NetBSD/sys/dev/pci/twe.c

1979 lines
49 KiB
C

/* $NetBSD: twe.c,v 1.87 2008/06/08 12:43:52 tsutsui Exp $ */
/*-
* Copyright (c) 2000, 2001, 2002, 2003, 2004 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2000 Michael Smith
* Copyright (c) 2000 BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
*/
/*
* Driver for the 3ware Escalade family of RAID controllers.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.87 2008/06/08 12:43:52 tsutsui Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/endian.h>
#include <sys/malloc.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/kauth.h>
#include <uvm/uvm_extern.h>
#include <sys/bswap.h>
#include <sys/bus.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/twereg.h>
#include <dev/pci/twevar.h>
#include <dev/pci/tweio.h>
#include "locators.h"
#define PCI_CBIO 0x10
static int twe_aen_get(struct twe_softc *, uint16_t *);
static void twe_aen_handler(struct twe_ccb *, int);
static void twe_aen_enqueue(struct twe_softc *sc, uint16_t, int);
static uint16_t twe_aen_dequeue(struct twe_softc *);
static void twe_attach(struct device *, struct device *, void *);
static int twe_init_connection(struct twe_softc *);
static int twe_intr(void *);
static int twe_match(struct device *, struct cfdata *, void *);
static int twe_param_set(struct twe_softc *, int, int, size_t, void *);
static void twe_poll(struct twe_softc *);
static int twe_print(void *, const char *);
static int twe_reset(struct twe_softc *);
static int twe_status_check(struct twe_softc *, u_int);
static int twe_status_wait(struct twe_softc *, u_int, int);
static void twe_describe_controller(struct twe_softc *);
static void twe_clear_pci_abort(struct twe_softc *sc);
static void twe_clear_pci_parity_error(struct twe_softc *sc);
static int twe_add_unit(struct twe_softc *, int);
static int twe_del_unit(struct twe_softc *, int);
static int twe_init_connection(struct twe_softc *);
static inline u_int32_t twe_inl(struct twe_softc *, int);
static inline void twe_outl(struct twe_softc *, int, u_int32_t);
extern struct cfdriver twe_cd;
CFATTACH_DECL(twe, sizeof(struct twe_softc),
twe_match, twe_attach, NULL, NULL);
/* FreeBSD driver revision for sysctl expected by the 3ware cli */
const char twever[] = "1.50.01.002";
/*
* Tables to convert numeric codes to strings.
*/
const struct twe_code_table twe_table_status[] = {
{ 0x00, "successful completion" },
/* info */
{ 0x42, "command in progress" },
{ 0x6c, "retrying interface CRC error from UDMA command" },
/* warning */
{ 0x81, "redundant/inconsequential request ignored" },
{ 0x8e, "failed to write zeroes to LBA 0" },
{ 0x8f, "failed to profile TwinStor zones" },
/* fatal */
{ 0xc1, "aborted due to system command or reconfiguration" },
{ 0xc4, "aborted" },
{ 0xc5, "access error" },
{ 0xc6, "access violation" },
{ 0xc7, "device failure" }, /* high byte may be port # */
{ 0xc8, "controller error" },
{ 0xc9, "timed out" },
{ 0xcb, "invalid unit number" },
{ 0xcf, "unit not available" },
{ 0xd2, "undefined opcode" },
{ 0xdb, "request incompatible with unit" },
{ 0xdc, "invalid request" },
{ 0xff, "firmware error, reset requested" },
{ 0, NULL }
};
const struct twe_code_table twe_table_unitstate[] = {
{ TWE_PARAM_UNITSTATUS_Normal, "Normal" },
{ TWE_PARAM_UNITSTATUS_Initialising, "Initializing" },
{ TWE_PARAM_UNITSTATUS_Degraded, "Degraded" },
{ TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" },
{ TWE_PARAM_UNITSTATUS_Verifying, "Verifying" },
{ TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" },
{ TWE_PARAM_UNITSTATUS_Missing, "Missing" },
{ 0, NULL }
};
const struct twe_code_table twe_table_unittype[] = {
/* array descriptor configuration */
{ TWE_AD_CONFIG_RAID0, "RAID0" },
{ TWE_AD_CONFIG_RAID1, "RAID1" },
{ TWE_AD_CONFIG_TwinStor, "TwinStor" },
{ TWE_AD_CONFIG_RAID5, "RAID5" },
{ TWE_AD_CONFIG_RAID10, "RAID10" },
{ TWE_UD_CONFIG_JBOD, "JBOD" },
{ 0, NULL }
};
const struct twe_code_table twe_table_stripedepth[] = {
{ TWE_AD_STRIPE_4k, "4K" },
{ TWE_AD_STRIPE_8k, "8K" },
{ TWE_AD_STRIPE_16k, "16K" },
{ TWE_AD_STRIPE_32k, "32K" },
{ TWE_AD_STRIPE_64k, "64K" },
{ TWE_AD_STRIPE_128k, "128K" },
{ TWE_AD_STRIPE_256k, "256K" },
{ TWE_AD_STRIPE_512k, "512K" },
{ TWE_AD_STRIPE_1024k, "1024K" },
{ 0, NULL }
};
/*
* Asynchronous event notification messages are qualified:
* a - not unit/port specific
* u - unit specific
* p - port specific
*
* They are further qualified with a severity:
* E - LOG_EMERG
* a - LOG_ALERT
* c - LOG_CRIT
* e - LOG_ERR
* w - LOG_WARNING
* n - LOG_NOTICE
* i - LOG_INFO
* d - LOG_DEBUG
* blank - just use printf
*/
const struct twe_code_table twe_table_aen[] = {
{ 0x00, "a queue empty" },
{ 0x01, "a soft reset" },
{ 0x02, "uc degraded mode" },
{ 0x03, "aa controller error" },
{ 0x04, "uE rebuild fail" },
{ 0x05, "un rebuild done" },
{ 0x06, "ue incomplete unit" },
{ 0x07, "un initialization done" },
{ 0x08, "uw unclean shutdown detected" },
{ 0x09, "pe drive timeout" },
{ 0x0a, "pc drive error" },
{ 0x0b, "un rebuild started" },
{ 0x0c, "un initialization started" },
{ 0x0d, "ui logical unit deleted" },
{ 0x0f, "pc SMART threshold exceeded" },
{ 0x15, "a table undefined" }, /* XXX: Not in FreeBSD's table */
{ 0x21, "pe ATA UDMA downgrade" },
{ 0x22, "pi ATA UDMA upgrade" },
{ 0x23, "pw sector repair occurred" },
{ 0x24, "aa SBUF integrity check failure" },
{ 0x25, "pa lost cached write" },
{ 0x26, "pa drive ECC error detected" },
{ 0x27, "pe DCB checksum error" },
{ 0x28, "pn DCB unsupported version" },
{ 0x29, "ui verify started" },
{ 0x2a, "ua verify failed" },
{ 0x2b, "ui verify complete" },
{ 0x2c, "pw overwrote bad sector during rebuild" },
{ 0x2d, "pa encountered bad sector during rebuild" },
{ 0x2e, "pe replacement drive too small" },
{ 0x2f, "ue array not previously initialized" },
{ 0x30, "p drive not supported" },
{ 0xff, "a aen queue full" },
{ 0, NULL },
};
const char *
twe_describe_code(const struct twe_code_table *table, uint32_t code)
{
for (; table->string != NULL; table++) {
if (table->code == code)
return (table->string);
}
return (NULL);
}
static inline u_int32_t
twe_inl(struct twe_softc *sc, int off)
{
bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
}
static inline void
twe_outl(struct twe_softc *sc, int off, u_int32_t val)
{
bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
BUS_SPACE_BARRIER_WRITE);
}
/*
* Match a supported board.
*/
static int
twe_match(struct device *parent, struct cfdata *cfdata,
void *aux)
{
struct pci_attach_args *pa;
pa = aux;
return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
(PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
}
/*
* Attach a supported board.
*
* XXX This doesn't fail gracefully.
*/
static void
twe_attach(struct device *parent, struct device *self, void *aux)
{
struct pci_attach_args *pa;
struct twe_softc *sc;
pci_chipset_tag_t pc;
pci_intr_handle_t ih;
pcireg_t csr;
const char *intrstr;
int s, size, i, rv, rseg;
size_t max_segs, max_xfer;
bus_dma_segment_t seg;
struct ctlname ctlnames[] = CTL_NAMES;
const struct sysctlnode *node;
struct twe_cmd *tc;
struct twe_ccb *ccb;
sc = (struct twe_softc *)self;
pa = aux;
pc = pa->pa_pc;
sc->sc_dmat = pa->pa_dmat;
SIMPLEQ_INIT(&sc->sc_ccb_queue);
SLIST_INIT(&sc->sc_ccb_freelist);
aprint_naive(": RAID controller\n");
aprint_normal(": 3ware Escalade\n");
if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
&sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
aprint_error_dev(&sc->sc_dv, "can't map i/o space\n");
return;
}
/* Enable the device. */
csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
csr | PCI_COMMAND_MASTER_ENABLE);
/* Map and establish the interrupt. */
if (pci_intr_map(pa, &ih)) {
aprint_error_dev(&sc->sc_dv, "can't map interrupt\n");
return;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(&sc->sc_dv, "can't establish interrupt%s%s\n",
(intrstr) ? " at " : "",
(intrstr) ? intrstr : "");
return;
}
if (intrstr != NULL)
aprint_normal_dev(&sc->sc_dv, "interrupting at %s\n",
intrstr);
/*
* Allocate and initialise the command blocks and CCBs.
*/
size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
&rseg, BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(&sc->sc_dv, "unable to allocate commands, rv = %d\n", rv);
return;
}
if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
(void **)&sc->sc_cmds,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
aprint_error_dev(&sc->sc_dv, "unable to map commands, rv = %d\n", rv);
return;
}
if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
aprint_error_dev(&sc->sc_dv, "unable to create command DMA map, rv = %d\n", rv);
return;
}
if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
size, NULL, BUS_DMA_NOWAIT)) != 0) {
aprint_error_dev(&sc->sc_dv, "unable to load command DMA map, rv = %d\n", rv);
return;
}
ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
if (ccb == NULL) {
aprint_error_dev(&sc->sc_dv, "unable to allocate memory for ccbs\n");
return;
}
sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
memset(sc->sc_cmds, 0, size);
sc->sc_ccbs = ccb;
tc = (struct twe_cmd *)sc->sc_cmds;
max_segs = twe_get_maxsegs();
max_xfer = twe_get_maxxfer(max_segs);
for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
ccb->ccb_cmd = tc;
ccb->ccb_cmdid = i;
ccb->ccb_flags = 0;
rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
max_segs, PAGE_SIZE, 0,
BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&ccb->ccb_dmamap_xfer);
if (rv != 0) {
aprint_error_dev(&sc->sc_dv, "can't create dmamap, rv = %d\n", rv);
return;
}
/* Save the first CCB for AEN retrieval. */
if (i != 0)
SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
ccb_chain.slist);
}
/* Wait for the controller to become ready. */
if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
aprint_error_dev(&sc->sc_dv, "microcontroller not ready\n");
return;
}
twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
/* Reset the controller. */
s = splbio();
rv = twe_reset(sc);
splx(s);
if (rv) {
aprint_error_dev(&sc->sc_dv, "reset failed\n");
return;
}
/* Initialise connection with controller. */
twe_init_connection(sc);
twe_describe_controller(sc);
/* Find and attach RAID array units. */
sc->sc_nunits = 0;
for (i = 0; i < TWE_MAX_UNITS; i++)
(void) twe_add_unit(sc, i);
/* ...and finally, enable interrupts. */
twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
TWE_CTL_UNMASK_RESP_INTR |
TWE_CTL_ENABLE_INTRS);
/* sysctl set-up for 3ware cli */
if (sysctl_createv(NULL, 0, NULL, NULL,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw",
NULL, NULL, 0, NULL, 0,
CTL_HW, CTL_EOL) != 0) {
aprint_error_dev(&sc->sc_dv, "could not create %s sysctl node\n",
ctlnames[CTL_HW].ctl_name);
return;
}
if (sysctl_createv(NULL, 0, NULL, &node,
0, CTLTYPE_NODE, device_xname(&sc->sc_dv),
SYSCTL_DESCR("twe driver information"),
NULL, 0, NULL, 0,
CTL_HW, CTL_CREATE, CTL_EOL) != 0) {
aprint_error_dev(&sc->sc_dv, "could not create %s.%s sysctl node\n",
ctlnames[CTL_HW].ctl_name, device_xname(&sc->sc_dv));
return;
}
if ((i = sysctl_createv(NULL, 0, NULL, NULL,
0, CTLTYPE_STRING, "driver_version",
SYSCTL_DESCR("twe0 driver version"),
NULL, 0, &twever, 0,
CTL_HW, node->sysctl_num, CTL_CREATE, CTL_EOL))
!= 0) {
aprint_error_dev(&sc->sc_dv, "could not create %s.%s.driver_version sysctl\n",
ctlnames[CTL_HW].ctl_name, device_xname(&sc->sc_dv));
return;
}
}
void
twe_register_callbacks(struct twe_softc *sc, int unit,
const struct twe_callbacks *tcb)
{
sc->sc_units[unit].td_callbacks = tcb;
}
static void
twe_recompute_openings(struct twe_softc *sc)
{
struct twe_drive *td;
int unit, openings;
if (sc->sc_nunits != 0)
openings = (TWE_MAX_QUEUECNT - 1) / sc->sc_nunits;
else
openings = 0;
if (openings == sc->sc_openings)
return;
sc->sc_openings = openings;
#ifdef TWE_DEBUG
printf("%s: %d array%s, %d openings per array\n",
device_xname(&sc->sc_dv), sc->sc_nunits,
sc->sc_nunits == 1 ? "" : "s", sc->sc_openings);
#endif
for (unit = 0; unit < TWE_MAX_UNITS; unit++) {
td = &sc->sc_units[unit];
if (td->td_dev != NULL)
(*td->td_callbacks->tcb_openings)(td->td_dev,
sc->sc_openings);
}
}
static int
twe_add_unit(struct twe_softc *sc, int unit)
{
struct twe_param *dtp, *atp;
struct twe_array_descriptor *ad;
struct twe_drive *td;
struct twe_attach_args twea;
uint32_t newsize;
int rv;
uint16_t dsize;
uint8_t newtype, newstripe;
int locs[TWECF_NLOCS];
if (unit < 0 || unit >= TWE_MAX_UNITS)
return (EINVAL);
/* Find attached units. */
rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
if (rv != 0) {
aprint_error_dev(&sc->sc_dv, "error %d fetching unit summary\n",
rv);
return (rv);
}
/* For each detected unit, collect size and store in an array. */
td = &sc->sc_units[unit];
/* Unit present? */
if ((dtp->tp_data[unit] & TWE_PARAM_UNITSTATUS_Online) == 0) {
/*
* XXX Should we check to see if a device has been
* XXX attached at this index and detach it if it
* XXX has? ("rescan" semantics)
*/
rv = 0;
goto out;
}
rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + unit,
TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
if (rv != 0) {
aprint_error_dev(&sc->sc_dv, "error %d fetching descriptor size "
"for unit %d\n", rv, unit);
goto out;
}
rv = twe_param_get(sc, TWE_PARAM_UNITINFO + unit,
TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
if (rv != 0) {
aprint_error_dev(&sc->sc_dv, "error %d fetching array descriptor "
"for unit %d\n", rv, unit);
goto out;
}
ad = (struct twe_array_descriptor *)atp->tp_data;
newtype = ad->configuration;
newstripe = ad->stripe_size;
free(atp, M_DEVBUF);
rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + unit,
TWE_PARAM_UNITINFO_Capacity, &newsize);
if (rv != 0) {
aprint_error_dev(&sc->sc_dv,
"error %d fetching capacity for unit %d\n",
rv, unit);
goto out;
}
/*
* Have a device, so we need to attach it. If there is currently
* something sitting at the slot, and the parameters are different,
* then we detach the old device before attaching the new one.
*/
if (td->td_dev != NULL &&
td->td_size == newsize &&
td->td_type == newtype &&
td->td_stripe == newstripe) {
/* Same as the old device; just keep using it. */
rv = 0;
goto out;
} else if (td->td_dev != NULL) {
/* Detach the old device first. */
(void) config_detach(td->td_dev, DETACH_FORCE);
td->td_dev = NULL;
} else if (td->td_size == 0)
sc->sc_nunits++;
/*
* Committed to the new array unit; assign its parameters and
* recompute the number of available command openings.
*/
td->td_size = newsize;
td->td_type = newtype;
td->td_stripe = newstripe;
twe_recompute_openings(sc);
twea.twea_unit = unit;
locs[TWECF_UNIT] = unit;
td->td_dev = config_found_sm_loc(&sc->sc_dv, "twe", locs, &twea,
twe_print, config_stdsubmatch);
rv = 0;
out:
free(dtp, M_DEVBUF);
return (rv);
}
static int
twe_del_unit(struct twe_softc *sc, int unit)
{
struct twe_drive *td;
if (unit < 0 || unit >= TWE_MAX_UNITS)
return (EINVAL);
td = &sc->sc_units[unit];
if (td->td_size != 0)
sc->sc_nunits--;
td->td_size = 0;
td->td_type = 0;
td->td_stripe = 0;
if (td->td_dev != NULL) {
(void) config_detach(td->td_dev, DETACH_FORCE);
td->td_dev = NULL;
}
twe_recompute_openings(sc);
return (0);
}
/*
* Reset the controller.
* MUST BE CALLED AT splbio()!
*/
static int
twe_reset(struct twe_softc *sc)
{
uint16_t aen;
u_int status;
volatile u_int32_t junk;
int got, rv;
/* Issue a soft reset. */
twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
TWE_CTL_CLEAR_HOST_INTR |
TWE_CTL_CLEAR_ATTN_INTR |
TWE_CTL_MASK_CMD_INTR |
TWE_CTL_MASK_RESP_INTR |
TWE_CTL_CLEAR_ERROR_STS |
TWE_CTL_DISABLE_INTRS);
/* Wait for attention... */
if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 30)) {
aprint_error_dev(&sc->sc_dv, "timeout waiting for attention interrupt\n");
return (-1);
}
/* ...and ACK it. */
twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
/*
* Pull AENs out of the controller; look for a soft reset AEN.
* Open code this, since we want to detect reset even if the
* queue for management tools is full.
*
* Note that since:
* - interrupts are blocked
* - we have reset the controller
* - acknowledged the pending ATTENTION
* that there is no way a pending asynchronous AEN fetch would
* finish, so clear the flag.
*/
sc->sc_flags &= ~TWEF_AEN;
for (got = 0;;) {
rv = twe_aen_get(sc, &aen);
if (rv != 0)
printf("%s: error %d while draining event queue\n",
device_xname(&sc->sc_dv), rv);
if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
break;
if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
got = 1;
twe_aen_enqueue(sc, aen, 1);
}
if (!got) {
printf("%s: reset not reported\n", device_xname(&sc->sc_dv));
return (-1);
}
/* Check controller status. */
status = twe_inl(sc, TWE_REG_STS);
if (twe_status_check(sc, status)) {
printf("%s: controller errors detected\n",
device_xname(&sc->sc_dv));
return (-1);
}
/* Drain the response queue. */
for (;;) {
status = twe_inl(sc, TWE_REG_STS);
if (twe_status_check(sc, status) != 0) {
aprint_error_dev(&sc->sc_dv, "can't drain response queue\n");
return (-1);
}
if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
break;
junk = twe_inl(sc, TWE_REG_RESP_QUEUE);
}
return (0);
}
/*
* Print autoconfiguration message for a sub-device.
*/
static int
twe_print(void *aux, const char *pnp)
{
struct twe_attach_args *twea;
twea = aux;
if (pnp != NULL)
aprint_normal("block device at %s", pnp);
aprint_normal(" unit %d", twea->twea_unit);
return (UNCONF);
}
/*
* Interrupt service routine.
*/
static int
twe_intr(void *arg)
{
struct twe_softc *sc;
u_int status;
int caught, rv;
sc = arg;
caught = 0;
status = twe_inl(sc, TWE_REG_STS);
twe_status_check(sc, status);
/* Host interrupts - purpose unknown. */
if ((status & TWE_STS_HOST_INTR) != 0) {
#ifdef DEBUG
printf("%s: host interrupt\n", device_xname(&sc->sc_dv));
#endif
twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
caught = 1;
}
/*
* Attention interrupts, signalled when a controller or child device
* state change has occurred.
*/
if ((status & TWE_STS_ATTN_INTR) != 0) {
rv = twe_aen_get(sc, NULL);
if (rv != 0)
aprint_error_dev(&sc->sc_dv, "unable to retrieve AEN (%d)\n", rv);
else
twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
caught = 1;
}
/*
* Command interrupts, signalled when the controller can accept more
* commands. We don't use this; instead, we try to submit commands
* when we receive them, and when other commands have completed.
* Mask it so we don't get another one.
*/
if ((status & TWE_STS_CMD_INTR) != 0) {
#ifdef DEBUG
printf("%s: command interrupt\n", device_xname(&sc->sc_dv));
#endif
twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
caught = 1;
}
if ((status & TWE_STS_RESP_INTR) != 0) {
twe_poll(sc);
caught = 1;
}
return (caught);
}
/*
* Fetch an AEN. Even though this is really like parameter
* retrieval, we handle this specially, because we issue this
* AEN retrieval command from interrupt context, and thus
* reserve a CCB for it to avoid resource shortage.
*
* XXX There are still potential resource shortages we could
* XXX encounter. Consider pre-allocating all AEN-related
* XXX resources.
*
* MUST BE CALLED AT splbio()!
*/
static int
twe_aen_get(struct twe_softc *sc, uint16_t *aenp)
{
struct twe_ccb *ccb;
struct twe_cmd *tc;
struct twe_param *tp;
int rv;
/*
* If we're already retrieving an AEN, just wait; another
* retrieval will be chained after the current one completes.
*/
if (sc->sc_flags & TWEF_AEN) {
/*
* It is a fatal software programming error to attempt
* to fetch an AEN synchronously when an AEN fetch is
* already pending.
*/
KASSERT(aenp == NULL);
return (0);
}
tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
if (tp == NULL)
return (ENOMEM);
ccb = twe_ccb_alloc(sc,
TWE_CCB_AEN | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
KASSERT(ccb != NULL);
ccb->ccb_data = tp;
ccb->ccb_datasize = TWE_SECTOR_SIZE;
ccb->ccb_tx.tx_handler = (aenp == NULL) ? twe_aen_handler : NULL;
ccb->ccb_tx.tx_context = tp;
ccb->ccb_tx.tx_dv = &sc->sc_dv;
tc = ccb->ccb_cmd;
tc->tc_size = 2;
tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
tc->tc_unit = 0;
tc->tc_count = htole16(1);
/* Fill in the outbound parameter data. */
tp->tp_table_id = htole16(TWE_PARAM_AEN);
tp->tp_param_id = TWE_PARAM_AEN_UnitCode;
tp->tp_param_size = 2;
/* Map the transfer. */
if ((rv = twe_ccb_map(sc, ccb)) != 0) {
twe_ccb_free(sc, ccb);
goto done;
}
/* Enqueue the command and wait. */
if (aenp != NULL) {
rv = twe_ccb_poll(sc, ccb, 5);
twe_ccb_unmap(sc, ccb);
twe_ccb_free(sc, ccb);
if (rv == 0)
*aenp = le16toh(*(uint16_t *)tp->tp_data);
free(tp, M_DEVBUF);
} else {
sc->sc_flags |= TWEF_AEN;
twe_ccb_enqueue(sc, ccb);
rv = 0;
}
done:
return (rv);
}
/*
* Handle an AEN returned by the controller.
* MUST BE CALLED AT splbio()!
*/
static void
twe_aen_handler(struct twe_ccb *ccb, int error)
{
struct twe_softc *sc;
struct twe_param *tp;
uint16_t aen;
int rv;
sc = (struct twe_softc *)ccb->ccb_tx.tx_dv;
tp = ccb->ccb_tx.tx_context;
twe_ccb_unmap(sc, ccb);
sc->sc_flags &= ~TWEF_AEN;
if (error) {
aprint_error_dev(&sc->sc_dv, "error retrieving AEN\n");
aen = TWE_AEN_QUEUE_EMPTY;
} else
aen = le16toh(*(u_int16_t *)tp->tp_data);
free(tp, M_DEVBUF);
twe_ccb_free(sc, ccb);
if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
return;
}
twe_aen_enqueue(sc, aen, 0);
/*
* Chain another retrieval in case interrupts have been
* coalesced.
*/
rv = twe_aen_get(sc, NULL);
if (rv != 0)
aprint_error_dev(&sc->sc_dv, "unable to retrieve AEN (%d)\n", rv);
}
static void
twe_aen_enqueue(struct twe_softc *sc, uint16_t aen, int quiet)
{
const char *str, *msg;
int s, next, nextnext, level;
/*
* First report the AEN on the console. Maybe.
*/
if (! quiet) {
str = twe_describe_code(twe_table_aen, TWE_AEN_CODE(aen));
if (str == NULL) {
aprint_error_dev(&sc->sc_dv, "unknown AEN 0x%04x\n", aen);
} else {
msg = str + 3;
switch (str[1]) {
case 'E': level = LOG_EMERG; break;
case 'a': level = LOG_ALERT; break;
case 'c': level = LOG_CRIT; break;
case 'e': level = LOG_ERR; break;
case 'w': level = LOG_WARNING; break;
case 'n': level = LOG_NOTICE; break;
case 'i': level = LOG_INFO; break;
case 'd': level = LOG_DEBUG; break;
default:
/* Don't use syslog. */
level = -1;
}
if (level < 0) {
switch (str[0]) {
case 'u':
case 'p':
printf("%s: %s %d: %s\n",
device_xname(&sc->sc_dv),
str[0] == 'u' ? "unit" : "port",
TWE_AEN_UNIT(aen), msg);
break;
default:
printf("%s: %s\n",
device_xname(&sc->sc_dv), msg);
}
} else {
switch (str[0]) {
case 'u':
case 'p':
log(level, "%s: %s %d: %s\n",
device_xname(&sc->sc_dv),
str[0] == 'u' ? "unit" : "port",
TWE_AEN_UNIT(aen), msg);
break;
default:
log(level, "%s: %s\n",
device_xname(&sc->sc_dv), msg);
}
}
}
}
/* Now enqueue the AEN for mangement tools. */
s = splbio();
next = (sc->sc_aen_head + 1) % TWE_AEN_Q_LENGTH;
nextnext = (sc->sc_aen_head + 2) % TWE_AEN_Q_LENGTH;
/*
* If this is the last free slot, then queue up a "queue
* full" message.
*/
if (nextnext == sc->sc_aen_tail)
aen = TWE_AEN_QUEUE_FULL;
if (next != sc->sc_aen_tail) {
sc->sc_aen_queue[sc->sc_aen_head] = aen;
sc->sc_aen_head = next;
}
if (sc->sc_flags & TWEF_AENQ_WAIT) {
sc->sc_flags &= ~TWEF_AENQ_WAIT;
wakeup(&sc->sc_aen_queue);
}
splx(s);
}
/* NOTE: Must be called at splbio(). */
static uint16_t
twe_aen_dequeue(struct twe_softc *sc)
{
uint16_t aen;
if (sc->sc_aen_tail == sc->sc_aen_head)
aen = TWE_AEN_QUEUE_EMPTY;
else {
aen = sc->sc_aen_queue[sc->sc_aen_tail];
sc->sc_aen_tail = (sc->sc_aen_tail + 1) % TWE_AEN_Q_LENGTH;
}
return (aen);
}
/*
* These are short-hand functions that execute TWE_OP_GET_PARAM to
* fetch 1, 2, and 4 byte parameter values, respectively.
*/
int
twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
uint8_t *valp)
{
struct twe_param *tp;
int rv;
rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
if (rv != 0)
return (rv);
*valp = *(uint8_t *)tp->tp_data;
free(tp, M_DEVBUF);
return (0);
}
int
twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
uint16_t *valp)
{
struct twe_param *tp;
int rv;
rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
if (rv != 0)
return (rv);
*valp = le16toh(*(uint16_t *)tp->tp_data);
free(tp, M_DEVBUF);
return (0);
}
int
twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
uint32_t *valp)
{
struct twe_param *tp;
int rv;
rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
if (rv != 0)
return (rv);
*valp = le32toh(*(uint32_t *)tp->tp_data);
free(tp, M_DEVBUF);
return (0);
}
/*
* Execute a TWE_OP_GET_PARAM command. If a callback function is provided,
* it will be called with generated context when the command has completed.
* If no callback is provided, the command will be executed synchronously
* and a pointer to a buffer containing the data returned.
*
* The caller or callback is responsible for freeing the buffer.
*
* NOTE: We assume we can sleep here to wait for a CCB to become available.
*/
int
twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
{
struct twe_ccb *ccb;
struct twe_cmd *tc;
struct twe_param *tp;
int rv, s;
tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
if (tp == NULL)
return ENOMEM;
ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
KASSERT(ccb != NULL);
ccb->ccb_data = tp;
ccb->ccb_datasize = TWE_SECTOR_SIZE;
ccb->ccb_tx.tx_handler = func;
ccb->ccb_tx.tx_context = tp;
ccb->ccb_tx.tx_dv = &sc->sc_dv;
tc = ccb->ccb_cmd;
tc->tc_size = 2;
tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
tc->tc_unit = 0;
tc->tc_count = htole16(1);
/* Fill in the outbound parameter data. */
tp->tp_table_id = htole16(table_id);
tp->tp_param_id = param_id;
tp->tp_param_size = size;
/* Map the transfer. */
if ((rv = twe_ccb_map(sc, ccb)) != 0) {
twe_ccb_free(sc, ccb);
goto done;
}
/* Submit the command and either wait or let the callback handle it. */
if (func == NULL) {
s = splbio();
rv = twe_ccb_poll(sc, ccb, 5);
twe_ccb_unmap(sc, ccb);
twe_ccb_free(sc, ccb);
splx(s);
} else {
#ifdef DEBUG
if (pbuf != NULL)
panic("both func and pbuf defined");
#endif
twe_ccb_enqueue(sc, ccb);
return 0;
}
done:
if (pbuf == NULL || rv != 0)
free(tp, M_DEVBUF);
else if (pbuf != NULL && rv == 0)
*pbuf = tp;
return rv;
}
/*
* Execute a TWE_OP_SET_PARAM command.
*
* NOTE: We assume we can sleep here to wait for a CCB to become available.
*/
static int
twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
void *sbuf)
{
struct twe_ccb *ccb;
struct twe_cmd *tc;
struct twe_param *tp;
int rv, s;
tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
if (tp == NULL)
return ENOMEM;
ccb = twe_ccb_alloc_wait(sc, TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
KASSERT(ccb != NULL);
ccb->ccb_data = tp;
ccb->ccb_datasize = TWE_SECTOR_SIZE;
ccb->ccb_tx.tx_handler = 0;
ccb->ccb_tx.tx_context = tp;
ccb->ccb_tx.tx_dv = &sc->sc_dv;
tc = ccb->ccb_cmd;
tc->tc_size = 2;
tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
tc->tc_unit = 0;
tc->tc_count = htole16(1);
/* Fill in the outbound parameter data. */
tp->tp_table_id = htole16(table_id);
tp->tp_param_id = param_id;
tp->tp_param_size = size;
memcpy(tp->tp_data, sbuf, size);
/* Map the transfer. */
if ((rv = twe_ccb_map(sc, ccb)) != 0) {
twe_ccb_free(sc, ccb);
goto done;
}
/* Submit the command and wait. */
s = splbio();
rv = twe_ccb_poll(sc, ccb, 5);
twe_ccb_unmap(sc, ccb);
twe_ccb_free(sc, ccb);
splx(s);
done:
free(tp, M_DEVBUF);
return (rv);
}
/*
* Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error.
* Must be called with interrupts blocked.
*/
static int
twe_init_connection(struct twe_softc *sc)
{
struct twe_ccb *ccb;
struct twe_cmd *tc;
int rv;
if ((ccb = twe_ccb_alloc(sc, 0)) == NULL)
return (EAGAIN);
/* Build the command. */
tc = ccb->ccb_cmd;
tc->tc_size = 3;
tc->tc_opcode = TWE_OP_INIT_CONNECTION;
tc->tc_unit = 0;
tc->tc_count = htole16(TWE_MAX_CMDS);
tc->tc_args.init_connection.response_queue_pointer = 0;
/* Submit the command for immediate execution. */
rv = twe_ccb_poll(sc, ccb, 5);
twe_ccb_free(sc, ccb);
return (rv);
}
/*
* Poll the controller for completed commands. Must be called with
* interrupts blocked.
*/
static void
twe_poll(struct twe_softc *sc)
{
struct twe_ccb *ccb;
int found;
u_int status, cmdid;
found = 0;
for (;;) {
status = twe_inl(sc, TWE_REG_STS);
twe_status_check(sc, status);
if ((status & TWE_STS_RESP_QUEUE_EMPTY))
break;
found = 1;
cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
if (cmdid >= TWE_MAX_QUEUECNT) {
aprint_error_dev(&sc->sc_dv, "bad cmdid %d\n", cmdid);
continue;
}
ccb = sc->sc_ccbs + cmdid;
if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
printf("%s: CCB for cmdid %d not active\n",
device_xname(&sc->sc_dv), cmdid);
continue;
}
ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
(char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
sizeof(struct twe_cmd),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/* Pass notification to upper layers. */
if (ccb->ccb_tx.tx_handler != NULL)
(*ccb->ccb_tx.tx_handler)(ccb,
ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
}
/* If any commands have completed, run the software queue. */
if (found)
twe_ccb_enqueue(sc, NULL);
}
/*
* Wait for `status' to be set in the controller status register. Return
* zero if found, non-zero if the operation timed out.
*/
static int
twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
{
for (timo *= 10; timo != 0; timo--) {
if ((twe_inl(sc, TWE_REG_STS) & status) == status)
break;
delay(100000);
}
return (timo == 0);
}
/*
* Clear a PCI parity error.
*/
static void
twe_clear_pci_parity_error(struct twe_softc *sc)
{
bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PARITY_ERROR);
//FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PARITY_ERROR, 2);
}
/*
* Clear a PCI abort.
*/
static void
twe_clear_pci_abort(struct twe_softc *sc)
{
bus_space_write_4(sc->sc_iot, sc->sc_ioh, 0x0, TWE_CTL_CLEAR_PCI_ABORT);
//FreeBSD: pci_write_config(sc->twe_dev, PCIR_STATUS, TWE_PCI_CLEAR_PCI_ABORT, 2);
}
/*
* Complain if the status bits aren't what we expect.
*/
static int
twe_status_check(struct twe_softc *sc, u_int status)
{
int rv;
rv = 0;
if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
aprint_error_dev(&sc->sc_dv, "missing status bits: 0x%08x\n",
status & ~TWE_STS_EXPECTED_BITS);
rv = -1;
}
if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
aprint_error_dev(&sc->sc_dv, "unexpected status bits: 0x%08x\n",
status & TWE_STS_UNEXPECTED_BITS);
rv = -1;
if (status & TWE_STS_PCI_PARITY_ERROR) {
aprint_error_dev(&sc->sc_dv, "PCI parity error: Reseat card, move card "
"or buggy device present.\n");
twe_clear_pci_parity_error(sc);
}
if (status & TWE_STS_PCI_ABORT) {
aprint_error_dev(&sc->sc_dv, "PCI abort, clearing.\n");
twe_clear_pci_abort(sc);
}
}
return (rv);
}
/*
* Allocate and initialise a CCB.
*/
static inline void
twe_ccb_init(struct twe_softc *sc, struct twe_ccb *ccb, int flags)
{
struct twe_cmd *tc;
ccb->ccb_tx.tx_handler = NULL;
ccb->ccb_flags = flags;
tc = ccb->ccb_cmd;
tc->tc_status = 0;
tc->tc_flags = 0;
tc->tc_cmdid = ccb->ccb_cmdid;
}
struct twe_ccb *
twe_ccb_alloc(struct twe_softc *sc, int flags)
{
struct twe_ccb *ccb;
int s;
s = splbio();
if (__predict_false((flags & TWE_CCB_AEN) != 0)) {
/* Use the reserved CCB. */
ccb = sc->sc_ccbs;
} else {
/* Allocate a CCB and command block. */
if (__predict_false((ccb =
SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
splx(s);
return (NULL);
}
SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
}
#ifdef DIAGNOSTIC
if ((long)(ccb - sc->sc_ccbs) == 0 && (flags & TWE_CCB_AEN) == 0)
panic("twe_ccb_alloc: got reserved CCB for non-AEN");
if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
panic("twe_ccb_alloc: CCB %ld already allocated",
(long)(ccb - sc->sc_ccbs));
flags |= TWE_CCB_ALLOCED;
#endif
splx(s);
twe_ccb_init(sc, ccb, flags);
return (ccb);
}
struct twe_ccb *
twe_ccb_alloc_wait(struct twe_softc *sc, int flags)
{
struct twe_ccb *ccb;
int s;
KASSERT((flags & TWE_CCB_AEN) == 0);
s = splbio();
while (__predict_false((ccb =
SLIST_FIRST(&sc->sc_ccb_freelist)) == NULL)) {
sc->sc_flags |= TWEF_WAIT_CCB;
(void) tsleep(&sc->sc_ccb_freelist, PRIBIO, "tweccb", 0);
}
SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
#ifdef DIAGNOSTIC
if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
panic("twe_ccb_alloc_wait: CCB %ld already allocated",
(long)(ccb - sc->sc_ccbs));
flags |= TWE_CCB_ALLOCED;
#endif
splx(s);
twe_ccb_init(sc, ccb, flags);
return (ccb);
}
/*
* Free a CCB.
*/
void
twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
{
int s;
s = splbio();
if ((ccb->ccb_flags & TWE_CCB_AEN) == 0) {
SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
if (__predict_false((sc->sc_flags & TWEF_WAIT_CCB) != 0)) {
sc->sc_flags &= ~TWEF_WAIT_CCB;
wakeup(&sc->sc_ccb_freelist);
}
}
ccb->ccb_flags = 0;
splx(s);
}
/*
* Map the specified CCB's command block and data buffer (if any) into
* controller visible space. Perform DMA synchronisation.
*/
int
twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
{
struct twe_cmd *tc;
int flags, nsegs, i, s, rv;
void *data;
/*
* The data as a whole must be 512-byte aligned.
*/
if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
s = splvm();
/* XXX */
ccb->ccb_abuf = uvm_km_alloc(kmem_map,
ccb->ccb_datasize, 0, UVM_KMF_NOWAIT|UVM_KMF_WIRED);
splx(s);
data = (void *)ccb->ccb_abuf;
if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
} else {
ccb->ccb_abuf = (vaddr_t)0;
data = ccb->ccb_data;
}
/*
* Map the data buffer into bus space and build the S/G list.
*/
rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
BUS_DMA_READ : BUS_DMA_WRITE));
if (rv != 0) {
if (ccb->ccb_abuf != (vaddr_t)0) {
s = splvm();
/* XXX */
uvm_km_free(kmem_map, ccb->ccb_abuf,
ccb->ccb_datasize, UVM_KMF_WIRED);
splx(s);
}
return (rv);
}
nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
tc = ccb->ccb_cmd;
tc->tc_size += 2 * nsegs;
/* The location of the S/G list is dependant upon command type. */
switch (tc->tc_opcode >> 5) {
case 2:
for (i = 0; i < nsegs; i++) {
tc->tc_args.param.sgl[i].tsg_address =
htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
tc->tc_args.param.sgl[i].tsg_length =
htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
}
/* XXX Needed? */
for (; i < TWE_SG_SIZE; i++) {
tc->tc_args.param.sgl[i].tsg_address = 0;
tc->tc_args.param.sgl[i].tsg_length = 0;
}
break;
case 3:
for (i = 0; i < nsegs; i++) {
tc->tc_args.io.sgl[i].tsg_address =
htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
tc->tc_args.io.sgl[i].tsg_length =
htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
}
/* XXX Needed? */
for (; i < TWE_SG_SIZE; i++) {
tc->tc_args.io.sgl[i].tsg_address = 0;
tc->tc_args.io.sgl[i].tsg_length = 0;
}
break;
default:
/*
* In all likelihood, this is a command passed from
* management tools in userspace where no S/G list is
* necessary because no data is being passed.
*/
break;
}
if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
flags = BUS_DMASYNC_PREREAD;
else
flags = 0;
if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
flags |= BUS_DMASYNC_PREWRITE;
bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
ccb->ccb_datasize, flags);
return (0);
}
/*
* Unmap the specified CCB's command block and data buffer (if any) and
* perform DMA synchronisation.
*/
void
twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
{
int flags, s;
if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
flags = BUS_DMASYNC_POSTREAD;
else
flags = 0;
if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
flags |= BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
ccb->ccb_datasize, flags);
bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
if (ccb->ccb_abuf != (vaddr_t)0) {
if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
ccb->ccb_datasize);
s = splvm();
/* XXX */
uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize,
UVM_KMF_WIRED);
splx(s);
}
}
/*
* Submit a command to the controller and poll on completion. Return
* non-zero on timeout (but don't check status, as some command types don't
* return status). Must be called with interrupts blocked.
*/
int
twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
{
int rv;
if ((rv = twe_ccb_submit(sc, ccb)) != 0)
return (rv);
for (timo *= 1000; timo != 0; timo--) {
twe_poll(sc);
if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
break;
DELAY(100);
}
return (timo == 0);
}
/*
* If a CCB is specified, enqueue it. Pull CCBs off the software queue in
* the order that they were enqueued and try to submit their command blocks
* to the controller for execution.
*/
void
twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
{
int s;
s = splbio();
if (ccb != NULL)
SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
if (twe_ccb_submit(sc, ccb))
break;
SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
}
splx(s);
}
/*
* Submit the command block associated with the specified CCB to the
* controller for execution. Must be called with interrupts blocked.
*/
int
twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
{
bus_addr_t pa;
int rv;
u_int status;
/* Check to see if we can post a command. */
status = twe_inl(sc, TWE_REG_STS);
twe_status_check(sc, status);
if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
(char *)ccb->ccb_cmd - (char *)sc->sc_cmds,
sizeof(struct twe_cmd),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
#ifdef DIAGNOSTIC
if ((ccb->ccb_flags & TWE_CCB_ALLOCED) == 0)
panic("%s: CCB %ld not ALLOCED\n",
device_xname(&sc->sc_dv), (long)(ccb - sc->sc_ccbs));
#endif
ccb->ccb_flags |= TWE_CCB_ACTIVE;
pa = sc->sc_cmds_paddr +
ccb->ccb_cmdid * sizeof(struct twe_cmd);
twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
rv = 0;
} else
rv = EBUSY;
return (rv);
}
/*
* Accept an open operation on the control device.
*/
static int
tweopen(dev_t dev, int flag, int mode, struct lwp *l)
{
struct twe_softc *twe;
if ((twe = device_lookup_private(&twe_cd, minor(dev))) == NULL)
return (ENXIO);
if ((twe->sc_flags & TWEF_OPEN) != 0)
return (EBUSY);
twe->sc_flags |= TWEF_OPEN;
return (0);
}
/*
* Accept the last close on the control device.
*/
static int
tweclose(dev_t dev, int flag, int mode,
struct lwp *l)
{
struct twe_softc *twe;
twe = device_lookup_private(&twe_cd, minor(dev));
twe->sc_flags &= ~TWEF_OPEN;
return (0);
}
void
twe_ccb_wait_handler(struct twe_ccb *ccb, int error)
{
/* Just wake up the sleeper. */
wakeup(ccb);
}
/*
* Handle control operations.
*/
static int
tweioctl(dev_t dev, u_long cmd, void *data, int flag,
struct lwp *l)
{
struct twe_softc *twe;
struct twe_ccb *ccb;
struct twe_param *param;
struct twe_usercommand *tu;
struct twe_paramcommand *tp;
struct twe_drivecommand *td;
void *pdata = NULL;
int s, error = 0;
u_int8_t cmdid;
twe = device_lookup_private(&twe_cd, minor(dev));
tu = (struct twe_usercommand *)data;
tp = (struct twe_paramcommand *)data;
td = (struct twe_drivecommand *)data;
/* This is intended to be compatible with the FreeBSD interface. */
switch (cmd) {
case TWEIO_COMMAND:
error = kauth_authorize_device_passthru(l->l_cred, dev,
KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
if (error)
return (error);
/* XXX mutex */
if (tu->tu_size > 0) {
/*
* XXX Handle > TWE_SECTOR_SIZE? Let's see if
* it's really necessary, first.
*/
if (tu->tu_size > TWE_SECTOR_SIZE) {
#ifdef TWE_DEBUG
printf("%s: TWEIO_COMMAND: tu_size = %d\n",
device_xname(&twe->sc_dv), tu->tu_size);
#endif
return EINVAL;
}
pdata = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_WAITOK);
error = copyin(tu->tu_data, pdata, tu->tu_size);
if (error != 0)
goto done;
ccb = twe_ccb_alloc_wait(twe,
TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
KASSERT(ccb != NULL);
ccb->ccb_data = pdata;
ccb->ccb_datasize = TWE_SECTOR_SIZE;
} else {
ccb = twe_ccb_alloc_wait(twe, 0);
KASSERT(ccb != NULL);
}
ccb->ccb_tx.tx_handler = twe_ccb_wait_handler;
ccb->ccb_tx.tx_context = NULL;
ccb->ccb_tx.tx_dv = &twe->sc_dv;
cmdid = ccb->ccb_cmdid;
memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
ccb->ccb_cmd->tc_cmdid = cmdid;
/* Map the transfer. */
if ((error = twe_ccb_map(twe, ccb)) != 0) {
twe_ccb_free(twe, ccb);
goto done;
}
/* Submit the command and wait up to 1 minute. */
error = 0;
twe_ccb_enqueue(twe, ccb);
s = splbio();
while ((ccb->ccb_flags & TWE_CCB_COMPLETE) == 0)
if ((error = tsleep(ccb, PRIBIO, "tweioctl",
60 * hz)) != 0)
break;
splx(s);
/* Copy the command back to the ioctl argument. */
memcpy(&tu->tu_cmd, ccb->ccb_cmd, sizeof(struct twe_cmd));
#ifdef TWE_DEBUG
printf("%s: TWEIO_COMMAND: tc_opcode = 0x%02x, "
"tc_status = 0x%02x\n", device_xname(&twe->sc_dv),
tu->tu_cmd.tc_opcode, tu->tu_cmd.tc_status);
#endif
s = splbio();
twe_ccb_free(twe, ccb);
splx(s);
if (tu->tu_size > 0)
error = copyout(pdata, tu->tu_data, tu->tu_size);
goto done;
case TWEIO_STATS:
return (ENOENT);
case TWEIO_AEN_POLL:
s = splbio();
*(u_int *)data = twe_aen_dequeue(twe);
splx(s);
return (0);
case TWEIO_AEN_WAIT:
s = splbio();
while ((*(u_int *)data =
twe_aen_dequeue(twe)) == TWE_AEN_QUEUE_EMPTY) {
twe->sc_flags |= TWEF_AENQ_WAIT;
error = tsleep(&twe->sc_aen_queue, PRIBIO | PCATCH,
"tweaen", 0);
if (error == EINTR) {
splx(s);
return (error);
}
}
splx(s);
return (0);
case TWEIO_GET_PARAM:
error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
tp->tp_size, 0, &param);
if (error != 0)
return (error);
if (param->tp_param_size > tp->tp_size) {
error = EFAULT;
goto done;
}
error = copyout(param->tp_data, tp->tp_data,
param->tp_param_size);
free(param, M_DEVBUF);
goto done;
case TWEIO_SET_PARAM:
pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
goto done;
error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
tp->tp_size, pdata);
goto done;
case TWEIO_RESET:
s = splbio();
twe_reset(twe);
splx(s);
return (0);
case TWEIO_ADD_UNIT:
/* XXX mutex */
return (twe_add_unit(twe, td->td_unit));
case TWEIO_DEL_UNIT:
/* XXX mutex */
return (twe_del_unit(twe, td->td_unit));
default:
return EINVAL;
}
done:
if (pdata)
free(pdata, M_DEVBUF);
return error;
}
const struct cdevsw twe_cdevsw = {
tweopen, tweclose, noread, nowrite, tweioctl,
nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
};
/*
* Print some information about the controller
*/
static void
twe_describe_controller(struct twe_softc *sc)
{
struct twe_param *p[6];
int i, rv = 0;
uint32_t dsize;
uint8_t ports;
ports = 0;
/* get the port count */
rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
TWE_PARAM_CONTROLLER_PortCount, &ports);
/* get version strings */
rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
16, NULL, &p[0]);
rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
16, NULL, &p[1]);
rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
16, NULL, &p[2]);
rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
8, NULL, &p[3]);
rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
8, NULL, &p[4]);
rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
8, NULL, &p[5]);
if (rv) {
/* some error occurred */
aprint_error_dev(&sc->sc_dv, "failed to fetch version information\n");
return;
}
aprint_normal_dev(&sc->sc_dv, "%d ports, Firmware %.16s, BIOS %.16s\n",
ports, p[1]->tp_data, p[2]->tp_data);
aprint_verbose_dev(&sc->sc_dv, "Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
p[0]->tp_data, p[3]->tp_data,
p[4]->tp_data, p[5]->tp_data);
free(p[0], M_DEVBUF);
free(p[1], M_DEVBUF);
free(p[2], M_DEVBUF);
free(p[3], M_DEVBUF);
free(p[4], M_DEVBUF);
free(p[5], M_DEVBUF);
rv = twe_param_get(sc, TWE_PARAM_DRIVESUMMARY,
TWE_PARAM_DRIVESUMMARY_Status, 16, NULL, &p[0]);
if (rv) {
aprint_error_dev(&sc->sc_dv, "failed to get drive status summary\n");
return;
}
for (i = 0; i < ports; i++) {
if (p[0]->tp_data[i] != TWE_PARAM_DRIVESTATUS_Present)
continue;
rv = twe_param_get_4(sc, TWE_PARAM_DRIVEINFO + i,
TWE_PARAM_DRIVEINFO_Size, &dsize);
if (rv) {
aprint_error_dev(&sc->sc_dv,
"unable to get drive size for port %d\n", i);
continue;
}
rv = twe_param_get(sc, TWE_PARAM_DRIVEINFO + i,
TWE_PARAM_DRIVEINFO_Model, 40, NULL, &p[1]);
if (rv) {
aprint_error_dev(&sc->sc_dv,
"unable to get drive model for port %d\n", i);
continue;
}
aprint_verbose_dev(&sc->sc_dv, "port %d: %.40s %d MB\n",
i, p[1]->tp_data, dsize / 2048);
free(p[1], M_DEVBUF);
}
free(p[0], M_DEVBUF);
}