391 lines
10 KiB
C
391 lines
10 KiB
C
/* $NetBSD: if_uba.c,v 1.6 1995/04/11 06:19:09 mycroft Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1988 Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)if_uba.c 7.16 (Berkeley) 12/16/90
|
|
*/
|
|
|
|
#include "sys/param.h"
|
|
#include "sys/systm.h"
|
|
#include "sys/malloc.h"
|
|
#include "sys/mbuf.h"
|
|
#include "sys/map.h"
|
|
#include "sys/buf.h"
|
|
#include "sys/socket.h"
|
|
#include "sys/syslog.h"
|
|
|
|
#include "net/if.h"
|
|
|
|
#include "vax/include/pte.h"
|
|
#include "vax/include/mtpr.h"
|
|
#include "if_uba.h"
|
|
#include "vax/include/vmparam.h"
|
|
#include "vax/uba/ubareg.h"
|
|
#include "vax/uba/ubavar.h"
|
|
#include "machine/macros.h"
|
|
|
|
static if_ubaalloc(struct ifubinfo *, struct ifrw *, int);
|
|
static rcv_xmtbuf(struct ifxmt *);
|
|
static restor_xmtbuf(struct ifxmt *);
|
|
|
|
/*
|
|
* Routines supporting UNIBUS network interfaces.
|
|
*
|
|
* TODO:
|
|
* Support interfaces using only one BDP statically.
|
|
*/
|
|
|
|
/*
|
|
* Init UNIBUS for interface on uban whose headers of size hlen are to
|
|
* end on a page boundary. We allocate a UNIBUS map register for the page
|
|
* with the header, and nmr more UNIBUS map registers for i/o on the adapter,
|
|
* doing this once for each read and once for each write buffer. We also
|
|
* allocate page frames in the mbuffer pool for these pages.
|
|
*/
|
|
if_ubaminit(ifu, uban, hlen, nmr, ifr, nr, ifw, nw)
|
|
register struct ifubinfo *ifu;
|
|
int uban, hlen, nmr, nr, nw;
|
|
register struct ifrw *ifr;
|
|
register struct ifxmt *ifw;
|
|
{
|
|
register caddr_t p;
|
|
caddr_t cp;
|
|
int i, nclbytes, off;
|
|
|
|
if (hlen)
|
|
off = MCLBYTES - hlen;
|
|
else
|
|
off = 0;
|
|
nclbytes = roundup(nmr * NBPG, MCLBYTES);
|
|
if (hlen)
|
|
nclbytes += MCLBYTES;
|
|
if (ifr[0].ifrw_addr)
|
|
cp = ifr[0].ifrw_addr - off;
|
|
else {
|
|
cp = (caddr_t)malloc((u_long)((nr + nw) * nclbytes), M_DEVBUF,
|
|
M_NOWAIT);
|
|
if (cp == 0)
|
|
return (0);
|
|
p = cp;
|
|
for (i = 0; i < nr; i++) {
|
|
ifr[i].ifrw_addr = p + off;
|
|
p += nclbytes;
|
|
}
|
|
for (i = 0; i < nw; i++) {
|
|
ifw[i].ifw_base = p;
|
|
ifw[i].ifw_addr = p + off;
|
|
p += nclbytes;
|
|
}
|
|
ifu->iff_hlen = hlen;
|
|
ifu->iff_uban = uban;
|
|
ifu->iff_uba = uba_hd[uban].uh_uba;
|
|
ifu->iff_ubamr = uba_hd[uban].uh_mr;
|
|
}
|
|
for (i = 0; i < nr; i++)
|
|
if (if_ubaalloc(ifu, &ifr[i], nmr) == 0) {
|
|
nr = i;
|
|
nw = 0;
|
|
goto bad;
|
|
}
|
|
for (i = 0; i < nw; i++)
|
|
if (if_ubaalloc(ifu, &ifw[i].ifrw, nmr) == 0) {
|
|
nw = i;
|
|
goto bad;
|
|
}
|
|
while (--nw >= 0) {
|
|
for (i = 0; i < nmr; i++)
|
|
ifw[nw].ifw_wmap[i] = ifw[nw].ifw_mr[i];
|
|
ifw[nw].ifw_xswapd = 0;
|
|
ifw[nw].ifw_flags = IFRW_W;
|
|
ifw[nw].ifw_nmr = nmr;
|
|
}
|
|
return (1);
|
|
bad:
|
|
while (--nw >= 0)
|
|
ubarelse(ifu->iff_uban, &ifw[nw].ifw_info);
|
|
while (--nr >= 0)
|
|
ubarelse(ifu->iff_uban, &ifr[nr].ifrw_info);
|
|
free(cp, M_DEVBUF);
|
|
ifr[0].ifrw_addr = 0;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Setup an ifrw structure by allocating UNIBUS map registers,
|
|
* possibly a buffered data path, and initializing the fields of
|
|
* the ifrw structure to minimize run-time overhead.
|
|
*/
|
|
static
|
|
if_ubaalloc(ifu, ifrw, nmr)
|
|
struct ifubinfo *ifu;
|
|
register struct ifrw *ifrw;
|
|
int nmr;
|
|
{
|
|
register int info;
|
|
|
|
info =
|
|
uballoc(ifu->iff_uban, ifrw->ifrw_addr, nmr*NBPG + ifu->iff_hlen,
|
|
ifu->iff_flags);
|
|
if (info == 0)
|
|
return (0);
|
|
ifrw->ifrw_info = info;
|
|
ifrw->ifrw_bdp = UBAI_BDP(info);
|
|
ifrw->ifrw_proto = UBAMR_MRV | (UBAI_BDP(info) << UBAMR_DPSHIFT);
|
|
ifrw->ifrw_mr = &ifu->iff_ubamr[UBAI_MR(info) + (ifu->iff_hlen? 1 : 0)];
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Pull read data off a interface.
|
|
* Totlen is length of data, with local net header stripped.
|
|
* When full cluster sized units are present
|
|
* on the interface on cluster boundaries we can get them more
|
|
* easily by remapping, and take advantage of this here.
|
|
* Save a pointer to the interface structure and the total length,
|
|
* so that protocols can determine where incoming packets arrived.
|
|
* Note: we may be called to receive from a transmit buffer by some
|
|
* devices. In that case, we must force normal mapping of the buffer,
|
|
* so that the correct data will appear (only unibus maps are
|
|
* changed when remapping the transmit buffers).
|
|
*/
|
|
struct mbuf *
|
|
if_ubaget(ifu, ifr, totlen, ifp)
|
|
struct ifubinfo *ifu;
|
|
register struct ifrw *ifr;
|
|
register int totlen;
|
|
struct ifnet *ifp;
|
|
{
|
|
struct mbuf *top, **mp;
|
|
register struct mbuf *m;
|
|
register caddr_t cp = ifr->ifrw_addr + ifu->iff_hlen, pp;
|
|
register int len;
|
|
top = 0;
|
|
mp = ⊤
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0){
|
|
return ((struct mbuf *)NULL);
|
|
}
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = totlen;
|
|
m->m_len = MHLEN;
|
|
|
|
if (ifr->ifrw_flags & IFRW_W){
|
|
rcv_xmtbuf((struct ifxmt *)ifr);
|
|
}
|
|
while (totlen > 0) {
|
|
if (top) {
|
|
MGET(m, M_DONTWAIT, MT_DATA);
|
|
if (m == 0) {
|
|
m_freem(top);
|
|
top = 0;
|
|
goto out;
|
|
}
|
|
m->m_len = MLEN;
|
|
}
|
|
len = totlen;
|
|
if (len >= MINCLSIZE) {
|
|
struct pte *cpte, *ppte;
|
|
int x, *ip, i;
|
|
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0){
|
|
goto nopage;
|
|
}
|
|
len = min(len, MCLBYTES);
|
|
m->m_len = len;
|
|
if (!claligned(cp)){
|
|
goto copy;
|
|
}
|
|
/*
|
|
* Switch pages mapped to UNIBUS with new page pp,
|
|
* as quick form of copy. Remap UNIBUS and invalidate.
|
|
*/
|
|
pp = mtod(m, char *);
|
|
cpte = (struct pte *)kvtopte(cp);
|
|
ppte = (struct pte *)kvtopte(pp);
|
|
x = vax_btop(cp - ifr->ifrw_addr);
|
|
ip = (int *)&ifr->ifrw_mr[x];
|
|
for (i = 0; i < MCLBYTES/NBPG; i++) {
|
|
struct pte t;
|
|
t = *ppte; *ppte++ = *cpte; *cpte = t;
|
|
*ip++ = cpte++->pg_pfn|ifr->ifrw_proto;
|
|
mtpr(cp,PR_TBIS);
|
|
cp += NBPG;
|
|
mtpr((caddr_t)pp,PR_TBIS);
|
|
pp += NBPG;
|
|
}
|
|
goto nocopy;
|
|
}
|
|
nopage:
|
|
if (len < m->m_len) {
|
|
/*
|
|
* Place initial small packet/header at end of mbuf.
|
|
*/
|
|
if (top == 0 && len + max_linkhdr <= m->m_len)
|
|
m->m_data += max_linkhdr;
|
|
m->m_len = len;
|
|
} else
|
|
len = m->m_len;
|
|
copy:
|
|
bcopy(cp, mtod(m, caddr_t), (unsigned)len);
|
|
cp += len;
|
|
nocopy:
|
|
*mp = m;
|
|
mp = &m->m_next;
|
|
totlen -= len;
|
|
}
|
|
out:
|
|
if (ifr->ifrw_flags & IFRW_W){
|
|
restor_xmtbuf((struct ifxmt *)ifr);
|
|
}
|
|
return (top);
|
|
}
|
|
|
|
/*
|
|
* Change the mapping on a transmit buffer so that if_ubaget may
|
|
* receive from that buffer. Copy data from any pages mapped to Unibus
|
|
* into the pages mapped to normal kernel virtual memory, so that
|
|
* they can be accessed and swapped as usual. We take advantage
|
|
* of the fact that clusters are placed on the xtofree list
|
|
* in inverse order, finding the last one.
|
|
*/
|
|
static
|
|
rcv_xmtbuf(ifw)
|
|
register struct ifxmt *ifw;
|
|
{
|
|
register struct mbuf *m;
|
|
struct mbuf **mprev;
|
|
register i;
|
|
char *cp;
|
|
|
|
while (i = ffs((long)ifw->ifw_xswapd)) {
|
|
cp = ifw->ifw_base + i * MCLBYTES;
|
|
i--;
|
|
ifw->ifw_xswapd &= ~(1<<i);
|
|
mprev = &ifw->ifw_xtofree;
|
|
for (m = ifw->ifw_xtofree; m && m->m_next; m = m->m_next)
|
|
mprev = &m->m_next;
|
|
if (m == NULL)
|
|
break;
|
|
bcopy(mtod(m, caddr_t), cp, MCLBYTES);
|
|
(void) m_free(m);
|
|
*mprev = NULL;
|
|
}
|
|
ifw->ifw_xswapd = 0;
|
|
for (i = 0; i < ifw->ifw_nmr; i++)
|
|
ifw->ifw_mr[i] = ifw->ifw_wmap[i];
|
|
}
|
|
|
|
/*
|
|
* Put a transmit buffer back together after doing an if_ubaget on it,
|
|
* which may have swapped pages.
|
|
*/
|
|
static
|
|
restor_xmtbuf(ifw)
|
|
register struct ifxmt *ifw;
|
|
{
|
|
register i;
|
|
|
|
for (i = 0; i < ifw->ifw_nmr; i++)
|
|
ifw->ifw_wmap[i] = ifw->ifw_mr[i];
|
|
}
|
|
|
|
/*
|
|
* Map a chain of mbufs onto a network interface
|
|
* in preparation for an i/o operation.
|
|
* The argument chain of mbufs includes the local network
|
|
* header which is copied to be in the mapped, aligned
|
|
* i/o space.
|
|
*/
|
|
if_ubaput(ifu, ifw, m)
|
|
struct ifubinfo *ifu;
|
|
register struct ifxmt *ifw;
|
|
register struct mbuf *m;
|
|
{
|
|
register struct mbuf *mp;
|
|
register caddr_t cp, dp;
|
|
register int i;
|
|
int xswapd = 0;
|
|
int x, cc, t;
|
|
|
|
cp = ifw->ifw_addr;
|
|
while (m) {
|
|
dp = mtod(m, char *);
|
|
if (claligned(cp) && claligned(dp) &&
|
|
(m->m_len == MCLBYTES || m->m_next == (struct mbuf *)0)) {
|
|
struct pte *pte;
|
|
int *ip;
|
|
|
|
pte = (struct pte *)kvtopte(dp);
|
|
x = vax_btop(cp - ifw->ifw_addr);
|
|
ip = (int *)&ifw->ifw_mr[x];
|
|
for (i = 0; i < MCLBYTES/NBPG; i++)
|
|
*ip++ = ifw->ifw_proto | pte++->pg_pfn;
|
|
xswapd |= 1 << (x>>(MCLSHIFT-PGSHIFT));
|
|
mp = m->m_next;
|
|
m->m_next = ifw->ifw_xtofree;
|
|
ifw->ifw_xtofree = m;
|
|
cp += m->m_len;
|
|
} else {
|
|
bcopy(mtod(m, caddr_t), cp, (unsigned)m->m_len);
|
|
cp += m->m_len;
|
|
MFREE(m, mp);
|
|
}
|
|
m = mp;
|
|
}
|
|
|
|
/*
|
|
* Xswapd is the set of clusters we just mapped out. Ifu->iff_xswapd
|
|
* is the set of clusters mapped out from before. We compute
|
|
* the number of clusters involved in this operation in x.
|
|
* Clusters mapped out before and involved in this operation
|
|
* should be unmapped so original pages will be accessed by the device.
|
|
*/
|
|
cc = cp - ifw->ifw_addr;
|
|
x = ((cc - ifu->iff_hlen) + MCLBYTES - 1) >> MCLSHIFT;
|
|
ifw->ifw_xswapd &= ~xswapd;
|
|
while (i = ffs((long)ifw->ifw_xswapd)) {
|
|
i--;
|
|
if (i >= x)
|
|
break;
|
|
ifw->ifw_xswapd &= ~(1<<i);
|
|
i *= MCLBYTES/NBPG;
|
|
for (t = 0; t < MCLBYTES/NBPG; t++) {
|
|
ifw->ifw_mr[i] = ifw->ifw_wmap[i];
|
|
i++;
|
|
}
|
|
}
|
|
ifw->ifw_xswapd |= xswapd;
|
|
return (cc);
|
|
}
|