2475 lines
62 KiB
C
2475 lines
62 KiB
C
/* $NetBSD: ntp_proto.c,v 1.2 1998/01/09 06:06:41 perry Exp $ */
|
|
|
|
/*
|
|
* ntp_proto.c - NTP version 3 protocol machinery
|
|
*/
|
|
#ifdef HAVE_CONFIG_H
|
|
#include <config.h>
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
#include <sys/types.h>
|
|
#include <sys/time.h>
|
|
|
|
#include "ntpd.h"
|
|
#include "ntp_stdlib.h"
|
|
#include "ntp_unixtime.h"
|
|
#include "ntp_control.h"
|
|
#include "ntp_string.h"
|
|
|
|
#if defined(VMS) && defined(VMS_LOCALUNIT) /*wjm*/
|
|
#include "ntp_refclock.h"
|
|
#endif
|
|
|
|
|
|
/*
|
|
* System variables are declared here. See Section 3.2 of the
|
|
* specification.
|
|
*/
|
|
u_char sys_leap; /* system leap indicator */
|
|
u_char sys_stratum; /* stratum of system */
|
|
s_char sys_precision; /* local clock precision */
|
|
s_fp sys_rootdelay; /* distance to current sync source */
|
|
u_fp sys_rootdispersion; /* dispersion of system clock */
|
|
u_long sys_refid; /* reference source for local clock */
|
|
l_fp sys_offset; /* combined offset from clock_select */
|
|
u_fp sys_maxd[3]; /* total (filter plus select) dispersion */
|
|
u_fp maxd; /* max select dispersion */
|
|
l_fp sys_reftime; /* time we were last updated */
|
|
l_fp sys_refskew; /* accumulated skew since last update */
|
|
struct peer *sys_peer; /* our current peer */
|
|
u_char sys_poll; /* log2 of system poll interval */
|
|
extern long sys_clock; /* second part of current time */
|
|
long sys_lastselect; /* sys_clock at last synch update */
|
|
|
|
#if defined(GDT_SURVEYING)
|
|
extern l_fp gdt_rsadj; /* from ntp_loopfilter.c */
|
|
#endif /* GDT_SURVEYING */
|
|
|
|
/*
|
|
* Nonspecified system state variables.
|
|
*/
|
|
int sys_bclient; /* we set our time to broadcasts */
|
|
s_fp sys_bdelay; /* broadcast client default delay */
|
|
int sys_authenticate; /* authenticate time used for syncing */
|
|
u_char consensus_leap; /* mitigated leap bits */
|
|
l_fp sys_authdelay; /* authentication delay */
|
|
u_long sys_authdly[1]; /* authentication delay shift reg */
|
|
u_char leap_consensus; /* consensus of survivor leap bits */
|
|
|
|
/*
|
|
* Statistics counters
|
|
*/
|
|
u_long sys_stattime; /* time when we started recording */
|
|
u_long sys_badstratum; /* packets with invalid stratum */
|
|
u_long sys_oldversionpkt; /* old version packets received */
|
|
u_long sys_newversionpkt; /* new version packets received */
|
|
u_long sys_unknownversion; /* don't know version packets */
|
|
u_long sys_badlength; /* packets with bad length */
|
|
u_long sys_processed; /* packets processed */
|
|
u_long sys_badauth; /* packets dropped because of auth */
|
|
u_long sys_limitrejected; /* pkts rejected due toclient count per net */
|
|
|
|
/*
|
|
* Imported from ntp_timer.c
|
|
*/
|
|
extern u_long current_time;
|
|
extern struct event timerqueue[];
|
|
|
|
/*
|
|
* Imported from ntp_io.c
|
|
*/
|
|
extern struct interface *any_interface;
|
|
|
|
/*
|
|
* Imported from ntp_loopfilter.c
|
|
*/
|
|
extern int pll_enable;
|
|
extern int pps_update;
|
|
extern int pps_enable;
|
|
extern int pps_control;
|
|
/*
|
|
* Imported from ntp_util.c
|
|
*/
|
|
extern int stats_control;
|
|
|
|
/*
|
|
* The peer hash table. Imported from ntp_peer.c
|
|
*/
|
|
extern struct peer *peer_hash[];
|
|
extern int peer_hash_count[];
|
|
|
|
/*
|
|
* debug flag
|
|
*/
|
|
extern int debug;
|
|
|
|
static void clear_all P((void));
|
|
|
|
/*
|
|
* transmit - Transmit Procedure. See Section 3.4.1 of the
|
|
* specification.
|
|
*/
|
|
void
|
|
transmit(peer)
|
|
register struct peer *peer;
|
|
{
|
|
struct pkt xpkt; /* packet to send */
|
|
u_long peer_timer;
|
|
u_fp precision;
|
|
int bool;
|
|
l_fp xmt_tx;
|
|
|
|
/*
|
|
* We need to be very careful about honking uncivilized time. If
|
|
* not operating in broadcast mode, honk in all except broadcast
|
|
* client mode. If operating in broadcast mode and synchronized
|
|
* to a real source, honk except when the peer is the local-
|
|
* clock driver and the prefer flag is not set. In other words,
|
|
* in broadcast mode we never honk unless known to be
|
|
* synchronized to real time.
|
|
*/
|
|
bool = 0;
|
|
if (peer->hmode != MODE_BROADCAST) {
|
|
if (peer->hmode != MODE_BCLIENT)
|
|
bool = 1;
|
|
} else if (sys_peer != 0 && sys_leap != LEAP_NOTINSYNC) {
|
|
if (!(sys_peer->refclktype == REFCLK_LOCALCLOCK &&
|
|
!(sys_peer->flags & FLAG_PREFER)))
|
|
bool = 1;
|
|
}
|
|
if (bool) {
|
|
u_long xkeyid;
|
|
int find_rtt = (peer->cast_flags & MDF_MCAST) &&
|
|
peer->hmode != MODE_BROADCAST;
|
|
|
|
/*
|
|
* Figure out which keyid to include in the packet
|
|
*/
|
|
if ((peer->flags & FLAG_AUTHENABLE)
|
|
&& (peer->flags & (FLAG_CONFIG|FLAG_AUTHENTIC))
|
|
&& authhavekey(peer->keyid)) {
|
|
xkeyid = peer->keyid;
|
|
} else {
|
|
xkeyid = 0;
|
|
}
|
|
|
|
/*
|
|
* Make up a packet to send.
|
|
*/
|
|
xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap,
|
|
peer->version, peer->hmode);
|
|
xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
|
|
xpkt.ppoll = peer->hpoll;
|
|
xpkt.precision = sys_precision;
|
|
xpkt.rootdelay = HTONS_FP(sys_rootdelay);
|
|
precision = FP_SECOND >> -(int)sys_precision;
|
|
if (precision == 0)
|
|
precision = 1;
|
|
xpkt.rootdispersion = HTONS_FP(sys_rootdispersion +
|
|
precision + LFPTOFP(&sys_refskew));
|
|
xpkt.refid = sys_refid;
|
|
HTONL_FP(&sys_reftime, &xpkt.reftime);
|
|
HTONL_FP(&peer->org, &xpkt.org);
|
|
HTONL_FP(&peer->rec, &xpkt.rec);
|
|
|
|
/*
|
|
* Decide whether to authenticate or not. If so, call
|
|
* encrypt() to fill in the rest of the frame. If not,
|
|
* just add in the xmt timestamp and send it quick.
|
|
* Note the authentication delay correction is made
|
|
* on-the-wing as the minimum of the latest two samples.
|
|
*/
|
|
if (peer->flags & FLAG_AUTHENABLE) {
|
|
int sendlen;
|
|
|
|
xpkt.keyid = htonl(xkeyid);
|
|
auth1crypt(xkeyid, (u_int32 *)&xpkt,
|
|
LEN_PKT_NOMAC);
|
|
get_systime(&peer->xmt);
|
|
L_ADD(&peer->xmt, &sys_authdelay);
|
|
HTONL_FP(&peer->xmt, &xpkt.xmt);
|
|
sendlen = auth2crypt(xkeyid, (u_int32 *)&xpkt,
|
|
LEN_PKT_NOMAC);
|
|
get_systime(&xmt_tx);
|
|
L_SUB(&xmt_tx, &peer->xmt);
|
|
L_ADD(&xmt_tx, &sys_authdelay);
|
|
sys_authdly[1] = sys_authdly[0];
|
|
sys_authdly[0] = xmt_tx.l_uf;
|
|
if (sys_authdly[0] < sys_authdly[1])
|
|
sys_authdelay.l_uf = sys_authdly[0];
|
|
else
|
|
sys_authdelay.l_uf = sys_authdly[1];
|
|
sendpkt(&peer->srcadr, find_rtt ?
|
|
any_interface : peer->dstadr,
|
|
((peer->cast_flags & MDF_MCAST) && !find_rtt) ?
|
|
peer->ttl : -7, &xpkt, sendlen +
|
|
LEN_PKT_NOMAC);
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
printf("transmit auth to %s %s\n",
|
|
ntoa(&(peer->srcadr)),
|
|
lfptoa(&sys_authdelay, 6));
|
|
#endif
|
|
peer->sent++;
|
|
} else {
|
|
/*
|
|
* Get xmt timestamp, then send it without mac
|
|
* field
|
|
*/
|
|
int find_rtt = (peer->cast_flags & MDF_MCAST) &&
|
|
peer->dstadr != any_interface;
|
|
get_systime(&(peer->xmt));
|
|
HTONL_FP(&peer->xmt, &xpkt.xmt);
|
|
sendpkt(&(peer->srcadr), find_rtt ?
|
|
any_interface : peer->dstadr,
|
|
((peer->cast_flags & MDF_MCAST) && !find_rtt) ?
|
|
peer->ttl : -8, &xpkt, LEN_PKT_NOMAC);
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
printf("transmit to %s\n",
|
|
ntoa(&(peer->srcadr)));
|
|
#endif
|
|
peer->sent++;
|
|
}
|
|
}
|
|
|
|
if (peer->hmode != MODE_BROADCAST) {
|
|
u_char opeer_reach;
|
|
/*
|
|
* Determine reachability and diddle things if we
|
|
* haven't heard from the host for a while. If we are
|
|
* about to become unreachable and are a
|
|
* broadcast/multicast client, the server has refused to
|
|
* boogie in client/server mode, so we switch to
|
|
* MODE_BCLIENT anyway and wait for subsequent
|
|
* broadcasts.
|
|
*/
|
|
opeer_reach = peer->reach;
|
|
if (opeer_reach & 0x80 && peer->flags & FLAG_MCAST2) {
|
|
peer->hmode = MODE_BCLIENT;
|
|
}
|
|
peer->reach <<= 1;
|
|
if (peer->reach == 0) {
|
|
if (opeer_reach != 0)
|
|
report_event(EVNT_UNREACH, peer);
|
|
/*
|
|
* Clear this guy out. No need to redo clock
|
|
* selection since by now this guy won't be a
|
|
* player
|
|
*/
|
|
if (peer->flags & FLAG_CONFIG) {
|
|
if (opeer_reach != 0) {
|
|
peer_clear(peer);
|
|
peer->timereachable =
|
|
current_time;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* While we have a chance, if our system peer is
|
|
* zero or his stratum is greater than the last
|
|
* known stratum of this guy, make sure hpoll is
|
|
* clamped to the minimum before resetting the
|
|
* timer. If the peer has been unreachable for a
|
|
* while and we have a system peer who is at
|
|
* least his equal, we may want to ramp his
|
|
* polling interval up to avoid the useless
|
|
* traffic.
|
|
*/
|
|
if (sys_peer == 0) {
|
|
peer->hpoll = peer->minpoll;
|
|
peer->unreach = 0;
|
|
} else if (sys_peer->stratum > peer->stratum) {
|
|
peer->hpoll = peer->minpoll;
|
|
peer->unreach = 0;
|
|
} else {
|
|
if (peer->unreach < 16) {
|
|
peer->unreach++;
|
|
peer->hpoll = peer->minpoll;
|
|
} else if (peer->hpoll < peer->maxpoll) {
|
|
peer->hpoll++;
|
|
peer->ppoll = peer->hpoll;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update reachability and poll variables
|
|
*/
|
|
} else if ((opeer_reach & 3) == 0) {
|
|
|
|
l_fp off;
|
|
|
|
if (peer->valid > 0)
|
|
peer->valid--;
|
|
if (peer->hpoll > peer->minpoll)
|
|
peer->hpoll--;
|
|
L_CLR(&off);
|
|
clock_filter(peer, &off, (s_fp)0,
|
|
(u_fp)NTP_MAXDISPERSE);
|
|
if (peer->flags & FLAG_SYSPEER)
|
|
clock_select();
|
|
} else {
|
|
if (peer->valid < NTP_SHIFT) {
|
|
peer->valid++;
|
|
} else {
|
|
if (peer->hpoll < peer->maxpoll)
|
|
peer->hpoll++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finally, adjust the hpoll variable for special conditions. If
|
|
* we are a broadcast/multicast client, we use the server poll
|
|
* interval if listening for broadcasts and one-eighth this
|
|
* interval if in client/server mode. The following clamp
|
|
* prevents madness. If this is the system poll, sys_poll
|
|
* controls hpoll.
|
|
*/
|
|
if (peer->flags & FLAG_MCAST2) {
|
|
if (peer->hmode == MODE_BCLIENT)
|
|
peer->hpoll = peer->ppoll;
|
|
else
|
|
peer->hpoll = peer->ppoll - 3;
|
|
} else if (peer->flags & FLAG_SYSPEER)
|
|
peer->hpoll = sys_poll;
|
|
if (peer->hpoll < peer->minpoll)
|
|
peer->hpoll = peer->minpoll;
|
|
|
|
/*
|
|
* Arrange for our next timeout. hpoll will be less than maxpoll
|
|
* for sure.
|
|
*/
|
|
if (peer->event_timer.next != 0)
|
|
/*
|
|
* Oops, someone did already.
|
|
*/
|
|
TIMER_DEQUEUE(&peer->event_timer);
|
|
peer_timer = 1 << (int)max((u_char)min(peer->ppoll,
|
|
peer->hpoll), peer->minpoll);
|
|
peer->event_timer.event_time = current_time + peer_timer;
|
|
TIMER_ENQUEUE(timerqueue, &peer->event_timer);
|
|
}
|
|
|
|
/*
|
|
* receive - Receive Procedure. See section 3.4.2 in the specification.
|
|
*/
|
|
void
|
|
receive(rbufp)
|
|
struct recvbuf *rbufp;
|
|
{
|
|
register struct peer *peer;
|
|
register struct pkt *pkt;
|
|
register u_char hismode;
|
|
int restrict;
|
|
int has_mac;
|
|
int trustable;
|
|
int is_authentic;
|
|
u_long hiskeyid;
|
|
struct peer *peer2;
|
|
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
printf("receive from %s\n", ntoa(&rbufp->recv_srcadr));
|
|
#endif
|
|
|
|
/*
|
|
* Let the monitoring software take a look at this first.
|
|
*/
|
|
ntp_monitor(rbufp);
|
|
|
|
/*
|
|
* Get the restrictions on this guy. If we're to ignore him,
|
|
* go no further.
|
|
*/
|
|
restrict = restrictions(&rbufp->recv_srcadr);
|
|
if (restrict & RES_IGNORE)
|
|
return;
|
|
|
|
/*
|
|
* Get a pointer to the packet.
|
|
*/
|
|
pkt = &rbufp->recv_pkt;
|
|
|
|
/*
|
|
* Catch packets whose version number we can't deal with
|
|
*/
|
|
if (PKT_VERSION(pkt->li_vn_mode) >= NTP_VERSION) {
|
|
sys_newversionpkt++;
|
|
} else if (PKT_VERSION(pkt->li_vn_mode) >= NTP_OLDVERSION) {
|
|
sys_oldversionpkt++;
|
|
} else {
|
|
sys_unknownversion++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Catch private mode packets. Dump it if queries not allowed.
|
|
*/
|
|
if (PKT_MODE(pkt->li_vn_mode) == MODE_PRIVATE) {
|
|
if (restrict & RES_NOQUERY)
|
|
return;
|
|
process_private(rbufp, ((restrict&RES_NOMODIFY) == 0));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Same with control mode packets.
|
|
*/
|
|
if (PKT_MODE(pkt->li_vn_mode) == MODE_CONTROL) {
|
|
if (restrict & RES_NOQUERY)
|
|
return;
|
|
process_control(rbufp, restrict);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* See if we're allowed to serve this guy time. If not, ignore
|
|
* him.
|
|
*/
|
|
if (restrict & RES_DONTSERVE)
|
|
return;
|
|
|
|
/*
|
|
* See if we only accept limited number of clients from the net
|
|
* this guy is from. Note: the flag is determined dynamically
|
|
* within restrictions()
|
|
*/
|
|
if (restrict & RES_LIMITED) {
|
|
extern u_long client_limit;
|
|
|
|
sys_limitrejected++;
|
|
NLOG(NLOG_PEERINFO) /* conditional if clause for conditional syslog */
|
|
msyslog(LOG_NOTICE,
|
|
"rejected mode %d request from %s - per net client limit (%d) exceeded",
|
|
PKT_MODE(pkt->li_vn_mode),
|
|
ntoa(&rbufp->recv_srcadr), client_limit);
|
|
return;
|
|
}
|
|
/*
|
|
* Dump anything with a putrid stratum. These will most likely
|
|
* come from someone trying to poll us with ntpdc.
|
|
*/
|
|
if (pkt->stratum > NTP_MAXSTRATUM) {
|
|
sys_badstratum++;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Find the peer. This will return a null if this guy isn't in
|
|
* the database.
|
|
*/
|
|
peer = findpeer(&rbufp->recv_srcadr, rbufp->dstadr, rbufp->fd);
|
|
|
|
/*
|
|
* Check the length for validity, drop the packet if it is
|
|
* not as expected. If this is a client mode poll, go no
|
|
* further. Send back his time and drop it.
|
|
*
|
|
* The scheme we use for authentication is this. If we are
|
|
* running in non-authenticated mode, we accept both frames
|
|
* which are authenticated and frames which aren't, but don't
|
|
* authenticate. We do record whether the frame had a mac field
|
|
* or not so we know what to do on output.
|
|
*
|
|
* If we are running in authenticated mode, we only trust frames
|
|
* which have authentication attached, which are validated and
|
|
* which are using one of our trusted keys. We respond to all
|
|
* other pollers without saving any state. If a host we are
|
|
* passively peering with changes his key from a trusted one to
|
|
* an untrusted one, we immediately unpeer with him, reselect
|
|
* the clock and treat him as an unmemorable client (this is
|
|
* a small denial-of-service hole I'll have to think about).
|
|
* If a similar event occurs with a configured peer we drop the
|
|
* frame and hope he'll revert to our key again. If we get a
|
|
* frame which can't be authenticated with the given key, we
|
|
* drop it. Either we disagree on the keys or someone is trying
|
|
* some funny stuff.
|
|
*/
|
|
|
|
/*
|
|
* here we assume that any packet with an authenticator is at
|
|
* least LEN_PKT_MAC bytes long, which means at least 96 bits
|
|
*/
|
|
if (rbufp->recv_length >= LEN_PKT_MAC) {
|
|
has_mac = rbufp->recv_length - LEN_PKT_NOMAC;
|
|
hiskeyid = ntohl(pkt->keyid);
|
|
#ifdef DEBUG
|
|
if (debug > 2)
|
|
printf(
|
|
"receive: pkt is %d octets, mac %d octets long, keyid %ld\n",
|
|
rbufp->recv_length, has_mac, hiskeyid);
|
|
#endif
|
|
} else if (rbufp->recv_length == LEN_PKT_NOMAC) {
|
|
hiskeyid = 0;
|
|
has_mac = 0;
|
|
} else {
|
|
#ifdef DEBUG
|
|
if (debug > 2)
|
|
printf("receive: bad length %d %d\n",
|
|
rbufp->recv_length, (int)sizeof(struct pkt));
|
|
#endif
|
|
sys_badlength++;
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* Figure out his mode and validate it.
|
|
*/
|
|
hismode = PKT_MODE(pkt->li_vn_mode);
|
|
#ifdef DEBUG
|
|
if (debug > 2)
|
|
printf("receive: his mode %d\n", hismode);
|
|
#endif
|
|
if (PKT_VERSION(pkt->li_vn_mode) == NTP_OLDVERSION && hismode ==
|
|
0) {
|
|
/*
|
|
* Easy. If it is from the NTP port it is
|
|
* a sym act, else client.
|
|
*/
|
|
if (SRCPORT(&rbufp->recv_srcadr) == NTP_PORT)
|
|
hismode = MODE_ACTIVE;
|
|
else
|
|
hismode = MODE_CLIENT;
|
|
} else {
|
|
if (hismode != MODE_ACTIVE && hismode != MODE_PASSIVE &&
|
|
hismode != MODE_SERVER && hismode != MODE_CLIENT &&
|
|
hismode != MODE_BROADCAST) {
|
|
msyslog(LOG_ERR, "bad mode %d received from %s",
|
|
PKT_MODE(pkt->li_vn_mode),
|
|
ntoa(&rbufp->recv_srcadr));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If he included a mac field, decrypt it to see if it is
|
|
* authentic.
|
|
*/
|
|
is_authentic = 0;
|
|
if (has_mac) {
|
|
if (authhavekey(hiskeyid)) {
|
|
if (!authistrusted(hiskeyid)) {
|
|
sys_badauth++;
|
|
#ifdef DEBUG
|
|
if (debug > 3)
|
|
printf("receive: untrusted keyid\n");
|
|
#endif
|
|
return;
|
|
}
|
|
if (authdecrypt(hiskeyid, (u_int32 *)pkt,
|
|
LEN_PKT_NOMAC)) {
|
|
is_authentic = 1;
|
|
#ifdef DEBUG
|
|
if (debug > 3)
|
|
printf("receive: authdecrypt succeeds\n");
|
|
#endif
|
|
} else {
|
|
sys_badauth++;
|
|
#ifdef DEBUG
|
|
if (debug > 3)
|
|
printf("receive: authdecrypt fails\n");
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is someone we don't remember from a previous
|
|
* association, dispatch him now. Either we send something back
|
|
* quick, we ignore him, or we allocate some memory for him and
|
|
* let him continue.
|
|
*/
|
|
if (peer == 0) {
|
|
int mymode;
|
|
|
|
mymode = MODE_PASSIVE;
|
|
switch(hismode) {
|
|
case MODE_ACTIVE:
|
|
/*
|
|
* See if this guy qualifies as being the least
|
|
* bit memorable. If so we keep him around for
|
|
* later. If not, send his time quick.
|
|
*/
|
|
if (restrict & RES_NOPEER) {
|
|
fast_xmit(rbufp, (int)hismode,
|
|
is_authentic);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case MODE_PASSIVE:
|
|
case MODE_SERVER:
|
|
/*
|
|
* These are obvious errors. Ignore.
|
|
*/
|
|
return;
|
|
|
|
case MODE_CLIENT:
|
|
/*
|
|
* Send it back quick and go home.
|
|
*/
|
|
fast_xmit(rbufp, (int)hismode, is_authentic);
|
|
return;
|
|
|
|
case MODE_BROADCAST:
|
|
/*
|
|
* Sort of a repeat of the above...
|
|
*/
|
|
if ((restrict & RES_NOPEER) || !sys_bclient)
|
|
return;
|
|
mymode = MODE_MCLIENT;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Okay, we're going to keep him around. Allocate him
|
|
* some memory.
|
|
*/
|
|
peer = newpeer(&rbufp->recv_srcadr,
|
|
rbufp->dstadr, mymode, PKT_VERSION(pkt->li_vn_mode),
|
|
NTP_MINDPOLL, NTP_MAXDPOLL, 0, hiskeyid);
|
|
|
|
if (peer == 0) {
|
|
/*
|
|
* The only way this can happen is if the
|
|
* source address looks like a reference
|
|
* clock. Since this is an illegal address
|
|
* this is one of those "can't happen" things.
|
|
*/
|
|
msyslog(LOG_ERR,
|
|
"receive() failed to peer with %s, mode %d",
|
|
ntoa(&rbufp->recv_srcadr), mymode);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark the time of reception
|
|
*/
|
|
peer->timereceived = current_time;
|
|
|
|
/*
|
|
* If the peer isn't configured, set his keyid and authenable
|
|
* status based on the packet.
|
|
*/
|
|
if (!(peer->flags & FLAG_CONFIG)) {
|
|
if (has_mac) {
|
|
if (!(peer->reach && peer->keyid != hiskeyid)) {
|
|
peer->keyid = hiskeyid;
|
|
peer->flags |= FLAG_AUTHENABLE;
|
|
}
|
|
} else {
|
|
peer->keyid = 0;
|
|
peer->flags &= ~FLAG_AUTHENABLE;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* If this message was authenticated properly, note this
|
|
* in the flags.
|
|
*/
|
|
if (is_authentic) {
|
|
peer->flags |= FLAG_AUTHENTIC;
|
|
} else {
|
|
/*
|
|
* If this guy is authenable, and has been authenticated
|
|
* in the past, but just failed the authentic test,
|
|
* report the event.
|
|
*/
|
|
if (peer->flags & FLAG_AUTHENABLE
|
|
&& peer->flags & FLAG_AUTHENTIC)
|
|
report_event(EVNT_PEERAUTH, peer);
|
|
peer->flags &= ~FLAG_AUTHENTIC;
|
|
}
|
|
|
|
/*
|
|
* Determine if this guy is basically trustable.
|
|
*/
|
|
if (restrict & RES_DONTTRUST)
|
|
trustable = 0;
|
|
else
|
|
trustable = 1;
|
|
|
|
if (sys_authenticate && trustable) {
|
|
if (!(peer->flags & FLAG_CONFIG) ||
|
|
(peer->flags & FLAG_AUTHENABLE)) {
|
|
if (has_mac && is_authentic)
|
|
trustable = 1;
|
|
else
|
|
trustable = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Dispose of the packet based on our respective modes. We
|
|
* don't drive this with a table, though we probably could.
|
|
*/
|
|
switch (peer->hmode) {
|
|
case MODE_ACTIVE:
|
|
case MODE_CLIENT:
|
|
/*
|
|
* Active mode associations are configured. If the data
|
|
* isn't trustable, ignore it and hope this guy
|
|
* brightens up. Else accept any data we get and process
|
|
* it.
|
|
*/
|
|
switch (hismode) {
|
|
case MODE_ACTIVE:
|
|
case MODE_PASSIVE:
|
|
case MODE_SERVER:
|
|
case MODE_BROADCAST:
|
|
process_packet(peer, pkt, &(rbufp->recv_time),
|
|
has_mac, trustable);
|
|
break;
|
|
|
|
case MODE_CLIENT:
|
|
if (peer->hmode == MODE_ACTIVE)
|
|
fast_xmit(rbufp, hismode, is_authentic);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case MODE_PASSIVE:
|
|
/*
|
|
* Passive mode associations are (in the current
|
|
* implementation) always dynamic. If we get an invalid
|
|
* header, break the connection. I hate doing this since
|
|
* it seems like a waste. Oh, well.
|
|
*/
|
|
switch (hismode) {
|
|
case MODE_ACTIVE:
|
|
if (process_packet(peer, pkt,
|
|
&(rbufp->recv_time),
|
|
has_mac, trustable) == 0) {
|
|
unpeer(peer);
|
|
clock_select();
|
|
fast_xmit(rbufp, (int)hismode, is_authentic);
|
|
}
|
|
break;
|
|
|
|
case MODE_PASSIVE:
|
|
case MODE_SERVER:
|
|
case MODE_BROADCAST:
|
|
/*
|
|
* These are errors. Just ignore the packet.
|
|
* If he doesn't straighten himself out this
|
|
* association will eventually be disolved.
|
|
*/
|
|
break;
|
|
|
|
case MODE_CLIENT:
|
|
fast_xmit(rbufp, hismode, is_authentic);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
|
|
case MODE_BCLIENT:
|
|
/*
|
|
* Broadcast client pseudo-mode. We accept both server
|
|
* and broadcast data. Passive mode data is an error.
|
|
*/
|
|
switch (hismode) {
|
|
case MODE_ACTIVE:
|
|
/*
|
|
* This guy wants to give us real time when
|
|
* we've been existing on lousy broadcasts!
|
|
* Create a passive mode association and do it
|
|
* that way, but keep the old one in case the
|
|
* packet turns out to be bad.
|
|
*/
|
|
peer2 = newpeer(&rbufp->recv_srcadr,
|
|
rbufp->dstadr, MODE_PASSIVE,
|
|
PKT_VERSION(pkt->li_vn_mode),
|
|
NTP_MINDPOLL, NTP_MAXPOLL, 0, hiskeyid);
|
|
if (process_packet(peer2, pkt,
|
|
&rbufp->recv_time, has_mac, trustable) == 0) {
|
|
/*
|
|
* Strange situation. We've been
|
|
* receiving broadcasts from him which
|
|
* we liked, but we don't like his
|
|
* active mode stuff. Keep his old peer
|
|
* structure and send him some time
|
|
* quickly, we'll figure it out later.
|
|
*/
|
|
unpeer(peer2);
|
|
fast_xmit(rbufp, (int)hismode,
|
|
is_authentic);
|
|
} else
|
|
/*
|
|
* Drop the old association
|
|
*/
|
|
unpeer(peer);
|
|
break;
|
|
|
|
case MODE_PASSIVE:
|
|
break;
|
|
|
|
case MODE_SERVER:
|
|
case MODE_BROADCAST:
|
|
process_packet(peer, pkt, &rbufp->recv_time,
|
|
has_mac, trustable);
|
|
/*
|
|
* We don't test for invalid headers.
|
|
* Let him time out.
|
|
*/
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case MODE_MCLIENT:
|
|
/*
|
|
* This mode is temporary and does not appear outside
|
|
* this routine. It lasts only from the time the
|
|
* broadcast/multicast is recognized until the
|
|
* association is instantiated. Note that we start up in
|
|
* client/server mode to initially synchronize the
|
|
* clock.
|
|
*/
|
|
switch (hismode) {
|
|
case MODE_BROADCAST:
|
|
peer->flags |= FLAG_MCAST1 | FLAG_MCAST2;
|
|
peer->hmode = MODE_CLIENT;
|
|
process_packet(peer, pkt, &rbufp->recv_time,
|
|
has_mac, trustable);
|
|
break;
|
|
|
|
case MODE_SERVER:
|
|
case MODE_PASSIVE:
|
|
case MODE_ACTIVE:
|
|
case MODE_CLIENT:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* process_packet - Packet Procedure, a la Section 3.4.3 of the
|
|
* specification. Or almost, at least. If we're in here we have a
|
|
* reasonable expectation that we will be having a long term
|
|
* relationship with this host.
|
|
*/
|
|
int
|
|
process_packet(peer, pkt, recv_ts, has_mac, trustable)
|
|
register struct peer *peer;
|
|
register struct pkt *pkt;
|
|
l_fp *recv_ts;
|
|
int has_mac;
|
|
int trustable; /* used as "valid header" */
|
|
{
|
|
l_fp t10, t23;
|
|
s_fp di, ei, p_dist, p_disp;
|
|
l_fp ci, p_rec, p_xmt, p_org;
|
|
int randomize;
|
|
u_char ostratum, oreach;
|
|
u_int32 temp;
|
|
u_fp precision;
|
|
#ifdef SYS_WINNT
|
|
DWORD dwWaitResult;
|
|
extern HANDLE hMutex;
|
|
#endif /* SYS_WINNT */
|
|
|
|
sys_processed++;
|
|
peer->processed++;
|
|
p_dist = NTOHS_FP(pkt->rootdelay);
|
|
p_disp = NTOHS_FP(pkt->rootdispersion);
|
|
NTOHL_FP(&pkt->rec, &p_rec);
|
|
NTOHL_FP(&pkt->xmt, &p_xmt);
|
|
if (PKT_MODE(pkt->li_vn_mode) != MODE_BROADCAST)
|
|
NTOHL_FP(&pkt->org, &p_org);
|
|
else
|
|
p_org = peer->rec;
|
|
peer->rec = *recv_ts;
|
|
peer->flash = 0;
|
|
randomize = POLL_RANDOMCHANGE;
|
|
|
|
/*
|
|
* Test for old or duplicate packets (tests 1 through 3).
|
|
*/
|
|
if (L_ISHIS(&peer->org, &p_xmt)) /* count old packets */
|
|
peer->oldpkt++;
|
|
if (L_ISEQU(&peer->org, &p_xmt)) /* test 1 */
|
|
peer->flash |= TEST1; /* duplicate packet */
|
|
if (PKT_MODE(pkt->li_vn_mode) != MODE_BROADCAST) {
|
|
if (!L_ISEQU(&peer->xmt, &p_org)) { /* test 2 */
|
|
randomize = POLL_MAKERANDOM;
|
|
peer->bogusorg++;
|
|
peer->flash |= TEST2; /* bogus packet */
|
|
}
|
|
if (L_ISZERO(&p_rec) || L_ISZERO(&p_org))
|
|
peer->flash |= TEST3; /* unsynchronized */
|
|
} else {
|
|
if (L_ISZERO(&p_org))
|
|
peer->flash |= TEST3; /* unsynchronized */
|
|
}
|
|
peer->org = p_xmt; /* reuse byte-swapped pkt->xmt */
|
|
peer->ppoll = pkt->ppoll;
|
|
|
|
/*
|
|
* Call poll_update(). This will either start us, if the
|
|
* association is new, or drop the polling interval if the
|
|
* association is existing and ppoll has been reduced.
|
|
*/
|
|
poll_update(peer, peer->hpoll, randomize);
|
|
|
|
|
|
/*
|
|
* Test for valid header (tests 5 through 8)
|
|
*/
|
|
if (trustable == 0) /* test 5 */
|
|
peer->flash |= TEST5; /* authentication failed */
|
|
temp = ntohl(pkt->reftime.l_ui);
|
|
if (PKT_LEAP(pkt->li_vn_mode) == LEAP_NOTINSYNC || /* test 6 */
|
|
p_xmt.l_ui < temp || p_xmt.l_ui >= temp + NTP_MAXAGE)
|
|
peer->flash |= TEST6; /* peer clock unsynchronized */
|
|
if (!(peer->flags & FLAG_CONFIG) && /* test 7 */
|
|
(PKT_TO_STRATUM(pkt->stratum) >= NTP_MAXSTRATUM ||
|
|
PKT_TO_STRATUM(pkt->stratum) > sys_stratum))
|
|
peer->flash |= TEST7; /* peer stratum out of bounds */
|
|
if (p_dist >= NTP_MAXDISPERSE /* test 8 */
|
|
|| p_dist <= (-NTP_MAXDISPERSE)
|
|
|| p_disp >= NTP_MAXDISPERSE)
|
|
peer->flash |= TEST8; /* delay/dispersion too big */
|
|
|
|
/*
|
|
* If the packet header is invalid (tests 5 through 8), exit
|
|
*/
|
|
if (peer->flash & (TEST5 | TEST6 | TEST7 | TEST8)) {
|
|
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
printf("invalid packet header %s 0x%02x %s %s\n",
|
|
ntoa(&peer->srcadr), peer->flash, fptoa(p_dist,6),
|
|
ufptoa(p_disp, 6));
|
|
#endif
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Valid header; update our state.
|
|
*/
|
|
record_raw_stats(&peer->srcadr, &peer->dstadr->sin,
|
|
&p_org, &p_rec, &p_xmt, &peer->rec);
|
|
|
|
peer->leap = PKT_LEAP(pkt->li_vn_mode);
|
|
peer->pmode = PKT_MODE(pkt->li_vn_mode);
|
|
if (has_mac)
|
|
peer->pkeyid = ntohl(pkt->keyid);
|
|
else
|
|
peer->pkeyid = 0;
|
|
ostratum = peer->stratum;
|
|
peer->stratum = PKT_TO_STRATUM(pkt->stratum);
|
|
peer->precision = pkt->precision;
|
|
peer->rootdelay = p_dist;
|
|
peer->rootdispersion = p_disp;
|
|
peer->refid = pkt->refid;
|
|
NTOHL_FP(&pkt->reftime, &peer->reftime);
|
|
oreach = peer->reach;
|
|
if (peer->reach == 0) {
|
|
peer->timereachable = current_time;
|
|
/*
|
|
* If this guy was previously unreachable, set his
|
|
* polling interval to the minimum and reset the
|
|
* unreach counter.
|
|
*/
|
|
peer->unreach = 0;
|
|
peer->hpoll = peer->minpoll;
|
|
}
|
|
peer->reach |= 1;
|
|
|
|
/*
|
|
* If running in a client/server association, calculate the
|
|
* clock offset c, roundtrip delay d and dispersion e. We use
|
|
* the equations (reordered from those in the spec). Note that,
|
|
* in a broadcast association, org has been set to the time of
|
|
* last reception. Note the computation of dispersion includes
|
|
* the system precision plus that due to the frequency error
|
|
* since the originate time.
|
|
*
|
|
* c = ((t2 - t3) + (t1 - t0)) / 2
|
|
* d = (t2 - t3) - (t1 - t0)
|
|
* e = (org - rec) (seconds only)
|
|
*/
|
|
t10 = p_xmt; /* compute t1 - t0 */
|
|
L_SUB(&t10, &peer->rec);
|
|
t23 = p_rec; /* compute t2 - t3 */
|
|
L_SUB(&t23, &p_org);
|
|
ci = t10;
|
|
precision = FP_SECOND >> -(int)sys_precision;
|
|
if (precision == 0)
|
|
precision = 1;
|
|
ei = precision + peer->rec.l_ui - p_org.l_ui;
|
|
|
|
/*
|
|
* If running in a broadcast association, the clock offset is (t1
|
|
* - t0) corrected by the one-way delay, but we can't measure
|
|
* that directly; therefore, we start up in client/server mode,
|
|
* calculate the clock offset, using the engineered refinement
|
|
* algorithms, while also receiving broadcasts. When a broadcast
|
|
* is received in client/server mode, we calculate a correction
|
|
* factor to use after switching back to broadcast mode. We know
|
|
* NTP_SKEWFACTOR == 16, which accounts for the simplified ei
|
|
* calculation.
|
|
*
|
|
* If FLAG_MCAST2 is set, we are a broadcast/multicast client.
|
|
* If FLAG_MCAST1 is set, we haven't calculated the propagation
|
|
* delay. If hmode is MODE_CLIENT, we haven't set the local
|
|
* clock in client/server mode. Initially, we come up
|
|
* MODE_CLIENT. When the clock is first updated and FLAG_MCAST2
|
|
* is set, we switch from MODE_CLIENT to MODE_BCLIENT.
|
|
*/
|
|
if (peer->pmode == MODE_BROADCAST) {
|
|
if (peer->flags & FLAG_MCAST1) {
|
|
if (peer->hmode == MODE_BCLIENT)
|
|
peer->flags &= ~FLAG_MCAST1;
|
|
L_SUB(&ci, &peer->offset);
|
|
L_NEG(&ci);
|
|
peer->estbdelay = LFPTOFP(&ci);
|
|
return (1);
|
|
|
|
}
|
|
FPTOLFP(peer->estbdelay, &t10);
|
|
L_ADD(&ci, &t10);
|
|
di = peer->delay;
|
|
|
|
} else {
|
|
L_ADD(&ci, &t23);
|
|
L_RSHIFT(&ci);
|
|
L_SUB(&t23, &t10);
|
|
di = LFPTOFP(&t23);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if (debug > 3)
|
|
printf("offset: %s, delay %s, error %s\n",
|
|
lfptoa(&ci, 6), fptoa(di, 5), ufptoa(ei, 5));
|
|
#endif
|
|
if (di >= NTP_MAXDISPERSE || di <= (-NTP_MAXDISPERSE)
|
|
|| ei >= NTP_MAXDISPERSE) /* test 4 */
|
|
peer->flash |= TEST4; /* delay/dispersion too big */
|
|
|
|
/*
|
|
* If the packet data is invalid (tests 1 through 4), exit.
|
|
*/
|
|
if (peer->flash) {
|
|
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
printf("invalid packet header %s 0x%02x %s %s\n",
|
|
ntoa(&peer->srcadr), peer->flash, fptoa(di,6),
|
|
ufptoa(ei, 6));
|
|
#endif
|
|
|
|
/*
|
|
* If there was a reachability change report it even
|
|
* though the packet was bogus.
|
|
*/
|
|
if (oreach == 0)
|
|
report_event(EVNT_REACH, peer);
|
|
return(1);
|
|
}
|
|
|
|
#ifdef SYS_WINNT
|
|
/* prevent timer() from fiddling with the clock at the same time as us
|
|
* by grabbing the mutex
|
|
* the mutex should be held for as small a time as possible (in order
|
|
* that the timer() routine is not blocked unneccessarily) and should
|
|
* probably be grabbed much later (in local_clock() maybe), but this
|
|
* works reasonably well too
|
|
*/
|
|
dwWaitResult = WaitForSingleObject(
|
|
hMutex, /* handle of mutex */
|
|
5000L); /* five-second time-out interval */
|
|
switch (dwWaitResult) {
|
|
case WAIT_OBJECT_0:
|
|
/* The thread got mutex ownership. */
|
|
break;
|
|
default:
|
|
/* Cannot get mutex ownership due to time-out. */
|
|
msyslog(LOG_ERR, "receive error with mutex: %m\n");
|
|
exit(1);
|
|
}
|
|
#endif /* SYS_WINNT */
|
|
|
|
/*
|
|
* This one is valid. Mark it so, give it to clock_filter().
|
|
*/
|
|
clock_filter(peer, &ci, di, (u_fp)ei);
|
|
|
|
/*
|
|
* If this guy was previously unreachable, report him reachable.
|
|
* Note we do this here so that the peer values we return are
|
|
* the updated ones.
|
|
*/
|
|
if (oreach == 0)
|
|
report_event(EVNT_REACH, peer);
|
|
|
|
/*
|
|
* Now update the clock. If we have found a system peer and this
|
|
* is a broadcast/multicast client, switch to listen mode.
|
|
*/
|
|
clock_update(peer);
|
|
#if defined(GDT_SURVEYING)
|
|
/* log the packet if it was low-delay and sane */
|
|
randomize = peer->filter_order[0];
|
|
if (L_ISEQU(&peer->filter_offset[randomize], &ci)
|
|
&& peer->filter_delay[randomize] == di)
|
|
{
|
|
char logstr[1024];
|
|
|
|
/* ok if passed intersection test. we don't want to be
|
|
* too judgemental about peers that aren't right - just
|
|
* throw out falsetickers but not peers that have wander
|
|
* relative to average, since average may be wrong */
|
|
if ( peer->was_sane && peer->correct )
|
|
{
|
|
sprintf(logstr,
|
|
"observation: time %lu %s off %s delay %s error %s rsadj %s",
|
|
sys_clock,
|
|
ntoa(&peer->srcadr),
|
|
lfptoa(&ci, 6),
|
|
fptoa(di, 6),
|
|
ufptoa(ei, 6),
|
|
lfptoa(&gdt_rsadj, 6)
|
|
);
|
|
msyslog(LOG_DEBUG, "%s", logstr);
|
|
}
|
|
else
|
|
{
|
|
sprintf(logstr,
|
|
"incorrect_obs: time %lu %s off %s delay %s error %s rsadj %s",
|
|
sys_clock,
|
|
ntoa(&peer->srcadr),
|
|
lfptoa(&ci, 6),
|
|
fptoa(di, 6),
|
|
ufptoa(ei, 6),
|
|
lfptoa(&gdt_rsadj, 6)
|
|
);
|
|
#ifdef LOG_INCORRECT
|
|
msyslog(LOG_DEBUG, "%s", logstr);
|
|
#endif
|
|
}
|
|
}
|
|
#endif /* GDT_SURVEYING */
|
|
|
|
if (sys_peer && peer->flags & FLAG_MCAST2)
|
|
peer->hmode = MODE_BCLIENT;
|
|
|
|
#ifdef SYS_WINNT
|
|
if (!ReleaseMutex(hMutex)) {
|
|
msyslog(LOG_ERR, "receive cannot release mutex: %m\n");
|
|
exit(1);
|
|
}
|
|
#endif /* SYS_WINNT */
|
|
|
|
return(1);
|
|
}
|
|
|
|
|
|
/*
|
|
* clock_update - Clock-update procedure, see section 3.4.5.
|
|
*/
|
|
void
|
|
clock_update(peer)
|
|
struct peer *peer;
|
|
{
|
|
u_char oleap;
|
|
u_char ostratum;
|
|
s_fp d;
|
|
extern u_char leap_mask;
|
|
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("clock_update(%s)\n", ntoa(&peer->srcadr));
|
|
#endif
|
|
|
|
record_peer_stats(&peer->srcadr, ctlpeerstatus(peer),
|
|
&peer->offset, peer->delay, peer->dispersion);
|
|
|
|
/*
|
|
* Call the clock selection algorithm to see if this update
|
|
* causes the peer to change. If this is not the system peer,
|
|
* quit now.
|
|
*/
|
|
clock_select();
|
|
if (peer != sys_peer)
|
|
return;
|
|
|
|
/*
|
|
* Update the system state. This updates the system stratum,
|
|
* leap bits, root delay, root dispersion, reference ID and
|
|
* reference time. We also update select dispersion and max
|
|
* frequency error.
|
|
*/
|
|
oleap = sys_leap;
|
|
ostratum = sys_stratum;
|
|
sys_stratum = peer->stratum + 1;
|
|
if (sys_stratum == 1)
|
|
sys_refid = peer->refid;
|
|
else
|
|
sys_refid = peer->srcadr.sin_addr.s_addr;
|
|
sys_reftime = peer->rec;
|
|
d = peer->delay;
|
|
if (d < 0)
|
|
d = -d;
|
|
sys_rootdelay = peer->rootdelay + d;
|
|
d = LFPTOFP(&peer->offset);
|
|
if (d < 0)
|
|
d = -d;
|
|
d += sys_maxd[0];
|
|
if (!(peer->flags & FLAG_REFCLOCK) && (d < NTP_MINDISPERSE))
|
|
d = NTP_MINDISPERSE;
|
|
sys_rootdispersion = peer->rootdispersion + d;
|
|
sys_leap = leap_actual(leap_consensus & leap_mask);
|
|
sys_maxd[2] = sys_maxd[1];
|
|
sys_maxd[1] = sys_maxd[0];
|
|
sys_maxd[0] = peer->dispersion + maxd;
|
|
|
|
/*
|
|
* Reset/adjust the system clock. Watch for timewarps here.
|
|
*
|
|
* allow local_clock to set clock fast iff we have just left
|
|
* an unsync state (startup / regain sync).
|
|
*/
|
|
switch (local_clock(&sys_offset, peer, (oleap == LEAP_NOTINSYNC) &&
|
|
(sys_leap != LEAP_NOTINSYNC))) {
|
|
case -1:
|
|
|
|
/*
|
|
* Clock is too screwed up. Just exit for now.
|
|
*/
|
|
report_event(EVNT_SYSFAULT, (struct peer *)0);
|
|
exit(1);
|
|
/*NOTREACHED*/
|
|
case 0:
|
|
|
|
/*
|
|
* Clock was slewed. Continue on normally.
|
|
*/
|
|
L_CLR(&sys_refskew);
|
|
break;
|
|
|
|
case 1:
|
|
|
|
/*
|
|
* Clock was stepped. Clear filter registers
|
|
* of all peers.
|
|
*/
|
|
clear_all();
|
|
leap_process(); /* reset the leap interrupt */
|
|
sys_leap = LEAP_NOTINSYNC;
|
|
sys_refskew.l_i = NTP_MAXSKEW; sys_refskew.l_f = 0;
|
|
report_event(EVNT_CLOCKRESET, (struct peer *)0);
|
|
break;
|
|
}
|
|
if (oleap != sys_leap)
|
|
report_event(EVNT_SYNCCHG, (struct peer *)0);
|
|
if (ostratum != sys_stratum)
|
|
report_event(EVNT_PEERSTCHG, (struct peer *)0);
|
|
}
|
|
|
|
|
|
/*
|
|
* poll_update - update peer poll interval. See Section 3.4.8 of the
|
|
* spec.
|
|
*/
|
|
void
|
|
poll_update(peer, new_hpoll, randomize)
|
|
struct peer *peer;
|
|
unsigned int new_hpoll;
|
|
int randomize;
|
|
{
|
|
register struct event *evp;
|
|
register u_long new_timer;
|
|
u_char newpoll, oldpoll;
|
|
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
printf("poll_update(%s, %d, %d)\n", ntoa(&peer->srcadr),
|
|
new_hpoll, randomize);
|
|
#endif
|
|
/*
|
|
* Catch reference clocks here. The polling interval for a
|
|
* reference clock is fixed and needn't be maintained by us.
|
|
*/
|
|
if (peer->flags & FLAG_REFCLOCK || peer->hmode ==
|
|
MODE_BROADCAST)
|
|
return;
|
|
|
|
/*
|
|
* This routine * will randomly perturb the new peer.timer if
|
|
* requested, to try to prevent synchronization with the remote
|
|
* peer from occuring. There are three options, based on the
|
|
* value of randomize:
|
|
*
|
|
* POLL_NOTRANDOM - essentially the spec algorithm. If
|
|
* peer.timer is greater than the new polling interval,
|
|
* drop it to the new interval.
|
|
*
|
|
* POLL_RANDOMCHANGE - make changes randomly. If peer.timer
|
|
* must be changed, based on the comparison about, randomly
|
|
* perturb the new value of peer.timer.
|
|
*
|
|
* POLL_MAKERANDOM - make next interval random. Calculate
|
|
* a randomly perturbed poll interval. If this value is
|
|
* less that peer.timer, update peer.timer.
|
|
*/
|
|
oldpoll = peer->hpoll;
|
|
if (peer->hmode == MODE_BCLIENT)
|
|
peer->hpoll = peer->ppoll;
|
|
else if ((peer->flags & FLAG_SYSPEER) && new_hpoll > sys_poll)
|
|
peer->hpoll = max(peer->minpoll, sys_poll);
|
|
else {
|
|
if (new_hpoll > peer->maxpoll)
|
|
peer->hpoll = peer->maxpoll;
|
|
else if (new_hpoll < peer->minpoll)
|
|
peer->hpoll = peer->minpoll;
|
|
else
|
|
peer->hpoll = new_hpoll;
|
|
}
|
|
|
|
/* hpoll <= maxpoll for sure */
|
|
newpoll = max((u_char)min(peer->ppoll, peer->hpoll),
|
|
peer->minpoll);
|
|
if (randomize == POLL_MAKERANDOM || (randomize ==
|
|
POLL_RANDOMCHANGE && newpoll != oldpoll))
|
|
new_timer = (1 << (newpoll - 1))
|
|
+ ranp2(newpoll - 1) + current_time;
|
|
else
|
|
new_timer = (1 << newpoll) + current_time;
|
|
evp = &(peer->event_timer);
|
|
if (evp->next == 0 || evp->event_time > new_timer) {
|
|
TIMER_DEQUEUE(evp);
|
|
evp->event_time = new_timer;
|
|
TIMER_ENQUEUE(timerqueue, evp);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* clear_all - clear all peer filter registers. This is done after
|
|
* a step change in the time.
|
|
*/
|
|
static void
|
|
clear_all()
|
|
{
|
|
register int i;
|
|
register struct peer *peer;
|
|
|
|
for (i = 0; i < HASH_SIZE; i++)
|
|
for (peer = peer_hash[i]; peer != 0; peer = peer->next) {
|
|
peer_clear(peer);
|
|
}
|
|
|
|
/*
|
|
* Clear sys_peer. We'll sync to one later.
|
|
*/
|
|
if (sys_peer)
|
|
NLOG(NLOG_SYNCSTATUS)
|
|
msyslog(LOG_INFO, "synchronisation lost");
|
|
|
|
sys_peer = 0;
|
|
sys_stratum = STRATUM_UNSPEC;
|
|
}
|
|
|
|
|
|
/*
|
|
* clear - clear peer filter registers. See Section 3.4.7 of the spec.
|
|
*/
|
|
void
|
|
peer_clear(peer)
|
|
register struct peer *peer;
|
|
{
|
|
register int i;
|
|
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("clear(%s)\n", ntoa(&peer->srcadr));
|
|
#endif
|
|
memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO);
|
|
peer->hpoll = peer->minpoll;
|
|
peer->dispersion = NTP_MAXDISPERSE;
|
|
for (i = 0; i < NTP_SHIFT; i++)
|
|
peer->filter_error[i] = NTP_MAXDISPERSE;
|
|
poll_update(peer, peer->minpoll, POLL_RANDOMCHANGE);
|
|
clock_select();
|
|
|
|
/*
|
|
* Clear out the selection counters
|
|
*/
|
|
peer->candidate = 0;
|
|
peer->select = 0;
|
|
peer->correct = 0;
|
|
peer->was_sane = 0;
|
|
|
|
/*
|
|
* Since we have a chance to correct possible funniness in
|
|
* our selection of interfaces on a multihomed host, do so
|
|
* by setting us to no particular interface.
|
|
*/
|
|
peer->dstadr = any_interface;
|
|
}
|
|
|
|
|
|
/*
|
|
* clock_filter - add incoming clock sample to filter register and run
|
|
* the filter procedure to find the best sample.
|
|
*/
|
|
void
|
|
clock_filter(peer, sample_offset, sample_delay, sample_error)
|
|
register struct peer *peer;
|
|
l_fp *sample_offset;
|
|
s_fp sample_delay;
|
|
u_fp sample_error;
|
|
{
|
|
register int i, j, k, n;
|
|
register u_char *ord;
|
|
s_fp distance[NTP_SHIFT];
|
|
long skew, skewmax;
|
|
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("clock_filter(%s, %s, %s, %s)\n",
|
|
ntoa(&peer->srcadr), lfptoa(sample_offset, 6),
|
|
fptoa(sample_delay, 5), ufptoa(sample_error, 5));
|
|
#endif
|
|
|
|
/*
|
|
* Update sample errors and calculate distances. Also initialize
|
|
* sort index vector. We know NTP_SKEWFACTOR == 16
|
|
*/
|
|
skew = sys_clock - peer->update;
|
|
peer->update = sys_clock;
|
|
ord = peer->filter_order;
|
|
j = peer->filter_nextpt;
|
|
for (i = 0; i < NTP_SHIFT; i++) {
|
|
peer->filter_error[j] += (u_fp)skew;
|
|
if (peer->filter_error[j] > NTP_MAXDISPERSE)
|
|
peer->filter_error[j] = NTP_MAXDISPERSE;
|
|
distance[i] = peer->filter_error[j] +
|
|
(peer->filter_delay[j] >> 1);
|
|
ord[i] = j;
|
|
if (--j < 0)
|
|
j += NTP_SHIFT;
|
|
}
|
|
|
|
#if defined(GDT_SURVEYING)
|
|
/* only log here if directly-connected reference clock */
|
|
if ( peer->stratum == STRATUM_REFCLOCK )
|
|
{
|
|
char logstr[1024];
|
|
|
|
sprintf(logstr,
|
|
"observation: time %lu %s off %s delay %s error %s rsadj %s",
|
|
sys_clock,
|
|
ntoa(&peer->srcadr),
|
|
lfptoa(sample_offset, 6),
|
|
fptoa(sample_delay, 6),
|
|
ufptoa(sample_error, 6),
|
|
lfptoa(&gdt_rsadj, 6)
|
|
);
|
|
|
|
msyslog(LOG_DEBUG, "%s", logstr);
|
|
}
|
|
#endif /* GDT_SURVEYING */
|
|
|
|
/*
|
|
* Insert the new sample at the beginning of the register.
|
|
*/
|
|
peer->filter_delay[peer->filter_nextpt] = sample_delay;
|
|
peer->filter_offset[peer->filter_nextpt] = *sample_offset;
|
|
peer->filter_soffset[peer->filter_nextpt] =
|
|
LFPTOFP(sample_offset);
|
|
peer->filter_error[peer->filter_nextpt] = sample_error;
|
|
distance[0] = sample_error + (sample_delay >> 1);
|
|
|
|
/*
|
|
* Sort the samples in the register by distance. The winning
|
|
* sample will be in ord[0]. Sort the samples only if the
|
|
* samples are not too old and the delay is meaningful.
|
|
*/
|
|
skewmax = 0;
|
|
for (n = 0; n < NTP_SHIFT && sample_delay; n++) {
|
|
for (j = 0; j < n && skewmax <
|
|
CLOCK_MAXSEC; j++) {
|
|
if (distance[j] > distance[n]) {
|
|
s_fp ftmp;
|
|
|
|
ftmp = distance[n];
|
|
k = ord[n];
|
|
distance[n] = distance[j];
|
|
ord[n] = ord[j];
|
|
distance[j] = ftmp;
|
|
ord[j] = k;
|
|
}
|
|
}
|
|
skewmax += (1 << peer->hpoll);
|
|
}
|
|
peer->filter_nextpt++;
|
|
if (peer->filter_nextpt >= NTP_SHIFT)
|
|
peer->filter_nextpt = 0;
|
|
|
|
/*
|
|
* We compute the dispersion as per the spec. Note that, to make
|
|
* things simple, both the l_fp and s_fp offsets are retained
|
|
* and that the s_fp could be nonsense if the l_fp is greater
|
|
* than about 32000 s. The s_fp is used only for dispersion and
|
|
* display purposes and anything greater than that is clamped
|
|
* by the l_fp -> s_fp conversion.
|
|
*/
|
|
if (peer->filter_error[ord[0]] >= NTP_MAXDISPERSE) {
|
|
peer->dispersion = NTP_MAXDISPERSE;
|
|
} else {
|
|
s_fp d;
|
|
u_fp y;
|
|
|
|
peer->delay = peer->filter_delay[ord[0]];
|
|
peer->offset = peer->filter_offset[ord[0]];
|
|
peer->soffset = LFPTOFP(&peer->offset);
|
|
peer->dispersion = peer->filter_error[ord[0]];
|
|
|
|
y = 0;
|
|
for (i = NTP_SHIFT - 1; i > 0; i--) {
|
|
if (peer->filter_error[ord[i]] >=
|
|
NTP_MAXDISPERSE)
|
|
d = NTP_MAXDISPERSE;
|
|
else {
|
|
d = peer->filter_soffset[ord[i]] -
|
|
peer->filter_soffset[ord[0]];
|
|
if (d < 0)
|
|
d = -d;
|
|
if (d > NTP_MAXDISPERSE)
|
|
d = NTP_MAXDISPERSE;
|
|
}
|
|
/*
|
|
* XXX This *knows* NTP_FILTER is 1/2
|
|
*/
|
|
y = ((u_fp)d + y) >> 1;
|
|
}
|
|
peer->dispersion += y;
|
|
|
|
/*
|
|
* Calculate synchronization distance backdated to
|
|
* sys_lastselect (clock_select will fix it). We know
|
|
* NTP_SKEWFACTOR == 16.
|
|
*/
|
|
d = peer->delay;
|
|
if (d < 0)
|
|
d = -d;
|
|
d += peer->rootdelay;
|
|
peer->synch = (d >> 1) + peer->rootdispersion +
|
|
peer->dispersion - (sys_clock - sys_lastselect);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* clock_select - find the pick-of-the-litter clock
|
|
*/
|
|
void
|
|
clock_select()
|
|
{
|
|
register struct peer *peer;
|
|
int i;
|
|
int nlist, nl3;
|
|
u_fp c, d;
|
|
l_fp e, f;
|
|
int j;
|
|
int n;
|
|
int allow, found, k;
|
|
l_fp high, low;
|
|
u_fp synch[NTP_MAXCLOCK], error[NTP_MAXCLOCK];
|
|
struct peer *osys_peer;
|
|
struct peer *typeacts = 0;
|
|
struct peer *typelocal = 0;
|
|
struct peer *typepps = 0;
|
|
struct peer *typeprefer = 0;
|
|
struct peer *typesystem = 0;
|
|
|
|
static int list_alloc = 0;
|
|
static struct endpoint *endpoint;
|
|
static int *index;
|
|
static struct peer **peer_list;
|
|
static int endpoint_size = 0, index_size = 0, peer_list_size = 0;
|
|
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
printf("clock_select()\n");
|
|
#endif
|
|
|
|
/*
|
|
* Initizialize. If a prefer peer does not survive this thing,
|
|
* the pps_update switch will remain zero.
|
|
*/
|
|
pps_update = 0;
|
|
nlist = 0;
|
|
MAXLFP(&low);
|
|
MINLFP(&high);
|
|
for (n = 0; n < HASH_SIZE; n++)
|
|
nlist += peer_hash_count[n];
|
|
if (nlist > list_alloc) {
|
|
if (list_alloc > 0) {
|
|
free(endpoint);
|
|
free(index);
|
|
free(peer_list);
|
|
}
|
|
while (list_alloc < nlist) {
|
|
list_alloc += 5;
|
|
endpoint_size += 5 * 3 * sizeof *endpoint;
|
|
index_size += 5 * 3 * sizeof *index;
|
|
peer_list_size += 5 * sizeof *peer_list;
|
|
}
|
|
endpoint = (struct endpoint *)emalloc(endpoint_size);
|
|
index = (int *)emalloc(index_size);
|
|
peer_list = (struct peer **)emalloc(peer_list_size);
|
|
}
|
|
|
|
/*
|
|
* This first chunk of code is supposed to go through all
|
|
* peers we know about to find the NTP_MAXLIST peers which
|
|
* are most likely to succeed. We run through the list
|
|
* doing the sanity checks and trying to insert anyone who
|
|
* looks okay. We are at all times aware that we should
|
|
* only keep samples from the top two strata and we only need
|
|
* NTP_MAXLIST of them.
|
|
*/
|
|
nlist = nl3 = 0; /* none yet */
|
|
for (n = 0; n < HASH_SIZE; n++) {
|
|
for (peer = peer_hash[n]; peer != 0; peer = peer->next) {
|
|
/*
|
|
* Clear peer selection stats
|
|
*/
|
|
peer->was_sane = 0;
|
|
peer->correct = 0;
|
|
peer->candidate = 0;
|
|
peer->select = 0;
|
|
|
|
peer->flags &= ~FLAG_SYSPEER;
|
|
/*
|
|
* Update synch distance (NTP_SKEWFACTOR == 16).
|
|
* Note synch distance check instead of spec
|
|
* dispersion check. Naughty.
|
|
*/
|
|
peer->synch += (sys_clock - sys_lastselect);
|
|
|
|
if (peer->reach == 0)
|
|
continue; /* unreachable */
|
|
if (peer->stratum > 1 && peer->refid ==
|
|
peer->dstadr->sin.sin_addr.s_addr)
|
|
continue; /* sync loop */
|
|
if (peer->stratum >= NTP_MAXSTRATUM ||
|
|
peer->stratum > sys_stratum)
|
|
continue; /* bad stratum */
|
|
|
|
if (peer->dispersion >= NTP_MAXDISTANCE) {
|
|
peer->seldisptoolarge++;
|
|
continue; /* too noisy or broken */
|
|
}
|
|
if (peer->org.l_ui < peer->reftime.l_ui) {
|
|
peer->selbroken++;
|
|
continue; /* very broken host */
|
|
}
|
|
|
|
/*
|
|
* Don't allow the local-clock or acts drivers
|
|
* in the kitchen at this point, unless the
|
|
* prefer peer. Do that later, but only if
|
|
* nobody else is around.
|
|
*/
|
|
#if defined(VMS) && defined(VMS_LOCALUNIT)
|
|
/* wjm: local unit VMS_LOCALUNIT taken seriously */
|
|
if (peer->refclktype == REFCLK_LOCALCLOCK &&
|
|
REFCLOCKUNIT(&peer->srcadr) != VMS_LOCALUNIT) {
|
|
#else /* VMS && VMS_LOCALUNIT */
|
|
if (peer->refclktype == REFCLK_LOCALCLOCK) {
|
|
#endif /* VMS && VMS_LOCALUNIT */
|
|
typelocal = peer;
|
|
if (!(peer->flags & FLAG_PREFER))
|
|
continue; /* no local clock */
|
|
}
|
|
if (peer->sstclktype == CTL_SST_TS_TELEPHONE) {
|
|
typeacts = peer;
|
|
if (!(peer->flags & FLAG_PREFER))
|
|
continue; /* no acts */
|
|
}
|
|
|
|
/*
|
|
* If we get this far, we assume the peer is
|
|
* acceptable.
|
|
*/
|
|
peer->was_sane = 1;
|
|
peer_list[nlist++] = peer;
|
|
|
|
/*
|
|
* Insert each interval endpoint on the sorted
|
|
* list.
|
|
*/
|
|
e = peer->offset; /* Upper end */
|
|
UFPTOLFP(peer->synch, &f);
|
|
L_ADD(&e, &f);
|
|
for (i = nl3 - 1; i >= 0; i--) {
|
|
if (L_ISGEQ(&e, &endpoint[index[i]].val))
|
|
break;
|
|
index[i + 3] = index[i];
|
|
}
|
|
index[i + 3] = nl3;
|
|
endpoint[nl3].type = 1;
|
|
endpoint[nl3++].val = e;
|
|
|
|
L_SUB(&e, &f); /* Center point */
|
|
for ( ; i >= 0; i--) {
|
|
if (L_ISGEQ(&e, &endpoint[index[i]].val))
|
|
break;
|
|
index[i + 2] = index[i];
|
|
}
|
|
index[i + 2] = nl3;
|
|
endpoint[nl3].type = 0;
|
|
endpoint[nl3++].val = e;
|
|
|
|
L_SUB(&e, &f); /* Lower end */
|
|
for ( ; i >= 0; i--) {
|
|
if (L_ISGEQ(&e, &endpoint[index[i]].val))
|
|
break;
|
|
index[i + 1] = index[i];
|
|
}
|
|
index[i + 1] = nl3;
|
|
endpoint[nl3].type = -1;
|
|
endpoint[nl3++].val = e;
|
|
}
|
|
}
|
|
sys_lastselect = sys_clock;
|
|
|
|
#ifdef DEBUG
|
|
if (debug > 2)
|
|
for (i = 0; i < nl3; i++)
|
|
printf("select: endpoint %2d %s\n",
|
|
endpoint[index[i]].type,
|
|
lfptoa(&endpoint[index[i]].val, 6));
|
|
#endif
|
|
|
|
i = 0;
|
|
j = nl3 - 1;
|
|
allow = nlist; /* falsetickers assumed */
|
|
found = 0;
|
|
while (allow > 0) {
|
|
allow--;
|
|
for (n = 0; i <= j; i++) {
|
|
n += endpoint[index[i]].type;
|
|
if (n < 0)
|
|
break;
|
|
if (endpoint[index[i]].type == 0)
|
|
found++;
|
|
}
|
|
for (n = 0; i <= j; j--) {
|
|
n += endpoint[index[j]].type;
|
|
if (n > 0)
|
|
break;
|
|
if (endpoint[index[j]].type == 0)
|
|
found++;
|
|
}
|
|
if (found > allow)
|
|
break;
|
|
low = endpoint[index[i++]].val;
|
|
high = endpoint[index[j--]].val;
|
|
}
|
|
|
|
/*
|
|
* If no survivors remain at this point, check if the acts or
|
|
* local clock drivers have been found. If so, nominate one of
|
|
* them as the only survivor. Otherwise, give up and declare us
|
|
* unsynchronized.
|
|
*/
|
|
if ((allow << 1) >= nlist) {
|
|
if (typeacts != 0) {
|
|
typeacts->was_sane = 1;
|
|
peer_list[0] = typeacts;
|
|
nlist = 1;
|
|
} else if (typelocal != 0) {
|
|
typelocal->was_sane = 1;
|
|
peer_list[0] = typelocal;
|
|
nlist = 1;
|
|
} else {
|
|
if (sys_peer != 0) {
|
|
report_event(EVNT_PEERSTCHG,
|
|
(struct peer *)0);
|
|
NLOG(NLOG_SYNCSTATUS)
|
|
msyslog(LOG_INFO, "synchronisation lost");
|
|
}
|
|
sys_peer = 0;
|
|
sys_stratum = STRATUM_UNSPEC;
|
|
return;
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if (debug > 2)
|
|
printf("select: low %s high %s\n", lfptoa(&low, 6),
|
|
lfptoa(&high, 6));
|
|
#endif
|
|
|
|
/*
|
|
* Clustering algorithm. Process intersection list to discard
|
|
* outlyers. Construct candidate list in cluster order
|
|
* determined by the sum of peer synchronization distance plus
|
|
* scaled stratum. We must find at least one peer.
|
|
*/
|
|
j = 0;
|
|
for (i = 0; i < nlist; i++) {
|
|
peer = peer_list[i];
|
|
if (nlist > 1 && (L_ISGEQ(&low, &peer->offset) ||
|
|
L_ISGEQ(&peer->offset, &high)))
|
|
continue;
|
|
peer->correct = 1;
|
|
d = peer->synch + ((u_fp)peer->stratum <<
|
|
NTP_DISPFACTOR);
|
|
if (j >= NTP_MAXCLOCK) {
|
|
if (d >= synch[j - 1])
|
|
continue;
|
|
else
|
|
j--;
|
|
}
|
|
for (k = j; k > 0; k--) {
|
|
if (d >= synch[k - 1])
|
|
break;
|
|
synch[k] = synch[k - 1];
|
|
peer_list[k] = peer_list[k - 1];
|
|
}
|
|
peer_list[k] = peer;
|
|
synch[k] = d;
|
|
j++;
|
|
}
|
|
nlist = j;
|
|
|
|
#ifdef DEBUG
|
|
if (debug > 2)
|
|
for (i = 0; i < nlist; i++)
|
|
printf("select: candidate %s cdist %s\n",
|
|
ntoa(&peer_list[i]->srcadr),
|
|
fptoa(synch[i], 6));
|
|
#endif
|
|
|
|
/*
|
|
* Now, prune outlyers by root dispersion. Continue as long as
|
|
* there are more than NTP_MINCLOCK survivors and the minimum
|
|
* select dispersion is greater than the maximum peer
|
|
* dispersion. Stop if we are about to discard a preferred peer.
|
|
*/
|
|
for (i = 0; i < nlist; i++) {
|
|
peer = peer_list[i];
|
|
peer->candidate = i + 1;
|
|
error[i] = peer_list[i]->rootdispersion +
|
|
peer_list[i]->dispersion +
|
|
(sys_clock - peer_list[i]->update);
|
|
}
|
|
while (1) {
|
|
maxd = 0;
|
|
c = 0;
|
|
d = error[0];
|
|
for (k = i = nlist - 1; i >= 0; i--) {
|
|
u_fp sdisp = 0;
|
|
|
|
for (j = nlist - 1; j > 0; j--) {
|
|
e = peer_list[i]->offset;
|
|
L_SUB(&e, &peer_list[j]->offset);
|
|
if (L_ISNEG(&e))
|
|
L_NEG(&e);
|
|
c = LFPTOFP(&e);
|
|
sdisp += c;
|
|
sdisp = ((sdisp >> 1) + sdisp) >> 1;
|
|
}
|
|
peer_list[i]->selectdisp = sdisp;
|
|
if (sdisp > maxd) {
|
|
maxd = sdisp;
|
|
k = i;
|
|
}
|
|
if (error[i] < d)
|
|
d = error[i];
|
|
}
|
|
if (nlist <= NTP_MINCLOCK || maxd <= c ||
|
|
peer_list[k]->flags & FLAG_PREFER)
|
|
break;
|
|
for (j = k + 1; j < nlist; j++) {
|
|
peer_list[j - 1] = peer_list[j];
|
|
error[j - 1] = error[j];
|
|
}
|
|
nlist--;
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if (debug > 1) {
|
|
for (i = 0; i < nlist; i++)
|
|
printf("select: survivor %s offset %s, cdist %s\n",
|
|
ntoa(&peer_list[i]->srcadr),
|
|
lfptoa(&peer_list[i]->offset, 6),
|
|
fptoa(synch[i], 5));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* What remains is a list of not greater than NTP_MINCLOCK
|
|
* peers. We want only a peer at the lowest stratum to become
|
|
* the system peer, although all survivors are eligible for the
|
|
* combining algorithm. First record their order, diddle the
|
|
* flags and clamp the poll intervals. Then, consider the peers
|
|
* at the lowest stratum. Of these, OR the leap bits on the
|
|
* assumption that, if some of them honk nonzero bits, they must
|
|
* know what they are doing. Also, check for prefer and pps
|
|
* peers. If a prefer peer is found within CLOCK_MAX, update the
|
|
* pps switch. Of the other peers not at the lowest stratum,
|
|
* check if the system peer is among them and, if found, zap
|
|
* him. We note that the head of the list is at the lowest
|
|
* stratum and that unsynchronized peers cannot survive this
|
|
* far.
|
|
*/
|
|
leap_consensus = 0;
|
|
for (i = nlist - 1; i >= 0; i--) {
|
|
peer_list[i]->select = i + 1;
|
|
peer_list[i]->flags |= FLAG_SYSPEER;
|
|
poll_update(peer_list[i], peer_list[i]->hpoll,
|
|
POLL_RANDOMCHANGE);
|
|
if (peer_list[i]->stratum == peer_list[0]->stratum) {
|
|
leap_consensus |= peer_list[i]->leap;
|
|
if (peer_list[i]->refclktype == REFCLK_ATOM_PPS)
|
|
typepps = peer_list[i];
|
|
if (peer_list[i] == sys_peer)
|
|
typesystem = peer_list[i];
|
|
if (peer_list[i]->flags & FLAG_PREFER) {
|
|
typeprefer = peer_list[i];
|
|
if (typeprefer->soffset >= -CLOCK_MAX_FP &&
|
|
typeprefer->soffset < CLOCK_MAX_FP)
|
|
pps_update = 1;
|
|
}
|
|
} else {
|
|
if (peer_list[i] == sys_peer)
|
|
sys_peer = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mitigation rules of the game. There are several types of
|
|
* peers that make a difference here: (1) prefer local peers
|
|
* (type REFCLK_LOCALCLOCK with FLAG_PREFER) or prefer modem
|
|
* peers (type REFCLK_NIST_ATOM etc with FLAG_PREFER), (2) pps peers
|
|
* (type REFCLK_ATOM_PPS), (3) remaining prefer peers (flag
|
|
* FLAG_PREFER), (4) the existing system peer, if any, (5) the
|
|
* head of the survivor list. Note that only one peer can be
|
|
* declared prefer. The order of preference is in the order
|
|
* stated. Note that all of these must be at the lowest stratum,
|
|
* i.e., the stratum of the head of the survivor list.
|
|
*/
|
|
osys_peer = sys_peer;
|
|
if (typeprefer && (typeprefer->refclktype == REFCLK_LOCALCLOCK ||
|
|
typeprefer->sstclktype == CTL_SST_TS_TELEPHONE || !typepps)) {
|
|
sys_peer = typeprefer;
|
|
sys_peer->selectdisp = 0;
|
|
sys_offset = sys_peer->offset;
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("select: prefer offset %s\n",
|
|
lfptoa(&sys_offset, 6));
|
|
#endif
|
|
} else if (typepps && pps_update && pps_enable) {
|
|
sys_peer = typepps;
|
|
sys_peer->selectdisp = 0;
|
|
sys_offset = sys_peer->offset;
|
|
if (!pps_control)
|
|
NLOG(NLOG_SYSEVENT) /* conditional syslog */
|
|
msyslog(LOG_INFO, "pps sync enabled");
|
|
pps_control = current_time;
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("select: pps offset %s\n",
|
|
lfptoa(&sys_offset, 6));
|
|
#endif
|
|
} else {
|
|
if (!typesystem)
|
|
sys_peer = peer_list[0];
|
|
clock_combine(peer_list, nlist);
|
|
#ifdef DEBUG
|
|
if (debug)
|
|
printf("select: combine offset %s\n",
|
|
lfptoa(&sys_offset, 6));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* If we got a new system peer from all of this, report the
|
|
* event and clamp the system poll interval.
|
|
*/
|
|
if (osys_peer != sys_peer) {
|
|
char *src;
|
|
|
|
#ifdef REFCLOCK
|
|
if (ISREFCLOCKADR(&sys_peer->srcadr))
|
|
src = refnumtoa(sys_peer->srcadr.sin_addr.s_addr);
|
|
else
|
|
#endif
|
|
src = ntoa(&sys_peer->srcadr);
|
|
|
|
sys_poll = sys_peer->minpoll;
|
|
report_event(EVNT_PEERSTCHG, (struct peer *)0);
|
|
NLOG(NLOG_SYNCSTATUS)
|
|
msyslog(LOG_INFO, "synchronized to %s, stratum=%d", src,
|
|
sys_peer->stratum);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* clock_combine - combine offsets from selected peers
|
|
*
|
|
* Note: this routine uses only those peers at the lowest stratum.
|
|
* Strictly speaking, this is at variance with the spec.
|
|
*/
|
|
void
|
|
clock_combine(peers, npeers)
|
|
struct peer **peers;
|
|
int npeers;
|
|
{
|
|
register int i, j, k;
|
|
register u_fp a, b, d;
|
|
u_fp synch[NTP_MAXCLOCK];
|
|
l_fp coffset[NTP_MAXCLOCK];
|
|
l_fp diff;
|
|
|
|
/*
|
|
* Sort the offsets by synch distance.
|
|
*/
|
|
k = 0;
|
|
for (i = 0; i < npeers; i++) {
|
|
if (peers[i]->stratum > sys_peer->stratum)
|
|
continue;
|
|
d = peers[i]->synch;
|
|
for (j = k; j > 0; j--) {
|
|
if (synch[j - 1] <= d)
|
|
break;
|
|
synch[j] = synch[j - 1];
|
|
coffset[j] = coffset[j - 1];
|
|
}
|
|
synch[j] = d;
|
|
coffset[j] = peers[i]->offset;
|
|
k++;
|
|
}
|
|
|
|
/*
|
|
* Succesively combine the two offsets with the highest
|
|
* distance and enter the result into the sorted list.
|
|
*/
|
|
for (i = k - 2; i >= 0; i--) {
|
|
/*
|
|
* The possible weights for the most distant offset
|
|
* are 1/2, 1/4, 1/8 and zero. We combine the synch
|
|
* distances as if they were variances of the offsets;
|
|
* the given weights allow us to stay within 16/15 of
|
|
* the optimum combined variance at each step, and
|
|
* within 8/7 on any series.
|
|
*
|
|
* The breakeven points for the weigths are found
|
|
* where the smaller distance is 3/8, 3/16 and 1/16
|
|
* of the sum, respectively.
|
|
*/
|
|
d = synch[i];
|
|
a = (d + synch[i + 1]) >> 2; /* (d1+d2)/4 */
|
|
b = a>>1; /* (d1+d2)/8 */
|
|
if (d <= (b>>1)) /* d1 <= (d1+d2)/16 */
|
|
/*
|
|
* Below 1/16, no combination is done,
|
|
* we just drop the distant offset.
|
|
*/
|
|
continue;
|
|
|
|
/*
|
|
* The offsets are combined by shifting their
|
|
* difference the appropriate number of times and
|
|
* adding it back in.
|
|
*/
|
|
diff = coffset[i + 1];
|
|
L_SUB(&diff, &coffset[i]);
|
|
L_RSHIFT(&diff);
|
|
if (d >= a + b) { /* d1 >= 3(d1+d2)/8 */
|
|
/*
|
|
* Above 3/8, the weight is 1/2, and the
|
|
* combined distance is (d1+d2)/4
|
|
*/
|
|
d = a;
|
|
} else {
|
|
a >>= 2; /* (d1+d2)/16 */
|
|
L_RSHIFT(&diff);
|
|
if (d >= a + b) { /* d1 >= 3(d1+d2)/16 */
|
|
/*
|
|
* Between 3/16 and 3/8, the weight
|
|
* is 1/4, and the combined distance
|
|
* is (9d1+d2)/16 = d1/2 + (d1+d2)/16
|
|
*/
|
|
d = (d>>1) + a;
|
|
} else {
|
|
/*
|
|
* Between 1/16 and 3/16, the weight
|
|
* is 1/8, and the combined distance
|
|
* is (49d1+d2)/64 = 3d1/4+(d1+d2)/64
|
|
* (We know d > a, so the shift is safe).
|
|
*/
|
|
L_RSHIFT(&diff);
|
|
d -= (d - a)>>2;
|
|
}
|
|
}
|
|
/*
|
|
* Now we can make the combined offset and insert it
|
|
* in the list.
|
|
*/
|
|
L_ADD(&diff, &coffset[i]);
|
|
for (j = i; j > 0; j--) {
|
|
if (d >= synch[j - 1])
|
|
break;
|
|
synch[j] = synch[j - 1];
|
|
coffset[j] = coffset[j - 1];
|
|
}
|
|
synch[j] = d;
|
|
coffset[j] = diff;
|
|
}
|
|
|
|
/*
|
|
* The result is put where clock_update() can find it.
|
|
*/
|
|
sys_offset = coffset[0];
|
|
}
|
|
|
|
|
|
/*
|
|
* fast_xmit - fast path send for stateless (non-)associations
|
|
*/
|
|
void
|
|
fast_xmit(rbufp, rmode, authentic)
|
|
struct recvbuf *rbufp;
|
|
int rmode;
|
|
int authentic;
|
|
{
|
|
struct pkt xpkt;
|
|
register struct pkt *rpkt;
|
|
u_char xmode;
|
|
u_long xkey = 0;
|
|
int docrypt = 0;
|
|
l_fp xmt_ts, xmt_tx;
|
|
u_fp precision;
|
|
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
printf("fast_xmit(%s, %d)\n", ntoa(&rbufp->recv_srcadr), rmode);
|
|
#endif
|
|
|
|
/*
|
|
* Make up new packet and send it quick
|
|
*/
|
|
rpkt = &rbufp->recv_pkt;
|
|
if (rmode == MODE_ACTIVE)
|
|
xmode = MODE_PASSIVE;
|
|
else
|
|
xmode = MODE_SERVER;
|
|
|
|
if (rbufp->recv_length >= LEN_PKT_MAC) {
|
|
docrypt = rbufp->recv_length - LEN_PKT_NOMAC;
|
|
if (authentic)
|
|
xkey = ntohl(rpkt->keyid);
|
|
}
|
|
|
|
xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap,
|
|
PKT_VERSION(rpkt->li_vn_mode), xmode);
|
|
xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
|
|
xpkt.ppoll = max(NTP_MINPOLL, rpkt->ppoll);
|
|
xpkt.precision = sys_precision;
|
|
xpkt.rootdelay = HTONS_FP(sys_rootdelay);
|
|
precision = FP_SECOND >> -(int)sys_precision;
|
|
if (precision == 0)
|
|
precision = 1;
|
|
xpkt.rootdispersion = HTONS_FP(sys_rootdispersion +
|
|
precision + LFPTOFP(&sys_refskew));
|
|
xpkt.refid = sys_refid;
|
|
HTONL_FP(&sys_reftime, &xpkt.reftime);
|
|
xpkt.org = rpkt->xmt;
|
|
HTONL_FP(&rbufp->recv_time, &xpkt.rec);
|
|
|
|
/*
|
|
* If we are encrypting, do it. Else don't. Easy.
|
|
*/
|
|
if (docrypt) {
|
|
int maclen;
|
|
|
|
xpkt.keyid = htonl(xkey);
|
|
auth1crypt(xkey, (u_int32 *)&xpkt, LEN_PKT_NOMAC);
|
|
get_systime(&xmt_ts);
|
|
L_ADD(&xmt_ts, &sys_authdelay);
|
|
HTONL_FP(&xmt_ts, &xpkt.xmt);
|
|
maclen = auth2crypt(xkey, (u_int32 *)&xpkt, LEN_PKT_NOMAC);
|
|
get_systime(&xmt_tx);
|
|
L_SUB(&xmt_tx, &xmt_ts);
|
|
L_ADD(&xmt_tx, &sys_authdelay);
|
|
sys_authdly[1] = sys_authdly[0];
|
|
sys_authdly[0] = xmt_tx.l_uf;
|
|
if (sys_authdly[0] < sys_authdly[1])
|
|
sys_authdelay.l_uf = sys_authdly[0];
|
|
else
|
|
sys_authdelay.l_uf = sys_authdly[1];
|
|
sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, -9, &xpkt,
|
|
LEN_PKT_NOMAC + maclen);
|
|
#ifdef DEBUG
|
|
if (debug > 1)
|
|
printf("transmit auth to %s %s\n",
|
|
ntoa(&rbufp->recv_srcadr),
|
|
lfptoa(&sys_authdelay, 6));
|
|
#endif
|
|
} else {
|
|
/*
|
|
* Get xmt timestamp, then send it without mac field
|
|
*/
|
|
get_systime(&xmt_ts);
|
|
HTONL_FP(&xmt_ts, &xpkt.xmt);
|
|
sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, -10, &xpkt,
|
|
LEN_PKT_NOMAC);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find the precision of this particular machine
|
|
*/
|
|
#define DUSECS 1000000 /* us in a s */
|
|
#define HUSECS (1 << 20) /* approx DUSECS for shifting etc */
|
|
#define MINSTEP 5 /* minimum clock increment (ys) */
|
|
#define MAXSTEP 20000 /* maximum clock increment (us) */
|
|
#define MINLOOPS 5 /* minimum number of step samples */
|
|
|
|
/*
|
|
* This routine calculates the differences between successive calls to
|
|
* gettimeofday(). If a difference is less than zero, the us field
|
|
* has rolled over to the next second, so we add a second in us. If
|
|
* the difference is greater than zero and less than MINSTEP, the
|
|
* clock has been advanced by a small amount to avoid standing still.
|
|
* If the clock has advanced by a greater amount, then a timer interrupt
|
|
* has occurred and this amount represents the precision of the clock.
|
|
* In order to guard against spurious values, which could occur if we
|
|
* happen to hit a fat interrupt, we do this for MINLOOPS times and
|
|
* keep the minimum value obtained.
|
|
*/
|
|
int default_get_precision()
|
|
{
|
|
struct timeval tp;
|
|
#if !defined(SYS_WINNT) && !defined(VMS) && !defined(_SEQUENT_)
|
|
struct timezone tzp;
|
|
#elif defined(VMS) || defined(_SEQUENT_)
|
|
struct timezone {
|
|
int tz_minuteswest;
|
|
int tz_dsttime;
|
|
} tzp;
|
|
#endif /* defined(VMS) || defined(_SEQUENT_) */
|
|
long last;
|
|
int i;
|
|
long diff;
|
|
long val;
|
|
long usec;
|
|
#ifdef HAVE_GETCLOCK
|
|
struct timespec ts;
|
|
#endif
|
|
|
|
usec = 0;
|
|
val = MAXSTEP;
|
|
#ifdef HAVE_GETCLOCK
|
|
(void) getclock(TIMEOFDAY, &ts);
|
|
tp.tv_sec = ts.tv_sec;
|
|
tp.tv_usec = ts.tv_nsec / 1000;
|
|
#else /* not HAVE_GETCLOCK */
|
|
GETTIMEOFDAY(&tp, &tzp);
|
|
#endif /* not HAVE_GETCLOCK */
|
|
last = tp.tv_usec;
|
|
for (i = 0; i < MINLOOPS && usec < HUSECS;) {
|
|
#ifdef HAVE_GETCLOCK
|
|
(void) getclock(TIMEOFDAY, &ts);
|
|
tp.tv_sec = ts.tv_sec;
|
|
tp.tv_usec = ts.tv_nsec / 1000;
|
|
#else /* not HAVE_GETCLOCK */
|
|
GETTIMEOFDAY(&tp, &tzp);
|
|
#endif /* not HAVE_GETCLOCK */
|
|
diff = tp.tv_usec - last;
|
|
last = tp.tv_usec;
|
|
if (diff < 0)
|
|
diff += DUSECS;
|
|
usec += diff;
|
|
if (diff > MINSTEP) {
|
|
i++;
|
|
if (diff < val)
|
|
val = diff;
|
|
}
|
|
}
|
|
NLOG(NLOG_SYSINFO) /* conditional if clause for conditional syslog */
|
|
msyslog(LOG_INFO, "precision = %d usec", val);
|
|
if (usec >= HUSECS)
|
|
val = MINSTEP; /* val <= MINSTEP; fast machine */
|
|
diff = HUSECS;
|
|
for (i = 0; diff > val; i--)
|
|
diff >>= 1;
|
|
return (i);
|
|
}
|
|
|
|
/*
|
|
* init_proto - initialize the protocol module's data
|
|
*/
|
|
void
|
|
init_proto()
|
|
{
|
|
l_fp dummy;
|
|
|
|
/*
|
|
* Fill in the sys_* stuff. Default is don't listen to
|
|
* broadcasting, authenticate.
|
|
*/
|
|
sys_leap = LEAP_NOTINSYNC;
|
|
sys_stratum = STRATUM_UNSPEC;
|
|
sys_precision = (s_char)default_get_precision();
|
|
sys_rootdelay = 0;
|
|
sys_rootdispersion = 0;
|
|
sys_refid = 0;
|
|
L_CLR(&sys_reftime);
|
|
sys_refskew.l_i = NTP_MAXSKEW; sys_refskew.l_f = 0;
|
|
sys_maxd[0] = sys_maxd[1] = sys_maxd[2] = 0;
|
|
sys_peer = 0;
|
|
sys_poll = NTP_MINPOLL;
|
|
get_systime(&dummy);
|
|
sys_lastselect = sys_clock;
|
|
sys_bclient = 0;
|
|
sys_bdelay = DEFBROADDELAY;
|
|
sys_authenticate = 1;
|
|
sys_authdelay.l_i = 0; sys_authdelay.l_f = DEFAUTHDELAY;
|
|
sys_authdly[0] = sys_authdly[1] = DEFAUTHDELAY;
|
|
sys_stattime = 0;
|
|
sys_badstratum = 0;
|
|
sys_oldversionpkt = 0;
|
|
sys_newversionpkt = 0;
|
|
sys_badlength = 0;
|
|
sys_unknownversion = 0;
|
|
sys_processed = 0;
|
|
sys_badauth = 0;
|
|
|
|
/*
|
|
* Default these to enable
|
|
*/
|
|
pll_enable = 1;
|
|
stats_control = 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* proto_config - configure the protocol module
|
|
*/
|
|
void
|
|
proto_config(item, value)
|
|
int item;
|
|
u_long value;
|
|
{
|
|
/*
|
|
* Figure out what he wants to change, then do it
|
|
*/
|
|
switch (item) {
|
|
case PROTO_PLL:
|
|
/*
|
|
* Turn on/off pll clock correction
|
|
*/
|
|
pll_enable = (int)value;
|
|
break;
|
|
case PROTO_PPS:
|
|
/*
|
|
* Turn on/off pps signal
|
|
*/
|
|
pps_enable = (int)value;
|
|
break;
|
|
|
|
case PROTO_MONITOR:
|
|
/*
|
|
* Turn on/off monitoring
|
|
*/
|
|
if (value)
|
|
mon_start(MON_ON);
|
|
else
|
|
mon_stop(MON_ON);
|
|
break;
|
|
|
|
case PROTO_FILEGEN:
|
|
/*
|
|
* Turn on/off statistics
|
|
*/
|
|
stats_control = (int)value;
|
|
break;
|
|
|
|
case PROTO_BROADCLIENT:
|
|
/*
|
|
* Turn on/off facility to listen to broadcasts
|
|
*/
|
|
sys_bclient = (int)value;
|
|
if (value)
|
|
io_setbclient();
|
|
else
|
|
io_unsetbclient();
|
|
break;
|
|
|
|
case PROTO_MULTICAST_ADD:
|
|
/*
|
|
* Add muliticast group address
|
|
*/
|
|
sys_bclient = 1;
|
|
io_multicast_add(value);
|
|
break;
|
|
|
|
case PROTO_MULTICAST_DEL:
|
|
/*
|
|
* Delete multicast group address
|
|
*/
|
|
sys_bclient = 1;
|
|
io_multicast_del(value);
|
|
break;
|
|
|
|
case PROTO_BROADDELAY:
|
|
/*
|
|
* Set default broadcast delay (s_fp)
|
|
*/
|
|
if (sys_bdelay < 0)
|
|
sys_bdelay = -(- (long) value >> 16);
|
|
else
|
|
sys_bdelay = value >> 16;
|
|
break;
|
|
|
|
case PROTO_AUTHENTICATE:
|
|
/*
|
|
* Specify the use of authenticated data
|
|
*/
|
|
sys_authenticate = (int)value;
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* Log this error
|
|
*/
|
|
msyslog(LOG_ERR, "proto_config: illegal item %d, value %ld",
|
|
item, value);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* proto_clr_stats - clear protocol stat counters
|
|
*/
|
|
void
|
|
proto_clr_stats()
|
|
{
|
|
sys_badstratum = 0;
|
|
sys_oldversionpkt = 0;
|
|
sys_newversionpkt = 0;
|
|
sys_unknownversion = 0;
|
|
sys_badlength = 0;
|
|
sys_processed = 0;
|
|
sys_badauth = 0;
|
|
sys_stattime = current_time;
|
|
sys_limitrejected = 0;
|
|
}
|