NetBSD/sys/arch/arm/xscale/xscale_pmc.c
2003-10-28 15:31:33 +00:00

738 lines
17 KiB
C

/* $NetBSD: xscale_pmc.c,v 1.7 2003/10/28 15:31:33 chs Exp $ */
/*
* Copyright (c) 2002 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Allen Briggs for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: xscale_pmc.c,v 1.7 2003/10/28 15:31:33 chs Exp $");
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/pmc.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <machine/pmc.h>
#include <arm/xscale/xscalereg.h>
#include <arm/xscale/xscalevar.h>
extern int profsrc;
struct xscale_pmc_state {
uint32_t pmnc; /* performance monitor ctrl */
uint32_t pmcr[3]; /* array of counter reset values */
uint64_t pmcv[3]; /* array of counter values */
uint64_t pmc_accv[3]; /* accumulated ctr values of children */
};
#define __PMC_CCNT_I (0)
#define __PMC0_I (1)
#define __PMC1_I (2)
#define __PMC_CCNT (1 << __PMC_CCNT_I)
#define __PMC0 (1 << __PMC0_I)
#define __PMC1 (1 << __PMC1_I)
#define __PMC_NCTRS 3
uint32_t pmc_kernel_mask = 0;
uint32_t pmc_kernel_bits = 0;
uint32_t pmc_kernel_enabled = 0;
uint32_t pmc_profiling_enabled = 0;
uint32_t pmc_reset_vals[3] = {0x80000000, 0x80000000, 0x80000000};
int pmc_usecount[3] = {0, 0, 0};
static __inline uint32_t
xscale_pmnc_read(void)
{
uint32_t pmnc;
__asm __volatile("mrc p14, 0, %0, c0, c0, 0"
: "=r" (pmnc));
return pmnc;
}
static __inline uint32_t
xscale_pmnc_write(uint32_t val)
{
uint32_t pmnc;
__asm __volatile("mcr p14, 0, %0, c0, c0, 0"
: : "r" (val));
return pmnc;
}
int
xscale_pmc_dispatch(void *arg)
{
struct clockframe *frame = arg;
struct xscale_pmc_state *pmcs;
struct proc *p;
uint32_t pmnc;
int s;
s = splstatclock();
pmnc = xscale_pmnc_read() & ~(PMNC_C | PMNC_P);
/*
* Disable interrupts -- ensure we don't reset anything.
*/
xscale_pmnc_write(pmnc &
~(PMNC_PMN0_IF | PMNC_PMN1_IF | PMNC_CC_IF | PMNC_E));
/*
* If we have recorded a clock overflow...
*/
if (pmnc & PMNC_CC_IF) {
if (pmc_profiling_enabled & __PMC_CCNT) {
proftick(frame);
__asm __volatile("mcr p14, 0, %0, c1, c0, 0"
: : "r" (pmc_reset_vals[__PMC_CCNT_I]));
} else if ((p = curproc) != NULL &&
(p->p_md.pmc_enabled & __PMC_CCNT) != 0) {
/*
* XXX - It's not quite clear that this is the proper
* way to handle this case (here or in the other
* counters below).
*/
pmcs = p->p_md.pmc_state;
pmcs->pmcv[__PMC_CCNT_I] += 0x100000000ULL;
__asm __volatile("mcr p14, 0, %0, c1, c0, 0"
: : "r" (pmcs->pmcr[__PMC_CCNT_I]));
}
}
/*
* If we have recorded an PMC0 overflow...
*/
if (pmnc & PMNC_PMN0_IF) {
if (pmc_profiling_enabled & __PMC0) {
proftick(frame);
__asm __volatile("mcr p14, 0, %0, c2, c0, 0"
: : "r" (pmc_reset_vals[__PMC0_I]));
} else if ((p = curproc) != NULL &&
(p->p_md.pmc_enabled & __PMC0) != 0) {
/*
* XXX - should handle wrapping the counter.
*/
pmcs = p->p_md.pmc_state;
pmcs->pmcv[__PMC0_I] += 0x100000000ULL;
__asm __volatile("mcr p14, 0, %0, c2, c0, 0"
: : "r" (pmcs->pmcr[__PMC0_I]));
}
}
/*
* If we have recorded an PMC1 overflow...
*/
if (pmnc & PMNC_PMN1_IF) {
if (pmc_profiling_enabled & __PMC1) {
proftick(frame);
__asm __volatile("mcr p14, 0, %0, c3, c0, 0"
: : "r" (pmc_reset_vals[__PMC1_I]));
} else if ((p = curproc) != NULL &&
(p->p_md.pmc_enabled & __PMC1) != 0) {
pmcs = p->p_md.pmc_state;
pmcs->pmcv[__PMC1_I] += 0x100000000ULL;
__asm __volatile("mcr p14, 0, %0, c3, c0, 0"
: : "r" (pmcs->pmcr[__PMC1_I]));
}
}
/*
* If any overflows were set, this will clear them.
* It will also re-enable the counters.
*/
xscale_pmnc_write(pmnc);
splx(s);
return 1;
}
static void
xscale_fork(struct proc *p1, struct proc *p2)
{
struct xscale_pmc_state *pmcs_p1, *pmcs_p2;
p2->p_md.pmc_enabled = p1->p_md.pmc_enabled;
p2->p_md.pmc_state = malloc(sizeof(struct xscale_pmc_state),
M_PROC, M_NOWAIT);
if (p2->p_md.pmc_state == NULL) {
/* XXX
* Can't return failure at this point, so just disable
* PMC for new process.
*/
p2->p_md.pmc_enabled = 0;
return;
}
pmcs_p1 = p1->p_md.pmc_state;
pmcs_p2 = p2->p_md.pmc_state;
pmcs_p2->pmnc = pmcs_p1->pmnc;
pmcs_p2->pmcv[0] = 0;
pmcs_p2->pmcv[1] = 0;
pmcs_p2->pmcv[2] = 0;
pmcs_p2->pmc_accv[0] = 0;
pmcs_p2->pmc_accv[1] = 0;
pmcs_p2->pmc_accv[2] = 0;
if (p2->p_md.pmc_enabled & __PMC_CCNT)
pmc_usecount[__PMC_CCNT_I]++;
if (p2->p_md.pmc_enabled & __PMC0)
pmc_usecount[__PMC0_I]++;
if (p2->p_md.pmc_enabled & __PMC1)
pmc_usecount[__PMC1_I]++;
}
static int
xscale_num_counters(void)
{
return __PMC_NCTRS;
}
static int
xscale_counter_type(int ctr)
{
int ret;
switch (ctr) {
case __PMC_CCNT_I:
ret = PMC_TYPE_I80200_CCNT;
break;
case __PMC0_I:
case __PMC1_I:
ret = PMC_TYPE_I80200_PMCx;
break;
case -1:
ret = PMC_CLASS_I80200;
break;
default:
ret = -1;
break;
}
return ret;
}
static void
xscale_save_context(struct proc *p)
{
struct xscale_pmc_state *pmcs;
uint32_t pmnc, val;
if (p && p->p_md.pmc_state) {
pmcs = (struct xscale_pmc_state *) p->p_md.pmc_state;
/* disable counters */
pmnc = xscale_pmnc_read() & ~PMNC_E;
xscale_pmnc_write(pmnc);
/* do not save pmnc */
if (p->p_md.pmc_enabled & __PMC_CCNT) {
/* save ccnt */
__asm __volatile("mrc p14, 0, %0, c1, c0, 0"
: "=r" (val));
pmcs->pmcv[__PMC_CCNT_I] &= ~0xffffffffULL;
pmcs->pmcv[__PMC_CCNT_I] |= val;
}
if (p->p_md.pmc_enabled & __PMC0) {
/* save pmc0 */
__asm __volatile("mrc p14, 0, %0, c2, c0, 0"
: "=r" (val));
pmcs->pmcv[__PMC0_I] &= ~0xffffffffULL;
pmcs->pmcv[__PMC0_I] |= val;
}
if (p->p_md.pmc_enabled & __PMC1) {
/* save pmc1 */
__asm __volatile("mrc p14, 0, %0, c3, c0, 0"
: "=r" (val));
pmcs->pmcv[__PMC1_I] &= ~0xffffffffULL;
pmcs->pmcv[__PMC1_I] |= val;
}
if (pmc_kernel_bits) {
__asm __volatile("mcr p14, 0, %0, c0, c0, 0"
: : "r" (pmc_kernel_bits | PMNC_E));
}
}
}
static void
xscale_restore_context(struct proc *p)
{
struct xscale_pmc_state *pmcs;
register_t r = 0;
uint32_t val;
if (p && p->p_md.pmc_state) {
pmcs = (struct xscale_pmc_state *) p->p_md.pmc_state;
if (p->p_md.pmc_enabled & __PMC1) {
/* restore pmc1 */
val = pmcs->pmcv[__PMC1_I] & 0xffffffffULL;
__asm __volatile("mcr p14, 0, %0, c3, c0, 0" : :
"r" (val));
}
if (p->p_md.pmc_enabled & __PMC0) {
/* restore pmc0 */
val = pmcs->pmcv[__PMC0_I] & 0xffffffffULL;
__asm __volatile("mcr p14, 0, %0, c2, c0, 0" : :
"r" (val));
}
if (p->p_md.pmc_enabled & __PMC_CCNT) {
/* restore ccnt */
val = pmcs->pmcv[__PMC_CCNT_I] & 0xffffffffULL;
__asm __volatile("mcr p14, 0, %0, c1, c0, 0" : :
"r" (val));
}
if (p->p_md.pmc_enabled)
r = pmcs->pmnc;
}
if (r | pmc_kernel_bits) {
/* restore pmnc & enable counters */
__asm __volatile("mcr p14, 0, %0, c0, c0, 0"
: : "r" (r | pmc_kernel_bits | PMNC_E));
}
}
static void
xscale_accumulate(struct proc *parent, struct proc *child)
{
struct xscale_pmc_state *pmcs_parent, *pmcs_child;
pmcs_parent = parent->p_md.pmc_state;
pmcs_child = child->p_md.pmc_state;
if (pmcs_parent && pmcs_child) {
pmcs_parent->pmc_accv[__PMC_CCNT_I] +=
pmcs_child->pmcv[__PMC_CCNT_I];
pmcs_parent->pmc_accv[__PMC0_I] += pmcs_child->pmcv[__PMC0_I];
pmcs_parent->pmc_accv[__PMC1_I] += pmcs_child->pmcv[__PMC1_I];
}
}
static void
xscale_process_exit(struct proc *p)
{
int i;
if (!p)
return;
for (i=0 ; i<__PMC_NCTRS ; i++) {
if (p->p_md.pmc_enabled & (1 << i)) {
pmc_usecount[i]--;
p->p_md.pmc_enabled &= ~(1 << i);
}
}
if (p->p_md.pmc_state)
free(p->p_md.pmc_state, M_PROC);
p->p_md.pmc_state = NULL;
p->p_md.pmc_enabled = 0;
}
static void
xscale_enable_counter(struct proc *p, int ctr)
{
int current = (p == curproc);
if (ctr < 0 || ctr >= __PMC_NCTRS || !p)
return;
if (current)
pmc_save_context(p);
if ((p->p_md.pmc_enabled & (1 << ctr)) == 0) {
pmc_usecount[ctr]++;
p->p_md.pmc_enabled |= (1 << ctr);
}
if (current)
pmc_restore_context(p);
}
static void
xscale_disable_counter(struct proc *p, int ctr)
{
int current = (p == curproc);
if (ctr < 0 || ctr >= __PMC_NCTRS || !p)
return;
if (current)
pmc_save_context(p);
if (p->p_md.pmc_enabled & (1 << ctr)) {
pmc_usecount[ctr]--;
p->p_md.pmc_enabled &= ~(1 << ctr);
}
if (current)
pmc_restore_context(p);
}
static int
xscale_counter_isrunning(struct proc *p, int ctr)
{
if (ctr < 0 || ctr >= __PMC_NCTRS)
return -1;
return ((pmc_kernel_enabled | p->p_md.pmc_enabled) & (1 << ctr));
}
static int
xscale_counter_isconfigured(struct proc *p, int ctr)
{
return ((ctr >= 0) && (ctr < __PMC_NCTRS));
}
static int
xscale_configure_counter(struct proc *p, int ctr, struct pmc_counter_cfg *cfg)
{
struct xscale_pmc_state *pmcs;
int current = (p == curproc);
if (ctr < 0 || ctr >= __PMC_NCTRS || !p)
return EINVAL;
if (pmc_kernel_enabled & (1 << ctr))
return EBUSY;
if (ctr) {
if ((cfg->event_id > 0x16) || ((cfg->event_id & 0xe) == 0xe)
|| (cfg->event_id == 0x13))
return ENODEV;
} else {
if (cfg->event_id != 0x100 && cfg->event_id != 0x101)
return ENODEV;
}
if (current)
pmc_save_context(p);
if (p->p_md.pmc_state == NULL) {
p->p_md.pmc_state = malloc(sizeof(struct xscale_pmc_state),
M_PROC, M_WAITOK);
if (!p->p_md.pmc_state)
return ENOMEM;
}
pmcs = p->p_md.pmc_state;
switch (ctr) {
case __PMC_CCNT_I:
pmcs->pmnc &= ~PMNC_D;
pmcs->pmnc |= (PMNC_CC_IF | PMNC_CC_IE);
if (cfg->event_id == 0x101)
pmcs->pmnc |= PMNC_D;
break;
case __PMC0_I:
pmcs->pmnc &= ~PMNC_EVCNT0_MASK;
pmcs->pmnc |= (cfg->event_id << PMNC_EVCNT0_SHIFT)
| (PMNC_PMN0_IF | PMNC_PMN0_IE);
break;
case __PMC1_I:
pmcs->pmnc &= ~PMNC_EVCNT1_MASK;
pmcs->pmnc |= (cfg->event_id << PMNC_EVCNT1_SHIFT)
| (PMNC_PMN1_IF | PMNC_PMN1_IE);
break;
}
pmcs->pmcr[ctr] = (uint32_t) -((int32_t) cfg->reset_value);
pmcs->pmcv[ctr] = pmcs->pmcr[ctr];
if (current)
pmc_restore_context(p);
return 0;
}
static int
xscale_get_counter_value(struct proc *p, int ctr, int flags, uint64_t *pval)
{
struct xscale_pmc_state *pmcs;
uint32_t val;
if (ctr < 0 || ctr >= __PMC_NCTRS)
return EINVAL;
if (p) {
pmcs = p->p_md.pmc_state;
if (flags & PMC_VALUE_FLAGS_CHILDREN) {
*pval = pmcs->pmc_accv[ctr];
return 0;
}
if (p != curproc) {
*pval = pmcs->pmcv[ctr];
return 0;
}
}
switch (ctr) {
case __PMC_CCNT_I:
__asm __volatile("mrc p14, 0, %0, c1, c0, 0" : "=r" (val));
break;
case __PMC0_I:
__asm __volatile("mrc p14, 0, %0, c2, c0, 0" : "=r" (val));
break;
case __PMC1_I:
__asm __volatile("mrc p14, 0, %0, c3, c0, 0" : "=r" (val));
break;
default:
val = 0;
break;
}
*pval = val;
if (p) {
pmcs = p->p_md.pmc_state;
*pval += pmcs->pmcv[ctr];
}
return 0;
}
static int
xscale_start_profiling(int ctr, struct pmc_counter_cfg *cfg)
{
struct proc *p = curproc;
int s;
if (ctr < 0 || ctr >= __PMC_NCTRS)
return EINVAL;
if ((pmc_usecount[ctr] > 0) || (pmc_kernel_enabled & (1 << ctr)))
return EBUSY;
if (ctr) {
if ((cfg->event_id > 0x16) || ((cfg->event_id & 0xe) == 0xe)
|| (cfg->event_id == 0x13))
return ENODEV;
} else {
if (cfg->event_id != 0x100 && cfg->event_id != 0x101)
return ENODEV;
}
pmc_save_context(p);
pmc_reset_vals[ctr] = (uint32_t) -((int32_t) cfg->reset_value);
s = splstatclock();
switch (ctr) {
case __PMC_CCNT_I:
pmc_kernel_bits &= PMNC_D;
pmc_kernel_bits |= PMNC_CC_IE;
if (cfg->event_id)
pmc_kernel_bits |= PMNC_D;
__asm __volatile("mcr p14, 0, %0, c1, c0, 0" : :
"r" (pmc_reset_vals[__PMC_CCNT_I]));
__asm __volatile("mcr p14, 0, %0, c0, c0, 0" : :
"r" (PMNC_CC_IF));
break;
case __PMC0_I:
pmc_kernel_bits &= ~PMNC_EVCNT0_MASK;
pmc_kernel_bits |= (cfg->event_id << PMNC_EVCNT0_SHIFT)
| PMNC_PMN0_IE;
__asm __volatile("mcr p14, 0, %0, c2, c0, 0" : :
"r" (pmc_reset_vals[__PMC0_I]));
__asm __volatile("mcr p14, 0, %0, c0, c0, 0" : :
"r" (PMNC_PMN0_IF));
break;
case __PMC1_I:
pmc_kernel_bits &= ~PMNC_EVCNT1_MASK;
pmc_kernel_bits |= (cfg->event_id << PMNC_EVCNT1_SHIFT)
| PMNC_PMN1_IE;
__asm __volatile("mcr p14, 0, %0, c3, c0, 0" : :
"r" (pmc_reset_vals[__PMC1_I]));
__asm __volatile("mcr p14, 0, %0, c0, c0, 0" : :
"r" (PMNC_PMN1_IF));
break;
}
profsrc |= 1;
pmc_kernel_enabled |= (1 << ctr);
pmc_profiling_enabled |= (1 << ctr);
pmc_restore_context(p);
splx(s);
return 0;
}
static int
xscale_stop_profiling(int ctr)
{
struct proc *p = curproc;
uint32_t save;
if (ctr < 0 || ctr >= __PMC_NCTRS)
return EINVAL;
if (!(pmc_kernel_enabled & (1 << ctr)))
return 0;
save = pmc_kernel_bits;
pmc_kernel_bits = 0;
pmc_save_context(p);
pmc_kernel_bits = save;
switch (ctr) {
case __PMC_CCNT_I:
pmc_kernel_bits &= (PMNC_D | PMNC_CC_IE);
break;
case __PMC0_I:
pmc_kernel_bits &= ~(PMNC_EVCNT0_MASK | PMNC_PMN0_IE);
break;
case __PMC1_I:
pmc_kernel_bits &= ~(PMNC_EVCNT1_MASK | PMNC_PMN1_IE);
break;
}
pmc_kernel_enabled &= ~(1 << ctr);
pmc_profiling_enabled &= ~(1 << ctr);
if (pmc_profiling_enabled == 0)
profsrc &= ~1;
pmc_restore_context(p);
return 0;
}
static int
xscale_alloc_kernel_counter(int ctr, struct pmc_counter_cfg *cfg)
{
struct proc *p = curproc;
if (ctr < 0 || ctr >= __PMC_NCTRS)
return EINVAL;
if ((pmc_usecount[ctr] > 0) || (pmc_kernel_enabled & (1 << ctr)))
return EBUSY;
if (ctr) {
if ((cfg->event_id > 0x16) || ((cfg->event_id & 0xe) == 0xe)
|| (cfg->event_id == 0x13))
return ENODEV;
} else {
if (cfg->event_id != 0x100 && cfg->event_id != 0x101)
return ENODEV;
}
pmc_save_context(p);
pmc_reset_vals[ctr] = (uint32_t) -((int32_t) cfg->reset_value);
switch (ctr) {
case __PMC_CCNT_I:
pmc_kernel_bits &= PMNC_D;
if (cfg->event_id)
pmc_kernel_bits |= PMNC_D;
__asm __volatile("mcr p14, 0, %0, c1, c0, 0" : :
"r" (pmc_reset_vals[__PMC_CCNT_I]));
break;
case __PMC0_I:
pmc_kernel_bits &= ~PMNC_EVCNT0_MASK;
pmc_kernel_bits |= (cfg->event_id << PMNC_EVCNT0_SHIFT);
__asm __volatile("mcr p14, 0, %0, c2, c0, 0" : :
"r" (pmc_reset_vals[__PMC0_I]));
break;
case __PMC1_I:
pmc_kernel_bits &= ~PMNC_EVCNT1_MASK;
pmc_kernel_bits |= (cfg->event_id << PMNC_EVCNT1_SHIFT);
__asm __volatile("mcr p14, 0, %0, c3, c0, 0" : :
"r" (pmc_reset_vals[__PMC1_I]));
break;
}
pmc_kernel_enabled |= (1 << ctr);
pmc_restore_context(p);
return 0;
}
static int
xscale_free_kernel_counter(int ctr)
{
if (ctr < 0 || ctr >= __PMC_NCTRS)
return EINVAL;
if (!(pmc_kernel_enabled & (1 << ctr)))
return 0;
pmc_kernel_enabled &= ~(1 << ctr);
return 0;
}
struct arm_pmc_funcs xscale_pmc_funcs = {
xscale_fork,
xscale_num_counters,
xscale_counter_type,
xscale_save_context,
xscale_restore_context,
xscale_enable_counter,
xscale_disable_counter,
xscale_accumulate,
xscale_process_exit,
xscale_configure_counter,
xscale_get_counter_value,
xscale_counter_isconfigured,
xscale_counter_isrunning,
xscale_start_profiling,
xscale_stop_profiling,
xscale_alloc_kernel_counter,
xscale_free_kernel_counter
};
void
xscale_pmu_init(void)
{
arm_pmc = &xscale_pmc_funcs;
}