NetBSD/sys/netinet/sctp_usrreq.c
ozaki-r 9e4c2bda8a Switch the address list of intefaces to pslist(9)
As usual, we leave the old list to avoid breaking kvm(3) users.
2016-07-07 09:32:01 +00:00

4029 lines
105 KiB
C

/* $KAME: sctp_usrreq.c,v 1.50 2005/06/16 20:45:29 jinmei Exp $ */
/* $NetBSD: sctp_usrreq.c,v 1.6 2016/07/07 09:32:02 ozaki-r Exp $ */
/*
* Copyright (c) 2001, 2002, 2003, 2004 Cisco Systems, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Cisco Systems, Inc.
* 4. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY CISCO SYSTEMS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL CISCO SYSTEMS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sctp_usrreq.c,v 1.6 2016/07/07 09:32:02 ozaki-r Exp $");
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_sctp.h"
#endif /* _KERNEL_OPT */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip6.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet6/ip6_var.h>
#include <netinet6/in6_var.h>
#include <netinet6/scope6_var.h>
#include <netinet/ip_icmp.h>
#include <netinet/icmp_var.h>
#include <netinet/sctp_pcb.h>
#include <netinet/sctp_header.h>
#include <netinet/sctp_var.h>
#include <netinet/sctp_output.h>
#include <netinet/sctp_uio.h>
#include <netinet/sctp_asconf.h>
#include <netinet/sctputil.h>
#include <netinet/sctp_indata.h>
#include <netinet/sctp_asconf.h>
#ifdef IPSEC
#include <netipsec/ipsec.h>
#include <netipsec/key.h>
#endif /* IPSEC */
#include <net/net_osdep.h>
#if defined(HAVE_NRL_INPCB) || defined(__FreeBSD__)
#ifndef in6pcb
#define in6pcb inpcb
#endif
#ifndef sotoin6pcb
#define sotoin6pcb sotoinpcb
#endif
#endif
#ifdef SCTP_DEBUG
extern u_int32_t sctp_debug_on;
#endif /* SCTP_DEBUG */
/*
* sysctl tunable variables
*/
int sctp_auto_asconf = SCTP_DEFAULT_AUTO_ASCONF;
int sctp_max_burst_default = SCTP_DEF_MAX_BURST;
int sctp_peer_chunk_oh = sizeof(struct mbuf);
int sctp_strict_init = 1;
int sctp_no_csum_on_loopback = 1;
unsigned int sctp_max_chunks_on_queue = SCTP_ASOC_MAX_CHUNKS_ON_QUEUE;
int sctp_sendspace = (128 * 1024);
int sctp_recvspace = 128 * (1024 +
#ifdef INET6
sizeof(struct sockaddr_in6)
#else
sizeof(struct sockaddr_in)
#endif
);
int sctp_strict_sacks = 0;
int sctp_ecn = 1;
int sctp_ecn_nonce = 0;
unsigned int sctp_delayed_sack_time_default = SCTP_RECV_MSEC;
unsigned int sctp_heartbeat_interval_default = SCTP_HB_DEFAULT_MSEC;
unsigned int sctp_pmtu_raise_time_default = SCTP_DEF_PMTU_RAISE_SEC;
unsigned int sctp_shutdown_guard_time_default = SCTP_DEF_MAX_SHUTDOWN_SEC;
unsigned int sctp_secret_lifetime_default = SCTP_DEFAULT_SECRET_LIFE_SEC;
unsigned int sctp_rto_max_default = SCTP_RTO_UPPER_BOUND;
unsigned int sctp_rto_min_default = SCTP_RTO_LOWER_BOUND;
unsigned int sctp_rto_initial_default = SCTP_RTO_INITIAL;
unsigned int sctp_init_rto_max_default = SCTP_RTO_UPPER_BOUND;
unsigned int sctp_valid_cookie_life_default = SCTP_DEFAULT_COOKIE_LIFE;
unsigned int sctp_init_rtx_max_default = SCTP_DEF_MAX_INIT;
unsigned int sctp_assoc_rtx_max_default = SCTP_DEF_MAX_SEND;
unsigned int sctp_path_rtx_max_default = SCTP_DEF_MAX_SEND/2;
unsigned int sctp_nr_outgoing_streams_default = SCTP_OSTREAM_INITIAL;
void
sctp_init(void)
{
/* Init the SCTP pcb in sctp_pcb.c */
u_long sb_max_adj;
sctp_pcb_init();
if (nmbclusters > SCTP_ASOC_MAX_CHUNKS_ON_QUEUE)
sctp_max_chunks_on_queue = nmbclusters;
/*
* Allow a user to take no more than 1/2 the number of clusters
* or the SB_MAX whichever is smaller for the send window.
*/
sb_max_adj = (u_long)((u_quad_t)(SB_MAX) * MCLBYTES / (MSIZE + MCLBYTES));
sctp_sendspace = min((min(SB_MAX, sb_max_adj)),
((nmbclusters/2) * SCTP_DEFAULT_MAXSEGMENT));
/*
* Now for the recv window, should we take the same amount?
* or should I do 1/2 the SB_MAX instead in the SB_MAX min above.
* For now I will just copy.
*/
sctp_recvspace = sctp_sendspace;
}
#ifdef INET6
void
ip_2_ip6_hdr(struct ip6_hdr *ip6, struct ip *ip)
{
memset(ip6, 0, sizeof(*ip6));
ip6->ip6_vfc = IPV6_VERSION;
ip6->ip6_plen = ip->ip_len;
ip6->ip6_nxt = ip->ip_p;
ip6->ip6_hlim = ip->ip_ttl;
ip6->ip6_src.s6_addr32[2] = ip6->ip6_dst.s6_addr32[2] =
IPV6_ADDR_INT32_SMP;
ip6->ip6_src.s6_addr32[3] = ip->ip_src.s_addr;
ip6->ip6_dst.s6_addr32[3] = ip->ip_dst.s_addr;
}
#endif /* INET6 */
static void
sctp_split_chunks(struct sctp_association *asoc,
struct sctp_stream_out *strm,
struct sctp_tmit_chunk *chk)
{
struct sctp_tmit_chunk *new_chk;
/* First we need a chunk */
new_chk = (struct sctp_tmit_chunk *)SCTP_ZONE_GET(sctppcbinfo.ipi_zone_chunk);
if (new_chk == NULL) {
chk->flags |= CHUNK_FLAGS_FRAGMENT_OK;
return;
}
sctppcbinfo.ipi_count_chunk++;
sctppcbinfo.ipi_gencnt_chunk++;
/* Copy it all */
*new_chk = *chk;
/* split the data */
new_chk->data = m_split(chk->data, (chk->send_size>>1), M_DONTWAIT);
if (new_chk->data == NULL) {
/* Can't split */
chk->flags |= CHUNK_FLAGS_FRAGMENT_OK;
SCTP_ZONE_FREE(sctppcbinfo.ipi_zone_chunk, new_chk);
sctppcbinfo.ipi_count_chunk--;
if ((int)sctppcbinfo.ipi_count_chunk < 0) {
panic("Chunk count is negative");
}
sctppcbinfo.ipi_gencnt_chunk++;
return;
}
/* Data is now split adjust sizes */
chk->send_size >>= 1;
new_chk->send_size >>= 1;
chk->book_size >>= 1;
new_chk->book_size >>= 1;
/* now adjust the marks */
chk->rec.data.rcv_flags |= SCTP_DATA_FIRST_FRAG;
chk->rec.data.rcv_flags &= ~SCTP_DATA_LAST_FRAG;
new_chk->rec.data.rcv_flags &= ~SCTP_DATA_FIRST_FRAG;
new_chk->rec.data.rcv_flags |= SCTP_DATA_LAST_FRAG;
/* Increase ref count if dest is set */
if (chk->whoTo) {
new_chk->whoTo->ref_count++;
}
/* now drop it on the end of the list*/
asoc->stream_queue_cnt++;
TAILQ_INSERT_AFTER(&strm->outqueue, chk, new_chk, sctp_next);
}
static void
sctp_notify_mbuf(struct sctp_inpcb *inp,
struct sctp_tcb *stcb,
struct sctp_nets *net,
struct ip *ip,
struct sctphdr *sh)
{
struct icmp *icmph;
int totsz;
uint16_t nxtsz;
/* protection */
if ((inp == NULL) || (stcb == NULL) || (net == NULL) ||
(ip == NULL) || (sh == NULL)) {
if (stcb != NULL) {
SCTP_TCB_UNLOCK(stcb);
}
return;
}
/* First job is to verify the vtag matches what I would send */
if (ntohl(sh->v_tag) != (stcb->asoc.peer_vtag)) {
SCTP_TCB_UNLOCK(stcb);
return;
}
icmph = (struct icmp *)((vaddr_t)ip - (sizeof(struct icmp) -
sizeof(struct ip)));
if (icmph->icmp_type != ICMP_UNREACH) {
/* We only care about unreachable */
SCTP_TCB_UNLOCK(stcb);
return;
}
if (icmph->icmp_code != ICMP_UNREACH_NEEDFRAG) {
/* not a unreachable message due to frag. */
SCTP_TCB_UNLOCK(stcb);
return;
}
totsz = ip->ip_len;
nxtsz = ntohs(icmph->icmp_seq);
if (nxtsz == 0) {
/*
* old type router that does not tell us what the next size
* mtu is. Rats we will have to guess (in a educated fashion
* of course)
*/
nxtsz = find_next_best_mtu(totsz);
}
/* Stop any PMTU timer */
sctp_timer_stop(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, NULL);
/* Adjust destination size limit */
if (net->mtu > nxtsz) {
net->mtu = nxtsz;
}
/* now what about the ep? */
if (stcb->asoc.smallest_mtu > nxtsz) {
struct sctp_tmit_chunk *chk, *nchk;
struct sctp_stream_out *strm;
/* Adjust that too */
stcb->asoc.smallest_mtu = nxtsz;
/* now off to subtract IP_DF flag if needed */
TAILQ_FOREACH(chk, &stcb->asoc.send_queue, sctp_next) {
if ((chk->send_size+IP_HDR_SIZE) > nxtsz) {
chk->flags |= CHUNK_FLAGS_FRAGMENT_OK;
}
}
TAILQ_FOREACH(chk, &stcb->asoc.sent_queue, sctp_next) {
if ((chk->send_size+IP_HDR_SIZE) > nxtsz) {
/*
* For this guy we also mark for immediate
* resend since we sent to big of chunk
*/
chk->flags |= CHUNK_FLAGS_FRAGMENT_OK;
if (chk->sent != SCTP_DATAGRAM_RESEND) {
stcb->asoc.sent_queue_retran_cnt++;
}
chk->sent = SCTP_DATAGRAM_RESEND;
chk->rec.data.doing_fast_retransmit = 0;
/* Clear any time so NO RTT is being done */
chk->do_rtt = 0;
sctp_total_flight_decrease(stcb, chk);
if (net->flight_size >= chk->book_size) {
net->flight_size -= chk->book_size;
} else {
net->flight_size = 0;
}
}
}
TAILQ_FOREACH(strm, &stcb->asoc.out_wheel, next_spoke) {
chk = TAILQ_FIRST(&strm->outqueue);
while (chk) {
nchk = TAILQ_NEXT(chk, sctp_next);
if ((chk->send_size+SCTP_MED_OVERHEAD) > nxtsz) {
sctp_split_chunks(&stcb->asoc, strm, chk);
}
chk = nchk;
}
}
}
sctp_timer_start(SCTP_TIMER_TYPE_PATHMTURAISE, inp, stcb, NULL);
SCTP_TCB_UNLOCK(stcb);
}
void
sctp_notify(struct sctp_inpcb *inp,
int errno,
struct sctphdr *sh,
struct sockaddr *to,
struct sctp_tcb *stcb,
struct sctp_nets *net)
{
/* protection */
if ((inp == NULL) || (stcb == NULL) || (net == NULL) ||
(sh == NULL) || (to == NULL)) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("sctp-notify, bad call\n");
}
#endif /* SCTP_DEBUG */
return;
}
/* First job is to verify the vtag matches what I would send */
if (ntohl(sh->v_tag) != (stcb->asoc.peer_vtag)) {
return;
}
/* FIX ME FIX ME PROTOPT i.e. no SCTP should ALWAYS be an ABORT */
if ((errno == EHOSTUNREACH) || /* Host is not reachable */
(errno == EHOSTDOWN) || /* Host is down */
(errno == ECONNREFUSED) || /* Host refused the connection, (not an abort?) */
(errno == ENOPROTOOPT) /* SCTP is not present on host */
) {
/*
* Hmm reachablity problems we must examine closely.
* If its not reachable, we may have lost a network.
* Or if there is NO protocol at the other end named SCTP.
* well we consider it a OOTB abort.
*/
if ((errno == EHOSTUNREACH) || (errno == EHOSTDOWN)) {
if (net->dest_state & SCTP_ADDR_REACHABLE) {
/* Ok that destination is NOT reachable */
net->dest_state &= ~SCTP_ADDR_REACHABLE;
net->dest_state |= SCTP_ADDR_NOT_REACHABLE;
net->error_count = net->failure_threshold + 1;
sctp_ulp_notify(SCTP_NOTIFY_INTERFACE_DOWN,
stcb, SCTP_FAILED_THRESHOLD,
(void *)net);
}
if (stcb) {
SCTP_TCB_UNLOCK(stcb);
}
} else {
/*
* Here the peer is either playing tricks on us,
* including an address that belongs to someone who
* does not support SCTP OR was a userland
* implementation that shutdown and now is dead. In
* either case treat it like a OOTB abort with no TCB
*/
sctp_abort_notification(stcb, SCTP_PEER_FAULTY);
sctp_free_assoc(inp, stcb);
/* no need to unlock here, since the TCB is gone */
}
} else {
/* Send all others to the app */
if (inp->sctp_socket) {
inp->sctp_socket->so_error = errno;
sctp_sowwakeup(inp, inp->sctp_socket);
}
if (stcb) {
SCTP_TCB_UNLOCK(stcb);
}
}
}
void *
sctp_ctlinput(int cmd, const struct sockaddr *sa, void *vip)
{
struct ip *ip = vip;
struct sctphdr *sh;
int s;
if (sa->sa_family != AF_INET ||
((const struct sockaddr_in *)sa)->sin_addr.s_addr == INADDR_ANY) {
return (NULL);
}
if (PRC_IS_REDIRECT(cmd)) {
ip = 0;
} else if ((unsigned)cmd >= PRC_NCMDS || inetctlerrmap[cmd] == 0) {
return (NULL);
}
if (ip) {
struct sctp_inpcb *inp;
struct sctp_tcb *stcb;
struct sctp_nets *net;
struct sockaddr_in to, from;
sh = (struct sctphdr *)((vaddr_t)ip + (ip->ip_hl << 2));
memset(&to, 0, sizeof(to));
memset(&from, 0, sizeof(from));
from.sin_family = to.sin_family = AF_INET;
from.sin_len = to.sin_len = sizeof(to);
from.sin_port = sh->src_port;
from.sin_addr = ip->ip_src;
to.sin_port = sh->dest_port;
to.sin_addr = ip->ip_dst;
/*
* 'to' holds the dest of the packet that failed to be sent.
* 'from' holds our local endpoint address.
* Thus we reverse the to and the from in the lookup.
*/
s = splsoftnet();
stcb = sctp_findassociation_addr_sa((struct sockaddr *)&from,
(struct sockaddr *)&to,
&inp, &net, 1);
if (stcb != NULL && inp && (inp->sctp_socket != NULL)) {
if (cmd != PRC_MSGSIZE) {
int cm;
if (cmd == PRC_HOSTDEAD) {
cm = EHOSTUNREACH;
} else {
cm = inetctlerrmap[cmd];
}
sctp_notify(inp, cm, sh,
(struct sockaddr *)&to, stcb,
net);
} else {
/* handle possible ICMP size messages */
sctp_notify_mbuf(inp, stcb, net, ip, sh);
}
} else {
#if defined(__FreeBSD__) && __FreeBSD_version < 500000
/* XXX must be fixed for 5.x and higher, leave for 4.x */
if (PRC_IS_REDIRECT(cmd) && inp) {
in_rtchange((struct inpcb *)inp,
inetctlerrmap[cmd]);
}
#endif
if ((stcb == NULL) && (inp != NULL)) {
/* reduce ref-count */
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
}
}
splx(s);
}
return (NULL);
}
static int
sctp_abort(struct socket *so)
{
struct sctp_inpcb *inp;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0)
return EINVAL; /* ??? possible? panic instead? */
sctp_inpcb_free(inp, 1);
return 0;
}
static int
sctp_attach(struct socket *so, int proto)
{
struct sctp_inpcb *inp;
#ifdef IPSEC
struct inpcb *ip_inp;
#endif
int error;
sosetlock(so);
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp != 0) {
return EINVAL;
}
error = soreserve(so, sctp_sendspace, sctp_recvspace);
if (error) {
return error;
}
error = sctp_inpcb_alloc(so);
if (error) {
return error;
}
inp = (struct sctp_inpcb *)so->so_pcb;
SCTP_INP_WLOCK(inp);
inp->sctp_flags &= ~SCTP_PCB_FLAGS_BOUND_V6; /* I'm not v6! */
#ifdef IPSEC
ip_inp = &inp->ip_inp.inp;
#endif
inp->inp_vflag |= INP_IPV4;
inp->inp_ip_ttl = ip_defttl;
#ifdef IPSEC
error = ipsec_init_pcbpolicy(so, &ip_inp->inp_sp);
if (error != 0) {
sctp_inpcb_free(inp, 1);
return error;
}
#endif /*IPSEC*/
SCTP_INP_WUNLOCK(inp);
so->so_send = sctp_sosend;
return 0;
}
static int
sctp_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
{
struct sctp_inpcb *inp;
int error;
KASSERT(solocked(so));
#ifdef INET6
if (nam && nam->sa_family != AF_INET)
/* must be a v4 address! */
return EINVAL;
#endif /* INET6 */
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0)
return EINVAL;
error = sctp_inpcb_bind(so, nam, l);
return error;
}
static int
sctp_detach(struct socket *so)
{
struct sctp_inpcb *inp;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0)
return EINVAL;
if (((so->so_options & SO_LINGER) && (so->so_linger == 0)) ||
(so->so_rcv.sb_cc > 0)) {
sctp_inpcb_free(inp, 1);
} else {
sctp_inpcb_free(inp, 0);
}
return 0;
}
static int
sctp_recvoob(struct socket *so, struct mbuf *m, int flags)
{
KASSERT(solocked(so));
return EOPNOTSUPP;
}
int
sctp_send(struct socket *so, struct mbuf *m, struct sockaddr *addr,
struct mbuf *control, struct lwp *l)
{
struct sctp_inpcb *inp;
int error;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0) {
if (control) {
sctp_m_freem(control);
control = NULL;
}
sctp_m_freem(m);
return EINVAL;
}
/* Got to have an to address if we are NOT a connected socket */
if ((addr == NULL) &&
((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) ||
(inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE))
) {
goto connected_type;
} else if (addr == NULL) {
error = EDESTADDRREQ;
sctp_m_freem(m);
if (control) {
sctp_m_freem(control);
control = NULL;
}
return (error);
}
#ifdef INET6
if (addr->sa_family != AF_INET) {
/* must be a v4 address! */
sctp_m_freem(m);
if (control) {
sctp_m_freem(control);
control = NULL;
}
error = EDESTADDRREQ;
return EINVAL;
}
#endif /* INET6 */
connected_type:
/* now what about control */
if (control) {
if (inp->control) {
printf("huh? control set?\n");
sctp_m_freem(inp->control);
inp->control = NULL;
}
inp->control = control;
}
/* add it in possibly */
if ((inp->pkt) && (inp->pkt->m_flags & M_PKTHDR)) {
struct mbuf *x;
int c_len;
c_len = 0;
/* How big is it */
for (x=m;x;x = x->m_next) {
c_len += x->m_len;
}
inp->pkt->m_pkthdr.len += c_len;
}
/* Place the data */
if (inp->pkt) {
inp->pkt_last->m_next = m;
inp->pkt_last = m;
} else {
inp->pkt_last = inp->pkt = m;
}
if ((so->so_state & SS_MORETOCOME) == 0) {
/*
* note with the current version this code will only be used
* by OpenBSD-- NetBSD, FreeBSD, and MacOS have methods for
* re-defining sosend to use the sctp_sosend. One can
* optionally switch back to this code (by changing back the
* definitions) but this is not advisable.
*/
int ret;
ret = sctp_output(inp, inp->pkt, addr, inp->control, l, 0);
inp->pkt = NULL;
inp->control = NULL;
return (ret);
} else {
return (0);
}
}
static int
sctp_disconnect(struct socket *so)
{
struct sctp_inpcb *inp;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == NULL) {
return (ENOTCONN);
}
SCTP_INP_RLOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) {
if (LIST_EMPTY(&inp->sctp_asoc_list)) {
/* No connection */
SCTP_INP_RUNLOCK(inp);
return (0);
} else {
int some_on_streamwheel = 0;
struct sctp_association *asoc;
struct sctp_tcb *stcb;
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb == NULL) {
SCTP_INP_RUNLOCK(inp);
return (EINVAL);
}
asoc = &stcb->asoc;
SCTP_TCB_LOCK(stcb);
if (((so->so_options & SO_LINGER) &&
(so->so_linger == 0)) ||
(so->so_rcv.sb_cc > 0)) {
if (SCTP_GET_STATE(asoc) !=
SCTP_STATE_COOKIE_WAIT) {
/* Left with Data unread */
struct mbuf *err;
err = NULL;
MGET(err, M_DONTWAIT, MT_DATA);
if (err) {
/* Fill in the user initiated abort */
struct sctp_paramhdr *ph;
ph = mtod(err, struct sctp_paramhdr *);
err->m_len = sizeof(struct sctp_paramhdr);
ph->param_type = htons(SCTP_CAUSE_USER_INITIATED_ABT);
ph->param_length = htons(err->m_len);
}
sctp_send_abort_tcb(stcb, err);
}
SCTP_INP_RUNLOCK(inp);
sctp_free_assoc(inp, stcb);
/* No unlock tcb assoc is gone */
return (0);
}
if (!TAILQ_EMPTY(&asoc->out_wheel)) {
/* Check to see if some data queued */
struct sctp_stream_out *outs;
TAILQ_FOREACH(outs, &asoc->out_wheel,
next_spoke) {
if (!TAILQ_EMPTY(&outs->outqueue)) {
some_on_streamwheel = 1;
break;
}
}
}
if (TAILQ_EMPTY(&asoc->send_queue) &&
TAILQ_EMPTY(&asoc->sent_queue) &&
(some_on_streamwheel == 0)) {
/* there is nothing queued to send, so done */
if ((SCTP_GET_STATE(asoc) !=
SCTP_STATE_SHUTDOWN_SENT) &&
(SCTP_GET_STATE(asoc) !=
SCTP_STATE_SHUTDOWN_ACK_SENT)) {
/* only send SHUTDOWN 1st time thru */
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_OUTPUT4) {
printf("%s:%d sends a shutdown\n",
__FILE__,
__LINE__
);
}
#endif
sctp_send_shutdown(stcb,
stcb->asoc.primary_destination);
sctp_chunk_output(stcb->sctp_ep, stcb, 1);
asoc->state = SCTP_STATE_SHUTDOWN_SENT;
sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN,
stcb->sctp_ep, stcb,
asoc->primary_destination);
sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD,
stcb->sctp_ep, stcb,
asoc->primary_destination);
}
} else {
/*
* we still got (or just got) data to send,
* so set SHUTDOWN_PENDING
*/
/*
* XXX sockets draft says that MSG_EOF should
* be sent with no data.
* currently, we will allow user data to be
* sent first and move to SHUTDOWN-PENDING
*/
asoc->state |= SCTP_STATE_SHUTDOWN_PENDING;
}
SCTP_TCB_UNLOCK(stcb);
SCTP_INP_RUNLOCK(inp);
return (0);
}
/* not reached */
} else {
/* UDP model does not support this */
SCTP_INP_RUNLOCK(inp);
return EOPNOTSUPP;
}
}
int
sctp_shutdown(struct socket *so)
{
struct sctp_inpcb *inp;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0) {
return EINVAL;
}
SCTP_INP_RLOCK(inp);
/* For UDP model this is a invalid call */
if (inp->sctp_flags & SCTP_PCB_FLAGS_UDPTYPE) {
/* Restore the flags that the soshutdown took away. */
so->so_state &= ~SS_CANTRCVMORE;
/* This proc will wakeup for read and do nothing (I hope) */
SCTP_INP_RUNLOCK(inp);
return (EOPNOTSUPP);
}
/*
* Ok if we reach here its the TCP model and it is either a SHUT_WR
* or SHUT_RDWR. This means we put the shutdown flag against it.
*/
{
int some_on_streamwheel = 0;
struct sctp_tcb *stcb;
struct sctp_association *asoc;
socantsendmore(so);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb == NULL) {
/*
* Ok we hit the case that the shutdown call was made
* after an abort or something. Nothing to do now.
*/
return (0);
}
SCTP_TCB_LOCK(stcb);
asoc = &stcb->asoc;
if (!TAILQ_EMPTY(&asoc->out_wheel)) {
/* Check to see if some data queued */
struct sctp_stream_out *outs;
TAILQ_FOREACH(outs, &asoc->out_wheel, next_spoke) {
if (!TAILQ_EMPTY(&outs->outqueue)) {
some_on_streamwheel = 1;
break;
}
}
}
if (TAILQ_EMPTY(&asoc->send_queue) &&
TAILQ_EMPTY(&asoc->sent_queue) &&
(some_on_streamwheel == 0)) {
/* there is nothing queued to send, so I'm done... */
if (SCTP_GET_STATE(asoc) != SCTP_STATE_SHUTDOWN_SENT) {
/* only send SHUTDOWN the first time through */
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_OUTPUT4) {
printf("%s:%d sends a shutdown\n",
__FILE__,
__LINE__
);
}
#endif
sctp_send_shutdown(stcb,
stcb->asoc.primary_destination);
sctp_chunk_output(stcb->sctp_ep, stcb, 1);
asoc->state = SCTP_STATE_SHUTDOWN_SENT;
sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWN,
stcb->sctp_ep, stcb,
asoc->primary_destination);
sctp_timer_start(SCTP_TIMER_TYPE_SHUTDOWNGUARD,
stcb->sctp_ep, stcb,
asoc->primary_destination);
}
} else {
/*
* we still got (or just got) data to send, so
* set SHUTDOWN_PENDING
*/
asoc->state |= SCTP_STATE_SHUTDOWN_PENDING;
}
SCTP_TCB_UNLOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
return 0;
}
/*
* copies a "user" presentable address and removes embedded scope, etc.
* returns 0 on success, 1 on error
*/
static uint32_t
sctp_fill_user_address(struct sockaddr_storage *ss, struct sockaddr *sa)
{
struct sockaddr_in6 lsa6;
sctp_recover_scope((struct sockaddr_in6 *)sa, &lsa6);
memcpy(ss, sa, sa->sa_len);
return (0);
}
static int
sctp_fill_up_addresses(struct sctp_inpcb *inp,
struct sctp_tcb *stcb,
int limit,
struct sockaddr_storage *sas)
{
struct ifnet *ifn;
struct ifaddr *ifa;
int loopback_scope, ipv4_local_scope, local_scope, site_scope, actual;
int ipv4_addr_legal, ipv6_addr_legal;
actual = 0;
if (limit <= 0)
return (actual);
if (stcb) {
/* Turn on all the appropriate scope */
loopback_scope = stcb->asoc.loopback_scope;
ipv4_local_scope = stcb->asoc.ipv4_local_scope;
local_scope = stcb->asoc.local_scope;
site_scope = stcb->asoc.site_scope;
} else {
/* Turn on ALL scope, since we look at the EP */
loopback_scope = ipv4_local_scope = local_scope =
site_scope = 1;
}
ipv4_addr_legal = ipv6_addr_legal = 0;
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
ipv6_addr_legal = 1;
if (
#if defined(__OpenBSD__)
(0) /* we always do dual bind */
#elif defined (__NetBSD__)
(((struct in6pcb *)inp)->in6p_flags & IN6P_IPV6_V6ONLY)
#else
(((struct in6pcb *)inp)->inp_flags & IN6P_IPV6_V6ONLY)
#endif
== 0) {
ipv4_addr_legal = 1;
}
} else {
ipv4_addr_legal = 1;
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
int s = pserialize_read_enter();
IFNET_READER_FOREACH(ifn) {
if ((loopback_scope == 0) &&
(ifn->if_type == IFT_LOOP)) {
/* Skip loopback if loopback_scope not set */
continue;
}
IFADDR_READER_FOREACH(ifa, ifn) {
if (stcb) {
/*
* For the BOUND-ALL case, the list
* associated with a TCB is Always
* considered a reverse list.. i.e.
* it lists addresses that are NOT
* part of the association. If this
* is one of those we must skip it.
*/
if (sctp_is_addr_restricted(stcb,
ifa->ifa_addr)) {
continue;
}
}
if ((ifa->ifa_addr->sa_family == AF_INET) &&
(ipv4_addr_legal)) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)ifa->ifa_addr;
if (sin->sin_addr.s_addr == 0) {
/* we skip unspecifed addresses */
continue;
}
if ((ipv4_local_scope == 0) &&
(IN4_ISPRIVATE_ADDRESS(&sin->sin_addr))) {
continue;
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) {
in6_sin_2_v4mapsin6(sin, (struct sockaddr_in6 *)sas);
((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport;
sas = (struct sockaddr_storage *)((vaddr_t)sas + sizeof(struct sockaddr_in6));
actual += sizeof(struct sockaddr_in6);
} else {
memcpy(sas, sin, sizeof(*sin));
((struct sockaddr_in *)sas)->sin_port = inp->sctp_lport;
sas = (struct sockaddr_storage *)((vaddr_t)sas + sizeof(*sin));
actual += sizeof(*sin);
}
if (actual >= limit) {
pserialize_read_exit(s);
return (actual);
}
} else if ((ifa->ifa_addr->sa_family == AF_INET6) &&
(ipv6_addr_legal)) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
/*
* we skip unspecified
* addresses
*/
continue;
}
if ((site_scope == 0) &&
(IN6_IS_ADDR_SITELOCAL(&sin6->sin6_addr))) {
continue;
}
memcpy(sas, sin6, sizeof(*sin6));
((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport;
sas = (struct sockaddr_storage *)((vaddr_t)sas + sizeof(*sin6));
actual += sizeof(*sin6);
if (actual >= limit) {
pserialize_read_exit(s);
return (actual);
}
}
}
}
pserialize_read_exit(s);
} else {
struct sctp_laddr *laddr;
/*
* If we have a TCB and we do NOT support ASCONF (it's
* turned off or otherwise) then the list is always the
* true list of addresses (the else case below). Otherwise
* the list on the association is a list of addresses that
* are NOT part of the association.
*/
if (inp->sctp_flags & SCTP_PCB_FLAGS_DO_ASCONF) {
/* The list is a NEGATIVE list */
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (stcb) {
if (sctp_is_addr_restricted(stcb, laddr->ifa->ifa_addr)) {
continue;
}
}
if (sctp_fill_user_address(sas, laddr->ifa->ifa_addr))
continue;
((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport;
sas = (struct sockaddr_storage *)((vaddr_t)sas +
laddr->ifa->ifa_addr->sa_len);
actual += laddr->ifa->ifa_addr->sa_len;
if (actual >= limit) {
return (actual);
}
}
} else {
/* The list is a positive list if present */
if (stcb) {
/* Must use the specific association list */
LIST_FOREACH(laddr, &stcb->asoc.sctp_local_addr_list,
sctp_nxt_addr) {
if (sctp_fill_user_address(sas,
laddr->ifa->ifa_addr))
continue;
((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport;
sas = (struct sockaddr_storage *)((vaddr_t)sas +
laddr->ifa->ifa_addr->sa_len);
actual += laddr->ifa->ifa_addr->sa_len;
if (actual >= limit) {
return (actual);
}
}
} else {
/* No endpoint so use the endpoints individual list */
LIST_FOREACH(laddr, &inp->sctp_addr_list,
sctp_nxt_addr) {
if (sctp_fill_user_address(sas,
laddr->ifa->ifa_addr))
continue;
((struct sockaddr_in6 *)sas)->sin6_port = inp->sctp_lport;
sas = (struct sockaddr_storage *)((vaddr_t)sas +
laddr->ifa->ifa_addr->sa_len);
actual += laddr->ifa->ifa_addr->sa_len;
if (actual >= limit) {
return (actual);
}
}
}
}
}
return (actual);
}
static int
sctp_count_max_addresses(struct sctp_inpcb *inp)
{
int cnt = 0;
/*
* In both sub-set bound an bound_all cases we return the MAXIMUM
* number of addresses that you COULD get. In reality the sub-set
* bound may have an exclusion list for a given TCB OR in the
* bound-all case a TCB may NOT include the loopback or other
* addresses as well.
*/
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
struct ifnet *ifn;
struct ifaddr *ifa;
int s;
s = pserialize_read_enter();
IFNET_READER_FOREACH(ifn) {
IFADDR_READER_FOREACH(ifa, ifn) {
/* Count them if they are the right type */
if (ifa->ifa_addr->sa_family == AF_INET) {
if (inp->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4)
cnt += sizeof(struct sockaddr_in6);
else
cnt += sizeof(struct sockaddr_in);
} else if (ifa->ifa_addr->sa_family == AF_INET6)
cnt += sizeof(struct sockaddr_in6);
}
}
pserialize_read_exit(s);
} else {
struct sctp_laddr *laddr;
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (laddr->ifa->ifa_addr->sa_family == AF_INET) {
if (inp->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4)
cnt += sizeof(struct sockaddr_in6);
else
cnt += sizeof(struct sockaddr_in);
} else if (laddr->ifa->ifa_addr->sa_family == AF_INET6)
cnt += sizeof(struct sockaddr_in6);
}
}
return (cnt);
}
static int
sctp_do_connect_x(struct socket *so, struct sctp_inpcb *inp, struct mbuf *m,
struct lwp *l, int delay)
{
int error = 0;
struct sctp_tcb *stcb = NULL;
struct sockaddr *sa;
int num_v6=0, num_v4=0, *totaddrp, totaddr, i, incr, at;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Connectx called\n");
}
#endif /* SCTP_DEBUG */
if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) &&
(inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) {
/* We are already connected AND the TCP model */
return (EADDRINUSE);
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
SCTP_INP_RUNLOCK(inp);
}
if (stcb) {
return (EALREADY);
}
SCTP_ASOC_CREATE_LOCK(inp);
if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
(inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) {
SCTP_ASOC_CREATE_UNLOCK(inp);
return (EFAULT);
}
totaddrp = mtod(m, int *);
totaddr = *totaddrp;
sa = (struct sockaddr *)(totaddrp + 1);
at = incr = 0;
/* account and validate addresses */
SCTP_INP_WLOCK(inp);
SCTP_INP_INCR_REF(inp);
SCTP_INP_WUNLOCK(inp);
for (i = 0; i < totaddr; i++) {
if (sa->sa_family == AF_INET) {
num_v4++;
incr = sizeof(struct sockaddr_in);
} else if (sa->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)sa;
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
/* Must be non-mapped for connectx */
SCTP_ASOC_CREATE_UNLOCK(inp);
return EINVAL;
}
num_v6++;
incr = sizeof(struct sockaddr_in6);
} else {
totaddr = i;
break;
}
stcb = sctp_findassociation_ep_addr(&inp, sa, NULL, NULL, NULL);
if (stcb != NULL) {
/* Already have or am bring up an association */
SCTP_ASOC_CREATE_UNLOCK(inp);
SCTP_TCB_UNLOCK(stcb);
return (EALREADY);
}
if ((at + incr) > m->m_len) {
totaddr = i;
break;
}
sa = (struct sockaddr *)((vaddr_t)sa + incr);
}
sa = (struct sockaddr *)(totaddrp + 1);
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
#ifdef INET6
if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) &&
(num_v6 > 0)) {
SCTP_INP_WUNLOCK(inp);
SCTP_ASOC_CREATE_UNLOCK(inp);
return (EINVAL);
}
if ((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) &&
(num_v4 > 0)) {
struct in6pcb *inp6;
inp6 = (struct in6pcb *)inp;
if (inp6->in6p_flags & IN6P_IPV6_V6ONLY) {
/*
* if IPV6_V6ONLY flag, ignore connections
* destined to a v4 addr or v4-mapped addr
*/
SCTP_INP_WUNLOCK(inp);
SCTP_ASOC_CREATE_UNLOCK(inp);
return EINVAL;
}
}
#endif /* INET6 */
if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) ==
SCTP_PCB_FLAGS_UNBOUND) {
/* Bind a ephemeral port */
SCTP_INP_WUNLOCK(inp);
error = sctp_inpcb_bind(so, NULL, l);
if (error) {
SCTP_ASOC_CREATE_UNLOCK(inp);
return (error);
}
} else {
SCTP_INP_WUNLOCK(inp);
}
/* We are GOOD to go */
stcb = sctp_aloc_assoc(inp, sa, 1, &error, 0);
if (stcb == NULL) {
/* Gak! no memory */
SCTP_ASOC_CREATE_UNLOCK(inp);
return (error);
}
/* move to second address */
if (sa->sa_family == AF_INET)
sa = (struct sockaddr *)((vaddr_t)sa + sizeof(struct sockaddr_in));
else
sa = (struct sockaddr *)((vaddr_t)sa + sizeof(struct sockaddr_in6));
for (i = 1; i < totaddr; i++) {
if (sa->sa_family == AF_INET) {
incr = sizeof(struct sockaddr_in);
if (sctp_add_remote_addr(stcb, sa, 0, 8)) {
/* assoc gone no un-lock */
sctp_free_assoc(inp, stcb);
SCTP_ASOC_CREATE_UNLOCK(inp);
return (ENOBUFS);
}
} else if (sa->sa_family == AF_INET6) {
incr = sizeof(struct sockaddr_in6);
if (sctp_add_remote_addr(stcb, sa, 0, 8)) {
/* assoc gone no un-lock */
sctp_free_assoc(inp, stcb);
SCTP_ASOC_CREATE_UNLOCK(inp);
return (ENOBUFS);
}
}
sa = (struct sockaddr *)((vaddr_t)sa + incr);
}
stcb->asoc.state = SCTP_STATE_COOKIE_WAIT;
if (delay) {
/* doing delayed connection */
stcb->asoc.delayed_connection = 1;
sctp_timer_start(SCTP_TIMER_TYPE_INIT, inp, stcb, stcb->asoc.primary_destination);
} else {
SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered);
sctp_send_initiate(inp, stcb);
}
SCTP_TCB_UNLOCK(stcb);
if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) {
stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_CONNECTED;
/* Set the connected flag so we can queue data */
soisconnecting(so);
}
SCTP_ASOC_CREATE_UNLOCK(inp);
return error;
}
static int
sctp_optsget(struct socket *so, struct sockopt *sopt)
{
struct sctp_inpcb *inp;
int error, optval=0;
int *ovp;
struct sctp_tcb *stcb = NULL;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0)
return EINVAL;
error = 0;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ2) {
printf("optsget opt:%x sz:%zu\n", sopt->sopt_name,
sopt->sopt_size);
}
#endif /* SCTP_DEBUG */
switch (sopt->sopt_name) {
case SCTP_NODELAY:
case SCTP_AUTOCLOSE:
case SCTP_AUTO_ASCONF:
case SCTP_DISABLE_FRAGMENTS:
case SCTP_I_WANT_MAPPED_V4_ADDR:
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ2) {
printf("other stuff\n");
}
#endif /* SCTP_DEBUG */
SCTP_INP_RLOCK(inp);
switch (sopt->sopt_name) {
case SCTP_DISABLE_FRAGMENTS:
optval = inp->sctp_flags & SCTP_PCB_FLAGS_NO_FRAGMENT;
break;
case SCTP_I_WANT_MAPPED_V4_ADDR:
optval = inp->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4;
break;
case SCTP_AUTO_ASCONF:
optval = inp->sctp_flags & SCTP_PCB_FLAGS_AUTO_ASCONF;
break;
case SCTP_NODELAY:
optval = inp->sctp_flags & SCTP_PCB_FLAGS_NODELAY;
break;
case SCTP_AUTOCLOSE:
if ((inp->sctp_flags & SCTP_PCB_FLAGS_AUTOCLOSE) ==
SCTP_PCB_FLAGS_AUTOCLOSE)
optval = inp->sctp_ep.auto_close_time;
else
optval = 0;
break;
default:
error = ENOPROTOOPT;
} /* end switch (sopt->sopt_name) */
if (sopt->sopt_name != SCTP_AUTOCLOSE) {
/* make it an "on/off" value */
optval = (optval != 0);
}
if (sopt->sopt_size < sizeof(int)) {
error = EINVAL;
}
SCTP_INP_RUNLOCK(inp);
if (error == 0) {
/* return the option value */
ovp = sopt->sopt_data;
*ovp = optval;
sopt->sopt_size = sizeof(optval);
}
break;
case SCTP_GET_ASOC_ID_LIST:
{
struct sctp_assoc_ids *ids;
int cnt, at;
u_int16_t orig;
if (sopt->sopt_size < sizeof(struct sctp_assoc_ids)) {
error = EINVAL;
break;
}
ids = sopt->sopt_data;
cnt = 0;
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb == NULL) {
none_out_now:
ids->asls_numb_present = 0;
ids->asls_more_to_get = 0;
SCTP_INP_RUNLOCK(inp);
break;
}
orig = ids->asls_assoc_start;
stcb = LIST_FIRST(&inp->sctp_asoc_list);
while( orig ) {
stcb = LIST_NEXT(stcb , sctp_tcblist);
orig--;
cnt--;
}
if ( stcb == NULL)
goto none_out_now;
at = 0;
ids->asls_numb_present = 0;
ids->asls_more_to_get = 1;
while(at < MAX_ASOC_IDS_RET) {
ids->asls_assoc_id[at] = sctp_get_associd(stcb);
at++;
ids->asls_numb_present++;
stcb = LIST_NEXT(stcb , sctp_tcblist);
if (stcb == NULL) {
ids->asls_more_to_get = 0;
break;
}
}
SCTP_INP_RUNLOCK(inp);
}
break;
case SCTP_GET_NONCE_VALUES:
{
struct sctp_get_nonce_values *gnv;
if (sopt->sopt_size < sizeof(struct sctp_get_nonce_values)) {
error = EINVAL;
break;
}
gnv = sopt->sopt_data;
stcb = sctp_findassociation_ep_asocid(inp, gnv->gn_assoc_id);
if (stcb == NULL) {
error = ENOTCONN;
} else {
gnv->gn_peers_tag = stcb->asoc.peer_vtag;
gnv->gn_local_tag = stcb->asoc.my_vtag;
SCTP_TCB_UNLOCK(stcb);
}
}
break;
case SCTP_PEER_PUBLIC_KEY:
case SCTP_MY_PUBLIC_KEY:
case SCTP_SET_AUTH_CHUNKS:
case SCTP_SET_AUTH_SECRET:
/* not supported yet and until we refine the draft */
error = EOPNOTSUPP;
break;
case SCTP_DELAYED_ACK_TIME:
{
int32_t *tm;
if (sopt->sopt_size < sizeof(int32_t)) {
error = EINVAL;
break;
}
tm = sopt->sopt_data;
*tm = TICKS_TO_MSEC(inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV]);
}
break;
case SCTP_GET_SNDBUF_USE:
if (sopt->sopt_size < sizeof(struct sctp_sockstat)) {
error = EINVAL;
} else {
struct sctp_sockstat *ss;
struct sctp_association *asoc;
ss = sopt->sopt_data;
stcb = sctp_findassociation_ep_asocid(inp, ss->ss_assoc_id);
if (stcb == NULL) {
error = ENOTCONN;
} else {
asoc = &stcb->asoc;
ss->ss_total_sndbuf = (u_int32_t)asoc->total_output_queue_size;
ss->ss_total_mbuf_sndbuf = (u_int32_t)asoc->total_output_mbuf_queue_size;
ss->ss_total_recv_buf = (u_int32_t)(asoc->size_on_delivery_queue +
asoc->size_on_reasm_queue +
asoc->size_on_all_streams);
SCTP_TCB_UNLOCK(stcb);
error = 0;
sopt->sopt_size = sizeof(struct sctp_sockstat);
}
}
break;
case SCTP_MAXBURST:
{
u_int8_t *burst;
burst = sopt->sopt_data;
SCTP_INP_RLOCK(inp);
*burst = inp->sctp_ep.max_burst;
SCTP_INP_RUNLOCK(inp);
sopt->sopt_size = sizeof(u_int8_t);
}
break;
case SCTP_MAXSEG:
{
u_int32_t *segsize;
sctp_assoc_t *assoc_id;
int ovh;
if (sopt->sopt_size < sizeof(u_int32_t)) {
error = EINVAL;
break;
}
if (sopt->sopt_size < sizeof(sctp_assoc_t)) {
error = EINVAL;
break;
}
assoc_id = sopt->sopt_data;
segsize = sopt->sopt_data;
sopt->sopt_size = sizeof(u_int32_t);
if (((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) &&
(inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) ||
(inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL)) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
SCTP_INP_RUNLOCK(inp);
*segsize = sctp_get_frag_point(stcb, &stcb->asoc);
SCTP_TCB_UNLOCK(stcb);
} else {
SCTP_INP_RUNLOCK(inp);
goto skipit;
}
} else {
stcb = sctp_findassociation_ep_asocid(inp, *assoc_id);
if (stcb) {
*segsize = sctp_get_frag_point(stcb, &stcb->asoc);
SCTP_TCB_UNLOCK(stcb);
break;
}
skipit:
/* default is to get the max, if I
* can't calculate from an existing association.
*/
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
ovh = SCTP_MED_OVERHEAD;
} else {
ovh = SCTP_MED_V4_OVERHEAD;
}
*segsize = inp->sctp_frag_point - ovh;
}
}
break;
case SCTP_SET_DEBUG_LEVEL:
#ifdef SCTP_DEBUG
{
u_int32_t *level;
if (sopt->sopt_size < sizeof(u_int32_t)) {
error = EINVAL;
break;
}
level = sopt->sopt_data;
error = 0;
*level = sctp_debug_on;
sopt->sopt_size = sizeof(u_int32_t);
printf("Returning DEBUG LEVEL %x is set\n",
(u_int)sctp_debug_on);
}
#else /* SCTP_DEBUG */
error = EOPNOTSUPP;
#endif
break;
case SCTP_GET_STAT_LOG:
#ifdef SCTP_STAT_LOGGING
error = sctp_fill_stat_log(m);
#else /* SCTP_DEBUG */
error = EOPNOTSUPP;
#endif
break;
case SCTP_GET_PEGS:
{
u_int32_t *pt;
if (sopt->sopt_size < sizeof(sctp_pegs)) {
error = EINVAL;
break;
}
pt = sopt->sopt_data;
memcpy(pt, sctp_pegs, sizeof(sctp_pegs));
sopt->sopt_size = sizeof(sctp_pegs);
}
break;
case SCTP_EVENTS:
{
struct sctp_event_subscribe *events;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ2) {
printf("get events\n");
}
#endif /* SCTP_DEBUG */
if (sopt->sopt_size < sizeof(struct sctp_event_subscribe)) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ2) {
printf("sopt->sopt_size is %d not %d\n",
(int)sopt->sopt_size,
(int)sizeof(struct sctp_event_subscribe));
}
#endif /* SCTP_DEBUG */
error = EINVAL;
break;
}
events = sopt->sopt_data;
memset(events, 0, sopt->sopt_size);
SCTP_INP_RLOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_RECVDATAIOEVNT)
events->sctp_data_io_event = 1;
if (inp->sctp_flags & SCTP_PCB_FLAGS_RECVASSOCEVNT)
events->sctp_association_event = 1;
if (inp->sctp_flags & SCTP_PCB_FLAGS_RECVPADDREVNT)
events->sctp_address_event = 1;
if (inp->sctp_flags & SCTP_PCB_FLAGS_RECVSENDFAILEVNT)
events->sctp_send_failure_event = 1;
if (inp->sctp_flags & SCTP_PCB_FLAGS_RECVPEERERR)
events->sctp_peer_error_event = 1;
if (inp->sctp_flags & SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT)
events->sctp_shutdown_event = 1;
if (inp->sctp_flags & SCTP_PCB_FLAGS_PDAPIEVNT)
events->sctp_partial_delivery_event = 1;
if (inp->sctp_flags & SCTP_PCB_FLAGS_ADAPTIONEVNT)
events->sctp_adaption_layer_event = 1;
if (inp->sctp_flags & SCTP_PCB_FLAGS_STREAM_RESETEVNT)
events->sctp_stream_reset_events = 1;
SCTP_INP_RUNLOCK(inp);
sopt->sopt_size = sizeof(struct sctp_event_subscribe);
}
break;
case SCTP_ADAPTION_LAYER:
if (sopt->sopt_size < sizeof(int)) {
error = EINVAL;
break;
}
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("getadaption ind\n");
}
#endif /* SCTP_DEBUG */
SCTP_INP_RLOCK(inp);
ovp = sopt->sopt_data;
*ovp = inp->sctp_ep.adaption_layer_indicator;
SCTP_INP_RUNLOCK(inp);
sopt->sopt_size = sizeof(int);
break;
case SCTP_SET_INITIAL_DBG_SEQ:
if (sopt->sopt_size < sizeof(int)) {
error = EINVAL;
break;
}
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("get initial dbg seq\n");
}
#endif /* SCTP_DEBUG */
SCTP_INP_RLOCK(inp);
ovp = sopt->sopt_data;
*ovp = inp->sctp_ep.initial_sequence_debug;
SCTP_INP_RUNLOCK(inp);
sopt->sopt_size = sizeof(int);
break;
case SCTP_GET_LOCAL_ADDR_SIZE:
if (sopt->sopt_size < sizeof(int)) {
error = EINVAL;
break;
}
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("get local sizes\n");
}
#endif /* SCTP_DEBUG */
SCTP_INP_RLOCK(inp);
ovp = sopt->sopt_data;
*ovp = sctp_count_max_addresses(inp);
SCTP_INP_RUNLOCK(inp);
sopt->sopt_size = sizeof(int);
break;
case SCTP_GET_REMOTE_ADDR_SIZE:
{
sctp_assoc_t *assoc_id;
u_int32_t *val, sz;
struct sctp_nets *net;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("get remote size\n");
}
#endif /* SCTP_DEBUG */
if (sopt->sopt_size < sizeof(sctp_assoc_t)) {
#ifdef SCTP_DEBUG
printf("sopt->sopt_size:%zu not %zu\n",
sopt->sopt_size, sizeof(sctp_assoc_t));
#endif /* SCTP_DEBUG */
error = EINVAL;
break;
}
stcb = NULL;
val = sopt->sopt_data;
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
}
if (stcb == NULL) {
assoc_id = sopt->sopt_data;
stcb = sctp_findassociation_ep_asocid(inp, *assoc_id);
}
if (stcb == NULL) {
error = EINVAL;
break;
}
*val = 0;
sz = 0;
/* Count the sizes */
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) ||
(rtcache_getdst(&net->ro)->sa_family == AF_INET6)) {
sz += sizeof(struct sockaddr_in6);
} else if (rtcache_getdst(&net->ro)->sa_family == AF_INET) {
sz += sizeof(struct sockaddr_in);
} else {
/* huh */
break;
}
}
SCTP_TCB_UNLOCK(stcb);
*val = sz;
sopt->sopt_size = sizeof(u_int32_t);
}
break;
case SCTP_GET_PEER_ADDRESSES:
/*
* Get the address information, an array
* is passed in to fill up we pack it.
*/
{
int cpsz, left;
struct sockaddr_storage *sas;
struct sctp_nets *net;
struct sctp_getaddresses *saddr;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("get peer addresses\n");
}
#endif /* SCTP_DEBUG */
if (sopt->sopt_size < sizeof(struct sctp_getaddresses)) {
error = EINVAL;
break;
}
left = sopt->sopt_size - sizeof(struct sctp_getaddresses);
saddr = sopt->sopt_data;
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
} else
stcb = sctp_findassociation_ep_asocid(inp,
saddr->sget_assoc_id);
if (stcb == NULL) {
error = ENOENT;
break;
}
sopt->sopt_size = sizeof(struct sctp_getaddresses);
sas = (struct sockaddr_storage *)&saddr->addr[0];
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
sa_family_t family;
family = rtcache_getdst(&net->ro)->sa_family;
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) ||
(family == AF_INET6)) {
cpsz = sizeof(struct sockaddr_in6);
} else if (family == AF_INET) {
cpsz = sizeof(struct sockaddr_in);
} else {
/* huh */
break;
}
if (left < cpsz) {
/* not enough room. */
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("Out of room\n");
}
#endif /* SCTP_DEBUG */
break;
}
if ((stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_NEEDS_MAPPED_V4) &&
(family == AF_INET)) {
/* Must map the address */
in6_sin_2_v4mapsin6((const struct sockaddr_in *) rtcache_getdst(&net->ro),
(struct sockaddr_in6 *)sas);
} else {
memcpy(sas, rtcache_getdst(&net->ro), cpsz);
}
((struct sockaddr_in *)sas)->sin_port = stcb->rport;
sas = (struct sockaddr_storage *)((vaddr_t)sas + cpsz);
left -= cpsz;
sopt->sopt_size += cpsz;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ2) {
printf("left now:%d mlen:%zu\n",
left, sopt->sopt_size);
}
#endif /* SCTP_DEBUG */
}
SCTP_TCB_UNLOCK(stcb);
}
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("All done\n");
}
#endif /* SCTP_DEBUG */
break;
case SCTP_GET_LOCAL_ADDRESSES:
{
int limit, actual;
struct sockaddr_storage *sas;
struct sctp_getaddresses *saddr;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("get local addresses\n");
}
#endif /* SCTP_DEBUG */
if (sopt->sopt_size < sizeof(struct sctp_getaddresses)) {
error = EINVAL;
break;
}
saddr = sopt->sopt_data;
if (saddr->sget_assoc_id) {
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
} else
stcb = sctp_findassociation_ep_asocid(inp, saddr->sget_assoc_id);
} else {
stcb = NULL;
}
/*
* assure that the TCP model does not need a assoc id
* once connected.
*/
if ( (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) &&
(stcb == NULL) ) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
}
sas = (struct sockaddr_storage *)&saddr->addr[0];
limit = sopt->sopt_size - sizeof(sctp_assoc_t);
actual = sctp_fill_up_addresses(inp, stcb, limit, sas);
SCTP_TCB_UNLOCK(stcb);
sopt->sopt_size = sizeof(struct sockaddr_storage) + actual;
}
break;
case SCTP_PEER_ADDR_PARAMS:
{
struct sctp_paddrparams *paddrp;
struct sctp_nets *net;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("Getting peer_addr_params\n");
}
#endif /* SCTP_DEBUG */
if (sopt->sopt_size < sizeof(struct sctp_paddrparams)) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ2) {
printf("Hmm m->m_len:%zu is to small\n",
sopt->sopt_size);
}
#endif /* SCTP_DEBUG */
error = EINVAL;
break;
}
paddrp = sopt->sopt_data;
net = NULL;
if (paddrp->spp_assoc_id) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("In spp_assoc_id find type\n");
}
#endif /* SCTP_DEBUG */
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
net = sctp_findnet(stcb, (struct sockaddr *)&paddrp->spp_address);
}
SCTP_INP_RLOCK(inp);
} else {
stcb = sctp_findassociation_ep_asocid(inp, paddrp->spp_assoc_id);
}
if (stcb == NULL) {
error = ENOENT;
break;
}
}
if ( (stcb == NULL) &&
((((struct sockaddr *)&paddrp->spp_address)->sa_family == AF_INET) ||
(((struct sockaddr *)&paddrp->spp_address)->sa_family == AF_INET6))) {
/* Lookup via address */
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("Ok we need to lookup a param\n");
}
#endif /* SCTP_DEBUG */
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
net = sctp_findnet(stcb, (struct sockaddr *)&paddrp->spp_address);
}
SCTP_INP_RUNLOCK(inp);
} else {
SCTP_INP_WLOCK(inp);
SCTP_INP_INCR_REF(inp);
SCTP_INP_WUNLOCK(inp);
stcb = sctp_findassociation_ep_addr(&inp,
(struct sockaddr *)&paddrp->spp_address,
&net, NULL, NULL);
if (stcb == NULL) {
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
}
}
if (stcb == NULL) {
error = ENOENT;
break;
}
} else {
/* Effects the Endpoint */
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("User wants EP level info\n");
}
#endif /* SCTP_DEBUG */
stcb = NULL;
}
if (stcb) {
/* Applys to the specific association */
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("In TCB side\n");
}
#endif /* SCTP_DEBUG */
if (net) {
paddrp->spp_pathmaxrxt = net->failure_threshold;
} else {
/* No destination so return default value */
paddrp->spp_pathmaxrxt = stcb->asoc.def_net_failure;
}
paddrp->spp_hbinterval = stcb->asoc.heart_beat_delay;
paddrp->spp_assoc_id = sctp_get_associd(stcb);
SCTP_TCB_UNLOCK(stcb);
} else {
/* Use endpoint defaults */
SCTP_INP_RLOCK(inp);
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("In EP levle info\n");
}
#endif /* SCTP_DEBUG */
paddrp->spp_pathmaxrxt = inp->sctp_ep.def_net_failure;
paddrp->spp_hbinterval = inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_HEARTBEAT];
paddrp->spp_assoc_id = (sctp_assoc_t)0;
SCTP_INP_RUNLOCK(inp);
}
sopt->sopt_size = sizeof(struct sctp_paddrparams);
}
break;
case SCTP_GET_PEER_ADDR_INFO:
{
struct sctp_paddrinfo *paddri;
struct sctp_nets *net;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("GetPEER ADDR_INFO\n");
}
#endif /* SCTP_DEBUG */
if (sopt->sopt_size < sizeof(struct sctp_paddrinfo)) {
error = EINVAL;
break;
}
paddri = sopt->sopt_data;
net = NULL;
if ((((struct sockaddr *)&paddri->spinfo_address)->sa_family == AF_INET) ||
(((struct sockaddr *)&paddri->spinfo_address)->sa_family == AF_INET6)) {
/* Lookup via address */
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
net = sctp_findnet(stcb,
(struct sockaddr *)&paddri->spinfo_address);
}
SCTP_INP_RUNLOCK(inp);
} else {
SCTP_INP_WLOCK(inp);
SCTP_INP_INCR_REF(inp);
SCTP_INP_WUNLOCK(inp);
stcb = sctp_findassociation_ep_addr(&inp,
(struct sockaddr *)&paddri->spinfo_address,
&net, NULL, NULL);
if (stcb == NULL) {
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
}
}
} else {
stcb = NULL;
}
if ((stcb == NULL) || (net == NULL)) {
error = ENOENT;
break;
}
sopt->sopt_size = sizeof(struct sctp_paddrinfo);
paddri->spinfo_state = net->dest_state & (SCTP_REACHABLE_MASK|SCTP_ADDR_NOHB);
paddri->spinfo_cwnd = net->cwnd;
paddri->spinfo_srtt = ((net->lastsa >> 2) + net->lastsv) >> 1;
paddri->spinfo_rto = net->RTO;
paddri->spinfo_assoc_id = sctp_get_associd(stcb);
SCTP_TCB_UNLOCK(stcb);
}
break;
case SCTP_PCB_STATUS:
{
struct sctp_pcbinfo *spcb;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("PCB status\n");
}
#endif /* SCTP_DEBUG */
if (sopt->sopt_size < sizeof(struct sctp_pcbinfo)) {
error = EINVAL;
break;
}
spcb = sopt->sopt_data;
sctp_fill_pcbinfo(spcb);
sopt->sopt_size = sizeof(struct sctp_pcbinfo);
}
break;
case SCTP_STATUS:
{
struct sctp_nets *net;
struct sctp_status *sstat;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("SCTP status\n");
}
#endif /* SCTP_DEBUG */
if (sopt->sopt_size < sizeof(struct sctp_status)) {
error = EINVAL;
break;
}
sstat = sopt->sopt_data;
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
} else
stcb = sctp_findassociation_ep_asocid(inp, sstat->sstat_assoc_id);
if (stcb == NULL) {
error = EINVAL;
break;
}
/*
* I think passing the state is fine since
* sctp_constants.h will be available to the user
* land.
*/
sstat->sstat_state = stcb->asoc.state;
sstat->sstat_rwnd = stcb->asoc.peers_rwnd;
sstat->sstat_unackdata = stcb->asoc.sent_queue_cnt;
/*
* We can't include chunks that have been passed
* to the socket layer. Only things in queue.
*/
sstat->sstat_penddata = (stcb->asoc.cnt_on_delivery_queue +
stcb->asoc.cnt_on_reasm_queue +
stcb->asoc.cnt_on_all_streams);
sstat->sstat_instrms = stcb->asoc.streamincnt;
sstat->sstat_outstrms = stcb->asoc.streamoutcnt;
sstat->sstat_fragmentation_point = sctp_get_frag_point(stcb, &stcb->asoc);
memcpy(&sstat->sstat_primary.spinfo_address,
rtcache_getdst(&stcb->asoc.primary_destination->ro),
(rtcache_getdst(&stcb->asoc.primary_destination->ro))->sa_len);
net = stcb->asoc.primary_destination;
((struct sockaddr_in *)&sstat->sstat_primary.spinfo_address)->sin_port = stcb->rport;
/*
* Again the user can get info from sctp_constants.h
* for what the state of the network is.
*/
sstat->sstat_primary.spinfo_state = net->dest_state & SCTP_REACHABLE_MASK;
sstat->sstat_primary.spinfo_cwnd = net->cwnd;
sstat->sstat_primary.spinfo_srtt = net->lastsa;
sstat->sstat_primary.spinfo_rto = net->RTO;
sstat->sstat_primary.spinfo_mtu = net->mtu;
sstat->sstat_primary.spinfo_assoc_id = sctp_get_associd(stcb);
SCTP_TCB_UNLOCK(stcb);
sopt->sopt_size = sizeof(*sstat);
}
break;
case SCTP_RTOINFO:
{
struct sctp_rtoinfo *srto;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("RTO Info\n");
}
#endif /* SCTP_DEBUG */
if (sopt->sopt_size < sizeof(struct sctp_rtoinfo)) {
error = EINVAL;
break;
}
srto = sopt->sopt_data;
if (srto->srto_assoc_id == 0) {
/* Endpoint only please */
SCTP_INP_RLOCK(inp);
srto->srto_initial = inp->sctp_ep.initial_rto;
srto->srto_max = inp->sctp_ep.sctp_maxrto;
srto->srto_min = inp->sctp_ep.sctp_minrto;
SCTP_INP_RUNLOCK(inp);
break;
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
} else
stcb = sctp_findassociation_ep_asocid(inp, srto->srto_assoc_id);
if (stcb == NULL) {
error = EINVAL;
break;
}
srto->srto_initial = stcb->asoc.initial_rto;
srto->srto_max = stcb->asoc.maxrto;
srto->srto_min = stcb->asoc.minrto;
SCTP_TCB_UNLOCK(stcb);
sopt->sopt_size = sizeof(*srto);
}
break;
case SCTP_ASSOCINFO:
{
struct sctp_assocparams *sasoc;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("Associnfo\n");
}
#endif /* SCTP_DEBUG */
if (sopt->sopt_size < sizeof(struct sctp_assocparams)) {
error = EINVAL;
break;
}
sasoc = sopt->sopt_data;
stcb = NULL;
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
}
if ((sasoc->sasoc_assoc_id) && (stcb == NULL)) {
stcb = sctp_findassociation_ep_asocid(inp,
sasoc->sasoc_assoc_id);
if (stcb == NULL) {
error = ENOENT;
break;
}
} else {
stcb = NULL;
}
if (stcb) {
sasoc->sasoc_asocmaxrxt = stcb->asoc.max_send_times;
sasoc->sasoc_number_peer_destinations = stcb->asoc.numnets;
sasoc->sasoc_peer_rwnd = stcb->asoc.peers_rwnd;
sasoc->sasoc_local_rwnd = stcb->asoc.my_rwnd;
sasoc->sasoc_cookie_life = stcb->asoc.cookie_life;
SCTP_TCB_UNLOCK(stcb);
} else {
SCTP_INP_RLOCK(inp);
sasoc->sasoc_asocmaxrxt = inp->sctp_ep.max_send_times;
sasoc->sasoc_number_peer_destinations = 0;
sasoc->sasoc_peer_rwnd = 0;
sasoc->sasoc_local_rwnd = sbspace(&inp->sctp_socket->so_rcv);
sasoc->sasoc_cookie_life = inp->sctp_ep.def_cookie_life;
SCTP_INP_RUNLOCK(inp);
}
sopt->sopt_size = sizeof(*sasoc);
}
break;
case SCTP_DEFAULT_SEND_PARAM:
{
struct sctp_sndrcvinfo *s_info;
if (sopt->sopt_size != sizeof(struct sctp_sndrcvinfo)) {
error = EINVAL;
break;
}
s_info = sopt->sopt_data;
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
} else
stcb = sctp_findassociation_ep_asocid(inp, s_info->sinfo_assoc_id);
if (stcb == NULL) {
error = ENOENT;
break;
}
/* Copy it out */
*s_info = stcb->asoc.def_send;
SCTP_TCB_UNLOCK(stcb);
sopt->sopt_size = sizeof(*s_info);
}
case SCTP_INITMSG:
{
struct sctp_initmsg *sinit;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("initmsg\n");
}
#endif /* SCTP_DEBUG */
if (sopt->sopt_size < sizeof(struct sctp_initmsg)) {
error = EINVAL;
break;
}
sinit = sopt->sopt_data;
SCTP_INP_RLOCK(inp);
sinit->sinit_num_ostreams = inp->sctp_ep.pre_open_stream_count;
sinit->sinit_max_instreams = inp->sctp_ep.max_open_streams_intome;
sinit->sinit_max_attempts = inp->sctp_ep.max_init_times;
sinit->sinit_max_init_timeo = inp->sctp_ep.initial_init_rto_max;
SCTP_INP_RUNLOCK(inp);
sopt->sopt_size = sizeof(*sinit);
}
break;
case SCTP_PRIMARY_ADDR:
/* we allow a "get" operation on this */
{
struct sctp_setprim *ssp;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("setprimary\n");
}
#endif /* SCTP_DEBUG */
if (sopt->sopt_size < sizeof(struct sctp_setprim)) {
error = EINVAL;
break;
}
ssp = sopt->sopt_data;
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
} else {
stcb = sctp_findassociation_ep_asocid(inp, ssp->ssp_assoc_id);
if (stcb == NULL) {
/* one last shot, try it by the address in */
struct sctp_nets *net;
SCTP_INP_WLOCK(inp);
SCTP_INP_INCR_REF(inp);
SCTP_INP_WUNLOCK(inp);
stcb = sctp_findassociation_ep_addr(&inp,
(struct sockaddr *)&ssp->ssp_addr,
&net, NULL, NULL);
if (stcb == NULL) {
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
}
}
if (stcb == NULL) {
error = EINVAL;
break;
}
}
/* simply copy out the sockaddr_storage... */
memcpy(&ssp->ssp_addr,
rtcache_getdst(&stcb->asoc.primary_destination->ro),
(rtcache_getdst(&stcb->asoc.primary_destination->ro))->sa_len);
SCTP_TCB_UNLOCK(stcb);
sopt->sopt_size = sizeof(*ssp);
}
break;
default:
error = ENOPROTOOPT;
sopt->sopt_size = 0;
break;
} /* end switch (sopt->sopt_name) */
return (error);
}
static int
sctp_optsset(struct socket *so, struct sockopt *sopt)
{
int error, *mopt, set_opt;
struct sctp_tcb *stcb = NULL;
struct sctp_inpcb *inp;
if (sopt->sopt_data == NULL) {
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ1) {
printf("optsset:MP is NULL EINVAL\n");
}
#endif /* SCTP_DEBUG */
return (EINVAL);
}
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0)
return EINVAL;
error = 0;
switch (sopt->sopt_name) {
case SCTP_NODELAY:
case SCTP_AUTOCLOSE:
case SCTP_AUTO_ASCONF:
case SCTP_DISABLE_FRAGMENTS:
case SCTP_I_WANT_MAPPED_V4_ADDR:
/* copy in the option value */
if (sopt->sopt_size < sizeof(int)) {
error = EINVAL;
break;
}
mopt = sopt->sopt_data;
set_opt = 0;
if (error)
break;
switch (sopt->sopt_name) {
case SCTP_DISABLE_FRAGMENTS:
set_opt = SCTP_PCB_FLAGS_NO_FRAGMENT;
break;
case SCTP_AUTO_ASCONF:
set_opt = SCTP_PCB_FLAGS_AUTO_ASCONF;
break;
case SCTP_I_WANT_MAPPED_V4_ADDR:
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
set_opt = SCTP_PCB_FLAGS_NEEDS_MAPPED_V4;
} else {
return (EINVAL);
}
break;
case SCTP_NODELAY:
set_opt = SCTP_PCB_FLAGS_NODELAY;
break;
case SCTP_AUTOCLOSE:
set_opt = SCTP_PCB_FLAGS_AUTOCLOSE;
/*
* The value is in ticks.
* Note this does not effect old associations, only
* new ones.
*/
inp->sctp_ep.auto_close_time = (*mopt * hz);
break;
}
SCTP_INP_WLOCK(inp);
if (*mopt != 0) {
inp->sctp_flags |= set_opt;
} else {
inp->sctp_flags &= ~set_opt;
}
SCTP_INP_WUNLOCK(inp);
break;
case SCTP_MY_PUBLIC_KEY: /* set my public key */
case SCTP_SET_AUTH_CHUNKS: /* set the authenticated chunks required */
case SCTP_SET_AUTH_SECRET: /* set the actual secret for the endpoint */
/* not supported yet and until we refine the draft */
error = EOPNOTSUPP;
break;
case SCTP_CLR_STAT_LOG:
#ifdef SCTP_STAT_LOGGING
sctp_clr_stat_log();
#else
error = EOPNOTSUPP;
#endif
break;
case SCTP_DELAYED_ACK_TIME:
{
int32_t *tm;
if (sopt->sopt_size < sizeof(int32_t)) {
error = EINVAL;
break;
}
tm = sopt->sopt_data;
if ((*tm < 10) || (*tm > 500)) {
/* can't be smaller than 10ms */
/* MUST NOT be larger than 500ms */
error = EINVAL;
break;
}
inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_RECV] = MSEC_TO_TICKS(*tm);
}
break;
case SCTP_RESET_STREAMS:
{
struct sctp_stream_reset *strrst;
uint8_t two_way, not_peer;
if (sopt->sopt_size < sizeof(struct sctp_stream_reset)) {
error = EINVAL;
break;
}
strrst = sopt->sopt_data;
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
} else
stcb = sctp_findassociation_ep_asocid(inp, strrst->strrst_assoc_id);
if (stcb == NULL) {
error = ENOENT;
break;
}
if (stcb->asoc.peer_supports_strreset == 0) {
/* Peer does not support it,
* we return protocol not supported since
* this is true for this feature and this
* peer, not the socket request in general.
*/
error = EPROTONOSUPPORT;
SCTP_TCB_UNLOCK(stcb);
break;
}
/* Having re-thought this code I added as I write the I-D there
* is NO need for it. The peer, if we are requesting a stream-reset
* will send a request to us but will itself do what we do, take
* and copy off the "reset information" we send and queue TSN's
* larger than the send-next in our response message. Thus they
* will handle it.
*/
/* if (stcb->asoc.sending_seq != (stcb->asoc.last_acked_seq + 1)) {*/
/* Must have all sending data ack'd before we
* start this procedure. This is a bit restrictive
* and we SHOULD work on changing this so ONLY the
* streams being RESET get held up. So, a reset-all
* would require this.. but a reset specific just
* needs to be sure that the ones being reset have
* nothing on the send_queue. For now we will
* skip this more detailed method and do a course
* way.. i.e. nothing pending ... for future FIX ME!
*/
/* error = EBUSY;*/
/* break;*/
/* }*/
if (stcb->asoc.stream_reset_outstanding) {
error = EALREADY;
SCTP_TCB_UNLOCK(stcb);
break;
}
if (strrst->strrst_flags == SCTP_RESET_LOCAL_RECV) {
two_way = 0;
not_peer = 0;
} else if (strrst->strrst_flags == SCTP_RESET_LOCAL_SEND) {
two_way = 1;
not_peer = 1;
} else if (strrst->strrst_flags == SCTP_RESET_BOTH) {
two_way = 1;
not_peer = 0;
} else {
error = EINVAL;
SCTP_TCB_UNLOCK(stcb);
break;
}
sctp_send_str_reset_req(stcb, strrst->strrst_num_streams,
strrst->strrst_list, two_way, not_peer);
sctp_chunk_output(inp, stcb, 12);
SCTP_TCB_UNLOCK(stcb);
}
break;
case SCTP_RESET_PEGS:
memset(sctp_pegs, 0, sizeof(sctp_pegs));
error = 0;
break;
case SCTP_CONNECT_X:
if (sopt->sopt_size < (sizeof(int) + sizeof(struct sockaddr_in))) {
error = EINVAL;
break;
}
error = sctp_do_connect_x(so, inp, sopt->sopt_data, curlwp, 0);
break;
case SCTP_CONNECT_X_DELAYED:
if (sopt->sopt_size < (sizeof(int) + sizeof(struct sockaddr_in))) {
error = EINVAL;
break;
}
error = sctp_do_connect_x(so, inp, sopt->sopt_data, curlwp, 1);
break;
case SCTP_CONNECT_X_COMPLETE:
{
struct sockaddr *sa;
struct sctp_nets *net;
if (sopt->sopt_size < sizeof(struct sockaddr_in)) {
error = EINVAL;
break;
}
sa = sopt->sopt_data;
/* find tcb */
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
net = sctp_findnet(stcb, sa);
}
SCTP_INP_RUNLOCK(inp);
} else {
SCTP_INP_WLOCK(inp);
SCTP_INP_INCR_REF(inp);
SCTP_INP_WUNLOCK(inp);
stcb = sctp_findassociation_ep_addr(&inp, sa, &net, NULL, NULL);
if (stcb == NULL) {
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
}
}
if (stcb == NULL) {
error = ENOENT;
break;
}
if (stcb->asoc.delayed_connection == 1) {
stcb->asoc.delayed_connection = 0;
SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered);
sctp_timer_stop(SCTP_TIMER_TYPE_INIT, inp, stcb, stcb->asoc.primary_destination);
sctp_send_initiate(inp, stcb);
} else {
/* already expired or did not use delayed connectx */
error = EALREADY;
}
SCTP_TCB_UNLOCK(stcb);
}
break;
case SCTP_MAXBURST:
{
u_int8_t *burst;
SCTP_INP_WLOCK(inp);
burst = sopt->sopt_data;
if (*burst) {
inp->sctp_ep.max_burst = *burst;
}
SCTP_INP_WUNLOCK(inp);
}
break;
case SCTP_MAXSEG:
{
u_int32_t *segsize;
int ovh;
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) {
ovh = SCTP_MED_OVERHEAD;
} else {
ovh = SCTP_MED_V4_OVERHEAD;
}
segsize = sopt->sopt_data;
if (*segsize < 1) {
error = EINVAL;
break;
}
SCTP_INP_WLOCK(inp);
inp->sctp_frag_point = (*segsize+ovh);
if (inp->sctp_frag_point < MHLEN) {
inp->sctp_frag_point = MHLEN;
}
SCTP_INP_WUNLOCK(inp);
}
break;
case SCTP_SET_DEBUG_LEVEL:
#ifdef SCTP_DEBUG
{
u_int32_t *level;
if (sopt->sopt_size < sizeof(u_int32_t)) {
error = EINVAL;
break;
}
level = sopt->sopt_data;
error = 0;
sctp_debug_on = (*level & (SCTP_DEBUG_ALL |
SCTP_DEBUG_NOISY));
printf("SETTING DEBUG LEVEL to %x\n",
(u_int)sctp_debug_on);
}
#else
error = EOPNOTSUPP;
#endif /* SCTP_DEBUG */
break;
case SCTP_EVENTS:
{
struct sctp_event_subscribe *events;
if (sopt->sopt_size < sizeof(struct sctp_event_subscribe)) {
error = EINVAL;
break;
}
SCTP_INP_WLOCK(inp);
events = sopt->sopt_data;
if (events->sctp_data_io_event) {
inp->sctp_flags |= SCTP_PCB_FLAGS_RECVDATAIOEVNT;
} else {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_RECVDATAIOEVNT;
}
if (events->sctp_association_event) {
inp->sctp_flags |= SCTP_PCB_FLAGS_RECVASSOCEVNT;
} else {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_RECVASSOCEVNT;
}
if (events->sctp_address_event) {
inp->sctp_flags |= SCTP_PCB_FLAGS_RECVPADDREVNT;
} else {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_RECVPADDREVNT;
}
if (events->sctp_send_failure_event) {
inp->sctp_flags |= SCTP_PCB_FLAGS_RECVSENDFAILEVNT;
} else {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_RECVSENDFAILEVNT;
}
if (events->sctp_peer_error_event) {
inp->sctp_flags |= SCTP_PCB_FLAGS_RECVPEERERR;
} else {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_RECVPEERERR;
}
if (events->sctp_shutdown_event) {
inp->sctp_flags |= SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT;
} else {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_RECVSHUTDOWNEVNT;
}
if (events->sctp_partial_delivery_event) {
inp->sctp_flags |= SCTP_PCB_FLAGS_PDAPIEVNT;
} else {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_PDAPIEVNT;
}
if (events->sctp_adaption_layer_event) {
inp->sctp_flags |= SCTP_PCB_FLAGS_ADAPTIONEVNT;
} else {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_ADAPTIONEVNT;
}
if (events->sctp_stream_reset_events) {
inp->sctp_flags |= SCTP_PCB_FLAGS_STREAM_RESETEVNT;
} else {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_STREAM_RESETEVNT;
}
SCTP_INP_WUNLOCK(inp);
}
break;
case SCTP_ADAPTION_LAYER:
{
struct sctp_setadaption *adap_bits;
if (sopt->sopt_size < sizeof(struct sctp_setadaption)) {
error = EINVAL;
break;
}
SCTP_INP_WLOCK(inp);
adap_bits = sopt->sopt_data;
inp->sctp_ep.adaption_layer_indicator = adap_bits->ssb_adaption_ind;
SCTP_INP_WUNLOCK(inp);
}
break;
case SCTP_SET_INITIAL_DBG_SEQ:
{
u_int32_t *vvv;
if (sopt->sopt_size < sizeof(u_int32_t)) {
error = EINVAL;
break;
}
SCTP_INP_WLOCK(inp);
vvv = sopt->sopt_data;
inp->sctp_ep.initial_sequence_debug = *vvv;
SCTP_INP_WUNLOCK(inp);
}
break;
case SCTP_DEFAULT_SEND_PARAM:
{
struct sctp_sndrcvinfo *s_info;
if (sopt->sopt_size != sizeof(struct sctp_sndrcvinfo)) {
error = EINVAL;
break;
}
s_info = sopt->sopt_data;
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
} else
stcb = sctp_findassociation_ep_asocid(inp, s_info->sinfo_assoc_id);
if (stcb == NULL) {
error = ENOENT;
break;
}
/* Validate things */
if (s_info->sinfo_stream > stcb->asoc.streamoutcnt) {
SCTP_TCB_UNLOCK(stcb);
error = EINVAL;
break;
}
/* Mask off the flags that are allowed */
s_info->sinfo_flags = (s_info->sinfo_flags &
(MSG_UNORDERED | MSG_ADDR_OVER |
MSG_PR_SCTP_TTL | MSG_PR_SCTP_BUF));
/* Copy it in */
stcb->asoc.def_send = *s_info;
SCTP_TCB_UNLOCK(stcb);
}
break;
case SCTP_PEER_ADDR_PARAMS:
{
struct sctp_paddrparams *paddrp;
struct sctp_nets *net;
if (sopt->sopt_size < sizeof(struct sctp_paddrparams)) {
error = EINVAL;
break;
}
paddrp = sopt->sopt_data;
net = NULL;
if (paddrp->spp_assoc_id) {
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
net = sctp_findnet(stcb, (struct sockaddr *)&paddrp->spp_address);
}
SCTP_INP_RUNLOCK(inp);
} else
stcb = sctp_findassociation_ep_asocid(inp, paddrp->spp_assoc_id);
if (stcb == NULL) {
error = ENOENT;
break;
}
}
if ((stcb == NULL) &&
((((struct sockaddr *)&paddrp->spp_address)->sa_family == AF_INET) ||
(((struct sockaddr *)&paddrp->spp_address)->sa_family == AF_INET6))) {
/* Lookup via address */
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
net = sctp_findnet(stcb,
(struct sockaddr *)&paddrp->spp_address);
}
SCTP_INP_RUNLOCK(inp);
} else {
SCTP_INP_WLOCK(inp);
SCTP_INP_INCR_REF(inp);
SCTP_INP_WUNLOCK(inp);
stcb = sctp_findassociation_ep_addr(&inp,
(struct sockaddr *)&paddrp->spp_address,
&net, NULL, NULL);
if (stcb == NULL) {
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
}
}
} else {
/* Effects the Endpoint */
stcb = NULL;
}
if (stcb) {
/* Applies to the specific association */
if (paddrp->spp_pathmaxrxt) {
if (net) {
if (paddrp->spp_pathmaxrxt)
net->failure_threshold = paddrp->spp_pathmaxrxt;
} else {
if (paddrp->spp_pathmaxrxt)
stcb->asoc.def_net_failure = paddrp->spp_pathmaxrxt;
}
}
if ((paddrp->spp_hbinterval != 0) && (paddrp->spp_hbinterval != 0xffffffff)) {
/* Just a set */
int old;
if (net) {
net->dest_state &= ~SCTP_ADDR_NOHB;
} else {
old = stcb->asoc.heart_beat_delay;
stcb->asoc.heart_beat_delay = paddrp->spp_hbinterval;
if (old == 0) {
/* Turn back on the timer */
sctp_timer_start(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net);
}
}
} else if (paddrp->spp_hbinterval == 0xffffffff) {
/* on demand HB */
sctp_send_hb(stcb, 1, net);
} else {
if (net == NULL) {
/* off on association */
if (stcb->asoc.heart_beat_delay) {
int cnt_of_unconf = 0;
struct sctp_nets *lnet;
TAILQ_FOREACH(lnet, &stcb->asoc.nets, sctp_next) {
if (lnet->dest_state & SCTP_ADDR_UNCONFIRMED) {
cnt_of_unconf++;
}
}
/* stop the timer ONLY if we have no unconfirmed addresses
*/
if (cnt_of_unconf == 0)
sctp_timer_stop(SCTP_TIMER_TYPE_HEARTBEAT, inp, stcb, net);
}
stcb->asoc.heart_beat_delay = 0;
} else {
net->dest_state |= SCTP_ADDR_NOHB;
}
}
SCTP_TCB_UNLOCK(stcb);
} else {
/* Use endpoint defaults */
SCTP_INP_WLOCK(inp);
if (paddrp->spp_pathmaxrxt)
inp->sctp_ep.def_net_failure = paddrp->spp_pathmaxrxt;
if (paddrp->spp_hbinterval != SCTP_ISSUE_HB)
inp->sctp_ep.sctp_timeoutticks[SCTP_TIMER_HEARTBEAT] = paddrp->spp_hbinterval;
SCTP_INP_WUNLOCK(inp);
}
}
break;
case SCTP_RTOINFO:
{
struct sctp_rtoinfo *srto;
if (sopt->sopt_size < sizeof(struct sctp_rtoinfo)) {
error = EINVAL;
break;
}
srto = sopt->sopt_data;
if (srto->srto_assoc_id == 0) {
SCTP_INP_WLOCK(inp);
/* If we have a null asoc, its default for the endpoint */
if (srto->srto_initial > 10)
inp->sctp_ep.initial_rto = srto->srto_initial;
if (srto->srto_max > 10)
inp->sctp_ep.sctp_maxrto = srto->srto_max;
if (srto->srto_min > 10)
inp->sctp_ep.sctp_minrto = srto->srto_min;
SCTP_INP_WUNLOCK(inp);
break;
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
} else
stcb = sctp_findassociation_ep_asocid(inp, srto->srto_assoc_id);
if (stcb == NULL) {
error = EINVAL;
break;
}
/* Set in ms we hope :-) */
if (srto->srto_initial > 10)
stcb->asoc.initial_rto = srto->srto_initial;
if (srto->srto_max > 10)
stcb->asoc.maxrto = srto->srto_max;
if (srto->srto_min > 10)
stcb->asoc.minrto = srto->srto_min;
SCTP_TCB_UNLOCK(stcb);
}
break;
case SCTP_ASSOCINFO:
{
struct sctp_assocparams *sasoc;
if (sopt->sopt_size < sizeof(struct sctp_assocparams)) {
error = EINVAL;
break;
}
sasoc = sopt->sopt_data;
if (sasoc->sasoc_assoc_id) {
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
} else
stcb = sctp_findassociation_ep_asocid(inp,
sasoc->sasoc_assoc_id);
if (stcb == NULL) {
error = ENOENT;
break;
}
} else {
stcb = NULL;
}
if (stcb) {
if (sasoc->sasoc_asocmaxrxt)
stcb->asoc.max_send_times = sasoc->sasoc_asocmaxrxt;
sasoc->sasoc_number_peer_destinations = stcb->asoc.numnets;
sasoc->sasoc_peer_rwnd = 0;
sasoc->sasoc_local_rwnd = 0;
if (stcb->asoc.cookie_life)
stcb->asoc.cookie_life = sasoc->sasoc_cookie_life;
SCTP_TCB_UNLOCK(stcb);
} else {
SCTP_INP_WLOCK(inp);
if (sasoc->sasoc_asocmaxrxt)
inp->sctp_ep.max_send_times = sasoc->sasoc_asocmaxrxt;
sasoc->sasoc_number_peer_destinations = 0;
sasoc->sasoc_peer_rwnd = 0;
sasoc->sasoc_local_rwnd = 0;
if (sasoc->sasoc_cookie_life)
inp->sctp_ep.def_cookie_life = sasoc->sasoc_cookie_life;
SCTP_INP_WUNLOCK(inp);
}
}
break;
case SCTP_INITMSG:
{
struct sctp_initmsg *sinit;
if (sopt->sopt_size < sizeof(struct sctp_initmsg)) {
error = EINVAL;
break;
}
sinit = sopt->sopt_data;
SCTP_INP_WLOCK(inp);
if (sinit->sinit_num_ostreams)
inp->sctp_ep.pre_open_stream_count = sinit->sinit_num_ostreams;
if (sinit->sinit_max_instreams)
inp->sctp_ep.max_open_streams_intome = sinit->sinit_max_instreams;
if (sinit->sinit_max_attempts)
inp->sctp_ep.max_init_times = sinit->sinit_max_attempts;
if (sinit->sinit_max_init_timeo > 10)
/* We must be at least a 100ms (we set in ticks) */
inp->sctp_ep.initial_init_rto_max = sinit->sinit_max_init_timeo;
SCTP_INP_WUNLOCK(inp);
}
break;
case SCTP_PRIMARY_ADDR:
{
struct sctp_setprim *spa;
struct sctp_nets *net, *lnet;
if (sopt->sopt_size < sizeof(struct sctp_setprim)) {
error = EINVAL;
break;
}
spa = sopt->sopt_data;
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
} else {
error = EINVAL;
break;
}
SCTP_INP_RUNLOCK(inp);
} else
stcb = sctp_findassociation_ep_asocid(inp, spa->ssp_assoc_id);
if (stcb == NULL) {
/* One last shot */
SCTP_INP_WLOCK(inp);
SCTP_INP_INCR_REF(inp);
SCTP_INP_WUNLOCK(inp);
stcb = sctp_findassociation_ep_addr(&inp,
(struct sockaddr *)&spa->ssp_addr,
&net, NULL, NULL);
if (stcb == NULL) {
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
error = EINVAL;
break;
}
} else {
/* find the net, associd or connected lookup type */
net = sctp_findnet(stcb, (struct sockaddr *)&spa->ssp_addr);
if (net == NULL) {
SCTP_TCB_UNLOCK(stcb);
error = EINVAL;
break;
}
}
if ((net != stcb->asoc.primary_destination) &&
(!(net->dest_state & SCTP_ADDR_UNCONFIRMED))) {
/* Ok we need to set it */
lnet = stcb->asoc.primary_destination;
lnet->next_tsn_at_change = net->next_tsn_at_change = stcb->asoc.sending_seq;
if (sctp_set_primary_addr(stcb,
(struct sockaddr *)NULL,
net) == 0) {
if (net->dest_state & SCTP_ADDR_SWITCH_PRIMARY) {
net->dest_state |= SCTP_ADDR_DOUBLE_SWITCH;
}
net->dest_state |= SCTP_ADDR_SWITCH_PRIMARY;
}
}
SCTP_TCB_UNLOCK(stcb);
}
break;
case SCTP_SET_PEER_PRIMARY_ADDR:
{
struct sctp_setpeerprim *sspp;
if (sopt->sopt_size < sizeof(struct sctp_setpeerprim)) {
error = EINVAL;
break;
}
sspp = sopt->sopt_data;
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_UNLOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
} else
stcb = sctp_findassociation_ep_asocid(inp, sspp->sspp_assoc_id);
if (stcb == NULL) {
error = EINVAL;
break;
}
if (sctp_set_primary_ip_address_sa(stcb, (struct sockaddr *)&sspp->sspp_addr) != 0) {
error = EINVAL;
}
SCTP_TCB_UNLOCK(stcb);
}
break;
case SCTP_BINDX_ADD_ADDR:
{
struct sctp_getaddresses *addrs;
struct sockaddr *addr_touse;
struct sockaddr_in sin;
/* see if we're bound all already! */
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
error = EINVAL;
break;
}
if (sopt->sopt_size < sizeof(struct sctp_getaddresses)) {
error = EINVAL;
break;
}
addrs = sopt->sopt_data;
addr_touse = addrs->addr;
if (addrs->addr->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)addr_touse;
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
in6_sin6_2_sin(&sin, sin6);
addr_touse = (struct sockaddr *)&sin;
}
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) {
error = sctp_inpcb_bind(so, addr_touse, curlwp);
break;
}
/* No locks required here since bind and mgmt_ep_sa all
* do their own locking. If we do something for the FIX:
* below we may need to lock in that case.
*/
if (addrs->sget_assoc_id == 0) {
/* add the address */
struct sctp_inpcb *lep;
((struct sockaddr_in *)addr_touse)->sin_port = inp->sctp_lport;
lep = sctp_pcb_findep(addr_touse, 1, 0);
if (lep != NULL) {
/* We must decrement the refcount
* since we have the ep already and
* are binding. No remove going on
* here.
*/
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
}
if (lep == inp) {
/* already bound to it.. ok */
break;
} else if (lep == NULL) {
((struct sockaddr_in *)addr_touse)->sin_port = 0;
error = sctp_addr_mgmt_ep_sa(inp, addr_touse,
SCTP_ADD_IP_ADDRESS);
} else {
error = EADDRNOTAVAIL;
}
if (error)
break;
} else {
/* FIX: decide whether we allow assoc based bindx */
}
}
break;
case SCTP_BINDX_REM_ADDR:
{
struct sctp_getaddresses *addrs;
struct sockaddr *addr_touse;
struct sockaddr_in sin;
/* see if we're bound all already! */
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
error = EINVAL;
break;
}
if (sopt->sopt_size < sizeof(struct sctp_getaddresses)) {
error = EINVAL;
break;
}
addrs = sopt->sopt_data;
addr_touse = addrs->addr;
if (addrs->addr->sa_family == AF_INET6) {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)addr_touse;
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
in6_sin6_2_sin(&sin, sin6);
addr_touse = (struct sockaddr *)&sin;
}
}
/* No lock required mgmt_ep_sa does its own locking. If
* the FIX: below is ever changed we may need to
* lock before calling association level binding.
*/
if (addrs->sget_assoc_id == 0) {
/* delete the address */
sctp_addr_mgmt_ep_sa(inp, addr_touse,
SCTP_DEL_IP_ADDRESS);
} else {
/* FIX: decide whether we allow assoc based bindx */
}
}
break;
default:
error = ENOPROTOOPT;
break;
} /* end switch (opt) */
return (error);
}
int
sctp_ctloutput(int op, struct socket *so, struct sockopt *sopt)
{
int s, error = 0;
struct inpcb *inp;
#ifdef INET6
struct in6pcb *in6p;
#endif
int family; /* family of the socket */
family = so->so_proto->pr_domain->dom_family;
s = splsoftnet();
switch (family) {
case PF_INET:
inp = sotoinpcb(so);
#ifdef INET6
in6p = NULL;
#endif
break;
#ifdef INET6
case PF_INET6:
inp = NULL;
in6p = sotoin6pcb(so);
break;
#endif
default:
splx(s);
return EAFNOSUPPORT;
}
#ifndef INET6
if (inp == NULL)
#else
if (inp == NULL && in6p == NULL)
#endif
{
splx(s);
return (ECONNRESET);
}
if (sopt->sopt_level != IPPROTO_SCTP) {
switch (family) {
case PF_INET:
error = ip_ctloutput(op, so, sopt);
break;
#ifdef INET6
case PF_INET6:
error = ip6_ctloutput(op, so, sopt);
break;
#endif
}
splx(s);
return (error);
}
/* Ok if we reach here it is a SCTP option we hope */
if (op == PRCO_SETOPT) {
error = sctp_optsset(so, sopt);
} else if (op == PRCO_GETOPT) {
error = sctp_optsget(so, sopt);
} else {
error = EINVAL;
}
splx(s);
return (error);
}
static int
sctp_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
{
int error = 0;
struct sctp_inpcb *inp;
struct sctp_tcb *stcb;
KASSERT(solocked(so));
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("Connect called in SCTP to ");
sctp_print_address(nam);
printf("Port %d\n", ntohs(((struct sockaddr_in *)nam)->sin_port));
}
#endif /* SCTP_DEBUG */
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0) {
/* I made the same as TCP since we are not setup? */
return (ECONNRESET);
}
SCTP_ASOC_CREATE_LOCK(inp);
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("After ASOC lock\n");
}
#endif /* SCTP_DEBUG */
SCTP_INP_WLOCK(inp);
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("After INP_WLOCK lock\n");
}
#endif /* SCTP_DEBUG */
if ((inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE) ||
(inp->sctp_flags & SCTP_PCB_FLAGS_SOCKET_GONE)) {
/* Should I really unlock ? */
SCTP_INP_WUNLOCK(inp);
SCTP_ASOC_CREATE_UNLOCK(inp);
return (EFAULT);
}
#ifdef INET6
if (((inp->sctp_flags & SCTP_PCB_FLAGS_BOUND_V6) == 0) &&
(nam->sa_family == AF_INET6)) {
SCTP_INP_WUNLOCK(inp);
SCTP_ASOC_CREATE_UNLOCK(inp);
return (EINVAL);
}
#endif /* INET6 */
if ((inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) ==
SCTP_PCB_FLAGS_UNBOUND) {
/* Bind a ephemeral port */
SCTP_INP_WUNLOCK(inp);
error = sctp_inpcb_bind(so, NULL, l);
if (error) {
SCTP_ASOC_CREATE_UNLOCK(inp);
return (error);
}
SCTP_INP_WLOCK(inp);
}
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_PCB1) {
printf("After bind\n");
}
#endif /* SCTP_DEBUG */
/* Now do we connect? */
if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) &&
(inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) {
/* We are already connected AND the TCP model */
SCTP_INP_WUNLOCK(inp);
SCTP_ASOC_CREATE_UNLOCK(inp);
return (EADDRINUSE);
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_UNLOCK(stcb);
}
SCTP_INP_WUNLOCK(inp);
} else {
SCTP_INP_INCR_REF(inp);
SCTP_INP_WUNLOCK(inp);
stcb = sctp_findassociation_ep_addr(&inp, nam, NULL, NULL, NULL);
if (stcb == NULL) {
SCTP_INP_WLOCK(inp);
SCTP_INP_DECR_REF(inp);
SCTP_INP_WUNLOCK(inp);
}
}
if (stcb != NULL) {
/* Already have or am bring up an association */
SCTP_ASOC_CREATE_UNLOCK(inp);
SCTP_TCB_UNLOCK(stcb);
return (EALREADY);
}
/* We are GOOD to go */
stcb = sctp_aloc_assoc(inp, nam, 1, &error, 0);
if (stcb == NULL) {
/* Gak! no memory */
return (error);
}
if (stcb->sctp_ep->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) {
stcb->sctp_ep->sctp_flags |= SCTP_PCB_FLAGS_CONNECTED;
/* Set the connected flag so we can queue data */
soisconnecting(so);
}
stcb->asoc.state = SCTP_STATE_COOKIE_WAIT;
SCTP_GETTIME_TIMEVAL(&stcb->asoc.time_entered);
sctp_send_initiate(inp, stcb);
SCTP_ASOC_CREATE_UNLOCK(inp);
SCTP_TCB_UNLOCK(stcb);
return error;
}
static int
sctp_connect2(struct socket *so, struct socket *so2)
{
KASSERT(solocked(so));
return EOPNOTSUPP;
}
int
sctp_rcvd(struct socket *so, int flags, struct lwp *l)
{
struct sctp_socket_q_list *sq=NULL;
/*
* The user has received some data, we may be able to stuff more
* up the socket. And we need to possibly update the rwnd.
*/
struct sctp_inpcb *inp;
struct sctp_tcb *stcb=NULL;
inp = (struct sctp_inpcb *)so->so_pcb;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ2)
printf("Read for so:%p inp:%p Flags:%x\n",
so, inp, flags);
#endif
if (inp == 0) {
/* I made the same as TCP since we are not setup? */
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ2)
printf("Nope, connection reset\n");
#endif
return (ECONNRESET);
}
/*
* Grab the first one on the list. It will re-insert itself if
* it runs out of room
*/
SCTP_INP_WLOCK(inp);
if ((flags & MSG_EOR) && ((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) == 0)
&& ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0)) {
/* Ok the other part of our grubby tracking
* stuff for our horrible layer violation that
* the tsvwg thinks is ok for sctp_peeloff.. gak!
* We must update the next vtag pending on the
* socket buffer (if any).
*/
inp->sctp_vtag_first = sctp_get_first_vtag_from_sb(so);
sq = TAILQ_FIRST(&inp->sctp_queue_list);
if (sq) {
stcb = sq->tcb;
} else {
stcb = NULL;
}
} else {
stcb = LIST_FIRST(&inp->sctp_asoc_list);
}
if (stcb) {
SCTP_TCB_LOCK(stcb);
}
if (stcb) {
long incr;
/* all code in normal stcb path assumes
* that you have a tcb_lock only. Thus
* we must release the inp write lock.
*/
if (flags & MSG_EOR) {
if (((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) == 0)
&& ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0)) {
stcb = sctp_remove_from_socket_q(inp);
}
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ2)
printf("remove from socket queue for inp:%p tcbret:%p\n",
inp, stcb);
#endif
stcb->asoc.my_rwnd_control_len = sctp_sbspace_sub(stcb->asoc.my_rwnd_control_len,
sizeof(struct mbuf));
if (inp->sctp_flags & SCTP_PCB_FLAGS_RECVDATAIOEVNT) {
stcb->asoc.my_rwnd_control_len = sctp_sbspace_sub(stcb->asoc.my_rwnd_control_len,
CMSG_LEN(sizeof(struct sctp_sndrcvinfo)));
}
}
if ((TAILQ_EMPTY(&stcb->asoc.delivery_queue) == 0) ||
(TAILQ_EMPTY(&stcb->asoc.reasmqueue) == 0)) {
/* Deliver if there is something to be delivered */
sctp_service_queues(stcb, &stcb->asoc, 1);
}
sctp_set_rwnd(stcb, &stcb->asoc);
/* if we increase by 1 or more MTU's (smallest MTUs of all
* nets) we send a window update sack
*/
incr = stcb->asoc.my_rwnd - stcb->asoc.my_last_reported_rwnd;
if (incr < 0) {
incr = 0;
}
if (((uint32_t)incr >= (stcb->asoc.smallest_mtu * SCTP_SEG_TO_RWND_UPD)) ||
((((uint32_t)incr)*SCTP_SCALE_OF_RWND_TO_UPD) >= so->so_rcv.sb_hiwat)) {
if (callout_pending(&stcb->asoc.dack_timer.timer)) {
/* If the timer is up, stop it */
sctp_timer_stop(SCTP_TIMER_TYPE_RECV,
stcb->sctp_ep, stcb, NULL);
}
/* Send the sack, with the new rwnd */
sctp_send_sack(stcb);
/* Now do the output */
sctp_chunk_output(inp, stcb, 10);
}
} else {
if ((( sq ) && (flags & MSG_EOR) && ((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) == 0))
&& ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0)) {
stcb = sctp_remove_from_socket_q(inp);
}
}
if ((so->so_rcv.sb_mb == NULL) &&
(TAILQ_EMPTY(&inp->sctp_queue_list) == 0)) {
int sq_cnt=0;
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ2)
printf("Something off, inp:%p so->so_rcv->sb_mb is empty and sockq is not.. cleaning\n",
inp);
#endif
if (((inp->sctp_flags & SCTP_PCB_FLAGS_IN_TCPPOOL) == 0)
&& ((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0)) {
int done_yet;
done_yet = TAILQ_EMPTY(&inp->sctp_queue_list);
while (!done_yet) {
sq_cnt++;
(void)sctp_remove_from_socket_q(inp);
done_yet = TAILQ_EMPTY(&inp->sctp_queue_list);
}
}
#ifdef SCTP_DEBUG
if (sctp_debug_on & SCTP_DEBUG_USRREQ2)
printf("Cleaned up %d sockq's\n", sq_cnt);
#endif
}
if (stcb) {
SCTP_TCB_UNLOCK(stcb);
}
SCTP_INP_WUNLOCK(inp);
return (0);
}
int
sctp_listen(struct socket *so, struct lwp *l)
{
/*
* Note this module depends on the protocol processing being
* called AFTER any socket level flags and backlog are applied
* to the socket. The traditional way that the socket flags are
* applied is AFTER protocol processing. We have made a change
* to the sys/kern/uipc_socket.c module to reverse this but this
* MUST be in place if the socket API for SCTP is to work properly.
*/
int error = 0;
struct sctp_inpcb *inp;
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0) {
/* I made the same as TCP since we are not setup? */
return (ECONNRESET);
}
SCTP_INP_RLOCK(inp);
if ((inp->sctp_flags & SCTP_PCB_FLAGS_TCPTYPE) &&
(inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED)) {
/* We are already connected AND the TCP model */
SCTP_INP_RUNLOCK(inp);
return (EADDRINUSE);
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_UNBOUND) {
/* We must do a bind. */
SCTP_INP_RUNLOCK(inp);
if ((error = sctp_inpcb_bind(so, NULL, l))) {
/* bind error, probably perm */
return (error);
}
} else {
SCTP_INP_RUNLOCK(inp);
}
SCTP_INP_WLOCK(inp);
if (inp->sctp_socket->so_qlimit) {
if (inp->sctp_flags & SCTP_PCB_FLAGS_UDPTYPE) {
/*
* For the UDP model we must TURN OFF the ACCEPT
* flags since we do NOT allow the accept() call.
* The TCP model (when present) will do accept which
* then prohibits connect().
*/
inp->sctp_socket->so_options &= ~SO_ACCEPTCONN;
}
inp->sctp_flags |= SCTP_PCB_FLAGS_ACCEPTING;
} else {
if (inp->sctp_flags & SCTP_PCB_FLAGS_ACCEPTING) {
/*
* Turning off the listen flags if the backlog is
* set to 0 (i.e. qlimit is 0).
*/
inp->sctp_flags &= ~SCTP_PCB_FLAGS_ACCEPTING;
}
inp->sctp_socket->so_options &= ~SO_ACCEPTCONN;
}
SCTP_INP_WUNLOCK(inp);
return (error);
}
int
sctp_accept(struct socket *so, struct sockaddr *nam)
{
struct sctp_tcb *stcb;
const struct sockaddr *prim;
struct sctp_inpcb *inp;
int error;
if (nam == NULL) {
return EINVAL;
}
inp = (struct sctp_inpcb *)so->so_pcb;
if (inp == 0) {
return ECONNRESET;
}
SCTP_INP_RLOCK(inp);
if (so->so_state & SS_ISDISCONNECTED) {
SCTP_INP_RUNLOCK(inp);
return ECONNABORTED;
}
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb == NULL) {
SCTP_INP_RUNLOCK(inp);
return ECONNRESET;
}
SCTP_TCB_LOCK(stcb);
SCTP_INP_RUNLOCK(inp);
prim = (const struct sockaddr *)rtcache_getdst(&stcb->asoc.primary_destination->ro);
if (prim->sa_family == AF_INET) {
struct sockaddr_in *sin;
sin = (struct sockaddr_in *)nam;
memset((void *)sin, 0, sizeof (*sin));
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_port = ((const struct sockaddr_in *)prim)->sin_port;
sin->sin_addr = ((const struct sockaddr_in *)prim)->sin_addr;
} else {
struct sockaddr_in6 *sin6;
sin6 = (struct sockaddr_in6 *)nam;
memset((void *)sin6, 0, sizeof (*sin6));
sin6->sin6_family = AF_INET6;
sin6->sin6_len = sizeof(*sin6);
sin6->sin6_port = ((const struct sockaddr_in6 *)prim)->sin6_port;
sin6->sin6_addr = ((const struct sockaddr_in6 *)prim)->sin6_addr;
if ((error = sa6_recoverscope(sin6)) != 0)
return error;
}
/* Wake any delayed sleep action */
SCTP_TCB_UNLOCK(stcb);
SCTP_INP_WLOCK(inp);
if (inp->sctp_flags & SCTP_PCB_FLAGS_DONT_WAKE) {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_DONT_WAKE;
if (inp->sctp_flags & SCTP_PCB_FLAGS_WAKEOUTPUT) {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAKEOUTPUT;
if (sowritable(inp->sctp_socket))
sowwakeup(inp->sctp_socket);
}
if (inp->sctp_flags & SCTP_PCB_FLAGS_WAKEINPUT) {
inp->sctp_flags &= ~SCTP_PCB_FLAGS_WAKEINPUT;
if (soreadable(inp->sctp_socket))
sorwakeup(inp->sctp_socket);
}
}
SCTP_INP_WUNLOCK(inp);
return 0;
}
static int
sctp_stat(struct socket *so, struct stat *ub)
{
return 0;
}
int
sctp_sockaddr(struct socket *so, struct sockaddr *nam)
{
struct sockaddr_in *sin = (struct sockaddr_in *)nam;
struct sctp_inpcb *inp;
memset(sin, 0, sizeof(*sin));
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
inp = (struct sctp_inpcb *)so->so_pcb;
if (!inp) {
return ECONNRESET;
}
SCTP_INP_RLOCK(inp);
sin->sin_port = inp->sctp_lport;
if (inp->sctp_flags & SCTP_PCB_FLAGS_BOUNDALL) {
if (inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) {
struct sctp_tcb *stcb;
const struct sockaddr_in *sin_a;
struct sctp_nets *net;
int fnd;
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb == NULL) {
goto notConn;
}
fnd = 0;
sin_a = NULL;
SCTP_TCB_LOCK(stcb);
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
sin_a = (const struct sockaddr_in *)rtcache_getdst(&net->ro);
if (sin_a->sin_family == AF_INET) {
fnd = 1;
break;
}
}
if ((!fnd) || (sin_a == NULL)) {
/* punt */
SCTP_TCB_UNLOCK(stcb);
goto notConn;
}
sin->sin_addr = sctp_ipv4_source_address_selection(inp,
stcb, (struct route *)&net->ro, net, 0);
SCTP_TCB_UNLOCK(stcb);
} else {
/* For the bound all case you get back 0 */
notConn:
sin->sin_addr.s_addr = 0;
}
} else {
/* Take the first IPv4 address in the list */
struct sctp_laddr *laddr;
int fnd = 0;
LIST_FOREACH(laddr, &inp->sctp_addr_list, sctp_nxt_addr) {
if (laddr->ifa->ifa_addr->sa_family == AF_INET) {
struct sockaddr_in *sin_a;
sin_a = (struct sockaddr_in *)laddr->ifa->ifa_addr;
sin->sin_addr = sin_a->sin_addr;
fnd = 1;
break;
}
}
if (!fnd) {
SCTP_INP_RUNLOCK(inp);
return ENOENT;
}
}
SCTP_INP_RUNLOCK(inp);
return (0);
}
int
sctp_peeraddr(struct socket *so, struct sockaddr *nam)
{
struct sockaddr_in *sin = (struct sockaddr_in *)nam;
int fnd;
const struct sockaddr_in *sin_a;
struct sctp_inpcb *inp;
struct sctp_tcb *stcb;
struct sctp_nets *net;
/* Do the malloc first in case it blocks. */
inp = (struct sctp_inpcb *)so->so_pcb;
if ((inp == NULL) ||
((inp->sctp_flags & SCTP_PCB_FLAGS_CONNECTED) == 0)) {
/* UDP type and listeners will drop out here */
return (ENOTCONN);
}
memset(sin, 0, sizeof(*sin));
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
/* We must recapture incase we blocked */
inp = (struct sctp_inpcb *)so->so_pcb;
if (!inp) {
return ECONNRESET;
}
SCTP_INP_RLOCK(inp);
stcb = LIST_FIRST(&inp->sctp_asoc_list);
if (stcb) {
SCTP_TCB_LOCK(stcb);
}
SCTP_INP_RUNLOCK(inp);
if (stcb == NULL) {
return ECONNRESET;
}
fnd = 0;
TAILQ_FOREACH(net, &stcb->asoc.nets, sctp_next) {
sin_a = (const struct sockaddr_in *)rtcache_getdst(&net->ro);
if (sin_a->sin_family == AF_INET) {
fnd = 1;
sin->sin_port = stcb->rport;
sin->sin_addr = sin_a->sin_addr;
break;
}
}
SCTP_TCB_UNLOCK(stcb);
if (!fnd) {
/* No IPv4 address */
return ENOENT;
}
return (0);
}
static int
sctp_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control)
{
KASSERT(solocked(so));
if (m)
m_freem(m);
if (control)
m_freem(control);
return EOPNOTSUPP;
}
static int
sctp_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
{
int error = 0;
int family;
family = so->so_proto->pr_domain->dom_family;
switch (family) {
#ifdef INET
case PF_INET:
error = in_control(so, cmd, nam, ifp);
break;
#endif
#ifdef INET6
case PF_INET6:
error = in6_control(so, cmd, nam, ifp);
break;
#endif
default:
error = EAFNOSUPPORT;
}
return (error);
}
static int
sctp_purgeif(struct socket *so, struct ifnet *ifp)
{
struct ifaddr *ifa;
IFADDR_READER_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family == PF_INET) {
sctp_delete_ip_address(ifa);
}
}
mutex_enter(softnet_lock);
in_purgeif(ifp);
mutex_exit(softnet_lock);
return 0;
}
/*
* Sysctl for sctp variables.
*/
SYSCTL_SETUP(sysctl_net_inet_sctp_setup, "sysctl net.inet.sctp subtree setup")
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "net", NULL,
NULL, 0, NULL, 0,
CTL_NET, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "inet", NULL,
NULL, 0, NULL, 0,
CTL_NET, PF_INET, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "sctp",
SYSCTL_DESCR("sctp related settings"),
NULL, 0, NULL, 0,
CTL_NET, PF_INET, IPPROTO_SCTP, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxdgram",
SYSCTL_DESCR("Maximum outgoing SCTP buffer size"),
NULL, 0, &sctp_sendspace, 0,
CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_MAXDGRAM,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "recvspace",
SYSCTL_DESCR("Maximum incoming SCTP buffer size"),
NULL, 0, &sctp_recvspace, 0,
CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_RECVSPACE,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "autoasconf",
SYSCTL_DESCR("Enable SCTP Auto-ASCONF"),
NULL, 0, &sctp_auto_asconf, 0,
CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_AUTOASCONF,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "ecn_enable",
SYSCTL_DESCR("Enable SCTP ECN"),
NULL, 0, &sctp_ecn, 0,
CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_ECN_ENABLE,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "ecn_nonce",
SYSCTL_DESCR("Enable SCTP ECN Nonce"),
NULL, 0, &sctp_ecn_nonce, 0,
CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_ECN_NONCE,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "strict_sack",
SYSCTL_DESCR("Enable SCTP Strict SACK checking"),
NULL, 0, &sctp_strict_sacks, 0,
CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_STRICT_SACK,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "loopback_nocsum",
SYSCTL_DESCR("Enable NO Csum on packets sent on loopback"),
NULL, 0, &sctp_no_csum_on_loopback, 0,
CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_NOCSUM_LO,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "strict_init",
SYSCTL_DESCR("Enable strict INIT/INIT-ACK singleton enforcement"),
NULL, 0, &sctp_strict_init, 0,
CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_STRICT_INIT,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "peer_chkoh",
SYSCTL_DESCR("Amount to debit peers rwnd per chunk sent"),
NULL, 0, &sctp_peer_chunk_oh, 0,
CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_PEER_CHK_OH,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxburst",
SYSCTL_DESCR("Default max burst for sctp endpoints"),
NULL, 0, &sctp_max_burst_default, 0,
CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_MAXBURST,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxchunks",
SYSCTL_DESCR("Default max chunks on queue per asoc"),
NULL, 0, &sctp_max_chunks_on_queue, 0,
CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_MAXCHUNKONQ,
CTL_EOL);
#ifdef SCTP_DEBUG
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "debug",
SYSCTL_DESCR("Configure debug output"),
NULL, 0, &sctp_debug_on, 0,
CTL_NET, PF_INET, IPPROTO_SCTP, SCTPCTL_DEBUG,
CTL_EOL);
#endif
}
PR_WRAP_USRREQS(sctp)
#define sctp_attach sctp_attach_wrapper
#define sctp_detach sctp_detach_wrapper
#define sctp_accept sctp_accept_wrapper
#define sctp_bind sctp_bind_wrapper
#define sctp_listen sctp_listen_wrapper
#define sctp_connect sctp_connect_wrapper
#define sctp_connect2 sctp_connect2_wrapper
#define sctp_disconnect sctp_disconnect_wrapper
#define sctp_shutdown sctp_shutdown_wrapper
#define sctp_abort sctp_abort_wrapper
#define sctp_ioctl sctp_ioctl_wrapper
#define sctp_stat sctp_stat_wrapper
#define sctp_peeraddr sctp_peeraddr_wrapper
#define sctp_sockaddr sctp_sockaddr_wrapper
#define sctp_rcvd sctp_rcvd_wrapper
#define sctp_recvoob sctp_recvoob_wrapper
#define sctp_send sctp_send_wrapper
#define sctp_sendoob sctp_sendoob_wrapper
#define sctp_purgeif sctp_purgeif_wrapper
const struct pr_usrreqs sctp_usrreqs = {
.pr_attach = sctp_attach,
.pr_detach = sctp_detach,
.pr_accept = sctp_accept,
.pr_bind = sctp_bind,
.pr_listen = sctp_listen,
.pr_connect = sctp_connect,
.pr_connect2 = sctp_connect2,
.pr_disconnect = sctp_disconnect,
.pr_shutdown = sctp_shutdown,
.pr_abort = sctp_abort,
.pr_ioctl = sctp_ioctl,
.pr_stat = sctp_stat,
.pr_peeraddr = sctp_peeraddr,
.pr_sockaddr = sctp_sockaddr,
.pr_rcvd = sctp_rcvd,
.pr_recvoob = sctp_recvoob,
.pr_send = sctp_send,
.pr_sendoob = sctp_sendoob,
.pr_purgeif = sctp_purgeif,
};