1938 lines
49 KiB
C
1938 lines
49 KiB
C
/* $NetBSD: if_nfe.c,v 1.40 2009/02/12 10:33:23 cegger Exp $ */
|
|
/* $OpenBSD: if_nfe.c,v 1.77 2008/02/05 16:52:50 brad Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2006, 2007 Damien Bergamini <damien.bergamini@free.fr>
|
|
* Copyright (c) 2005, 2006 Jonathan Gray <jsg@openbsd.org>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/* Driver for NVIDIA nForce MCP Fast Ethernet and Gigabit Ethernet */
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: if_nfe.c,v 1.40 2009/02/12 10:33:23 cegger Exp $");
|
|
|
|
#include "opt_inet.h"
|
|
#include "bpfilter.h"
|
|
#include "vlan.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/types.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/device.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <sys/bus.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
#include <net/if_arp.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/if_inarp.h>
|
|
#endif
|
|
|
|
#if NVLAN > 0
|
|
#include <net/if_types.h>
|
|
#endif
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#include <dev/pci/if_nfereg.h>
|
|
#include <dev/pci/if_nfevar.h>
|
|
|
|
static int nfe_ifflags_cb(struct ethercom *);
|
|
|
|
int nfe_match(device_t, cfdata_t, void *);
|
|
void nfe_attach(device_t, device_t, void *);
|
|
void nfe_power(int, void *);
|
|
void nfe_miibus_statchg(device_t);
|
|
int nfe_miibus_readreg(device_t, int, int);
|
|
void nfe_miibus_writereg(device_t, int, int, int);
|
|
int nfe_intr(void *);
|
|
int nfe_ioctl(struct ifnet *, u_long, void *);
|
|
void nfe_txdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
|
|
void nfe_txdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
|
|
void nfe_txdesc32_rsync(struct nfe_softc *, int, int, int);
|
|
void nfe_txdesc64_rsync(struct nfe_softc *, int, int, int);
|
|
void nfe_rxdesc32_sync(struct nfe_softc *, struct nfe_desc32 *, int);
|
|
void nfe_rxdesc64_sync(struct nfe_softc *, struct nfe_desc64 *, int);
|
|
void nfe_rxeof(struct nfe_softc *);
|
|
void nfe_txeof(struct nfe_softc *);
|
|
int nfe_encap(struct nfe_softc *, struct mbuf *);
|
|
void nfe_start(struct ifnet *);
|
|
void nfe_watchdog(struct ifnet *);
|
|
int nfe_init(struct ifnet *);
|
|
void nfe_stop(struct ifnet *, int);
|
|
struct nfe_jbuf *nfe_jalloc(struct nfe_softc *, int);
|
|
void nfe_jfree(struct mbuf *, void *, size_t, void *);
|
|
int nfe_jpool_alloc(struct nfe_softc *);
|
|
void nfe_jpool_free(struct nfe_softc *);
|
|
int nfe_alloc_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
|
|
void nfe_reset_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
|
|
void nfe_free_rx_ring(struct nfe_softc *, struct nfe_rx_ring *);
|
|
int nfe_alloc_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
|
|
void nfe_reset_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
|
|
void nfe_free_tx_ring(struct nfe_softc *, struct nfe_tx_ring *);
|
|
void nfe_setmulti(struct nfe_softc *);
|
|
void nfe_get_macaddr(struct nfe_softc *, uint8_t *);
|
|
void nfe_set_macaddr(struct nfe_softc *, const uint8_t *);
|
|
void nfe_tick(void *);
|
|
void nfe_poweron(device_t);
|
|
bool nfe_resume(device_t PMF_FN_PROTO);
|
|
|
|
CFATTACH_DECL_NEW(nfe, sizeof(struct nfe_softc), nfe_match, nfe_attach,
|
|
NULL, NULL);
|
|
|
|
/* #define NFE_NO_JUMBO */
|
|
|
|
#ifdef NFE_DEBUG
|
|
int nfedebug = 0;
|
|
#define DPRINTF(x) do { if (nfedebug) printf x; } while (0)
|
|
#define DPRINTFN(n,x) do { if (nfedebug >= (n)) printf x; } while (0)
|
|
#else
|
|
#define DPRINTF(x)
|
|
#define DPRINTFN(n,x)
|
|
#endif
|
|
|
|
/* deal with naming differences */
|
|
|
|
#define PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 \
|
|
PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN1
|
|
#define PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 \
|
|
PCI_PRODUCT_NVIDIA_NFORCE2_400_LAN2
|
|
#define PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 \
|
|
PCI_PRODUCT_NVIDIA_NFORCE3_250_LAN
|
|
|
|
#define PCI_PRODUCT_NVIDIA_CK804_LAN1 \
|
|
PCI_PRODUCT_NVIDIA_NFORCE4_LAN1
|
|
#define PCI_PRODUCT_NVIDIA_CK804_LAN2 \
|
|
PCI_PRODUCT_NVIDIA_NFORCE4_LAN2
|
|
|
|
#define PCI_PRODUCT_NVIDIA_MCP51_LAN1 \
|
|
PCI_PRODUCT_NVIDIA_NFORCE430_LAN1
|
|
#define PCI_PRODUCT_NVIDIA_MCP51_LAN2 \
|
|
PCI_PRODUCT_NVIDIA_NFORCE430_LAN2
|
|
|
|
#ifdef _LP64
|
|
#define __LP64__ 1
|
|
#endif
|
|
|
|
const struct nfe_product {
|
|
pci_vendor_id_t vendor;
|
|
pci_product_id_t product;
|
|
} nfe_devices[] = {
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE_LAN },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE2_LAN },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN1 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN2 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN3 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN4 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_LAN5 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN1 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_CK804_LAN2 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN1 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP04_LAN2 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN1 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP51_LAN2 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN1 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP55_LAN2 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN1 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN2 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN3 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP61_LAN4 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN1 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN2 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN3 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP65_LAN4 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN1 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN2 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN3 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP67_LAN4 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN1 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN2 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN3 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP73_LAN4 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN1 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN2 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN3 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP77_LAN4 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN1 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN2 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN3 },
|
|
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_MCP79_LAN4 }
|
|
};
|
|
|
|
int
|
|
nfe_match(device_t dev, cfdata_t match, void *aux)
|
|
{
|
|
struct pci_attach_args *pa = aux;
|
|
const struct nfe_product *np;
|
|
int i;
|
|
|
|
for (i = 0; i < sizeof(nfe_devices) / sizeof(nfe_devices[0]); i++) {
|
|
np = &nfe_devices[i];
|
|
if (PCI_VENDOR(pa->pa_id) == np->vendor &&
|
|
PCI_PRODUCT(pa->pa_id) == np->product)
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
nfe_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct nfe_softc *sc = device_private(self);
|
|
struct pci_attach_args *pa = aux;
|
|
pci_chipset_tag_t pc = pa->pa_pc;
|
|
pci_intr_handle_t ih;
|
|
const char *intrstr;
|
|
struct ifnet *ifp;
|
|
bus_size_t memsize;
|
|
pcireg_t memtype;
|
|
char devinfo[256];
|
|
int mii_flags = 0;
|
|
|
|
sc->sc_dev = self;
|
|
pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof(devinfo));
|
|
aprint_normal(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
|
|
|
|
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, NFE_PCI_BA);
|
|
switch (memtype) {
|
|
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
|
|
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
|
|
if (pci_mapreg_map(pa, NFE_PCI_BA, memtype, 0, &sc->sc_memt,
|
|
&sc->sc_memh, NULL, &memsize) == 0)
|
|
break;
|
|
/* FALLTHROUGH */
|
|
default:
|
|
aprint_error_dev(self, "could not map mem space\n");
|
|
return;
|
|
}
|
|
|
|
if (pci_intr_map(pa, &ih) != 0) {
|
|
aprint_error_dev(self, "could not map interrupt\n");
|
|
return;
|
|
}
|
|
|
|
intrstr = pci_intr_string(pc, ih);
|
|
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, nfe_intr, sc);
|
|
if (sc->sc_ih == NULL) {
|
|
aprint_error_dev(self, "could not establish interrupt");
|
|
if (intrstr != NULL)
|
|
aprint_normal(" at %s", intrstr);
|
|
aprint_normal("\n");
|
|
return;
|
|
}
|
|
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
|
|
|
|
sc->sc_dmat = pa->pa_dmat;
|
|
|
|
sc->sc_flags = 0;
|
|
|
|
switch (PCI_PRODUCT(pa->pa_id)) {
|
|
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN2:
|
|
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN3:
|
|
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN4:
|
|
case PCI_PRODUCT_NVIDIA_NFORCE3_LAN5:
|
|
sc->sc_flags |= NFE_JUMBO_SUP | NFE_HW_CSUM;
|
|
break;
|
|
case PCI_PRODUCT_NVIDIA_MCP51_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP51_LAN2:
|
|
sc->sc_flags |= NFE_40BIT_ADDR | NFE_PWR_MGMT;
|
|
break;
|
|
case PCI_PRODUCT_NVIDIA_MCP61_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP61_LAN2:
|
|
case PCI_PRODUCT_NVIDIA_MCP61_LAN3:
|
|
case PCI_PRODUCT_NVIDIA_MCP61_LAN4:
|
|
case PCI_PRODUCT_NVIDIA_MCP67_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP67_LAN2:
|
|
case PCI_PRODUCT_NVIDIA_MCP67_LAN3:
|
|
case PCI_PRODUCT_NVIDIA_MCP67_LAN4:
|
|
case PCI_PRODUCT_NVIDIA_MCP73_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP73_LAN2:
|
|
case PCI_PRODUCT_NVIDIA_MCP73_LAN3:
|
|
case PCI_PRODUCT_NVIDIA_MCP73_LAN4:
|
|
sc->sc_flags |= NFE_40BIT_ADDR | NFE_CORRECT_MACADDR |
|
|
NFE_PWR_MGMT;
|
|
break;
|
|
case PCI_PRODUCT_NVIDIA_MCP77_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP77_LAN2:
|
|
case PCI_PRODUCT_NVIDIA_MCP77_LAN3:
|
|
case PCI_PRODUCT_NVIDIA_MCP77_LAN4:
|
|
case PCI_PRODUCT_NVIDIA_MCP79_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP79_LAN2:
|
|
case PCI_PRODUCT_NVIDIA_MCP79_LAN3:
|
|
case PCI_PRODUCT_NVIDIA_MCP79_LAN4:
|
|
sc->sc_flags |= NFE_40BIT_ADDR | NFE_HW_CSUM |
|
|
NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
|
|
break;
|
|
case PCI_PRODUCT_NVIDIA_CK804_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_CK804_LAN2:
|
|
case PCI_PRODUCT_NVIDIA_MCP04_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP04_LAN2:
|
|
sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM;
|
|
break;
|
|
case PCI_PRODUCT_NVIDIA_MCP65_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP65_LAN2:
|
|
case PCI_PRODUCT_NVIDIA_MCP65_LAN3:
|
|
case PCI_PRODUCT_NVIDIA_MCP65_LAN4:
|
|
sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR |
|
|
NFE_CORRECT_MACADDR | NFE_PWR_MGMT;
|
|
mii_flags = MIIF_DOPAUSE;
|
|
break;
|
|
case PCI_PRODUCT_NVIDIA_MCP55_LAN1:
|
|
case PCI_PRODUCT_NVIDIA_MCP55_LAN2:
|
|
sc->sc_flags |= NFE_JUMBO_SUP | NFE_40BIT_ADDR | NFE_HW_CSUM |
|
|
NFE_HW_VLAN | NFE_PWR_MGMT;
|
|
break;
|
|
}
|
|
|
|
nfe_poweron(self);
|
|
|
|
#ifndef NFE_NO_JUMBO
|
|
/* enable jumbo frames for adapters that support it */
|
|
if (sc->sc_flags & NFE_JUMBO_SUP)
|
|
sc->sc_flags |= NFE_USE_JUMBO;
|
|
#endif
|
|
|
|
/* Check for reversed ethernet address */
|
|
if ((NFE_READ(sc, NFE_TX_UNK) & NFE_MAC_ADDR_INORDER) != 0)
|
|
sc->sc_flags |= NFE_CORRECT_MACADDR;
|
|
|
|
nfe_get_macaddr(sc, sc->sc_enaddr);
|
|
aprint_normal_dev(self, "Ethernet address %s\n",
|
|
ether_sprintf(sc->sc_enaddr));
|
|
|
|
/*
|
|
* Allocate Tx and Rx rings.
|
|
*/
|
|
if (nfe_alloc_tx_ring(sc, &sc->txq) != 0) {
|
|
aprint_error_dev(self, "could not allocate Tx ring\n");
|
|
return;
|
|
}
|
|
|
|
mutex_init(&sc->rxq.mtx, MUTEX_DEFAULT, IPL_NET);
|
|
|
|
if (nfe_alloc_rx_ring(sc, &sc->rxq) != 0) {
|
|
aprint_error_dev(self, "could not allocate Rx ring\n");
|
|
nfe_free_tx_ring(sc, &sc->txq);
|
|
return;
|
|
}
|
|
|
|
ifp = &sc->sc_ethercom.ec_if;
|
|
ifp->if_softc = sc;
|
|
ifp->if_mtu = ETHERMTU;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = nfe_ioctl;
|
|
ifp->if_start = nfe_start;
|
|
ifp->if_stop = nfe_stop;
|
|
ifp->if_watchdog = nfe_watchdog;
|
|
ifp->if_init = nfe_init;
|
|
ifp->if_baudrate = IF_Gbps(1);
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, NFE_IFQ_MAXLEN);
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
strlcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
|
|
|
|
if (sc->sc_flags & NFE_USE_JUMBO)
|
|
sc->sc_ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
|
|
|
|
#if NVLAN > 0
|
|
if (sc->sc_flags & NFE_HW_VLAN)
|
|
sc->sc_ethercom.ec_capabilities |=
|
|
ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
|
|
#endif
|
|
if (sc->sc_flags & NFE_HW_CSUM) {
|
|
ifp->if_capabilities |=
|
|
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
|
|
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
|
|
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
|
|
}
|
|
|
|
sc->sc_mii.mii_ifp = ifp;
|
|
sc->sc_mii.mii_readreg = nfe_miibus_readreg;
|
|
sc->sc_mii.mii_writereg = nfe_miibus_writereg;
|
|
sc->sc_mii.mii_statchg = nfe_miibus_statchg;
|
|
|
|
sc->sc_ethercom.ec_mii = &sc->sc_mii;
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, ether_mediachange,
|
|
ether_mediastatus);
|
|
|
|
mii_attach(self, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, mii_flags);
|
|
|
|
if (LIST_FIRST(&sc->sc_mii.mii_phys) == NULL) {
|
|
aprint_error_dev(self, "no PHY found!\n");
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL,
|
|
0, NULL);
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_MANUAL);
|
|
} else
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER | IFM_AUTO);
|
|
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, sc->sc_enaddr);
|
|
ether_set_ifflags_cb(&sc->sc_ethercom, nfe_ifflags_cb);
|
|
|
|
callout_init(&sc->sc_tick_ch, 0);
|
|
callout_setfunc(&sc->sc_tick_ch, nfe_tick, sc);
|
|
|
|
if (!pmf_device_register(self, NULL, nfe_resume))
|
|
aprint_error_dev(self, "couldn't establish power handler\n");
|
|
else
|
|
pmf_class_network_register(self, ifp);
|
|
}
|
|
|
|
void
|
|
nfe_miibus_statchg(device_t dev)
|
|
{
|
|
struct nfe_softc *sc = device_private(dev);
|
|
struct mii_data *mii = &sc->sc_mii;
|
|
uint32_t phy, seed, misc = NFE_MISC1_MAGIC, link = NFE_MEDIA_SET;
|
|
|
|
phy = NFE_READ(sc, NFE_PHY_IFACE);
|
|
phy &= ~(NFE_PHY_HDX | NFE_PHY_100TX | NFE_PHY_1000T);
|
|
|
|
seed = NFE_READ(sc, NFE_RNDSEED);
|
|
seed &= ~NFE_SEED_MASK;
|
|
|
|
if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
|
|
phy |= NFE_PHY_HDX; /* half-duplex */
|
|
misc |= NFE_MISC1_HDX;
|
|
}
|
|
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_1000_T: /* full-duplex only */
|
|
link |= NFE_MEDIA_1000T;
|
|
seed |= NFE_SEED_1000T;
|
|
phy |= NFE_PHY_1000T;
|
|
break;
|
|
case IFM_100_TX:
|
|
link |= NFE_MEDIA_100TX;
|
|
seed |= NFE_SEED_100TX;
|
|
phy |= NFE_PHY_100TX;
|
|
break;
|
|
case IFM_10_T:
|
|
link |= NFE_MEDIA_10T;
|
|
seed |= NFE_SEED_10T;
|
|
break;
|
|
}
|
|
|
|
NFE_WRITE(sc, NFE_RNDSEED, seed); /* XXX: gigabit NICs only? */
|
|
|
|
NFE_WRITE(sc, NFE_PHY_IFACE, phy);
|
|
NFE_WRITE(sc, NFE_MISC1, misc);
|
|
NFE_WRITE(sc, NFE_LINKSPEED, link);
|
|
}
|
|
|
|
int
|
|
nfe_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct nfe_softc *sc = device_private(dev);
|
|
uint32_t val;
|
|
int ntries;
|
|
|
|
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
|
|
|
|
if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
|
|
NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
|
|
DELAY(100);
|
|
}
|
|
|
|
NFE_WRITE(sc, NFE_PHY_CTL, (phy << NFE_PHYADD_SHIFT) | reg);
|
|
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
DELAY(100);
|
|
if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
|
|
break;
|
|
}
|
|
if (ntries == 1000) {
|
|
DPRINTFN(2, ("%s: timeout waiting for PHY\n",
|
|
device_xname(sc->sc_dev)));
|
|
return 0;
|
|
}
|
|
|
|
if (NFE_READ(sc, NFE_PHY_STATUS) & NFE_PHY_ERROR) {
|
|
DPRINTFN(2, ("%s: could not read PHY\n",
|
|
device_xname(sc->sc_dev)));
|
|
return 0;
|
|
}
|
|
|
|
val = NFE_READ(sc, NFE_PHY_DATA);
|
|
if (val != 0xffffffff && val != 0)
|
|
sc->mii_phyaddr = phy;
|
|
|
|
DPRINTFN(2, ("%s: mii read phy %d reg 0x%x ret 0x%x\n",
|
|
device_xname(sc->sc_dev), phy, reg, val));
|
|
|
|
return val;
|
|
}
|
|
|
|
void
|
|
nfe_miibus_writereg(device_t dev, int phy, int reg, int val)
|
|
{
|
|
struct nfe_softc *sc = device_private(dev);
|
|
uint32_t ctl;
|
|
int ntries;
|
|
|
|
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
|
|
|
|
if (NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY) {
|
|
NFE_WRITE(sc, NFE_PHY_CTL, NFE_PHY_BUSY);
|
|
DELAY(100);
|
|
}
|
|
|
|
NFE_WRITE(sc, NFE_PHY_DATA, val);
|
|
ctl = NFE_PHY_WRITE | (phy << NFE_PHYADD_SHIFT) | reg;
|
|
NFE_WRITE(sc, NFE_PHY_CTL, ctl);
|
|
|
|
for (ntries = 0; ntries < 1000; ntries++) {
|
|
DELAY(100);
|
|
if (!(NFE_READ(sc, NFE_PHY_CTL) & NFE_PHY_BUSY))
|
|
break;
|
|
}
|
|
#ifdef NFE_DEBUG
|
|
if (nfedebug >= 2 && ntries == 1000)
|
|
printf("could not write to PHY\n");
|
|
#endif
|
|
}
|
|
|
|
int
|
|
nfe_intr(void *arg)
|
|
{
|
|
struct nfe_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
uint32_t r;
|
|
int handled;
|
|
|
|
if ((ifp->if_flags & IFF_UP) == 0)
|
|
return 0;
|
|
|
|
handled = 0;
|
|
|
|
for (;;) {
|
|
r = NFE_READ(sc, NFE_IRQ_STATUS);
|
|
if ((r & NFE_IRQ_WANTED) == 0)
|
|
break;
|
|
|
|
NFE_WRITE(sc, NFE_IRQ_STATUS, r);
|
|
handled = 1;
|
|
DPRINTFN(5, ("nfe_intr: interrupt register %x\n", r));
|
|
|
|
if ((r & (NFE_IRQ_RXERR|NFE_IRQ_RX_NOBUF|NFE_IRQ_RX)) != 0) {
|
|
/* check Rx ring */
|
|
nfe_rxeof(sc);
|
|
}
|
|
if ((r & (NFE_IRQ_TXERR|NFE_IRQ_TXERR2|NFE_IRQ_TX_DONE)) != 0) {
|
|
/* check Tx ring */
|
|
nfe_txeof(sc);
|
|
}
|
|
if ((r & NFE_IRQ_LINK) != 0) {
|
|
NFE_READ(sc, NFE_PHY_STATUS);
|
|
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
|
|
DPRINTF(("%s: link state changed\n",
|
|
device_xname(sc->sc_dev)));
|
|
}
|
|
}
|
|
|
|
if (handled && !IF_IS_EMPTY(&ifp->if_snd))
|
|
nfe_start(ifp);
|
|
|
|
return handled;
|
|
}
|
|
|
|
static int
|
|
nfe_ifflags_cb(struct ethercom *ec)
|
|
{
|
|
struct ifnet *ifp = &ec->ec_if;
|
|
struct nfe_softc *sc = ifp->if_softc;
|
|
int change = ifp->if_flags ^ sc->sc_if_flags;
|
|
|
|
/*
|
|
* If only the PROMISC flag changes, then
|
|
* don't do a full re-init of the chip, just update
|
|
* the Rx filter.
|
|
*/
|
|
if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
|
|
return ENETRESET;
|
|
else if ((change & IFF_PROMISC) != 0)
|
|
nfe_setmulti(sc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
nfe_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct nfe_softc *sc = ifp->if_softc;
|
|
struct ifaddr *ifa = (struct ifaddr *)data;
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCINITIFADDR:
|
|
ifp->if_flags |= IFF_UP;
|
|
nfe_init(ifp);
|
|
switch (ifa->ifa_addr->sa_family) {
|
|
#ifdef INET
|
|
case AF_INET:
|
|
arp_ifinit(ifp, ifa);
|
|
break;
|
|
#endif
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
|
|
break;
|
|
|
|
error = 0;
|
|
|
|
if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
|
|
;
|
|
else if (ifp->if_flags & IFF_RUNNING)
|
|
nfe_setmulti(sc);
|
|
break;
|
|
}
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
|
|
splx(s);
|
|
|
|
return error;
|
|
}
|
|
|
|
void
|
|
nfe_txdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
|
|
{
|
|
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
|
|
(char *)desc32 - (char *)sc->txq.desc32,
|
|
sizeof (struct nfe_desc32), ops);
|
|
}
|
|
|
|
void
|
|
nfe_txdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
|
|
{
|
|
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
|
|
(char *)desc64 - (char *)sc->txq.desc64,
|
|
sizeof (struct nfe_desc64), ops);
|
|
}
|
|
|
|
void
|
|
nfe_txdesc32_rsync(struct nfe_softc *sc, int start, int end, int ops)
|
|
{
|
|
if (end > start) {
|
|
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
|
|
(char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
|
|
(char *)&sc->txq.desc32[end] -
|
|
(char *)&sc->txq.desc32[start], ops);
|
|
return;
|
|
}
|
|
/* sync from 'start' to end of ring */
|
|
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
|
|
(char *)&sc->txq.desc32[start] - (char *)sc->txq.desc32,
|
|
(char *)&sc->txq.desc32[NFE_TX_RING_COUNT] -
|
|
(char *)&sc->txq.desc32[start], ops);
|
|
|
|
/* sync from start of ring to 'end' */
|
|
bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
|
|
(char *)&sc->txq.desc32[end] - (char *)sc->txq.desc32, ops);
|
|
}
|
|
|
|
void
|
|
nfe_txdesc64_rsync(struct nfe_softc *sc, int start, int end, int ops)
|
|
{
|
|
if (end > start) {
|
|
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
|
|
(char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
|
|
(char *)&sc->txq.desc64[end] -
|
|
(char *)&sc->txq.desc64[start], ops);
|
|
return;
|
|
}
|
|
/* sync from 'start' to end of ring */
|
|
bus_dmamap_sync(sc->sc_dmat, sc->txq.map,
|
|
(char *)&sc->txq.desc64[start] - (char *)sc->txq.desc64,
|
|
(char *)&sc->txq.desc64[NFE_TX_RING_COUNT] -
|
|
(char *)&sc->txq.desc64[start], ops);
|
|
|
|
/* sync from start of ring to 'end' */
|
|
bus_dmamap_sync(sc->sc_dmat, sc->txq.map, 0,
|
|
(char *)&sc->txq.desc64[end] - (char *)sc->txq.desc64, ops);
|
|
}
|
|
|
|
void
|
|
nfe_rxdesc32_sync(struct nfe_softc *sc, struct nfe_desc32 *desc32, int ops)
|
|
{
|
|
bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
|
|
(char *)desc32 - (char *)sc->rxq.desc32,
|
|
sizeof (struct nfe_desc32), ops);
|
|
}
|
|
|
|
void
|
|
nfe_rxdesc64_sync(struct nfe_softc *sc, struct nfe_desc64 *desc64, int ops)
|
|
{
|
|
bus_dmamap_sync(sc->sc_dmat, sc->rxq.map,
|
|
(char *)desc64 - (char *)sc->rxq.desc64,
|
|
sizeof (struct nfe_desc64), ops);
|
|
}
|
|
|
|
void
|
|
nfe_rxeof(struct nfe_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct nfe_desc32 *desc32;
|
|
struct nfe_desc64 *desc64;
|
|
struct nfe_rx_data *data;
|
|
struct nfe_jbuf *jbuf;
|
|
struct mbuf *m, *mnew;
|
|
bus_addr_t physaddr;
|
|
uint16_t flags;
|
|
int error, len, i;
|
|
|
|
desc32 = NULL;
|
|
desc64 = NULL;
|
|
for (i = sc->rxq.cur;; i = NFE_RX_NEXTDESC(i)) {
|
|
data = &sc->rxq.data[i];
|
|
|
|
if (sc->sc_flags & NFE_40BIT_ADDR) {
|
|
desc64 = &sc->rxq.desc64[i];
|
|
nfe_rxdesc64_sync(sc, desc64,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
flags = le16toh(desc64->flags);
|
|
len = le16toh(desc64->length) & 0x3fff;
|
|
} else {
|
|
desc32 = &sc->rxq.desc32[i];
|
|
nfe_rxdesc32_sync(sc, desc32,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
flags = le16toh(desc32->flags);
|
|
len = le16toh(desc32->length) & 0x3fff;
|
|
}
|
|
|
|
if ((flags & NFE_RX_READY) != 0)
|
|
break;
|
|
|
|
if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
|
|
if ((flags & NFE_RX_VALID_V1) == 0)
|
|
goto skip;
|
|
|
|
if ((flags & NFE_RX_FIXME_V1) == NFE_RX_FIXME_V1) {
|
|
flags &= ~NFE_RX_ERROR;
|
|
len--; /* fix buffer length */
|
|
}
|
|
} else {
|
|
if ((flags & NFE_RX_VALID_V2) == 0)
|
|
goto skip;
|
|
|
|
if ((flags & NFE_RX_FIXME_V2) == NFE_RX_FIXME_V2) {
|
|
flags &= ~NFE_RX_ERROR;
|
|
len--; /* fix buffer length */
|
|
}
|
|
}
|
|
|
|
if (flags & NFE_RX_ERROR) {
|
|
ifp->if_ierrors++;
|
|
goto skip;
|
|
}
|
|
|
|
/*
|
|
* Try to allocate a new mbuf for this ring element and load
|
|
* it before processing the current mbuf. If the ring element
|
|
* cannot be loaded, drop the received packet and reuse the
|
|
* old mbuf. In the unlikely case that the old mbuf can't be
|
|
* reloaded either, explicitly panic.
|
|
*/
|
|
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
|
|
if (mnew == NULL) {
|
|
ifp->if_ierrors++;
|
|
goto skip;
|
|
}
|
|
|
|
if (sc->sc_flags & NFE_USE_JUMBO) {
|
|
physaddr =
|
|
sc->rxq.jbuf[sc->rxq.jbufmap[i]].physaddr;
|
|
if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
|
|
if (len > MCLBYTES) {
|
|
m_freem(mnew);
|
|
ifp->if_ierrors++;
|
|
goto skip1;
|
|
}
|
|
MCLGET(mnew, M_DONTWAIT);
|
|
if ((mnew->m_flags & M_EXT) == 0) {
|
|
m_freem(mnew);
|
|
ifp->if_ierrors++;
|
|
goto skip1;
|
|
}
|
|
|
|
(void)memcpy(mtod(mnew, void *),
|
|
mtod(data->m, const void *), len);
|
|
m = mnew;
|
|
goto mbufcopied;
|
|
} else {
|
|
MEXTADD(mnew, jbuf->buf, NFE_JBYTES, 0, nfe_jfree, sc);
|
|
bus_dmamap_sync(sc->sc_dmat, sc->rxq.jmap,
|
|
mtod(data->m, char *) - (char *)sc->rxq.jpool,
|
|
NFE_JBYTES, BUS_DMASYNC_POSTREAD);
|
|
|
|
physaddr = jbuf->physaddr;
|
|
}
|
|
} else {
|
|
MCLGET(mnew, M_DONTWAIT);
|
|
if ((mnew->m_flags & M_EXT) == 0) {
|
|
m_freem(mnew);
|
|
ifp->if_ierrors++;
|
|
goto skip;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, data->map,
|
|
mtod(mnew, void *), MCLBYTES, NULL,
|
|
BUS_DMA_READ | BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
m_freem(mnew);
|
|
|
|
/* try to reload the old mbuf */
|
|
error = bus_dmamap_load(sc->sc_dmat, data->map,
|
|
mtod(data->m, void *), MCLBYTES, NULL,
|
|
BUS_DMA_READ | BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
/* very unlikely that it will fail.. */
|
|
panic("%s: could not load old rx mbuf",
|
|
device_xname(sc->sc_dev));
|
|
}
|
|
ifp->if_ierrors++;
|
|
goto skip;
|
|
}
|
|
physaddr = data->map->dm_segs[0].ds_addr;
|
|
}
|
|
|
|
/*
|
|
* New mbuf successfully loaded, update Rx ring and continue
|
|
* processing.
|
|
*/
|
|
m = data->m;
|
|
data->m = mnew;
|
|
|
|
mbufcopied:
|
|
/* finalize mbuf */
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
|
|
/*
|
|
* XXX
|
|
* no way to check M_CSUM_IPv4_BAD or non-IPv4 packets?
|
|
*/
|
|
if (flags & NFE_RX_IP_CSUMOK) {
|
|
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
|
|
DPRINTFN(3, ("%s: ip4csum-rx ok\n",
|
|
device_xname(sc->sc_dev)));
|
|
}
|
|
/*
|
|
* XXX
|
|
* no way to check M_CSUM_TCP_UDP_BAD or
|
|
* other protocols?
|
|
*/
|
|
if (flags & NFE_RX_UDP_CSUMOK) {
|
|
m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
|
|
DPRINTFN(3, ("%s: udp4csum-rx ok\n",
|
|
device_xname(sc->sc_dev)));
|
|
} else if (flags & NFE_RX_TCP_CSUMOK) {
|
|
m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
|
|
DPRINTFN(3, ("%s: tcp4csum-rx ok\n",
|
|
device_xname(sc->sc_dev)));
|
|
}
|
|
}
|
|
#if NBPFILTER > 0
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
#endif
|
|
ifp->if_ipackets++;
|
|
(*ifp->if_input)(ifp, m);
|
|
|
|
skip1:
|
|
/* update mapping address in h/w descriptor */
|
|
if (sc->sc_flags & NFE_40BIT_ADDR) {
|
|
#if defined(__LP64__)
|
|
desc64->physaddr[0] = htole32(physaddr >> 32);
|
|
#endif
|
|
desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
|
|
} else {
|
|
desc32->physaddr = htole32(physaddr);
|
|
}
|
|
|
|
skip:
|
|
if (sc->sc_flags & NFE_40BIT_ADDR) {
|
|
desc64->length = htole16(sc->rxq.bufsz);
|
|
desc64->flags = htole16(NFE_RX_READY);
|
|
|
|
nfe_rxdesc64_sync(sc, desc64,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
} else {
|
|
desc32->length = htole16(sc->rxq.bufsz);
|
|
desc32->flags = htole16(NFE_RX_READY);
|
|
|
|
nfe_rxdesc32_sync(sc, desc32,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
}
|
|
}
|
|
/* update current RX pointer */
|
|
sc->rxq.cur = i;
|
|
}
|
|
|
|
void
|
|
nfe_txeof(struct nfe_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct nfe_desc32 *desc32;
|
|
struct nfe_desc64 *desc64;
|
|
struct nfe_tx_data *data = NULL;
|
|
int i;
|
|
uint16_t flags;
|
|
char buf[128];
|
|
|
|
for (i = sc->txq.next;
|
|
sc->txq.queued > 0;
|
|
i = NFE_TX_NEXTDESC(i), sc->txq.queued--) {
|
|
if (sc->sc_flags & NFE_40BIT_ADDR) {
|
|
desc64 = &sc->txq.desc64[i];
|
|
nfe_txdesc64_sync(sc, desc64,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
flags = le16toh(desc64->flags);
|
|
} else {
|
|
desc32 = &sc->txq.desc32[i];
|
|
nfe_txdesc32_sync(sc, desc32,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
flags = le16toh(desc32->flags);
|
|
}
|
|
|
|
if ((flags & NFE_TX_VALID) != 0)
|
|
break;
|
|
|
|
data = &sc->txq.data[i];
|
|
|
|
if ((sc->sc_flags & (NFE_JUMBO_SUP | NFE_40BIT_ADDR)) == 0) {
|
|
if ((flags & NFE_TX_LASTFRAG_V1) == 0 &&
|
|
data->m == NULL)
|
|
continue;
|
|
|
|
if ((flags & NFE_TX_ERROR_V1) != 0) {
|
|
snprintb(buf, sizeof(buf), NFE_V1_TXERR, flags);
|
|
aprint_error_dev(sc->sc_dev, "tx v1 error %s\n",
|
|
buf);
|
|
ifp->if_oerrors++;
|
|
} else
|
|
ifp->if_opackets++;
|
|
} else {
|
|
if ((flags & NFE_TX_LASTFRAG_V2) == 0 &&
|
|
data->m == NULL)
|
|
continue;
|
|
|
|
if ((flags & NFE_TX_ERROR_V2) != 0) {
|
|
snprintb(buf, sizeof(buf), NFE_V2_TXERR, flags);
|
|
aprint_error_dev(sc->sc_dev, "tx v2 error %s\n",
|
|
buf);
|
|
ifp->if_oerrors++;
|
|
} else
|
|
ifp->if_opackets++;
|
|
}
|
|
|
|
if (data->m == NULL) { /* should not get there */
|
|
aprint_error_dev(sc->sc_dev,
|
|
"last fragment bit w/o associated mbuf!\n");
|
|
continue;
|
|
}
|
|
|
|
/* last fragment of the mbuf chain transmitted */
|
|
bus_dmamap_sync(sc->sc_dmat, data->active, 0,
|
|
data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, data->active);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
|
|
sc->txq.next = i;
|
|
|
|
if (sc->txq.queued < NFE_TX_RING_COUNT) {
|
|
/* at least one slot freed */
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
}
|
|
|
|
if (sc->txq.queued == 0) {
|
|
/* all queued packets are sent */
|
|
ifp->if_timer = 0;
|
|
}
|
|
}
|
|
|
|
int
|
|
nfe_encap(struct nfe_softc *sc, struct mbuf *m0)
|
|
{
|
|
struct nfe_desc32 *desc32;
|
|
struct nfe_desc64 *desc64;
|
|
struct nfe_tx_data *data;
|
|
bus_dmamap_t map;
|
|
uint16_t flags, csumflags;
|
|
#if NVLAN > 0
|
|
struct m_tag *mtag;
|
|
uint32_t vtag = 0;
|
|
#endif
|
|
int error, i, first;
|
|
|
|
desc32 = NULL;
|
|
desc64 = NULL;
|
|
data = NULL;
|
|
|
|
flags = 0;
|
|
csumflags = 0;
|
|
first = sc->txq.cur;
|
|
|
|
map = sc->txq.data[first].map;
|
|
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m0, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
|
|
error);
|
|
return error;
|
|
}
|
|
|
|
if (sc->txq.queued + map->dm_nsegs >= NFE_TX_RING_COUNT - 1) {
|
|
bus_dmamap_unload(sc->sc_dmat, map);
|
|
return ENOBUFS;
|
|
}
|
|
|
|
#if NVLAN > 0
|
|
/* setup h/w VLAN tagging */
|
|
if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0)) != NULL)
|
|
vtag = NFE_TX_VTAG | VLAN_TAG_VALUE(mtag);
|
|
#endif
|
|
if ((sc->sc_flags & NFE_HW_CSUM) != 0) {
|
|
if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
|
|
csumflags |= NFE_TX_IP_CSUM;
|
|
if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4))
|
|
csumflags |= NFE_TX_TCP_UDP_CSUM;
|
|
}
|
|
|
|
for (i = 0; i < map->dm_nsegs; i++) {
|
|
data = &sc->txq.data[sc->txq.cur];
|
|
|
|
if (sc->sc_flags & NFE_40BIT_ADDR) {
|
|
desc64 = &sc->txq.desc64[sc->txq.cur];
|
|
#if defined(__LP64__)
|
|
desc64->physaddr[0] =
|
|
htole32(map->dm_segs[i].ds_addr >> 32);
|
|
#endif
|
|
desc64->physaddr[1] =
|
|
htole32(map->dm_segs[i].ds_addr & 0xffffffff);
|
|
desc64->length = htole16(map->dm_segs[i].ds_len - 1);
|
|
desc64->flags = htole16(flags);
|
|
desc64->vtag = 0;
|
|
} else {
|
|
desc32 = &sc->txq.desc32[sc->txq.cur];
|
|
|
|
desc32->physaddr = htole32(map->dm_segs[i].ds_addr);
|
|
desc32->length = htole16(map->dm_segs[i].ds_len - 1);
|
|
desc32->flags = htole16(flags);
|
|
}
|
|
|
|
/*
|
|
* Setting of the valid bit in the first descriptor is
|
|
* deferred until the whole chain is fully setup.
|
|
*/
|
|
flags |= NFE_TX_VALID;
|
|
|
|
sc->txq.queued++;
|
|
sc->txq.cur = NFE_TX_NEXTDESC(sc->txq.cur);
|
|
}
|
|
|
|
/* the whole mbuf chain has been setup */
|
|
if (sc->sc_flags & NFE_40BIT_ADDR) {
|
|
/* fix last descriptor */
|
|
flags |= NFE_TX_LASTFRAG_V2;
|
|
desc64->flags = htole16(flags);
|
|
|
|
/* Checksum flags and vtag belong to the first fragment only. */
|
|
#if NVLAN > 0
|
|
sc->txq.desc64[first].vtag = htole32(vtag);
|
|
#endif
|
|
sc->txq.desc64[first].flags |= htole16(csumflags);
|
|
|
|
/* finally, set the valid bit in the first descriptor */
|
|
sc->txq.desc64[first].flags |= htole16(NFE_TX_VALID);
|
|
} else {
|
|
/* fix last descriptor */
|
|
if (sc->sc_flags & NFE_JUMBO_SUP)
|
|
flags |= NFE_TX_LASTFRAG_V2;
|
|
else
|
|
flags |= NFE_TX_LASTFRAG_V1;
|
|
desc32->flags = htole16(flags);
|
|
|
|
/* Checksum flags belong to the first fragment only. */
|
|
sc->txq.desc32[first].flags |= htole16(csumflags);
|
|
|
|
/* finally, set the valid bit in the first descriptor */
|
|
sc->txq.desc32[first].flags |= htole16(NFE_TX_VALID);
|
|
}
|
|
|
|
data->m = m0;
|
|
data->active = map;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
nfe_start(struct ifnet *ifp)
|
|
{
|
|
struct nfe_softc *sc = ifp->if_softc;
|
|
int old = sc->txq.queued;
|
|
struct mbuf *m0;
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
for (;;) {
|
|
IFQ_POLL(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
|
|
if (nfe_encap(sc, m0) != 0) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
/* packet put in h/w queue, remove from s/w queue */
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
|
|
#if NBPFILTER > 0
|
|
if (ifp->if_bpf != NULL)
|
|
bpf_mtap(ifp->if_bpf, m0);
|
|
#endif
|
|
}
|
|
|
|
if (sc->txq.queued != old) {
|
|
/* packets are queued */
|
|
if (sc->sc_flags & NFE_40BIT_ADDR)
|
|
nfe_txdesc64_rsync(sc, old, sc->txq.cur,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
else
|
|
nfe_txdesc32_rsync(sc, old, sc->txq.cur,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
/* kick Tx */
|
|
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_KICKTX | sc->rxtxctl);
|
|
|
|
/*
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
*/
|
|
ifp->if_timer = 5;
|
|
}
|
|
}
|
|
|
|
void
|
|
nfe_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct nfe_softc *sc = ifp->if_softc;
|
|
|
|
aprint_error_dev(sc->sc_dev, "watchdog timeout\n");
|
|
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
nfe_init(ifp);
|
|
|
|
ifp->if_oerrors++;
|
|
}
|
|
|
|
int
|
|
nfe_init(struct ifnet *ifp)
|
|
{
|
|
struct nfe_softc *sc = ifp->if_softc;
|
|
uint32_t tmp;
|
|
int rc = 0, s;
|
|
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
return 0;
|
|
|
|
nfe_stop(ifp, 0);
|
|
|
|
NFE_WRITE(sc, NFE_TX_UNK, 0);
|
|
NFE_WRITE(sc, NFE_STATUS, 0);
|
|
|
|
sc->rxtxctl = NFE_RXTX_BIT2;
|
|
if (sc->sc_flags & NFE_40BIT_ADDR)
|
|
sc->rxtxctl |= NFE_RXTX_V3MAGIC;
|
|
else if (sc->sc_flags & NFE_JUMBO_SUP)
|
|
sc->rxtxctl |= NFE_RXTX_V2MAGIC;
|
|
if (sc->sc_flags & NFE_HW_CSUM)
|
|
sc->rxtxctl |= NFE_RXTX_RXCSUM;
|
|
#if NVLAN > 0
|
|
/*
|
|
* Although the adapter is capable of stripping VLAN tags from received
|
|
* frames (NFE_RXTX_VTAG_STRIP), we do not enable this functionality on
|
|
* purpose. This will be done in software by our network stack.
|
|
*/
|
|
if (sc->sc_flags & NFE_HW_VLAN)
|
|
sc->rxtxctl |= NFE_RXTX_VTAG_INSERT;
|
|
#endif
|
|
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | sc->rxtxctl);
|
|
DELAY(10);
|
|
NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
|
|
|
|
#if NVLAN
|
|
if (sc->sc_flags & NFE_HW_VLAN)
|
|
NFE_WRITE(sc, NFE_VTAG_CTL, NFE_VTAG_ENABLE);
|
|
#endif
|
|
|
|
NFE_WRITE(sc, NFE_SETUP_R6, 0);
|
|
|
|
/* set MAC address */
|
|
nfe_set_macaddr(sc, sc->sc_enaddr);
|
|
|
|
/* tell MAC where rings are in memory */
|
|
#ifdef __LP64__
|
|
NFE_WRITE(sc, NFE_RX_RING_ADDR_HI, sc->rxq.physaddr >> 32);
|
|
#endif
|
|
NFE_WRITE(sc, NFE_RX_RING_ADDR_LO, sc->rxq.physaddr & 0xffffffff);
|
|
#ifdef __LP64__
|
|
NFE_WRITE(sc, NFE_TX_RING_ADDR_HI, sc->txq.physaddr >> 32);
|
|
#endif
|
|
NFE_WRITE(sc, NFE_TX_RING_ADDR_LO, sc->txq.physaddr & 0xffffffff);
|
|
|
|
NFE_WRITE(sc, NFE_RING_SIZE,
|
|
(NFE_RX_RING_COUNT - 1) << 16 |
|
|
(NFE_TX_RING_COUNT - 1));
|
|
|
|
NFE_WRITE(sc, NFE_RXBUFSZ, sc->rxq.bufsz);
|
|
|
|
/* force MAC to wakeup */
|
|
tmp = NFE_READ(sc, NFE_PWR_STATE);
|
|
NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_WAKEUP);
|
|
DELAY(10);
|
|
tmp = NFE_READ(sc, NFE_PWR_STATE);
|
|
NFE_WRITE(sc, NFE_PWR_STATE, tmp | NFE_PWR_VALID);
|
|
|
|
s = splnet();
|
|
NFE_WRITE(sc, NFE_IRQ_MASK, 0);
|
|
nfe_intr(sc); /* XXX clear IRQ status registers */
|
|
NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
|
|
splx(s);
|
|
|
|
#if 1
|
|
/* configure interrupts coalescing/mitigation */
|
|
NFE_WRITE(sc, NFE_IMTIMER, NFE_IM_DEFAULT);
|
|
#else
|
|
/* no interrupt mitigation: one interrupt per packet */
|
|
NFE_WRITE(sc, NFE_IMTIMER, 970);
|
|
#endif
|
|
|
|
NFE_WRITE(sc, NFE_SETUP_R1, NFE_R1_MAGIC);
|
|
NFE_WRITE(sc, NFE_SETUP_R2, NFE_R2_MAGIC);
|
|
NFE_WRITE(sc, NFE_SETUP_R6, NFE_R6_MAGIC);
|
|
|
|
/* update MAC knowledge of PHY; generates a NFE_IRQ_LINK interrupt */
|
|
NFE_WRITE(sc, NFE_STATUS, sc->mii_phyaddr << 24 | NFE_STATUS_MAGIC);
|
|
|
|
NFE_WRITE(sc, NFE_SETUP_R4, NFE_R4_MAGIC);
|
|
NFE_WRITE(sc, NFE_WOL_CTL, NFE_WOL_ENABLE);
|
|
|
|
sc->rxtxctl &= ~NFE_RXTX_BIT2;
|
|
NFE_WRITE(sc, NFE_RXTX_CTL, sc->rxtxctl);
|
|
DELAY(10);
|
|
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT1 | sc->rxtxctl);
|
|
|
|
/* set Rx filter */
|
|
nfe_setmulti(sc);
|
|
|
|
if ((rc = ether_mediachange(ifp)) != 0)
|
|
goto out;
|
|
|
|
nfe_tick(sc);
|
|
|
|
/* enable Rx */
|
|
NFE_WRITE(sc, NFE_RX_CTL, NFE_RX_START);
|
|
|
|
/* enable Tx */
|
|
NFE_WRITE(sc, NFE_TX_CTL, NFE_TX_START);
|
|
|
|
NFE_WRITE(sc, NFE_PHY_STATUS, 0xf);
|
|
|
|
/* enable interrupts */
|
|
NFE_WRITE(sc, NFE_IRQ_MASK, NFE_IRQ_WANTED);
|
|
|
|
callout_schedule(&sc->sc_tick_ch, hz);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
out:
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
nfe_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct nfe_softc *sc = ifp->if_softc;
|
|
|
|
callout_stop(&sc->sc_tick_ch);
|
|
|
|
ifp->if_timer = 0;
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
|
|
mii_down(&sc->sc_mii);
|
|
|
|
/* abort Tx */
|
|
NFE_WRITE(sc, NFE_TX_CTL, 0);
|
|
|
|
/* disable Rx */
|
|
NFE_WRITE(sc, NFE_RX_CTL, 0);
|
|
|
|
/* disable interrupts */
|
|
NFE_WRITE(sc, NFE_IRQ_MASK, 0);
|
|
|
|
/* reset Tx and Rx rings */
|
|
nfe_reset_tx_ring(sc, &sc->txq);
|
|
nfe_reset_rx_ring(sc, &sc->rxq);
|
|
}
|
|
|
|
int
|
|
nfe_alloc_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
|
|
{
|
|
struct nfe_desc32 *desc32;
|
|
struct nfe_desc64 *desc64;
|
|
struct nfe_rx_data *data;
|
|
struct nfe_jbuf *jbuf;
|
|
void **desc;
|
|
bus_addr_t physaddr;
|
|
int i, nsegs, error, descsize;
|
|
|
|
if (sc->sc_flags & NFE_40BIT_ADDR) {
|
|
desc = (void **)&ring->desc64;
|
|
descsize = sizeof (struct nfe_desc64);
|
|
} else {
|
|
desc = (void **)&ring->desc32;
|
|
descsize = sizeof (struct nfe_desc32);
|
|
}
|
|
|
|
ring->cur = ring->next = 0;
|
|
ring->bufsz = MCLBYTES;
|
|
|
|
error = bus_dmamap_create(sc->sc_dmat, NFE_RX_RING_COUNT * descsize, 1,
|
|
NFE_RX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not create desc DMA map\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamem_alloc(sc->sc_dmat, NFE_RX_RING_COUNT * descsize,
|
|
PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not allocate DMA memory\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
|
|
NFE_RX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not map desc DMA memory\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
|
|
NFE_RX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
|
|
goto fail;
|
|
}
|
|
|
|
bzero(*desc, NFE_RX_RING_COUNT * descsize);
|
|
ring->physaddr = ring->map->dm_segs[0].ds_addr;
|
|
|
|
if (sc->sc_flags & NFE_USE_JUMBO) {
|
|
ring->bufsz = NFE_JBYTES;
|
|
if ((error = nfe_jpool_alloc(sc)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not allocate jumbo frames\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Pre-allocate Rx buffers and populate Rx ring.
|
|
*/
|
|
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
|
|
data = &sc->rxq.data[i];
|
|
|
|
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
|
|
if (data->m == NULL) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not allocate rx mbuf\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
if (sc->sc_flags & NFE_USE_JUMBO) {
|
|
if ((jbuf = nfe_jalloc(sc, i)) == NULL) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not allocate jumbo buffer\n");
|
|
goto fail;
|
|
}
|
|
MEXTADD(data->m, jbuf->buf, NFE_JBYTES, 0, nfe_jfree,
|
|
sc);
|
|
|
|
physaddr = jbuf->physaddr;
|
|
} else {
|
|
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
|
|
MCLBYTES, 0, BUS_DMA_NOWAIT, &data->map);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not create DMA map\n");
|
|
goto fail;
|
|
}
|
|
MCLGET(data->m, M_DONTWAIT);
|
|
if (!(data->m->m_flags & M_EXT)) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not allocate mbuf cluster\n");
|
|
error = ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, data->map,
|
|
mtod(data->m, void *), MCLBYTES, NULL,
|
|
BUS_DMA_READ | BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not load rx buf DMA map");
|
|
goto fail;
|
|
}
|
|
physaddr = data->map->dm_segs[0].ds_addr;
|
|
}
|
|
|
|
if (sc->sc_flags & NFE_40BIT_ADDR) {
|
|
desc64 = &sc->rxq.desc64[i];
|
|
#if defined(__LP64__)
|
|
desc64->physaddr[0] = htole32(physaddr >> 32);
|
|
#endif
|
|
desc64->physaddr[1] = htole32(physaddr & 0xffffffff);
|
|
desc64->length = htole16(sc->rxq.bufsz);
|
|
desc64->flags = htole16(NFE_RX_READY);
|
|
} else {
|
|
desc32 = &sc->rxq.desc32[i];
|
|
desc32->physaddr = htole32(physaddr);
|
|
desc32->length = htole16(sc->rxq.bufsz);
|
|
desc32->flags = htole16(NFE_RX_READY);
|
|
}
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
return 0;
|
|
|
|
fail: nfe_free_rx_ring(sc, ring);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
nfe_reset_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
|
|
if (sc->sc_flags & NFE_40BIT_ADDR) {
|
|
ring->desc64[i].length = htole16(ring->bufsz);
|
|
ring->desc64[i].flags = htole16(NFE_RX_READY);
|
|
} else {
|
|
ring->desc32[i].length = htole16(ring->bufsz);
|
|
ring->desc32[i].flags = htole16(NFE_RX_READY);
|
|
}
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
ring->cur = ring->next = 0;
|
|
}
|
|
|
|
void
|
|
nfe_free_rx_ring(struct nfe_softc *sc, struct nfe_rx_ring *ring)
|
|
{
|
|
struct nfe_rx_data *data;
|
|
void *desc;
|
|
int i, descsize;
|
|
|
|
if (sc->sc_flags & NFE_40BIT_ADDR) {
|
|
desc = ring->desc64;
|
|
descsize = sizeof (struct nfe_desc64);
|
|
} else {
|
|
desc = ring->desc32;
|
|
descsize = sizeof (struct nfe_desc32);
|
|
}
|
|
|
|
if (desc != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
|
|
ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, ring->map);
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
|
|
NFE_RX_RING_COUNT * descsize);
|
|
bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
|
|
}
|
|
|
|
for (i = 0; i < NFE_RX_RING_COUNT; i++) {
|
|
data = &ring->data[i];
|
|
|
|
if (data->map != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
|
|
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_dmat, data->map);
|
|
bus_dmamap_destroy(sc->sc_dmat, data->map);
|
|
}
|
|
if (data->m != NULL)
|
|
m_freem(data->m);
|
|
}
|
|
}
|
|
|
|
struct nfe_jbuf *
|
|
nfe_jalloc(struct nfe_softc *sc, int i)
|
|
{
|
|
struct nfe_jbuf *jbuf;
|
|
|
|
mutex_enter(&sc->rxq.mtx);
|
|
jbuf = SLIST_FIRST(&sc->rxq.jfreelist);
|
|
if (jbuf != NULL)
|
|
SLIST_REMOVE_HEAD(&sc->rxq.jfreelist, jnext);
|
|
mutex_exit(&sc->rxq.mtx);
|
|
if (jbuf == NULL)
|
|
return NULL;
|
|
sc->rxq.jbufmap[i] =
|
|
((char *)jbuf->buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
|
|
return jbuf;
|
|
}
|
|
|
|
/*
|
|
* This is called automatically by the network stack when the mbuf is freed.
|
|
* Caution must be taken that the NIC might be reset by the time the mbuf is
|
|
* freed.
|
|
*/
|
|
void
|
|
nfe_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
|
|
{
|
|
struct nfe_softc *sc = arg;
|
|
struct nfe_jbuf *jbuf;
|
|
int i;
|
|
|
|
/* find the jbuf from the base pointer */
|
|
i = ((char *)buf - (char *)sc->rxq.jpool) / NFE_JBYTES;
|
|
if (i < 0 || i >= NFE_JPOOL_COUNT) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"request to free a buffer (%p) not managed by us\n", buf);
|
|
return;
|
|
}
|
|
jbuf = &sc->rxq.jbuf[i];
|
|
|
|
/* ..and put it back in the free list */
|
|
mutex_enter(&sc->rxq.mtx);
|
|
SLIST_INSERT_HEAD(&sc->rxq.jfreelist, jbuf, jnext);
|
|
mutex_exit(&sc->rxq.mtx);
|
|
|
|
if (m != NULL)
|
|
pool_cache_put(mb_cache, m);
|
|
}
|
|
|
|
int
|
|
nfe_jpool_alloc(struct nfe_softc *sc)
|
|
{
|
|
struct nfe_rx_ring *ring = &sc->rxq;
|
|
struct nfe_jbuf *jbuf;
|
|
bus_addr_t physaddr;
|
|
char *buf;
|
|
int i, nsegs, error;
|
|
|
|
/*
|
|
* Allocate a big chunk of DMA'able memory.
|
|
*/
|
|
error = bus_dmamap_create(sc->sc_dmat, NFE_JPOOL_SIZE, 1,
|
|
NFE_JPOOL_SIZE, 0, BUS_DMA_NOWAIT, &ring->jmap);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not create jumbo DMA map\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamem_alloc(sc->sc_dmat, NFE_JPOOL_SIZE, PAGE_SIZE, 0,
|
|
&ring->jseg, 1, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not allocate jumbo DMA memory\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamem_map(sc->sc_dmat, &ring->jseg, nsegs, NFE_JPOOL_SIZE,
|
|
&ring->jpool, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not map jumbo DMA memory\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, ring->jmap, ring->jpool,
|
|
NFE_JPOOL_SIZE, NULL, BUS_DMA_READ | BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not load jumbo DMA map\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* ..and split it into 9KB chunks */
|
|
SLIST_INIT(&ring->jfreelist);
|
|
|
|
buf = ring->jpool;
|
|
physaddr = ring->jmap->dm_segs[0].ds_addr;
|
|
for (i = 0; i < NFE_JPOOL_COUNT; i++) {
|
|
jbuf = &ring->jbuf[i];
|
|
|
|
jbuf->buf = buf;
|
|
jbuf->physaddr = physaddr;
|
|
|
|
SLIST_INSERT_HEAD(&ring->jfreelist, jbuf, jnext);
|
|
|
|
buf += NFE_JBYTES;
|
|
physaddr += NFE_JBYTES;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail: nfe_jpool_free(sc);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
nfe_jpool_free(struct nfe_softc *sc)
|
|
{
|
|
struct nfe_rx_ring *ring = &sc->rxq;
|
|
|
|
if (ring->jmap != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, ring->jmap, 0,
|
|
ring->jmap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, ring->jmap);
|
|
bus_dmamap_destroy(sc->sc_dmat, ring->jmap);
|
|
}
|
|
if (ring->jpool != NULL) {
|
|
bus_dmamem_unmap(sc->sc_dmat, ring->jpool, NFE_JPOOL_SIZE);
|
|
bus_dmamem_free(sc->sc_dmat, &ring->jseg, 1);
|
|
}
|
|
}
|
|
|
|
int
|
|
nfe_alloc_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
|
|
{
|
|
int i, nsegs, error;
|
|
void **desc;
|
|
int descsize;
|
|
|
|
if (sc->sc_flags & NFE_40BIT_ADDR) {
|
|
desc = (void **)&ring->desc64;
|
|
descsize = sizeof (struct nfe_desc64);
|
|
} else {
|
|
desc = (void **)&ring->desc32;
|
|
descsize = sizeof (struct nfe_desc32);
|
|
}
|
|
|
|
ring->queued = 0;
|
|
ring->cur = ring->next = 0;
|
|
|
|
error = bus_dmamap_create(sc->sc_dmat, NFE_TX_RING_COUNT * descsize, 1,
|
|
NFE_TX_RING_COUNT * descsize, 0, BUS_DMA_NOWAIT, &ring->map);
|
|
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not create desc DMA map\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamem_alloc(sc->sc_dmat, NFE_TX_RING_COUNT * descsize,
|
|
PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not allocate DMA memory\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
|
|
NFE_TX_RING_COUNT * descsize, (void **)desc, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not map desc DMA memory\n");
|
|
goto fail;
|
|
}
|
|
|
|
error = bus_dmamap_load(sc->sc_dmat, ring->map, *desc,
|
|
NFE_TX_RING_COUNT * descsize, NULL, BUS_DMA_NOWAIT);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
|
|
goto fail;
|
|
}
|
|
|
|
bzero(*desc, NFE_TX_RING_COUNT * descsize);
|
|
ring->physaddr = ring->map->dm_segs[0].ds_addr;
|
|
|
|
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
|
|
error = bus_dmamap_create(sc->sc_dmat, NFE_JBYTES,
|
|
NFE_MAX_SCATTER, NFE_JBYTES, 0, BUS_DMA_NOWAIT,
|
|
&ring->data[i].map);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"could not create DMA map\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail: nfe_free_tx_ring(sc, ring);
|
|
return error;
|
|
}
|
|
|
|
void
|
|
nfe_reset_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
|
|
{
|
|
struct nfe_tx_data *data;
|
|
int i;
|
|
|
|
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
|
|
if (sc->sc_flags & NFE_40BIT_ADDR)
|
|
ring->desc64[i].flags = 0;
|
|
else
|
|
ring->desc32[i].flags = 0;
|
|
|
|
data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->active, 0,
|
|
data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, data->active);
|
|
m_freem(data->m);
|
|
data->m = NULL;
|
|
}
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
ring->queued = 0;
|
|
ring->cur = ring->next = 0;
|
|
}
|
|
|
|
void
|
|
nfe_free_tx_ring(struct nfe_softc *sc, struct nfe_tx_ring *ring)
|
|
{
|
|
struct nfe_tx_data *data;
|
|
void *desc;
|
|
int i, descsize;
|
|
|
|
if (sc->sc_flags & NFE_40BIT_ADDR) {
|
|
desc = ring->desc64;
|
|
descsize = sizeof (struct nfe_desc64);
|
|
} else {
|
|
desc = ring->desc32;
|
|
descsize = sizeof (struct nfe_desc32);
|
|
}
|
|
|
|
if (desc != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
|
|
ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, ring->map);
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)desc,
|
|
NFE_TX_RING_COUNT * descsize);
|
|
bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
|
|
}
|
|
|
|
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
|
|
data = &ring->data[i];
|
|
|
|
if (data->m != NULL) {
|
|
bus_dmamap_sync(sc->sc_dmat, data->active, 0,
|
|
data->active->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, data->active);
|
|
m_freem(data->m);
|
|
}
|
|
}
|
|
|
|
/* ..and now actually destroy the DMA mappings */
|
|
for (i = 0; i < NFE_TX_RING_COUNT; i++) {
|
|
data = &ring->data[i];
|
|
if (data->map == NULL)
|
|
continue;
|
|
bus_dmamap_destroy(sc->sc_dmat, data->map);
|
|
}
|
|
}
|
|
|
|
void
|
|
nfe_setmulti(struct nfe_softc *sc)
|
|
{
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
struct ifnet *ifp = &ec->ec_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
uint8_t addr[ETHER_ADDR_LEN], mask[ETHER_ADDR_LEN];
|
|
uint32_t filter = NFE_RXFILTER_MAGIC;
|
|
int i;
|
|
|
|
if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
|
|
bzero(addr, ETHER_ADDR_LEN);
|
|
bzero(mask, ETHER_ADDR_LEN);
|
|
goto done;
|
|
}
|
|
|
|
bcopy(etherbroadcastaddr, addr, ETHER_ADDR_LEN);
|
|
bcopy(etherbroadcastaddr, mask, ETHER_ADDR_LEN);
|
|
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
while (enm != NULL) {
|
|
if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
bzero(addr, ETHER_ADDR_LEN);
|
|
bzero(mask, ETHER_ADDR_LEN);
|
|
goto done;
|
|
}
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++) {
|
|
addr[i] &= enm->enm_addrlo[i];
|
|
mask[i] &= ~enm->enm_addrlo[i];
|
|
}
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++)
|
|
mask[i] |= addr[i];
|
|
|
|
done:
|
|
addr[0] |= 0x01; /* make sure multicast bit is set */
|
|
|
|
NFE_WRITE(sc, NFE_MULTIADDR_HI,
|
|
addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
|
|
NFE_WRITE(sc, NFE_MULTIADDR_LO,
|
|
addr[5] << 8 | addr[4]);
|
|
NFE_WRITE(sc, NFE_MULTIMASK_HI,
|
|
mask[3] << 24 | mask[2] << 16 | mask[1] << 8 | mask[0]);
|
|
NFE_WRITE(sc, NFE_MULTIMASK_LO,
|
|
mask[5] << 8 | mask[4]);
|
|
|
|
filter |= (ifp->if_flags & IFF_PROMISC) ? NFE_PROMISC : NFE_U2M;
|
|
NFE_WRITE(sc, NFE_RXFILTER, filter);
|
|
}
|
|
|
|
void
|
|
nfe_get_macaddr(struct nfe_softc *sc, uint8_t *addr)
|
|
{
|
|
uint32_t tmp;
|
|
|
|
if ((sc->sc_flags & NFE_CORRECT_MACADDR) != 0) {
|
|
tmp = NFE_READ(sc, NFE_MACADDR_HI);
|
|
addr[0] = (tmp & 0xff);
|
|
addr[1] = (tmp >> 8) & 0xff;
|
|
addr[2] = (tmp >> 16) & 0xff;
|
|
addr[3] = (tmp >> 24) & 0xff;
|
|
|
|
tmp = NFE_READ(sc, NFE_MACADDR_LO);
|
|
addr[4] = (tmp & 0xff);
|
|
addr[5] = (tmp >> 8) & 0xff;
|
|
|
|
} else {
|
|
tmp = NFE_READ(sc, NFE_MACADDR_LO);
|
|
addr[0] = (tmp >> 8) & 0xff;
|
|
addr[1] = (tmp & 0xff);
|
|
|
|
tmp = NFE_READ(sc, NFE_MACADDR_HI);
|
|
addr[2] = (tmp >> 24) & 0xff;
|
|
addr[3] = (tmp >> 16) & 0xff;
|
|
addr[4] = (tmp >> 8) & 0xff;
|
|
addr[5] = (tmp & 0xff);
|
|
}
|
|
}
|
|
|
|
void
|
|
nfe_set_macaddr(struct nfe_softc *sc, const uint8_t *addr)
|
|
{
|
|
NFE_WRITE(sc, NFE_MACADDR_LO,
|
|
addr[5] << 8 | addr[4]);
|
|
NFE_WRITE(sc, NFE_MACADDR_HI,
|
|
addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]);
|
|
}
|
|
|
|
void
|
|
nfe_tick(void *arg)
|
|
{
|
|
struct nfe_softc *sc = arg;
|
|
int s;
|
|
|
|
s = splnet();
|
|
mii_tick(&sc->sc_mii);
|
|
splx(s);
|
|
|
|
callout_schedule(&sc->sc_tick_ch, hz);
|
|
}
|
|
|
|
void
|
|
nfe_poweron(device_t self)
|
|
{
|
|
struct nfe_softc *sc = device_private(self);
|
|
|
|
if ((sc->sc_flags & NFE_PWR_MGMT) != 0) {
|
|
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_RESET | NFE_RXTX_BIT2);
|
|
NFE_WRITE(sc, NFE_MAC_RESET, NFE_MAC_RESET_MAGIC);
|
|
DELAY(100);
|
|
NFE_WRITE(sc, NFE_MAC_RESET, 0);
|
|
DELAY(100);
|
|
NFE_WRITE(sc, NFE_RXTX_CTL, NFE_RXTX_BIT2);
|
|
NFE_WRITE(sc, NFE_PWR2_CTL,
|
|
NFE_READ(sc, NFE_PWR2_CTL) & ~NFE_PWR2_WAKEUP_MASK);
|
|
}
|
|
}
|
|
|
|
bool
|
|
nfe_resume(device_t dv PMF_FN_ARGS)
|
|
{
|
|
nfe_poweron(dv);
|
|
|
|
return true;
|
|
}
|