_t);
static int kmem_kva_reclaim_callback(struct callback_entry *, void *, void *);
CTASSERT(KM_SLEEP == PR_WAITOK);
CTASSERT(KM_NOSLEEP == PR_NOWAIT);
static inline vm_flag_t
kmf_to_vmf(km_flag_t kmflags)
{
vm_flag_t vmflags;
KASSERT((kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
KASSERT((~kmflags & (KM_SLEEP|KM_NOSLEEP)) != 0);
vmflags = 0;
if ((kmflags & KM_SLEEP) != 0) {
vmflags |= VM_SLEEP;
}
if ((kmflags & KM_NOSLEEP) != 0) {
vmflags |= VM_NOSLEEP;
}
return vmflags;
}
static void *
kmem_poolpage_alloc(struct pool *pool, int prflags)
{
return (void *)vmem_alloc(kmem_arena, pool->pr_alloc->pa_pagesz,
kmf_to_vmf(prflags) | VM_INSTANTFIT);
}
static void
kmem_poolpage_free(struct pool *pool, void *addr)
{
vmem_free(kmem_arena, (vmem_addr_t)addr, pool->pr_alloc->pa_pagesz);
}
/* ---- kmem API */
/*
* kmem_alloc: allocate wired memory.
*
* => must not be called from interrupt context.
*/
void *
kmem_alloc(size_t size, km_flag_t kmflags)
{
kmem_cache_t *kc;
uint8_t *p;
KASSERT(!cpu_intr_p());
KASSERT(!cpu_softintr_p());
KASSERT(size > 0);
#ifdef KMEM_GUARD
if (size <= kmem_guard_size) {
return uvm_kmguard_alloc(&kmem_guard, size,
(kmflags & KM_SLEEP) != 0);
}
#endif
size += REDZONE_SIZE + SIZE_SIZE;
if (size >= kmem_cache_min && size <= kmem_cache_max) {
kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
KASSERT(size <= kc->kc_pa.pa_pagesz);
kmflags &= (KM_SLEEP | KM_NOSLEEP);
p = pool_cache_get(kc->kc_cache, kmflags);
} else {
p = (void *)vmem_alloc(kmem_arena, size,
kmf_to_vmf(kmflags) | VM_INSTANTFIT);
}
if (__predict_true(p != NULL)) {
kmem_poison_check(p, kmem_roundup_size(size));
FREECHECK_OUT(&kmem_freecheck, p);
kmem_size_set(p, size);
p = (uint8_t *)p + SIZE_SIZE;
}
return p;
}
/*
* kmem_zalloc: allocate wired memory.
*
* => must not be called from interrupt context.
*/
void *
kmem_zalloc(size_t size, km_flag_t kmflags)
{
void *p;
p = kmem_alloc(size, kmflags);
if (p != NULL) {
memset(p, 0, size);
}
return p;
}
/*
* kmem_free: free wired memory allocated by kmem_alloc.
*
* => must not be called from interrupt context.
*/
void
kmem_free(void *p, size_t size)
{
kmem_cache_t *kc;
KASSERT(!cpu_intr_p());
KASSERT(!cpu_softintr_p());
KASSERT(p != NULL);
KASSERT(size > 0);
#ifdef KMEM_GUARD
if (size <= kmem_guard_size) {
uvm_kmguard_free(&kmem_guard, size, p);
return;
}
#endif
size += SIZE_SIZE;
p = (uint8_t *)p - SIZE_SIZE;
kmem_size_check(p, size + REDZONE_SIZE);
FREECHECK_IN(&kmem_freecheck, p);
LOCKDEBUG_MEM_CHECK(p, size);
kmem_poison_check((char *)p + size,
kmem_roundup_size(size + REDZONE_SIZE) - size);
kmem_poison_fill(p, size);
size += REDZONE_SIZE;
if (size >= kmem_cache_min && size <= kmem_cache_max) {
kc = &kmem_cache[(size + kmem_cache_mask) >> kmem_cache_shift];
KASSERT(size <= kc->kc_pa.pa_pagesz);
pool_cache_put(kc->kc_cache, p);
} else {
vmem_free(kmem_arena, (vmem_addr_t)p, size);
}
}
void
kmem_init(void)
{
kmem_cache_t *kc;
size_t sz;
int i;
#ifdef KMEM_GUARD
uvm_kmguard_init(&kmem_guard, &kmem_guard_depth, &kmem_guard_size,
kernel_map);
#endif
kmem_arena = vmem_create("kmem", 0, 0, KMEM_QUANTUM_SIZE,
kmem_backend_alloc, kmem_backend_free, NULL, KMEM_QCACHE_MAX,
VM_SLEEP, IPL_NONE);
callback_register(&vm_map_to_kernel(kernel_map)->vmk_reclaim_callback,
&kmem_kva_reclaim_entry, kmem_arena, kmem_kva_reclaim_callback);
/*
* kmem caches start at twice the size of the largest vmem qcache
* and end at PAGE_SIZE or earlier. assert that KMEM_QCACHE_MAX
* is a power of two.
*/
KASSERT(ffs(KMEM_QCACHE_MAX) != 0);
KASSERT(KMEM_QCACHE_MAX - (1 << (ffs(KMEM_QCACHE_MAX) - 1)) == 0);
kmem_cache_shift = ffs(KMEM_QCACHE_MAX);
kmem_cache_min = 1 << kmem_cache_shift;
kmem_cache_mask = kmem_cache_min - 1;
for (i = 1; i <= KMEM_CACHE_COUNT; i++) {
sz = i << kmem_cache_shift;
if (sz > PAGE_SIZE) {
break;
}
kmem_cache_max = sz;
kc = &kmem_cache[i];
kc->kc_pa.pa_pagesz = sz;
kc->kc_pa.pa_alloc = kmem_poolpage_alloc;
kc->kc_pa.pa_free = kmem_poolpage_free;
sprintf(kc->kc_name, "kmem-%zu", sz);
kc->kc_cache = pool_cache_init(sz,
KMEM_QUANTUM_SIZE, 0, PR_NOALIGN | PR_NOTOUCH,
kc->kc_name, &kc->kc_pa, IPL_NONE,
NULL, NULL, NULL);
KASSERT(kc->kc_cache != NULL);
}
}
size_t
kmem_roundup_size(size_t size)
{
return vmem_roundup_size(kmem_arena, size);
}
/* ---- uvm glue */
static vmem_addr_t
kmem_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
vm_flag_t vmflags)
{
uvm_flag_t uflags;
vaddr_t va;
KASSERT(dummy == NULL);
KASSERT(size != 0);
KASSERT((vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
KASSERT((~vmflags & (VM_SLEEP|VM_NOSLEEP)) != 0);
if ((vmflags & VM_NOSLEEP) != 0) {
uflags = UVM_KMF_TRYLOCK | UVM_KMF_NOWAIT;
} else {
uflags = UVM_KMF_WAITVA;
}
*resultsize = size = round_page(size);
va = uvm_km_alloc(kernel_map, size, 0,
uflags | UVM_KMF_WIRED | UVM_KMF_CANFAIL);
if (va != 0) {
kmem_poison_fill((void *)va, size);
}
return (vmem_addr_t)va;
}
static void
kmem_backend_free(vmem_t *dummy, vmem_addr_t addr, vmem_size_t size)
{
KASSERT(dummy == NULL);
KASSERT(addr != 0);
KASSERT(size != 0);
KASSERT(size == round_page(size));
kmem_poison_check((void *)addr, size);
uvm_km_free(kernel_map, (vaddr_t)addr, size, UVM_KMF_WIRED);
}
static int
kmem_kva_reclaim_callback(struct callback_entry *ce, void *obj, void *arg)
{
vmem_t *vm = obj;
vmem_reap(vm);
return CALLBACK_CHAIN_CONTINUE;
}
/* ---- debug */
#if defined(KMEM_POISON)
#if defined(_LP64)
#define PRIME 0x9e37fffffffc0001UL
#else /* defined(_LP64) */
#define PRIME 0x9e3779b1
#endif /* defined(_LP64) */
static inline uint8_t
kmem_poison_pattern(const void *p)
{
return (uint8_t)((((uintptr_t)p) * PRIME)
>> ((sizeof(uintptr_t) - sizeof(uint8_t))) * CHAR_BIT);
}
static void
kmem_poison_fill(void *p, size_t sz)
{
uint8_t *cp;
const uint8_t *ep;
cp = p;
ep = cp + sz;
while (cp < ep) {
*cp = kmem_poison_pattern(cp);
cp++;
}
}
static void
kmem_poison_check(void *p, size_t sz)
{
uint8_t *cp;
const uint8_t *ep;
cp = p;
ep = cp + sz;
while (cp < ep) {
const uint8_t expected = kmem_poison_pattern(cp);
if (*cp != expected) {
panic("%s: %p: 0x%02x != 0x%02x\n",
__func__, cp, *cp, expected);
}
cp++;
}
}
#endif /* defined(KMEM_POISON) */
#if defined(KMEM_SIZE)
static void
kmem_size_set(void *p, size_t sz)
{
memcpy(p, &sz, sizeof(sz));
}
static void
kmem_size_check(const void *p, size_t sz)
{
size_t psz;
memcpy(&psz, p, sizeof(psz));
if (psz != sz) {
panic("kmem_free(%p, %zu) != allocated size %zu",
(const uint8_t *)p + SIZE_SIZE, sz - SIZE_SIZE, psz);
}
}
#endif /* defined(KMEM_SIZE) */