NetBSD/sys/arch/powerpc/oea/cpu_subr.c

1277 lines
31 KiB
C

/* $NetBSD: cpu_subr.c,v 1.54 2009/11/21 17:40:29 rmind Exp $ */
/*-
* Copyright (c) 2001 Matt Thomas.
* Copyright (c) 2001 Tsubai Masanari.
* Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by
* Internet Research Institute, Inc.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.54 2009/11/21 17:40:29 rmind Exp $");
#include "opt_ppcparam.h"
#include "opt_multiprocessor.h"
#include "opt_altivec.h"
#include "sysmon_envsys.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/types.h>
#include <sys/lwp.h>
#include <sys/malloc.h>
#include <uvm/uvm_extern.h>
#include <powerpc/oea/hid.h>
#include <powerpc/oea/hid_601.h>
#include <powerpc/spr.h>
#include <powerpc/oea/cpufeat.h>
#include <dev/sysmon/sysmonvar.h>
static void cpu_enable_l2cr(register_t);
static void cpu_enable_l3cr(register_t);
static void cpu_config_l2cr(int);
static void cpu_config_l3cr(int);
static void cpu_probe_speed(struct cpu_info *);
static void cpu_idlespin(void);
#if NSYSMON_ENVSYS > 0
static void cpu_tau_setup(struct cpu_info *);
static void cpu_tau_refresh(struct sysmon_envsys *, envsys_data_t *);
#endif
int cpu;
int ncpus;
struct fmttab {
register_t fmt_mask;
register_t fmt_value;
const char *fmt_string;
};
/*
* This should be one per CPU but since we only support it on 750 variants it
* doesn't realy matter since none of them supports SMP
*/
envsys_data_t sensor;
static const struct fmttab cpu_7450_l2cr_formats[] = {
{ L2CR_L2E, 0, " disabled" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
{ L2CR_L2E, ~0, " 256KB L2 cache" },
{ L2CR_L2PE, 0, " no parity" },
{ L2CR_L2PE, ~0, " parity enabled" },
{ 0, 0, NULL }
};
static const struct fmttab cpu_7448_l2cr_formats[] = {
{ L2CR_L2E, 0, " disabled" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
{ L2CR_L2E, ~0, " 1MB L2 cache" },
{ L2CR_L2PE, 0, " no parity" },
{ L2CR_L2PE, ~0, " parity enabled" },
{ 0, 0, NULL }
};
static const struct fmttab cpu_7457_l2cr_formats[] = {
{ L2CR_L2E, 0, " disabled" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
{ L2CR_L2E, ~0, " 512KB L2 cache" },
{ L2CR_L2PE, 0, " no parity" },
{ L2CR_L2PE, ~0, " parity enabled" },
{ 0, 0, NULL }
};
static const struct fmttab cpu_7450_l3cr_formats[] = {
{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
{ L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
{ L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
{ L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
{ L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
{ L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
{ L3CR_L3SIZ, ~0, " L3 cache" },
{ L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
{ L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
{ L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
{ L3CR_L3CLK, ~0, " at" },
{ L3CR_L3CLK, L3CLK_20, " 2:1" },
{ L3CR_L3CLK, L3CLK_25, " 2.5:1" },
{ L3CR_L3CLK, L3CLK_30, " 3:1" },
{ L3CR_L3CLK, L3CLK_35, " 3.5:1" },
{ L3CR_L3CLK, L3CLK_40, " 4:1" },
{ L3CR_L3CLK, L3CLK_50, " 5:1" },
{ L3CR_L3CLK, L3CLK_60, " 6:1" },
{ L3CR_L3CLK, ~0, " ratio" },
{ 0, 0, NULL },
};
static const struct fmttab cpu_ibm750_l2cr_formats[] = {
{ L2CR_L2E, 0, " disabled" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
{ 0, ~0, " 512KB" },
{ L2CR_L2WT, L2CR_L2WT, " WT" },
{ L2CR_L2WT, 0, " WB" },
{ L2CR_L2PE, L2CR_L2PE, " with ECC" },
{ 0, ~0, " L2 cache" },
{ 0, 0, NULL }
};
static const struct fmttab cpu_l2cr_formats[] = {
{ L2CR_L2E, 0, " disabled" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
{ L2CR_L2PE, L2CR_L2PE, " parity" },
{ L2CR_L2PE, 0, " no-parity" },
{ L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
{ L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
{ L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
{ L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
{ L2CR_L2WT, L2CR_L2WT, " WT" },
{ L2CR_L2WT, 0, " WB" },
{ L2CR_L2E, ~0, " L2 cache" },
{ L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
{ L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
{ L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
{ L2CR_L2CLK, ~0, " at" },
{ L2CR_L2CLK, L2CLK_10, " 1:1" },
{ L2CR_L2CLK, L2CLK_15, " 1.5:1" },
{ L2CR_L2CLK, L2CLK_20, " 2:1" },
{ L2CR_L2CLK, L2CLK_25, " 2.5:1" },
{ L2CR_L2CLK, L2CLK_30, " 3:1" },
{ L2CR_L2CLK, L2CLK_35, " 3.5:1" },
{ L2CR_L2CLK, L2CLK_40, " 4:1" },
{ L2CR_L2CLK, ~0, " ratio" },
{ 0, 0, NULL }
};
static void cpu_fmttab_print(const struct fmttab *, register_t);
struct cputab {
const char name[8];
uint16_t version;
uint16_t revfmt;
};
#define REVFMT_MAJMIN 1 /* %u.%u */
#define REVFMT_HEX 2 /* 0x%04x */
#define REVFMT_DEC 3 /* %u */
static const struct cputab models[] = {
{ "601", MPC601, REVFMT_DEC },
{ "602", MPC602, REVFMT_DEC },
{ "603", MPC603, REVFMT_MAJMIN },
{ "603e", MPC603e, REVFMT_MAJMIN },
{ "603ev", MPC603ev, REVFMT_MAJMIN },
{ "G2", MPCG2, REVFMT_MAJMIN },
{ "604", MPC604, REVFMT_MAJMIN },
{ "604e", MPC604e, REVFMT_MAJMIN },
{ "604ev", MPC604ev, REVFMT_MAJMIN },
{ "620", MPC620, REVFMT_HEX },
{ "750", MPC750, REVFMT_MAJMIN },
{ "750FX", IBM750FX, REVFMT_MAJMIN },
{ "7400", MPC7400, REVFMT_MAJMIN },
{ "7410", MPC7410, REVFMT_MAJMIN },
{ "7450", MPC7450, REVFMT_MAJMIN },
{ "7455", MPC7455, REVFMT_MAJMIN },
{ "7457", MPC7457, REVFMT_MAJMIN },
{ "7447A", MPC7447A, REVFMT_MAJMIN },
{ "7448", MPC7448, REVFMT_MAJMIN },
{ "8240", MPC8240, REVFMT_MAJMIN },
{ "8245", MPC8245, REVFMT_MAJMIN },
{ "970", IBM970, REVFMT_MAJMIN },
{ "970FX", IBM970FX, REVFMT_MAJMIN },
{ "970MP", IBM970MP, REVFMT_MAJMIN },
{ "POWER3II", IBMPOWER3II, REVFMT_MAJMIN },
{ "", 0, REVFMT_HEX }
};
#ifdef MULTIPROCESSOR
struct cpu_info cpu_info[CPU_MAXNUM] = { { .ci_curlwp = &lwp0, }, };
volatile struct cpu_hatch_data *cpu_hatch_data;
volatile int cpu_hatch_stack;
extern int ticks_per_intr;
#include <powerpc/oea/bat.h>
#include <arch/powerpc/pic/picvar.h>
#include <arch/powerpc/pic/ipivar.h>
extern struct bat battable[];
#else
struct cpu_info cpu_info[1] = { { .ci_curlwp = &lwp0, }, };
#endif /*MULTIPROCESSOR*/
int cpu_altivec;
int cpu_psluserset, cpu_pslusermod;
char cpu_model[80];
/* This is to be called from locore.S, and nowhere else. */
void
cpu_model_init(void)
{
u_int pvr, vers;
pvr = mfpvr();
vers = pvr >> 16;
oeacpufeat = 0;
if ((vers >= IBMRS64II && vers <= IBM970GX) || vers == MPC620 ||
vers == IBMCELL || vers == IBMPOWER6P5)
oeacpufeat |= OEACPU_64 | OEACPU_64_BRIDGE | OEACPU_NOBAT;
else if (vers == MPC601)
oeacpufeat |= OEACPU_601;
else if (MPC745X_P(vers) && vers != MPC7450)
oeacpufeat |= OEACPU_XBSEN | OEACPU_HIGHBAT | OEACPU_HIGHSPRG;
}
void
cpu_fmttab_print(const struct fmttab *fmt, register_t data)
{
for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
(data & fmt->fmt_mask) == fmt->fmt_value)
aprint_normal("%s", fmt->fmt_string);
}
}
void
cpu_idlespin(void)
{
register_t msr;
if (powersave <= 0)
return;
__asm volatile(
"sync;"
"mfmsr %0;"
"oris %0,%0,%1@h;" /* enter power saving mode */
"mtmsr %0;"
"isync;"
: "=r"(msr)
: "J"(PSL_POW));
}
void
cpu_probe_cache(void)
{
u_int assoc, pvr, vers;
pvr = mfpvr();
vers = pvr >> 16;
/* Presently common across almost all implementations. */
curcpu()->ci_ci.dcache_line_size = 32;
curcpu()->ci_ci.icache_line_size = 32;
switch (vers) {
#define K *1024
case IBM750FX:
case MPC601:
case MPC750:
case MPC7400:
case MPC7447A:
case MPC7448:
case MPC7450:
case MPC7455:
case MPC7457:
curcpu()->ci_ci.dcache_size = 32 K;
curcpu()->ci_ci.icache_size = 32 K;
assoc = 8;
break;
case MPC603:
curcpu()->ci_ci.dcache_size = 8 K;
curcpu()->ci_ci.icache_size = 8 K;
assoc = 2;
break;
case MPC603e:
case MPC603ev:
case MPC604:
case MPC8240:
case MPC8245:
case MPCG2:
curcpu()->ci_ci.dcache_size = 16 K;
curcpu()->ci_ci.icache_size = 16 K;
assoc = 4;
break;
case MPC604e:
case MPC604ev:
curcpu()->ci_ci.dcache_size = 32 K;
curcpu()->ci_ci.icache_size = 32 K;
assoc = 4;
break;
case IBMPOWER3II:
curcpu()->ci_ci.dcache_size = 64 K;
curcpu()->ci_ci.icache_size = 32 K;
curcpu()->ci_ci.dcache_line_size = 128;
curcpu()->ci_ci.icache_line_size = 128;
assoc = 128; /* not a typo */
break;
case IBM970:
case IBM970FX:
case IBM970MP:
curcpu()->ci_ci.dcache_size = 32 K;
curcpu()->ci_ci.icache_size = 64 K;
curcpu()->ci_ci.dcache_line_size = 128;
curcpu()->ci_ci.icache_line_size = 128;
assoc = 2;
break;
default:
curcpu()->ci_ci.dcache_size = PAGE_SIZE;
curcpu()->ci_ci.icache_size = PAGE_SIZE;
assoc = 1;
#undef K
}
/*
* Possibly recolor.
*/
uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
}
struct cpu_info *
cpu_attach_common(struct device *self, int id)
{
struct cpu_info *ci;
u_int pvr, vers;
ci = &cpu_info[id];
#ifndef MULTIPROCESSOR
/*
* If this isn't the primary CPU, print an error message
* and just bail out.
*/
if (id != 0) {
aprint_normal(": ID %d\n", id);
aprint_normal("%s: processor off-line; multiprocessor support "
"not present in kernel\n", self->dv_xname);
return (NULL);
}
#endif
ci->ci_cpuid = id;
ci->ci_intrdepth = -1;
ci->ci_dev = self;
ci->ci_idlespin = cpu_idlespin;
pvr = mfpvr();
vers = (pvr >> 16) & 0xffff;
switch (id) {
case 0:
/* load my cpu_number to PIR */
switch (vers) {
case MPC601:
case MPC604:
case MPC604e:
case MPC604ev:
case MPC7400:
case MPC7410:
case MPC7447A:
case MPC7448:
case MPC7450:
case MPC7455:
case MPC7457:
mtspr(SPR_PIR, id);
}
cpu_setup(self, ci);
break;
default:
if (id >= CPU_MAXNUM) {
aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
panic("cpuattach");
}
#ifndef MULTIPROCESSOR
aprint_normal(" not configured\n");
return NULL;
#else
mi_cpu_attach(ci);
break;
#endif
}
return (ci);
}
void
cpu_setup(struct device *self, struct cpu_info *ci)
{
u_int hid0, hid0_save, pvr, vers;
const char *bitmask;
char hidbuf[128];
char model[80];
pvr = mfpvr();
vers = (pvr >> 16) & 0xffff;
cpu_identify(model, sizeof(model));
aprint_normal(": %s, ID %d%s\n", model, cpu_number(),
cpu_number() == 0 ? " (primary)" : "");
/* set the cpu number */
ci->ci_cpuid = cpu_number();
hid0_save = hid0 = mfspr(SPR_HID0);
cpu_probe_cache();
/*
* Configure power-saving mode.
*/
switch (vers) {
case MPC604:
case MPC604e:
case MPC604ev:
/*
* Do not have HID0 support settings, but can support
* MSR[POW] off
*/
powersave = 1;
break;
case MPC603:
case MPC603e:
case MPC603ev:
case MPC750:
case IBM750FX:
case MPC7400:
case MPC7410:
case MPC8240:
case MPC8245:
case MPCG2:
/* Select DOZE mode. */
hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
hid0 |= HID0_DOZE | HID0_DPM;
powersave = 1;
break;
case MPC7447A:
case MPC7448:
case MPC7457:
case MPC7455:
case MPC7450:
/* Enable the 7450 branch caches */
hid0 |= HID0_SGE | HID0_BTIC;
hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
/* Enable more and larger BAT registers */
if (oeacpufeat & OEACPU_XBSEN)
hid0 |= HID0_XBSEN;
if (oeacpufeat & OEACPU_HIGHBAT)
hid0 |= HID0_HIGH_BAT_EN;
/* Disable BTIC on 7450 Rev 2.0 or earlier */
if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
hid0 &= ~HID0_BTIC;
/* Select NAP mode. */
hid0 &= ~HID0_SLEEP;
hid0 |= HID0_NAP | HID0_DPM;
powersave = 1;
break;
case IBM970:
case IBM970FX:
case IBM970MP:
case IBMPOWER3II:
default:
/* No power-saving mode is available. */ ;
}
#ifdef NAPMODE
switch (vers) {
case IBM750FX:
case MPC750:
case MPC7400:
/* Select NAP mode. */
hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
hid0 |= HID0_NAP;
break;
}
#endif
switch (vers) {
case IBM750FX:
case MPC750:
hid0 &= ~HID0_DBP; /* XXX correct? */
hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
break;
case MPC7400:
case MPC7410:
hid0 &= ~HID0_SPD;
hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
hid0 |= HID0_EIEC;
break;
}
if (hid0 != hid0_save) {
mtspr(SPR_HID0, hid0);
__asm volatile("sync;isync");
}
switch (vers) {
case MPC601:
bitmask = HID0_601_BITMASK;
break;
case MPC7450:
case MPC7455:
case MPC7457:
bitmask = HID0_7450_BITMASK;
break;
case IBM970:
case IBM970FX:
case IBM970MP:
bitmask = 0;
break;
default:
bitmask = HID0_BITMASK;
break;
}
snprintb(hidbuf, sizeof hidbuf, bitmask, hid0);
aprint_normal("%s: HID0 %s, powersave: %d\n", self->dv_xname, hidbuf,
powersave);
ci->ci_khz = 0;
/*
* Display speed and cache configuration.
*/
switch (vers) {
case MPC604:
case MPC604e:
case MPC604ev:
case MPC750:
case IBM750FX:
case MPC7400:
case MPC7410:
case MPC7447A:
case MPC7448:
case MPC7450:
case MPC7455:
case MPC7457:
aprint_normal("%s: ", self->dv_xname);
cpu_probe_speed(ci);
aprint_normal("%u.%02u MHz",
ci->ci_khz / 1000, (ci->ci_khz / 10) % 100);
switch (vers) {
case MPC7450: /* 7441 does not have L3! */
case MPC7455: /* 7445 does not have L3! */
case MPC7457: /* 7447 does not have L3! */
cpu_config_l3cr(vers);
break;
case IBM750FX:
case MPC750:
case MPC7400:
case MPC7410:
case MPC7447A:
case MPC7448:
cpu_config_l2cr(pvr);
break;
default:
break;
}
aprint_normal("\n");
break;
}
#if NSYSMON_ENVSYS > 0
/*
* Attach MPC750 temperature sensor to the envsys subsystem.
* XXX the 74xx series also has this sensor, but it is not
* XXX supported by Motorola and may return values that are off by
* XXX 35-55 degrees C.
*/
if (vers == MPC750 || vers == IBM750FX)
cpu_tau_setup(ci);
#endif
evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
NULL, self->dv_xname, "clock");
evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR,
NULL, self->dv_xname, "soft clock");
evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR,
NULL, self->dv_xname, "soft net");
evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR,
NULL, self->dv_xname, "soft serial");
evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
NULL, self->dv_xname, "traps");
evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "kernel DSI traps");
evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "user DSI traps");
evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
&ci->ci_ev_udsi, self->dv_xname, "user DSI failures");
evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "kernel ISI traps");
evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "user ISI traps");
evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
&ci->ci_ev_isi, self->dv_xname, "user ISI failures");
evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "system call traps");
evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "PGM traps");
evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "FPU unavailable traps");
evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
&ci->ci_ev_fpu, self->dv_xname, "FPU context switches");
evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "user alignment traps");
evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
&ci->ci_ev_ali, self->dv_xname, "user alignment traps");
evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
&ci->ci_ev_umchk, self->dv_xname, "user MCHK failures");
evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "AltiVec unavailable");
#ifdef ALTIVEC
if (cpu_altivec) {
evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
&ci->ci_ev_vec, self->dv_xname, "AltiVec context switches");
}
#endif
evcnt_attach_dynamic(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
NULL, self->dv_xname, "IPIs");
}
/*
* According to a document labeled "PVR Register Settings":
** For integrated microprocessors the PVR register inside the device
** will identify the version of the microprocessor core. You must also
** read the Device ID, PCI register 02, to identify the part and the
** Revision ID, PCI register 08, to identify the revision of the
** integrated microprocessor.
* This apparently applies to 8240/8245/8241, PVR 00810101 and 80811014
*/
void
cpu_identify(char *str, size_t len)
{
u_int pvr, major, minor;
uint16_t vers, rev, revfmt;
const struct cputab *cp;
const char *name;
size_t n;
pvr = mfpvr();
vers = pvr >> 16;
rev = pvr;
switch (vers) {
case MPC7410:
minor = (pvr >> 0) & 0xff;
major = minor <= 4 ? 1 : 2;
break;
case MPCG2: /*XXX see note above */
major = (pvr >> 4) & 0xf;
minor = (pvr >> 0) & 0xf;
break;
default:
major = (pvr >> 8) & 0xf;
minor = (pvr >> 0) & 0xf;
}
for (cp = models; cp->name[0] != '\0'; cp++) {
if (cp->version == vers)
break;
}
if (str == NULL) {
str = cpu_model;
len = sizeof(cpu_model);
cpu = vers;
}
revfmt = cp->revfmt;
name = cp->name;
if (rev == MPC750 && pvr == 15) {
name = "755";
revfmt = REVFMT_HEX;
}
if (cp->name[0] != '\0') {
n = snprintf(str, len, "%s (Revision ", cp->name);
} else {
n = snprintf(str, len, "Version %#x (Revision ", vers);
}
if (len > n) {
switch (revfmt) {
case REVFMT_MAJMIN:
snprintf(str + n, len - n, "%u.%u)", major, minor);
break;
case REVFMT_HEX:
snprintf(str + n, len - n, "0x%04x)", rev);
break;
case REVFMT_DEC:
snprintf(str + n, len - n, "%u)", rev);
break;
}
}
}
#ifdef L2CR_CONFIG
u_int l2cr_config = L2CR_CONFIG;
#else
u_int l2cr_config = 0;
#endif
#ifdef L3CR_CONFIG
u_int l3cr_config = L3CR_CONFIG;
#else
u_int l3cr_config = 0;
#endif
void
cpu_enable_l2cr(register_t l2cr)
{
register_t msr, x;
uint16_t vers;
vers = mfpvr() >> 16;
/* Disable interrupts and set the cache config bits. */
msr = mfmsr();
mtmsr(msr & ~PSL_EE);
#ifdef ALTIVEC
if (cpu_altivec)
__asm volatile("dssall");
#endif
__asm volatile("sync");
mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
__asm volatile("sync");
/* Wait for L2 clock to be stable (640 L2 clocks). */
delay(100);
/* Invalidate all L2 contents. */
if (MPC745X_P(vers)) {
mtspr(SPR_L2CR, l2cr | L2CR_L2I);
do {
x = mfspr(SPR_L2CR);
} while (x & L2CR_L2I);
} else {
mtspr(SPR_L2CR, l2cr | L2CR_L2I);
do {
x = mfspr(SPR_L2CR);
} while (x & L2CR_L2IP);
}
/* Enable L2 cache. */
l2cr |= L2CR_L2E;
mtspr(SPR_L2CR, l2cr);
mtmsr(msr);
}
void
cpu_enable_l3cr(register_t l3cr)
{
register_t x;
/* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
/*
* 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
* L3CLKEN. (also mask off reserved bits in case they were included
* in L3CR_CONFIG)
*/
l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
mtspr(SPR_L3CR, l3cr);
/* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
l3cr |= 0x04000000;
mtspr(SPR_L3CR, l3cr);
/* 3: Set L3CLKEN to 1*/
l3cr |= L3CR_L3CLKEN;
mtspr(SPR_L3CR, l3cr);
/* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
__asm volatile("dssall;sync");
/* L3 cache is already disabled, no need to clear L3E */
mtspr(SPR_L3CR, l3cr|L3CR_L3I);
do {
x = mfspr(SPR_L3CR);
} while (x & L3CR_L3I);
/* 6: Clear L3CLKEN to 0 */
l3cr &= ~L3CR_L3CLKEN;
mtspr(SPR_L3CR, l3cr);
/* 7: Perform a 'sync' and wait at least 100 CPU cycles */
__asm volatile("sync");
delay(100);
/* 8: Set L3E and L3CLKEN */
l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
mtspr(SPR_L3CR, l3cr);
/* 9: Perform a 'sync' and wait at least 100 CPU cycles */
__asm volatile("sync");
delay(100);
}
void
cpu_config_l2cr(int pvr)
{
register_t l2cr;
u_int vers = (pvr >> 16) & 0xffff;
l2cr = mfspr(SPR_L2CR);
/*
* For MP systems, the firmware may only configure the L2 cache
* on the first CPU. In this case, assume that the other CPUs
* should use the same value for L2CR.
*/
if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
l2cr_config = l2cr;
}
/*
* Configure L2 cache if not enabled.
*/
if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
cpu_enable_l2cr(l2cr_config);
l2cr = mfspr(SPR_L2CR);
}
if ((l2cr & L2CR_L2E) == 0) {
aprint_normal(" L2 cache present but not enabled ");
return;
}
aprint_normal(",");
switch (vers) {
case IBM750FX:
cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
break;
case MPC750:
if ((pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
(pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */)
cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
else
cpu_fmttab_print(cpu_l2cr_formats, l2cr);
break;
case MPC7447A:
case MPC7457:
cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
return;
case MPC7448:
cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
return;
case MPC7450:
case MPC7455:
cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
break;
default:
cpu_fmttab_print(cpu_l2cr_formats, l2cr);
break;
}
}
void
cpu_config_l3cr(int vers)
{
register_t l2cr;
register_t l3cr;
l2cr = mfspr(SPR_L2CR);
/*
* For MP systems, the firmware may only configure the L2 cache
* on the first CPU. In this case, assume that the other CPUs
* should use the same value for L2CR.
*/
if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
l2cr_config = l2cr;
}
/*
* Configure L2 cache if not enabled.
*/
if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
cpu_enable_l2cr(l2cr_config);
l2cr = mfspr(SPR_L2CR);
}
aprint_normal(",");
switch (vers) {
case MPC7447A:
case MPC7457:
cpu_fmttab_print(cpu_7457_l2cr_formats, l2cr);
return;
case MPC7448:
cpu_fmttab_print(cpu_7448_l2cr_formats, l2cr);
return;
default:
cpu_fmttab_print(cpu_7450_l2cr_formats, l2cr);
break;
}
l3cr = mfspr(SPR_L3CR);
/*
* For MP systems, the firmware may only configure the L3 cache
* on the first CPU. In this case, assume that the other CPUs
* should use the same value for L3CR.
*/
if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
l3cr_config = l3cr;
}
/*
* Configure L3 cache if not enabled.
*/
if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
cpu_enable_l3cr(l3cr_config);
l3cr = mfspr(SPR_L3CR);
}
if (l3cr & L3CR_L3E) {
aprint_normal(",");
cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
}
}
void
cpu_probe_speed(struct cpu_info *ci)
{
uint64_t cps;
mtspr(SPR_MMCR0, MMCR0_FC);
mtspr(SPR_PMC1, 0);
mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
delay(100000);
cps = (mfspr(SPR_PMC1) * 10) + 4999;
mtspr(SPR_MMCR0, MMCR0_FC);
ci->ci_khz = cps / 1000;
}
#if NSYSMON_ENVSYS > 0
void
cpu_tau_setup(struct cpu_info *ci)
{
struct sysmon_envsys *sme;
int error, therm_delay;
mtspr(SPR_THRM1, SPR_THRM_VALID);
mtspr(SPR_THRM2, 0);
/*
* we need to figure out how much 20+us in units of CPU clock cycles
* are
*/
therm_delay = ci->ci_khz / 40; /* 25us just to be safe */
mtspr(SPR_THRM3, SPR_THRM_TIMER(therm_delay) | SPR_THRM_ENABLE);
sme = sysmon_envsys_create();
sensor.units = ENVSYS_STEMP;
(void)strlcpy(sensor.desc, "CPU Temp", sizeof(sensor.desc));
if (sysmon_envsys_sensor_attach(sme, &sensor)) {
sysmon_envsys_destroy(sme);
return;
}
sme->sme_name = ci->ci_dev->dv_xname;
sme->sme_cookie = ci;
sme->sme_refresh = cpu_tau_refresh;
if ((error = sysmon_envsys_register(sme)) != 0) {
aprint_error("%s: unable to register with sysmon (%d)\n",
ci->ci_dev->dv_xname, error);
sysmon_envsys_destroy(sme);
}
}
/* Find the temperature of the CPU. */
void
cpu_tau_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
int i, threshold, count;
threshold = 64; /* Half of the 7-bit sensor range */
/* Successive-approximation code adapted from Motorola
* application note AN1800/D, "Programming the Thermal Assist
* Unit in the MPC750 Microprocessor".
*/
for (i = 5; i >= 0 ; i--) {
mtspr(SPR_THRM1,
SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
count = 0;
while ((count < 100000) &&
((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
count++;
delay(1);
}
if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
/* The interrupt bit was set, meaning the
* temperature was above the threshold
*/
threshold += 1 << i;
} else {
/* Temperature was below the threshold */
threshold -= 1 << i;
}
}
threshold += 2;
/* Convert the temperature in degrees C to microkelvin */
edata->value_cur = (threshold * 1000000) + 273150000;
edata->state = ENVSYS_SVALID;
}
#endif /* NSYSMON_ENVSYS > 0 */
#ifdef MULTIPROCESSOR
extern volatile u_int cpu_spinstart_ack;
int
cpu_spinup(struct device *self, struct cpu_info *ci)
{
volatile struct cpu_hatch_data hatch_data, *h = &hatch_data;
struct pglist mlist;
int i, error, pvr, vers;
char *cp, *hp;
pvr = mfpvr();
vers = pvr >> 16;
KASSERT(ci != curcpu());
/*
* Allocate some contiguous pages for the intteup PCB and stack
* from the lowest 256MB (because bat0 always maps it va == pa).
* Must be 16 byte aligned.
*/
error = uvm_pglistalloc(INTSTK, 0x10000, 0x10000000, 16, 0,
&mlist, 1, 1);
if (error) {
aprint_error(": unable to allocate idle stack\n");
return -1;
}
KASSERT(ci != &cpu_info[0]);
cp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
memset(cp, 0, INTSTK);
ci->ci_intstk = cp;
/* Now allocate a hatch stack */
error = uvm_pglistalloc(0x1000, 0x10000, 0x10000000, 16, 0,
&mlist, 1, 1);
if (error) {
aprint_error(": unable to allocate hatch stack\n");
return -1;
}
hp = (void *)VM_PAGE_TO_PHYS(TAILQ_FIRST(&mlist));
memset(hp, 0, 0x1000);
/* Initialize secondary cpu's initial lwp to its idlelwp. */
ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
ci->ci_curpcb = lwp_getpcb(ci->ci_curlwp);
ci->ci_curpm = ci->ci_curpcb->pcb_pm;
cpu_hatch_data = h;
h->running = 0;
h->self = self;
h->ci = ci;
h->pir = ci->ci_cpuid;
cpu_hatch_stack = (uint32_t)hp;
ci->ci_lasttb = cpu_info[0].ci_lasttb;
/* copy special registers */
h->hid0 = mfspr(SPR_HID0);
__asm volatile ("mfsdr1 %0" : "=r"(h->sdr1));
for (i = 0; i < 16; i++) {
__asm ("mfsrin %0,%1" : "=r"(h->sr[i]) :
"r"(i << ADDR_SR_SHFT));
}
if (oeacpufeat & OEACPU_64)
h->asr = mfspr(SPR_ASR);
else
h->asr = 0;
/* copy the bat regs */
__asm volatile ("mfibatu %0,0" : "=r"(h->batu[0]));
__asm volatile ("mfibatl %0,0" : "=r"(h->batl[0]));
__asm volatile ("mfibatu %0,1" : "=r"(h->batu[1]));
__asm volatile ("mfibatl %0,1" : "=r"(h->batl[1]));
__asm volatile ("mfibatu %0,2" : "=r"(h->batu[2]));
__asm volatile ("mfibatl %0,2" : "=r"(h->batl[2]));
__asm volatile ("mfibatu %0,3" : "=r"(h->batu[3]));
__asm volatile ("mfibatl %0,3" : "=r"(h->batl[3]));
__asm volatile ("sync; isync");
if (md_setup_trampoline(h, ci) == -1)
return -1;
md_presync_timebase(h);
md_start_timebase(h);
/* wait for secondary printf */
delay(200000);
if (h->running < 1) {
aprint_error("%d:CPU %d didn't start %d\n", cpu_spinstart_ack,
ci->ci_cpuid, cpu_spinstart_ack);
Debugger();
return -1;
}
/* Register IPI Interrupt */
if (ipiops.ppc_establish_ipi)
ipiops.ppc_establish_ipi(IST_LEVEL, IPL_HIGH, NULL);
return 0;
}
static volatile int start_secondary_cpu;
extern void tlbia(void);
register_t
cpu_hatch(void)
{
volatile struct cpu_hatch_data *h = cpu_hatch_data;
struct cpu_info * const ci = h->ci;
struct pcb *pcb;
u_int msr;
int i;
/* Initialize timebase. */
__asm ("mttbl %0; mttbu %0; mttbl %0" :: "r"(0));
/*
* Set PIR (Processor Identification Register). i.e. whoami
* Note that PIR is read-only on some CPU versions, so we write to it
* only if it has a different value than we need.
*/
msr = mfspr(SPR_PIR);
if (msr != h->pir)
mtspr(SPR_PIR, h->pir);
__asm volatile ("mtsprg 0,%0" :: "r"(ci));
cpu_spinstart_ack = 0;
/* Initialize MMU. */
__asm ("mtibatu 0,%0" :: "r"(h->batu[0]));
__asm ("mtibatl 0,%0" :: "r"(h->batl[0]));
__asm ("mtibatu 1,%0" :: "r"(h->batu[1]));
__asm ("mtibatl 1,%0" :: "r"(h->batl[1]));
__asm ("mtibatu 2,%0" :: "r"(h->batu[2]));
__asm ("mtibatl 2,%0" :: "r"(h->batl[2]));
__asm ("mtibatu 3,%0" :: "r"(h->batu[3]));
__asm ("mtibatl 3,%0" :: "r"(h->batl[3]));
mtspr(SPR_HID0, h->hid0);
__asm ("mtibatl 0,%0; mtibatu 0,%1; mtdbatl 0,%0; mtdbatu 0,%1;"
:: "r"(battable[0].batl), "r"(battable[0].batu));
__asm volatile ("sync");
for (i = 0; i < 16; i++)
__asm ("mtsrin %0,%1" :: "r"(h->sr[i]), "r"(i << ADDR_SR_SHFT));
__asm volatile ("sync; isync");
if (oeacpufeat & OEACPU_64)
mtspr(SPR_ASR, h->asr);
cpu_spinstart_ack = 1;
__asm ("ptesync");
__asm ("mtsdr1 %0" :: "r"(h->sdr1));
__asm volatile ("sync; isync");
cpu_spinstart_ack = 5;
for (i = 0; i < 16; i++)
__asm ("mfsrin %0,%1" : "=r"(h->sr[i]) :
"r"(i << ADDR_SR_SHFT));
/* Enable I/D address translations. */
msr = mfmsr();
msr |= PSL_IR|PSL_DR|PSL_ME|PSL_RI;
mtmsr(msr);
__asm volatile ("sync; isync");
cpu_spinstart_ack = 2;
md_sync_timebase(h);
cpu_setup(h->self, ci);
h->running = 1;
__asm volatile ("sync; isync");
while (start_secondary_cpu == 0)
;
__asm volatile ("sync; isync");
aprint_normal("cpu%d started\n", curcpu()->ci_index);
__asm volatile ("mtdec %0" :: "r"(ticks_per_intr));
md_setup_interrupts();
ci->ci_ipending = 0;
ci->ci_cpl = 0;
mtmsr(mfmsr() | PSL_EE);
pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
return pcb->pcb_sp;
}
void
cpu_boot_secondary_processors(void)
{
start_secondary_cpu = 1;
__asm volatile ("sync");
}
#endif /*MULTIPROCESSOR*/