1622 lines
39 KiB
C
1622 lines
39 KiB
C
/* $NetBSD: sfas.c,v 1.4 1996/03/18 21:23:20 mark Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1995 Scott Stevens
|
|
* Copyright (c) 1995 Daniel Widenfalk
|
|
* Copyright (c) 1994 Christian E. Hopps
|
|
* Copyright (c) 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Van Jacobson of Lawrence Berkeley Laboratory.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)scsi.c 7.5 (Berkeley) 5/4/91
|
|
*/
|
|
|
|
/*
|
|
* Emulex FAS216 scsi adaptor driver
|
|
*/
|
|
|
|
/*
|
|
* Modified for NetBSD/arm32 by Scott Stevens
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/device.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/proc.h>
|
|
#include <scsi/scsi_all.h>
|
|
#include <scsi/scsiconf.h>
|
|
#include <vm/vm.h>
|
|
#include <vm/vm_kern.h>
|
|
#include <vm/vm_page.h>
|
|
#include <machine/pmap.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/io.h>
|
|
#include <machine/irqhandler.h>
|
|
#include <machine/katelib.h>
|
|
#include <arm32/podulebus/podulebus.h>
|
|
#include <arm32/podulebus/sfasreg.h>
|
|
#include <arm32/podulebus/sfasvar.h>
|
|
|
|
/* Externs */
|
|
extern pt_entry_t *pmap_pte __P((pmap_t, vm_offset_t));
|
|
|
|
void sfasinitialize __P((struct sfas_softc *));
|
|
void sfas_minphys __P((struct buf *bp));
|
|
int sfas_scsicmd __P((struct scsi_xfer *xs));
|
|
void sfas_donextcmd __P((struct sfas_softc *dev, struct sfas_pending *pendp));
|
|
void sfas_scsidone __P((struct sfas_softc *dev, struct scsi_xfer *xs,
|
|
int stat));
|
|
void sfasintr __P((struct sfas_softc *dev));
|
|
void sfasiwait __P((struct sfas_softc *dev));
|
|
void sfasreset __P((struct sfas_softc *dev, int how));
|
|
int sfasselect __P((struct sfas_softc *dev, struct sfas_pending *pendp,
|
|
unsigned char *cbuf, int clen,
|
|
unsigned char *buf, int len, int mode));
|
|
void sfasicmd __P((struct sfas_softc *dev, struct sfas_pending *pendp));
|
|
void sfasgo __P((struct sfas_softc *dev, struct sfas_pending *pendp));
|
|
|
|
/*
|
|
* Initialize these to make 'em patchable. Defaults to enable sync and discon.
|
|
*/
|
|
u_char sfas_inhibit_sync[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
|
|
u_char sfas_inhibit_disc[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
|
|
|
|
#define DEBUG
|
|
#ifdef DEBUG
|
|
#define QPRINTF(a) if (sfas_debug > 1) printf a
|
|
int sfas_debug = 2;
|
|
#else
|
|
#define QPRINTF
|
|
#endif
|
|
|
|
/*
|
|
* default minphys routine for sfas based controllers
|
|
*/
|
|
void
|
|
sfas_minphys(bp)
|
|
struct buf *bp;
|
|
{
|
|
|
|
/*
|
|
* No max transfer at this level.
|
|
*/
|
|
minphys(bp);
|
|
}
|
|
|
|
/*
|
|
* Initialize the nexus structs.
|
|
*/
|
|
void
|
|
sfas_init_nexus(dev, nexus)
|
|
struct sfas_softc *dev;
|
|
struct nexus *nexus;
|
|
{
|
|
bzero(nexus, sizeof(struct nexus));
|
|
|
|
nexus->state = SFAS_NS_IDLE;
|
|
nexus->period = 200;
|
|
nexus->offset = 0;
|
|
nexus->syncper = 5;
|
|
nexus->syncoff = 0;
|
|
nexus->config3 = dev->sc_config3 & ~SFAS_CFG3_FASTSCSI;
|
|
}
|
|
|
|
void
|
|
sfasinitialize(dev)
|
|
struct sfas_softc *dev;
|
|
{
|
|
u_int *pte;
|
|
int i;
|
|
|
|
dev->sc_led_status = 0;
|
|
|
|
TAILQ_INIT(&dev->sc_xs_pending);
|
|
TAILQ_INIT(&dev->sc_xs_free);
|
|
|
|
/*
|
|
* Initialize the sfas_pending structs and link them into the free list. We
|
|
* have to set vm_link_data.pages to 0 or the vm FIX won't work.
|
|
*/
|
|
for(i=0; i<MAXPENDING; i++) {
|
|
TAILQ_INSERT_TAIL(&dev->sc_xs_free, &dev->sc_xs_store[i],
|
|
link);
|
|
}
|
|
|
|
/*
|
|
* Calculate the correct clock conversion factor 2 <= factor <= 8, i.e. set
|
|
* the factor to clock_freq / 5 (int).
|
|
*/
|
|
if (dev->sc_clock_freq <= 10)
|
|
dev->sc_clock_conv_fact = 2;
|
|
if (dev->sc_clock_freq <= 40)
|
|
dev->sc_clock_conv_fact = 2+((dev->sc_clock_freq-10)/5);
|
|
else
|
|
panic("sfasinitialize: Clock frequence too high");
|
|
|
|
/* Setup and save the basic configuration registers */
|
|
dev->sc_config1 = (dev->sc_host_id & SFAS_CFG1_BUS_ID_MASK);
|
|
dev->sc_config2 = SFAS_CFG2_FEATURES_ENABLE;
|
|
dev->sc_config3 = (dev->sc_clock_freq > 25 ? SFAS_CFG3_FASTCLK : 0);
|
|
|
|
/* Precalculate timeout value and clock period. */
|
|
/* Ekkk ... floating point in the kernel !!!! */
|
|
/* dev->sc_timeout_val = 1+dev->sc_timeout*dev->sc_clock_freq/
|
|
(7.682*dev->sc_clock_conv_fact);*/
|
|
dev->sc_timeout_val = 1+dev->sc_timeout*dev->sc_clock_freq/
|
|
((7682*dev->sc_clock_conv_fact)/1000);
|
|
dev->sc_clock_period = 1000/dev->sc_clock_freq;
|
|
|
|
sfasreset(dev, 1 | 2); /* Reset Chip and Bus */
|
|
|
|
dev->sc_units_disconnected = 0;
|
|
dev->sc_msg_in_len = 0;
|
|
dev->sc_msg_out_len = 0;
|
|
|
|
dev->sc_flags = 0;
|
|
|
|
for(i=0; i<8; i++)
|
|
sfas_init_nexus(dev, &dev->sc_nexus[i]);
|
|
|
|
/*
|
|
* Setup bump buffer.
|
|
*/
|
|
dev->sc_bump_va = (u_char *)kmem_alloc(kernel_map, dev->sc_bump_sz);
|
|
dev->sc_bump_pa = pmap_extract(kernel_pmap, (vm_offset_t)dev->sc_bump_va);
|
|
|
|
/*
|
|
* Setup pages to noncachable, that way we don't have to flush the cache
|
|
* every time we need "bumped" transfer.
|
|
*/
|
|
pte = pmap_pte(kernel_pmap, (vm_offset_t)dev->sc_bump_va);
|
|
*pte &= ~PT_C;
|
|
tlbflush();
|
|
|
|
printf(" dmabuf V0x%08x P0x%08x", (u_int)dev->sc_bump_va, (u_int)dev->sc_bump_pa);
|
|
}
|
|
|
|
|
|
/*
|
|
* used by specific sfas controller
|
|
*/
|
|
int
|
|
sfas_scsicmd(struct scsi_xfer *xs)
|
|
{
|
|
struct sfas_softc *dev;
|
|
struct scsi_link *slp;
|
|
struct sfas_pending *pendp;
|
|
int flags, s, target;
|
|
|
|
slp = xs->sc_link;
|
|
dev = slp->adapter_softc;
|
|
flags = xs->flags;
|
|
target = slp->target;
|
|
|
|
if (flags & SCSI_DATA_UIO)
|
|
panic("sfas: scsi data uio requested");
|
|
|
|
if ((flags & SCSI_POLL) && (dev->sc_flags & SFAS_ACTIVE))
|
|
panic("sfas_scsicmd: busy");
|
|
|
|
/* Get hold of a sfas_pending block. */
|
|
s = splbio();
|
|
pendp = dev->sc_xs_free.tqh_first;
|
|
if (pendp == NULL) {
|
|
splx(s);
|
|
return(TRY_AGAIN_LATER);
|
|
}
|
|
TAILQ_REMOVE(&dev->sc_xs_free, pendp, link);
|
|
pendp->xs = xs;
|
|
splx(s);
|
|
|
|
|
|
/* If the chip if busy OR the unit is busy, we have to wait for out turn. */
|
|
if ((dev->sc_flags & SFAS_ACTIVE) ||
|
|
(dev->sc_nexus[target].flags & SFAS_NF_UNIT_BUSY)) {
|
|
s = splbio();
|
|
TAILQ_INSERT_TAIL(&dev->sc_xs_pending, pendp, link);
|
|
splx(s);
|
|
} else
|
|
sfas_donextcmd(dev, pendp);
|
|
|
|
return((flags & SCSI_POLL) ? COMPLETE : SUCCESSFULLY_QUEUED);
|
|
}
|
|
|
|
/*
|
|
* Actually select the unit, whereby the whole scsi-process is started.
|
|
*/
|
|
void
|
|
sfas_donextcmd(dev, pendp)
|
|
struct sfas_softc *dev;
|
|
struct sfas_pending *pendp;
|
|
{
|
|
int s;
|
|
|
|
/*
|
|
* Special case for scsi unit reset. I think this is waterproof. We first
|
|
* select the unit during splbio. We then cycle through the generated
|
|
* interrupts until the interrupt routine signals that the unit has
|
|
* acknowledged the reset. After that we have to wait a reset to select
|
|
* delay before anything else can happend.
|
|
*/
|
|
if (pendp->xs->flags & SCSI_RESET) {
|
|
struct nexus *nexus;
|
|
|
|
s = splbio();
|
|
while(!sfasselect(dev, pendp, 0, 0, 0, 0, SFAS_SELECT_K)) {
|
|
splx(s);
|
|
delay(10);
|
|
s = splbio();
|
|
}
|
|
|
|
nexus = dev->sc_cur_nexus;
|
|
while(nexus->flags & SFAS_NF_UNIT_BUSY) {
|
|
sfasiwait(dev);
|
|
sfasintr(dev);
|
|
}
|
|
|
|
nexus->flags |= SFAS_NF_UNIT_BUSY;
|
|
splx(s);
|
|
|
|
sfasreset(dev, 0);
|
|
|
|
s = splbio();
|
|
nexus->flags &= ~SFAS_NF_UNIT_BUSY;
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* If we are polling, go to splbio and perform the command, else we poke
|
|
* the scsi-bus via sfasgo to get the interrupt machine going.
|
|
*/
|
|
if (pendp->xs->flags & SCSI_POLL) {
|
|
s = splbio();
|
|
sfasicmd(dev, pendp);
|
|
TAILQ_INSERT_TAIL(&dev->sc_xs_free, pendp, link);
|
|
splx(s);
|
|
} else {
|
|
sfasgo(dev, pendp);
|
|
}
|
|
}
|
|
|
|
void
|
|
sfas_scsidone(dev, xs, stat)
|
|
struct sfas_softc *dev;
|
|
struct scsi_xfer *xs;
|
|
int stat;
|
|
{
|
|
struct sfas_pending *pendp;
|
|
int s;
|
|
|
|
xs->status = stat;
|
|
|
|
if (stat == 0)
|
|
xs->resid = 0;
|
|
else {
|
|
switch(stat) {
|
|
case SCSI_CHECK:
|
|
/* If we get here we have valid sense data. Faults during
|
|
* sense is handeled elsewhere and will generate a
|
|
* XS_DRIVER_STUFFUP. */
|
|
xs->error = XS_SENSE;
|
|
break;
|
|
case SCSI_BUSY:
|
|
xs->error = XS_BUSY;
|
|
break;
|
|
case -1:
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
QPRINTF(("sfas_scsicmd() bad %x\n", stat));
|
|
break;
|
|
default:
|
|
xs->error = XS_TIMEOUT;
|
|
break;
|
|
}
|
|
}
|
|
|
|
xs->flags |= ITSDONE;
|
|
|
|
/* Steal the next command from the queue so that one unit can't hog the bus. */
|
|
s = splbio();
|
|
pendp = dev->sc_xs_pending.tqh_first;
|
|
while(pendp) {
|
|
if (!(dev->sc_nexus[pendp->xs->sc_link->target].flags &
|
|
SFAS_NF_UNIT_BUSY))
|
|
break;
|
|
pendp = pendp->link.tqe_next;
|
|
}
|
|
|
|
if (pendp != NULL) {
|
|
TAILQ_REMOVE(&dev->sc_xs_pending, pendp, link);
|
|
}
|
|
|
|
splx(s);
|
|
scsi_done(xs);
|
|
|
|
if (pendp)
|
|
sfas_donextcmd(dev, pendp);
|
|
}
|
|
|
|
/*
|
|
* There are two kinds of reset:
|
|
* 1) CHIP-bus reset. This also implies a SCSI-bus reset.
|
|
* 2) SCSI-bus reset.
|
|
* After the appropriate resets have been performed we wait a reset to select
|
|
* delay time.
|
|
*/
|
|
void
|
|
sfasreset(dev, how)
|
|
struct sfas_softc *dev;
|
|
int how;
|
|
{
|
|
sfas_regmap_p rp;
|
|
int i, s;
|
|
|
|
rp = dev->sc_fas;
|
|
|
|
if (how & 1) {
|
|
for(i=0; i<8; i++)
|
|
sfas_init_nexus(dev, &dev->sc_nexus[i]);
|
|
|
|
*rp->sfas_command = SFAS_CMD_RESET_CHIP;
|
|
delay(1);
|
|
*rp->sfas_command = SFAS_CMD_NOP;
|
|
|
|
*rp->sfas_config1 = dev->sc_config1;
|
|
*rp->sfas_config2 = dev->sc_config2;
|
|
*rp->sfas_config3 = dev->sc_config3;
|
|
*rp->sfas_timeout = dev->sc_timeout_val;
|
|
*rp->sfas_clkconv = dev->sc_clock_conv_fact &
|
|
SFAS_CLOCK_CONVERSION_MASK;
|
|
}
|
|
|
|
if (how & 2) {
|
|
for(i=0; i<8; i++)
|
|
sfas_init_nexus(dev, &dev->sc_nexus[i]);
|
|
|
|
s = splbio();
|
|
|
|
*rp->sfas_command = SFAS_CMD_RESET_SCSI_BUS;
|
|
delay(100);
|
|
|
|
/* Skip interrupt generated by RESET_SCSI_BUS */
|
|
while(*rp->sfas_status & SFAS_STAT_INTERRUPT_PENDING) {
|
|
dev->sc_status = *rp->sfas_status;
|
|
dev->sc_interrupt = *rp->sfas_interrupt;
|
|
|
|
delay(100);
|
|
}
|
|
|
|
dev->sc_status = *rp->sfas_status;
|
|
dev->sc_interrupt = *rp->sfas_interrupt;
|
|
|
|
splx(s);
|
|
}
|
|
|
|
if (dev->sc_config_flags & SFAS_SLOW_START)
|
|
delay(4*250000); /* RESET to SELECT DELAY*4 for slow devices */
|
|
else
|
|
delay(250000); /* RESET to SELECT DELAY */
|
|
}
|
|
|
|
/*
|
|
* Save active data pointers to the nexus block currently active.
|
|
*/
|
|
void
|
|
sfas_save_pointers(dev)
|
|
struct sfas_softc *dev;
|
|
{
|
|
struct nexus *nx;
|
|
|
|
nx = dev->sc_cur_nexus;
|
|
if (nx) {
|
|
nx->cur_link = dev->sc_cur_link;
|
|
nx->max_link = dev->sc_max_link;
|
|
nx->buf = dev->sc_buf;
|
|
nx->len = dev->sc_len;
|
|
nx->dma_len = dev->sc_dma_len;
|
|
nx->dma_buf = dev->sc_dma_buf;
|
|
nx->dma_blk_flg = dev->sc_dma_blk_flg;
|
|
nx->dma_blk_len = dev->sc_dma_blk_len;
|
|
nx->dma_blk_ptr = dev->sc_dma_blk_ptr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Restore data pointers from the currently active nexus block.
|
|
*/
|
|
void
|
|
sfas_restore_pointers(dev)
|
|
struct sfas_softc *dev;
|
|
{
|
|
struct nexus *nx;
|
|
|
|
nx = dev->sc_cur_nexus;
|
|
if (nx) {
|
|
dev->sc_cur_link = nx->cur_link;
|
|
dev->sc_max_link = nx->max_link;
|
|
dev->sc_buf = nx->buf;
|
|
dev->sc_len = nx->len;
|
|
dev->sc_dma_len = nx->dma_len;
|
|
dev->sc_dma_buf = nx->dma_buf;
|
|
dev->sc_dma_blk_flg = nx->dma_blk_flg;
|
|
dev->sc_dma_blk_len = nx->dma_blk_len;
|
|
dev->sc_dma_blk_ptr = nx->dma_blk_ptr;
|
|
dev->sc_chain = nx->dma;
|
|
dev->sc_unit = (nx->lun_unit & 0x0F);
|
|
dev->sc_lun = (nx->lun_unit & 0xF0) >> 4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sfasiwait is used during interrupt and polled IO to wait for an event from
|
|
* the FAS chip. This function MUST NOT BE CALLED without interrupt disabled.
|
|
*/
|
|
void
|
|
sfasiwait(dev)
|
|
struct sfas_softc *dev;
|
|
{
|
|
sfas_regmap_p rp;
|
|
|
|
/*
|
|
* If SFAS_DONT_WAIT is set, we have already grabbed the interrupt info
|
|
* elsewhere. So we don't have to wait for it.
|
|
*/
|
|
if (dev->sc_flags & SFAS_DONT_WAIT) {
|
|
dev->sc_flags &= ~SFAS_DONT_WAIT;
|
|
return;
|
|
}
|
|
|
|
rp = dev->sc_fas;
|
|
|
|
/* Wait for FAS chip to signal an interrupt. */
|
|
while(!(*rp->sfas_status & SFAS_STAT_INTERRUPT_PENDING))
|
|
delay(1);
|
|
|
|
/* Grab interrupt info from chip. */
|
|
dev->sc_status = *rp->sfas_status;
|
|
dev->sc_interrupt = *rp->sfas_interrupt;
|
|
if (dev->sc_interrupt & SFAS_INT_RESELECTED) {
|
|
dev->sc_resel[0] = *rp->sfas_fifo;
|
|
dev->sc_resel[1] = *rp->sfas_fifo;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Transfer info to/from device. sfas_ixfer uses polled IO+sfasiwait so the
|
|
* rules that apply to sfasiwait also applies here.
|
|
*/
|
|
void
|
|
sfas_ixfer(dev, polling)
|
|
struct sfas_softc *dev;
|
|
int polling;
|
|
{
|
|
sfas_regmap_p rp;
|
|
u_char *buf;
|
|
int len, mode, phase;
|
|
|
|
rp = dev->sc_fas;
|
|
buf = dev->sc_buf;
|
|
len = dev->sc_len;
|
|
|
|
/*
|
|
* Decode the scsi phase to determine whether we are reading or writing.
|
|
* mode == 1 => READ, mode == 0 => WRITE
|
|
*/
|
|
phase = dev->sc_status & SFAS_STAT_PHASE_MASK;
|
|
mode = (phase == SFAS_PHASE_DATA_IN);
|
|
|
|
while(len && ((dev->sc_status & SFAS_STAT_PHASE_MASK) == phase))
|
|
if (mode) {
|
|
*rp->sfas_command = SFAS_CMD_TRANSFER_INFO;
|
|
|
|
sfasiwait(dev);
|
|
|
|
*buf++ = *rp->sfas_fifo;
|
|
len--;
|
|
} else {
|
|
len--;
|
|
*rp->sfas_fifo = *buf++;
|
|
*rp->sfas_command = SFAS_CMD_TRANSFER_INFO;
|
|
|
|
sfasiwait(dev);
|
|
}
|
|
|
|
/* Update buffer pointers to reflect the sent/recieved data. */
|
|
dev->sc_buf = buf;
|
|
dev->sc_len = len;
|
|
|
|
/*
|
|
* Since the last sfasiwait will be a phase-change, we can't wait for it
|
|
* again later, so we have to signal that.
|
|
* Since this may be called from an interrupt initiated routine then we
|
|
* must call sfasintr again to avoid losing an interrupt. Phew!
|
|
*/
|
|
if(polling)
|
|
dev->sc_flags |= SFAS_DONT_WAIT;
|
|
else
|
|
sfasintr(dev);
|
|
}
|
|
|
|
/*
|
|
* Build a Synchronous Data Transfer Request message
|
|
*/
|
|
void
|
|
sfas_build_sdtrm(dev, period, offset)
|
|
struct sfas_softc *dev;
|
|
int period;
|
|
int offset;
|
|
{
|
|
dev->sc_msg_out[0] = 0x01;
|
|
dev->sc_msg_out[1] = 0x03;
|
|
dev->sc_msg_out[2] = 0x01;
|
|
dev->sc_msg_out[3] = period/4;
|
|
dev->sc_msg_out[4] = offset;
|
|
dev->sc_msg_out_len= 5;
|
|
}
|
|
|
|
/*
|
|
* Arbitate the scsi bus and select the unit
|
|
*/
|
|
int
|
|
sfas_select_unit(dev, target)
|
|
struct sfas_softc *dev;
|
|
short target;
|
|
{
|
|
sfas_regmap_p rp;
|
|
struct nexus *nexus;
|
|
int s, retcode, i;
|
|
u_char cmd;
|
|
|
|
s = splbio(); /* Do this at splbio so that we won't be disturbed. */
|
|
|
|
retcode = 0;
|
|
|
|
nexus = &dev->sc_nexus[target];
|
|
|
|
/*
|
|
* Check if the chip is busy. If not the we mark it as so and hope that nobody
|
|
* reselects us until we have grabbed the bus.
|
|
*/
|
|
if (!(dev->sc_flags & SFAS_ACTIVE) && !dev->sc_sel_nexus) {
|
|
dev->sc_flags |= SFAS_ACTIVE;
|
|
|
|
rp = dev->sc_fas;
|
|
|
|
*rp->sfas_syncper = nexus->syncper;
|
|
*rp->sfas_syncoff = nexus->syncoff;
|
|
*rp->sfas_config3 = nexus->config3;
|
|
|
|
*rp->sfas_config1 = dev->sc_config1;
|
|
*rp->sfas_timeout = dev->sc_timeout_val;
|
|
*rp->sfas_dest_id = target;
|
|
|
|
/* If nobody has stolen the bus, we can send a select command to the chip. */
|
|
if (!(*rp->sfas_status & SFAS_STAT_INTERRUPT_PENDING)) {
|
|
*rp->sfas_fifo = nexus->ID;
|
|
if ((nexus->flags & (SFAS_NF_DO_SDTR | SFAS_NF_RESET))
|
|
|| (dev->sc_msg_out_len != 0))
|
|
cmd = SFAS_CMD_SEL_ATN_STOP;
|
|
else {
|
|
for(i=0; i<nexus->clen; i++)
|
|
*rp->sfas_fifo = nexus->cbuf[i];
|
|
|
|
cmd = SFAS_CMD_SEL_ATN;
|
|
}
|
|
|
|
dev->sc_sel_nexus = nexus;
|
|
|
|
*rp->sfas_command = cmd;
|
|
retcode = 1;
|
|
}
|
|
}
|
|
|
|
splx(s);
|
|
return(retcode);
|
|
}
|
|
|
|
/*
|
|
* Grab the nexus if available else return 0.
|
|
*/
|
|
struct nexus *
|
|
sfas_arbitate_target(dev, target)
|
|
struct sfas_softc *dev;
|
|
int target;
|
|
{
|
|
struct nexus *nexus;
|
|
int s;
|
|
|
|
/*
|
|
* This is realy simple. Raise interrupt level to splbio. Grab the nexus and
|
|
* leave.
|
|
*/
|
|
nexus = &dev->sc_nexus[target];
|
|
|
|
s = splbio();
|
|
|
|
if (nexus->flags & SFAS_NF_UNIT_BUSY)
|
|
nexus = 0;
|
|
else
|
|
nexus->flags |= SFAS_NF_UNIT_BUSY;
|
|
|
|
splx(s);
|
|
return(nexus);
|
|
}
|
|
|
|
/*
|
|
* Setup a nexus for use. Initializes command, buffer pointers and dma chain.
|
|
*/
|
|
void
|
|
sfas_setup_nexus(dev, nexus, pendp, cbuf, clen, buf, len, mode)
|
|
struct sfas_softc *dev;
|
|
struct nexus *nexus;
|
|
struct sfas_pending *pendp;
|
|
unsigned char *cbuf;
|
|
int clen;
|
|
unsigned char *buf;
|
|
int len;
|
|
int mode;
|
|
{
|
|
char sync, target, lun;
|
|
|
|
target = pendp->xs->sc_link->target;
|
|
lun = pendp->xs->sc_link->lun;
|
|
|
|
/*
|
|
* Adopt mode to reflect the config flags.
|
|
* If we can't use DMA we can't use synch transfer. Also check the
|
|
* sfas_inhibit_xxx[target] flags.
|
|
*/
|
|
if ((dev->sc_config_flags & (SFAS_NO_SYNCH | SFAS_NO_DMA)) ||
|
|
sfas_inhibit_sync[(int)target])
|
|
mode &= ~SFAS_SELECT_S;
|
|
|
|
if ((dev->sc_config_flags & SFAS_NO_RESELECT) ||
|
|
sfas_inhibit_disc[(int)target])
|
|
mode &= ~SFAS_SELECT_R;
|
|
|
|
nexus->xs = pendp->xs;
|
|
|
|
/* Setup the nexus struct. */
|
|
nexus->ID = ((mode & SFAS_SELECT_R) ? 0xC0 : 0x80) | lun;
|
|
nexus->clen = clen;
|
|
bcopy(cbuf, nexus->cbuf, nexus->clen);
|
|
nexus->cbuf[1] |= lun << 5; /* Fix the lun bits */
|
|
nexus->cur_link = 0;
|
|
nexus->dma_len = 0;
|
|
nexus->dma_buf = 0;
|
|
nexus->dma_blk_len = 0;
|
|
nexus->dma_blk_ptr = 0;
|
|
nexus->len = len;
|
|
nexus->buf = buf;
|
|
nexus->lun_unit = (lun << 4) | target;
|
|
nexus->state = SFAS_NS_SELECTED;
|
|
|
|
/* We must keep these flags. All else must be zero. */
|
|
nexus->flags &= SFAS_NF_UNIT_BUSY | SFAS_NF_REQUEST_SENSE
|
|
| SFAS_NF_SYNC_TESTED | SFAS_NF_SELECT_ME;
|
|
|
|
/*
|
|
* If we are requesting sense, reflect that in the flags so that we can handle
|
|
* error in sense data correctly
|
|
*/
|
|
if (nexus->flags & SFAS_NF_REQUEST_SENSE) {
|
|
nexus->flags &= ~SFAS_NF_REQUEST_SENSE;
|
|
nexus->flags |= SFAS_NF_SENSING;
|
|
}
|
|
|
|
if (mode & SFAS_SELECT_I)
|
|
nexus->flags |= SFAS_NF_IMMEDIATE;
|
|
if (mode & SFAS_SELECT_K)
|
|
nexus->flags |= SFAS_NF_RESET;
|
|
|
|
sync = ((mode & SFAS_SELECT_S) ? 1 : 0);
|
|
|
|
/* We can't use sync during polled IO. */
|
|
if (sync && (mode & SFAS_SELECT_I))
|
|
sync = 0;
|
|
|
|
if (!sync &&
|
|
((nexus->flags & SFAS_NF_SYNC_TESTED) && (nexus->offset != 0))) {
|
|
/*
|
|
* If the scsi unit is set to synch transfer and we don't want
|
|
* that, we have to renegotiate.
|
|
*/
|
|
|
|
nexus->flags |= SFAS_NF_DO_SDTR;
|
|
nexus->period = 200;
|
|
nexus->offset = 0;
|
|
} else if (sync && !(nexus->flags & SFAS_NF_SYNC_TESTED)) {
|
|
/*
|
|
* If the scsi unit is not set to synch transfer and we want
|
|
* that, we have to negotiate. This should realy base the
|
|
* period on the clock frequence rather than just check if
|
|
* >25Mhz
|
|
*/
|
|
|
|
nexus->flags |= SFAS_NF_DO_SDTR;
|
|
nexus->period = ((dev->sc_clock_freq>25) ? 100 : 200);
|
|
nexus->offset = 8;
|
|
|
|
/* If the user has a long cable, we want to limit the period */
|
|
if ((nexus->period == 100) &&
|
|
(dev->sc_config_flags & SFAS_SLOW_CABLE))
|
|
nexus->period = 200;
|
|
}
|
|
|
|
/*
|
|
* Fake a dma-block for polled IO. This way we can use the same code to handle
|
|
* reselection. Much nicer this way.
|
|
*/
|
|
if ((mode & SFAS_SELECT_I) || (dev->sc_config_flags & SFAS_NO_DMA)) {
|
|
nexus->dma[0].ptr = (vm_offset_t)buf;
|
|
nexus->dma[0].len = len;
|
|
nexus->dma[0].flg = SFAS_CHAIN_PRG;
|
|
nexus->max_link = 1;
|
|
} else {
|
|
nexus->max_link = dev->sc_build_dma_chain(dev, nexus->dma,
|
|
buf, len);
|
|
}
|
|
|
|
/* Flush the caches. (If needed) */
|
|
/* Do I need to ? */
|
|
/*
|
|
if ((mmutype == MMU_68040) && len && !(mode & SFAS_SELECT_I))
|
|
dma_cachectl(buf, len);
|
|
*/
|
|
}
|
|
|
|
int
|
|
sfasselect(dev, pendp, cbuf, clen, buf, len, mode)
|
|
struct sfas_softc *dev;
|
|
struct sfas_pending *pendp;
|
|
unsigned char *cbuf;
|
|
int clen;
|
|
unsigned char *buf;
|
|
int len;
|
|
int mode;
|
|
{
|
|
struct nexus *nexus;
|
|
|
|
/* Get the nexus struct. */
|
|
nexus = sfas_arbitate_target(dev, pendp->xs->sc_link->target);
|
|
if (nexus == NULL)
|
|
return(0);
|
|
|
|
/* Setup the nexus struct. */
|
|
sfas_setup_nexus(dev, nexus, pendp, cbuf, clen, buf, len, mode);
|
|
|
|
/* Post it to the interrupt machine. */
|
|
sfas_select_unit(dev, pendp->xs->sc_link->target);
|
|
|
|
return(1);
|
|
}
|
|
|
|
void
|
|
sfas_request_sense(dev, nexus)
|
|
struct sfas_softc *dev;
|
|
struct nexus *nexus;
|
|
{
|
|
struct scsi_xfer *xs;
|
|
struct sfas_pending pend;
|
|
struct scsi_sense rqs;
|
|
int mode;
|
|
|
|
xs = nexus->xs;
|
|
|
|
/* Fake a sfas_pending structure. */
|
|
pend.xs = xs;
|
|
|
|
rqs.opcode = REQUEST_SENSE;
|
|
rqs.byte2 = xs->sc_link->lun << 5;
|
|
#ifdef not_yet
|
|
rqs.length=xs->req_sense_length?xs->req_sense_length:sizeof(xs->sense);
|
|
#else
|
|
rqs.length=sizeof(xs->sense);
|
|
#endif
|
|
|
|
rqs.unused[0] = rqs.unused[1] = rqs.control = 0;
|
|
|
|
/*
|
|
* If we are requesting sense during polled IO, we have to sense with polled
|
|
* IO too.
|
|
*/
|
|
mode = SFAS_SELECT_RS;
|
|
if (nexus->flags & SFAS_NF_IMMEDIATE)
|
|
mode = SFAS_SELECT_I;
|
|
|
|
/* Setup the nexus struct for sensing. */
|
|
sfas_setup_nexus(dev, nexus, &pend, (char *)&rqs, sizeof(rqs),
|
|
(char *)&xs->sense, rqs.length, mode);
|
|
|
|
/* Post it to the interrupt machine. */
|
|
sfas_select_unit(dev, xs->sc_link->target);
|
|
}
|
|
|
|
void
|
|
sfasgo(dev, pendp)
|
|
struct sfas_softc *dev;
|
|
struct sfas_pending *pendp;
|
|
{
|
|
int s;
|
|
char *buf;
|
|
|
|
buf = pendp->xs->data;
|
|
|
|
if (sfasselect(dev, pendp, (char *)pendp->xs->cmd, pendp->xs->cmdlen,
|
|
buf, pendp->xs->datalen, SFAS_SELECT_RS)) {
|
|
/*
|
|
* We got the command going so the sfas_pending struct is now
|
|
* free to reuse.
|
|
*/
|
|
|
|
s = splbio();
|
|
TAILQ_INSERT_TAIL(&dev->sc_xs_free, pendp, link);
|
|
splx(s);
|
|
} else {
|
|
/*
|
|
* We couldn't make the command fly so we have to wait. The
|
|
* struct MUST be inserted at the head to keep the order of
|
|
* the commands.
|
|
*/
|
|
|
|
s = splbio();
|
|
TAILQ_INSERT_HEAD(&dev->sc_xs_pending, pendp, link);
|
|
splx(s);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Part one of the interrupt machine. Error checks and reselection test.
|
|
* We don't know if we have an active nexus here!
|
|
*/
|
|
int
|
|
sfas_pretests(dev, rp)
|
|
struct sfas_softc *dev;
|
|
sfas_regmap_p rp;
|
|
{
|
|
struct nexus *nexus;
|
|
int i, s;
|
|
|
|
if (dev->sc_interrupt & SFAS_INT_SCSI_RESET_DETECTED) {
|
|
/*
|
|
* Cleanup and notify user. Lets hope that this is all we
|
|
* have to do
|
|
*/
|
|
|
|
for(i=0; i<8; i++) {
|
|
if (dev->sc_nexus[i].xs)
|
|
sfas_scsidone(dev, dev->sc_nexus[i].xs, -2);
|
|
|
|
sfas_init_nexus(dev, &dev->sc_nexus[i]);
|
|
}
|
|
printf("sfasintr: SCSI-RESET detected!");
|
|
return(-1);
|
|
}
|
|
|
|
if (dev->sc_interrupt & SFAS_INT_ILLEGAL_COMMAND) {
|
|
/* Something went terrible wrong! Dump some data and panic! */
|
|
|
|
printf("FIFO:");
|
|
while(*rp->sfas_fifo_flags & SFAS_FIFO_COUNT_MASK)
|
|
printf(" %x", *rp->sfas_fifo);
|
|
printf("\n");
|
|
|
|
printf("CMD: %x\n", *rp->sfas_command);
|
|
panic("sfasintr: ILLEGAL COMMAND!");
|
|
}
|
|
|
|
if (dev->sc_interrupt & SFAS_INT_RESELECTED) {
|
|
/* We were reselected. Set the chip as busy */
|
|
|
|
s = splbio();
|
|
dev->sc_flags |= SFAS_ACTIVE;
|
|
if (dev->sc_sel_nexus) {
|
|
dev->sc_sel_nexus->flags |= SFAS_NF_SELECT_ME;
|
|
dev->sc_sel_nexus = 0;
|
|
}
|
|
splx(s);
|
|
|
|
if (dev->sc_units_disconnected) {
|
|
/* Find out who reselected us. */
|
|
|
|
dev->sc_resel[0] &= ~(1<<dev->sc_host_id);
|
|
|
|
for(i=0; i<8; i++)
|
|
if (dev->sc_resel[0] & (1<<i))
|
|
break;
|
|
|
|
if (i == 8)
|
|
panic("Illegal reselection!");
|
|
|
|
if (dev->sc_nexus[i].state == SFAS_NS_DISCONNECTED) {
|
|
/*
|
|
* This unit had disconnected, so we reconnect
|
|
* it.
|
|
*/
|
|
|
|
dev->sc_cur_nexus = &dev->sc_nexus[i];
|
|
nexus = dev->sc_cur_nexus;
|
|
|
|
*rp->sfas_syncper = nexus->syncper;
|
|
*rp->sfas_syncoff = nexus->syncoff;
|
|
*rp->sfas_config3 = nexus->config3;
|
|
|
|
*rp->sfas_dest_id = i & 7;
|
|
|
|
dev->sc_units_disconnected--;
|
|
dev->sc_msg_in_len= 0;
|
|
|
|
/* Restore active pointers. */
|
|
sfas_restore_pointers(dev);
|
|
|
|
nexus->state = SFAS_NS_RESELECTED;
|
|
|
|
*rp->sfas_command = SFAS_CMD_MESSAGE_ACCEPTED;
|
|
|
|
return(1);
|
|
}
|
|
}
|
|
|
|
/* Somehow we got an illegal reselection. Dump and panic. */
|
|
printf("sfasintr: resel[0] %x resel[1] %x disconnected %d\n",
|
|
dev->sc_resel[0], dev->sc_resel[1],
|
|
dev->sc_units_disconnected);
|
|
panic("sfasintr: Unexpected reselection!");
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Part two of the interrupt machine. Handle disconnection and post command
|
|
* processing. We know that we have an active nexus here.
|
|
*/
|
|
int
|
|
sfas_midaction(dev, rp, nexus)
|
|
struct sfas_softc *dev;
|
|
sfas_regmap_p rp;
|
|
struct nexus *nexus;
|
|
{
|
|
int i, left, len, s;
|
|
u_char status, msg;
|
|
|
|
if (dev->sc_interrupt & SFAS_INT_DISCONNECT) {
|
|
s = splbio();
|
|
dev->sc_cur_nexus = 0;
|
|
|
|
/* Mark chip as busy and clean up the chip FIFO. */
|
|
dev->sc_flags &= ~SFAS_ACTIVE;
|
|
*rp->sfas_command = SFAS_CMD_FLUSH_FIFO;
|
|
|
|
/* Let the nexus state reflect what we have to do. */
|
|
switch(nexus->state) {
|
|
case SFAS_NS_SELECTED:
|
|
dev->sc_sel_nexus = 0;
|
|
nexus->flags &= ~SFAS_NF_SELECT_ME;
|
|
|
|
/*
|
|
* We were trying to select the unit. Probably no unit
|
|
* at this ID.
|
|
*/
|
|
nexus->xs->resid = dev->sc_len;
|
|
|
|
nexus->status = -2;
|
|
nexus->flags &= ~SFAS_NF_UNIT_BUSY;
|
|
nexus->state = SFAS_NS_FINISHED;
|
|
break;
|
|
|
|
case SFAS_NS_SENSE:
|
|
/*
|
|
* Oops! We have to request sense data from this unit.
|
|
* Do so.
|
|
*/
|
|
dev->sc_led(dev, 0);
|
|
nexus->flags |= SFAS_NF_REQUEST_SENSE;
|
|
sfas_request_sense(dev, nexus);
|
|
break;
|
|
|
|
case SFAS_NS_DONE:
|
|
/* All done. */
|
|
nexus->xs->resid = dev->sc_len;
|
|
|
|
nexus->flags &= ~SFAS_NF_UNIT_BUSY;
|
|
nexus->state = SFAS_NS_FINISHED;
|
|
dev->sc_led(dev, 0);
|
|
break;
|
|
|
|
case SFAS_NS_DISCONNECTING:
|
|
/*
|
|
* We have recieved a DISCONNECT message, so we are
|
|
* doing a normal disconnection.
|
|
*/
|
|
nexus->state = SFAS_NS_DISCONNECTED;
|
|
|
|
dev->sc_units_disconnected++;
|
|
break;
|
|
|
|
case SFAS_NS_RESET:
|
|
/*
|
|
* We were reseting this SCSI-unit. Clean up the
|
|
* nexus struct.
|
|
*/
|
|
dev->sc_led(dev, 0);
|
|
sfas_init_nexus(dev, nexus);
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* Unexpected disconnection! Cleanup and exit. This
|
|
* shouldn't cause any problems.
|
|
*/
|
|
printf("sfasintr: Unexpected disconnection\n");
|
|
printf("sfasintr: u %x s %d p %d f %x c %x\n",
|
|
nexus->lun_unit, nexus->state,
|
|
dev->sc_status & SFAS_STAT_PHASE_MASK,
|
|
nexus->flags, nexus->cbuf[0]);
|
|
|
|
nexus->xs->resid = dev->sc_len;
|
|
|
|
nexus->flags &= ~SFAS_NF_UNIT_BUSY;
|
|
nexus->state = SFAS_NS_FINISHED;
|
|
nexus->status = -3;
|
|
|
|
dev->sc_led(dev, 0);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we have disconnected units, we MUST enable reselection
|
|
* within 250ms.
|
|
*/
|
|
if (dev->sc_units_disconnected &&
|
|
!(dev->sc_flags & SFAS_ACTIVE))
|
|
*rp->sfas_command = SFAS_CMD_ENABLE_RESEL;
|
|
|
|
splx(s);
|
|
|
|
/* Select the first pre-initialized nexus we find. */
|
|
for(i=0; i<8; i++)
|
|
if (dev->sc_nexus[i].flags & SFAS_NF_SELECT_ME)
|
|
if (sfas_select_unit(dev, i) == 2)
|
|
break;
|
|
|
|
/* Does any unit need sense data? */
|
|
for(i=0; i<8; i++)
|
|
if (dev->sc_nexus[i].flags & SFAS_NF_REQUEST_SENSE) {
|
|
sfas_request_sense(dev, &dev->sc_nexus[i]);
|
|
break;
|
|
}
|
|
|
|
/* We are done with this nexus! */
|
|
if (nexus->state == SFAS_NS_FINISHED)
|
|
sfas_scsidone(dev, nexus->xs, nexus->status);
|
|
|
|
return(1);
|
|
}
|
|
|
|
switch(nexus->state) {
|
|
case SFAS_NS_SELECTED:
|
|
dev->sc_cur_nexus = nexus;
|
|
dev->sc_sel_nexus = 0;
|
|
|
|
nexus->flags &= ~SFAS_NF_SELECT_ME;
|
|
|
|
/*
|
|
* We have selected a unit. Setup chip, restore pointers and
|
|
* light the led.
|
|
*/
|
|
*rp->sfas_syncper = nexus->syncper;
|
|
*rp->sfas_syncoff = nexus->syncoff;
|
|
*rp->sfas_config3 = nexus->config3;
|
|
|
|
sfas_restore_pointers(dev);
|
|
|
|
if (!(nexus->flags & SFAS_NF_SENSING))
|
|
nexus->status = 0xFF;
|
|
dev->sc_msg_in[0] = 0xFF;
|
|
dev->sc_msg_in_len= 0;
|
|
|
|
dev->sc_led(dev, 1);
|
|
|
|
break;
|
|
|
|
case SFAS_NS_DATA_IN:
|
|
case SFAS_NS_DATA_OUT:
|
|
/* We have transfered data. */
|
|
if (dev->sc_dma_len)
|
|
if (dev->sc_cur_link < dev->sc_max_link) {
|
|
/*
|
|
* Clean up dma and at the same time get how
|
|
* many bytes that were NOT transfered.
|
|
*/
|
|
left = dev->sc_setup_dma(dev, 0, 0, SFAS_DMA_CLEAR);
|
|
len = dev->sc_dma_len;
|
|
|
|
if (nexus->state == SFAS_NS_DATA_IN) {
|
|
/*
|
|
* If we were bumping we may have had an odd length
|
|
* which means that there may be bytes left in the
|
|
* fifo. We also need to move the data from the
|
|
* bump buffer to the actual memory.
|
|
*/
|
|
if (dev->sc_dma_buf == dev->sc_bump_pa)
|
|
{
|
|
while((*rp->sfas_fifo_flags&SFAS_FIFO_COUNT_MASK)
|
|
&& left)
|
|
dev->sc_bump_va[len-(left--)] = *rp->sfas_fifo;
|
|
|
|
bcopy(dev->sc_bump_va, dev->sc_buf, len-left);
|
|
}
|
|
} else {
|
|
/* Count any unsent bytes and flush them. */
|
|
left+= *rp->sfas_fifo_flags & SFAS_FIFO_COUNT_MASK;
|
|
*rp->sfas_command = SFAS_CMD_FLUSH_FIFO;
|
|
}
|
|
|
|
/*
|
|
* Update pointers/length to reflect the transfered
|
|
* data.
|
|
*/
|
|
dev->sc_len -= len-left;
|
|
dev->sc_buf += len-left;
|
|
|
|
dev->sc_dma_buf += len-left;
|
|
dev->sc_dma_len = left;
|
|
|
|
dev->sc_dma_blk_ptr += len-left;
|
|
dev->sc_dma_blk_len -= len-left;
|
|
|
|
/*
|
|
* If it was the end of a dma block, we select the
|
|
* next to begin with.
|
|
*/
|
|
if (!dev->sc_dma_blk_len)
|
|
dev->sc_cur_link++;
|
|
}
|
|
break;
|
|
|
|
case SFAS_NS_STATUS:
|
|
/*
|
|
* If we were not sensing, grab the status byte. If we were
|
|
* sensing and we got a bad status, let the user know.
|
|
*/
|
|
|
|
status = *rp->sfas_fifo;
|
|
msg = *rp->sfas_fifo;
|
|
|
|
if (!(nexus->flags & SFAS_NF_SENSING))
|
|
nexus->status = status;
|
|
else if (status != 0)
|
|
nexus->status = -1;
|
|
|
|
/*
|
|
* Preload the command complete message. Handeled in
|
|
* sfas_postaction.
|
|
*/
|
|
dev->sc_msg_in[0] = msg;
|
|
dev->sc_msg_in_len = 1;
|
|
nexus->flags |= SFAS_NF_HAS_MSG;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Part three of the interrupt machine. Handle phase changes (and repeated
|
|
* phase passes). We know that we have an active nexus here.
|
|
*/
|
|
int
|
|
sfas_postaction(dev, rp, nexus)
|
|
struct sfas_softc *dev;
|
|
sfas_regmap_p rp;
|
|
struct nexus *nexus;
|
|
{
|
|
int i, len;
|
|
u_char cmd;
|
|
short offset, period;
|
|
|
|
cmd = 0;
|
|
|
|
switch(dev->sc_status & SFAS_STAT_PHASE_MASK) {
|
|
case SFAS_PHASE_DATA_OUT:
|
|
case SFAS_PHASE_DATA_IN:
|
|
if ((dev->sc_status & SFAS_STAT_PHASE_MASK) ==
|
|
SFAS_PHASE_DATA_OUT)
|
|
nexus->state = SFAS_NS_DATA_OUT;
|
|
else
|
|
nexus->state = SFAS_NS_DATA_IN;
|
|
|
|
/* Make DMA ready to accept new data. Load active pointers
|
|
* from the DMA block. */
|
|
dev->sc_setup_dma(dev, 0, 0, SFAS_DMA_CLEAR);
|
|
if (dev->sc_cur_link < dev->sc_max_link) {
|
|
if (!dev->sc_dma_blk_len) {
|
|
dev->sc_dma_blk_ptr = dev->sc_chain[dev->sc_cur_link].ptr;
|
|
dev->sc_dma_blk_len = dev->sc_chain[dev->sc_cur_link].len;
|
|
dev->sc_dma_blk_flg = dev->sc_chain[dev->sc_cur_link].flg;
|
|
}
|
|
|
|
/* We should use polled IO here. */
|
|
if (dev->sc_dma_blk_flg == SFAS_CHAIN_PRG) {
|
|
sfas_ixfer(dev, nexus->xs->flags & SCSI_POLL);
|
|
dev->sc_cur_link++;
|
|
dev->sc_dma_len = 0;
|
|
break;
|
|
}
|
|
else if (dev->sc_dma_blk_flg == SFAS_CHAIN_BUMP)
|
|
len = dev->sc_dma_blk_len;
|
|
else
|
|
len = dev->sc_need_bump(dev, dev->sc_dma_blk_ptr,
|
|
dev->sc_dma_blk_len);
|
|
|
|
/*
|
|
* If len != 0 we must bump the data, else we just DMA it
|
|
* straight into memory.
|
|
*/
|
|
if (len) {
|
|
dev->sc_dma_buf = dev->sc_bump_pa;
|
|
dev->sc_dma_len = len;
|
|
|
|
if (nexus->state == SFAS_NS_DATA_OUT)
|
|
bcopy(dev->sc_buf, dev->sc_bump_va, dev->sc_dma_len);
|
|
} else {
|
|
dev->sc_dma_buf = dev->sc_dma_blk_ptr;
|
|
dev->sc_dma_len = dev->sc_dma_blk_len;
|
|
}
|
|
|
|
/* Load DMA with adress and length of transfer. */
|
|
dev->sc_setup_dma(dev, dev->sc_dma_buf, dev->sc_dma_len,
|
|
((nexus->state == SFAS_NS_DATA_OUT) ?
|
|
SFAS_DMA_WRITE : SFAS_DMA_READ));
|
|
|
|
printf("Using DMA !!!!\n");
|
|
cmd = SFAS_CMD_TRANSFER_INFO | SFAS_CMD_DMA;
|
|
} else {
|
|
/*
|
|
* Hmmm, the unit wants more info than we have or has
|
|
* more than we want. Let the chip handle that.
|
|
*/
|
|
|
|
*rp->sfas_tc_low = 0; /* was 256 but this does not make sense */
|
|
*rp->sfas_tc_mid = 1;
|
|
*rp->sfas_tc_high = 0;
|
|
cmd = SFAS_CMD_TRANSFER_PAD;
|
|
}
|
|
break;
|
|
|
|
case SFAS_PHASE_COMMAND:
|
|
/* The scsi unit wants the command, send it. */
|
|
nexus->state = SFAS_NS_SVC;
|
|
|
|
*rp->sfas_command = SFAS_CMD_FLUSH_FIFO;
|
|
for(i=0; i<5; i++);
|
|
|
|
for(i=0; i<nexus->clen; i++)
|
|
*rp->sfas_fifo = nexus->cbuf[i];
|
|
cmd = SFAS_CMD_TRANSFER_INFO;
|
|
break;
|
|
|
|
case SFAS_PHASE_STATUS:
|
|
/*
|
|
* We've got status phase. Request status and command
|
|
* complete message.
|
|
*/
|
|
nexus->state = SFAS_NS_STATUS;
|
|
cmd = SFAS_CMD_COMMAND_COMPLETE;
|
|
break;
|
|
|
|
case SFAS_PHASE_MESSAGE_OUT:
|
|
/*
|
|
* Either the scsi unit wants us to send a message or we have
|
|
* asked for it by seting the ATN bit.
|
|
*/
|
|
nexus->state = SFAS_NS_MSG_OUT;
|
|
|
|
*rp->sfas_command = SFAS_CMD_FLUSH_FIFO;
|
|
|
|
if (nexus->flags & SFAS_NF_DO_SDTR) {
|
|
/* Send a Synchronous Data Transfer Request. */
|
|
|
|
sfas_build_sdtrm(dev, nexus->period, nexus->offset);
|
|
nexus->flags |= SFAS_NF_SDTR_SENT;
|
|
nexus->flags &= ~SFAS_NF_DO_SDTR;
|
|
} else if (nexus->flags & SFAS_NF_RESET) {
|
|
/* Send a reset scsi unit message. */
|
|
|
|
dev->sc_msg_out[0] = 0x0C;
|
|
dev->sc_msg_out_len = 1;
|
|
nexus->state = SFAS_NS_RESET;
|
|
nexus->flags &= ~SFAS_NF_RESET;
|
|
} else if (dev->sc_msg_out_len == 0) {
|
|
/* Don't know what to send so we send a NOP message. */
|
|
|
|
dev->sc_msg_out[0] = 0x08;
|
|
dev->sc_msg_out_len = 1;
|
|
}
|
|
|
|
cmd = SFAS_CMD_TRANSFER_INFO;
|
|
|
|
for(i=0; i<dev->sc_msg_out_len; i++)
|
|
*rp->sfas_fifo = dev->sc_msg_out[i];
|
|
dev->sc_msg_out_len = 0;
|
|
|
|
break;
|
|
|
|
case SFAS_PHASE_MESSAGE_IN:
|
|
/* Receive a message from the scsi unit. */
|
|
nexus->state = SFAS_NS_MSG_IN;
|
|
|
|
while(!(nexus->flags & SFAS_NF_HAS_MSG)) {
|
|
*rp->sfas_command = SFAS_CMD_TRANSFER_INFO;
|
|
sfasiwait(dev);
|
|
|
|
dev->sc_msg_in[dev->sc_msg_in_len++] = *rp->sfas_fifo;
|
|
|
|
/* Check if we got all the bytes in the message. */
|
|
if (dev->sc_msg_in[0] >= 0x80) ;
|
|
else if (dev->sc_msg_in[0] >= 0x30) ;
|
|
else if (((dev->sc_msg_in[0] >= 0x20) &&
|
|
(dev->sc_msg_in_len == 2)) ||
|
|
((dev->sc_msg_in[0] != 0x01) &&
|
|
(dev->sc_msg_in_len == 1))) {
|
|
nexus->flags |= SFAS_NF_HAS_MSG;
|
|
break;
|
|
} else {
|
|
if (dev->sc_msg_in_len >= 2)
|
|
if ((dev->sc_msg_in[1]+2) == dev->sc_msg_in_len) {
|
|
nexus->flags |= SFAS_NF_HAS_MSG;
|
|
break;
|
|
}
|
|
}
|
|
|
|
*rp->sfas_command = SFAS_CMD_MESSAGE_ACCEPTED;
|
|
sfasiwait(dev);
|
|
|
|
if ((dev->sc_status & SFAS_STAT_PHASE_MASK) !=
|
|
SFAS_PHASE_MESSAGE_IN)
|
|
break;
|
|
}
|
|
|
|
cmd = SFAS_CMD_MESSAGE_ACCEPTED;
|
|
if (nexus->flags & SFAS_NF_HAS_MSG) {
|
|
/* We have a message. Decode it. */
|
|
|
|
switch(dev->sc_msg_in[0]) {
|
|
case 0x00: /* COMMAND COMPLETE */
|
|
if ((nexus->status == SCSI_CHECK) &&
|
|
!(nexus->flags & SFAS_NF_SENSING))
|
|
nexus->state = SFAS_NS_SENSE;
|
|
else
|
|
nexus->state = SFAS_NS_DONE;
|
|
break;
|
|
case 0x04: /* DISCONNECT */
|
|
nexus->state = SFAS_NS_DISCONNECTING;
|
|
break;
|
|
case 0x02: /* SAVE DATA POINTER */
|
|
sfas_save_pointers(dev);
|
|
break;
|
|
case 0x03: /* RESTORE DATA POINTERS */
|
|
sfas_restore_pointers(dev);
|
|
break;
|
|
case 0x07: /* MESSAGE REJECT */
|
|
/*
|
|
* If we had sent a SDTR and we got a message
|
|
* reject, the scsi docs say that we must go
|
|
* to async transfer.
|
|
*/
|
|
if (nexus->flags & SFAS_NF_SDTR_SENT) {
|
|
nexus->flags &= ~SFAS_NF_SDTR_SENT;
|
|
|
|
nexus->config3 &= ~SFAS_CFG3_FASTSCSI;
|
|
nexus->syncper = 5;
|
|
nexus->syncoff = 0;
|
|
|
|
*rp->sfas_syncper = nexus->syncper;
|
|
*rp->sfas_syncoff = nexus->syncoff;
|
|
*rp->sfas_config3 = nexus->config3;
|
|
} else
|
|
/*
|
|
* Something was rejected but we don't know
|
|
* what! PANIC!
|
|
*/
|
|
panic("sfasintr: Unknown message rejected!");
|
|
break;
|
|
case 0x08: /* MO OPERATION */
|
|
break;
|
|
case 0x01: /* EXTENDED MESSAGE */
|
|
switch(dev->sc_msg_in[2]) {
|
|
case 0x01:/* SYNC. DATA TRANSFER REQUEST */
|
|
/* Decode the SDTR message. */
|
|
period = 4*dev->sc_msg_in[3];
|
|
offset = dev->sc_msg_in[4];
|
|
|
|
/*
|
|
* Make sure that the specs are within
|
|
* chip limits. Note that if we
|
|
* initiated the negotiation the specs
|
|
* WILL be withing chip limits. If it
|
|
* was the scsi unit that initiated
|
|
* the negotiation, the specs may be
|
|
* to high.
|
|
*/
|
|
if (offset > 16)
|
|
offset = 16;
|
|
if ((period < 200) &&
|
|
(dev->sc_clock_freq <= 25))
|
|
period = 200;
|
|
|
|
if (offset == 0)
|
|
period = 5*dev->sc_clock_period;
|
|
|
|
nexus->syncper = period/
|
|
dev->sc_clock_period;
|
|
nexus->syncoff = offset;
|
|
|
|
if (period < 200)
|
|
nexus->config3 |= SFAS_CFG3_FASTSCSI;
|
|
else
|
|
nexus->config3 &=~SFAS_CFG3_FASTSCSI;
|
|
|
|
nexus->flags |= SFAS_NF_SYNC_TESTED;
|
|
|
|
*rp->sfas_syncper = nexus->syncper;
|
|
*rp->sfas_syncoff = nexus->syncoff;
|
|
*rp->sfas_config3 = nexus->config3;
|
|
|
|
/*
|
|
* Hmmm, it seems that the scsi unit
|
|
* initiated sync negotiation, so lets
|
|
* reply acording to scsi-2 standard.
|
|
*/
|
|
if (!(nexus->flags& SFAS_NF_SDTR_SENT))
|
|
{
|
|
if ((dev->sc_config_flags &
|
|
SFAS_NO_SYNCH) ||
|
|
(dev->sc_config_flags &
|
|
SFAS_NO_DMA) ||
|
|
sfas_inhibit_sync[
|
|
nexus->lun_unit & 7]) {
|
|
period = 200;
|
|
offset = 0;
|
|
}
|
|
|
|
nexus->offset = offset;
|
|
nexus->period = period;
|
|
nexus->flags |= SFAS_NF_DO_SDTR;
|
|
*rp->sfas_command = SFAS_CMD_SET_ATN;
|
|
}
|
|
|
|
nexus->flags &= ~SFAS_NF_SDTR_SENT;
|
|
break;
|
|
|
|
case 0x00: /* MODIFY DATA POINTERS */
|
|
case 0x02: /* EXTENDED IDENTIFY (SCSI-1) */
|
|
case 0x03: /* WIDE DATA TRANSFER REQUEST */
|
|
default:
|
|
/* Reject any unhandeled messages. */
|
|
|
|
dev->sc_msg_out[0] = 0x07;
|
|
dev->sc_msg_out_len = 1;
|
|
*rp->sfas_command = SFAS_CMD_SET_ATN;
|
|
cmd = SFAS_CMD_MESSAGE_ACCEPTED;
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
/* Reject any unhandeled messages. */
|
|
|
|
dev->sc_msg_out[0] = 0x07;
|
|
dev->sc_msg_out_len = 1;
|
|
*rp->sfas_command = SFAS_CMD_SET_ATN;
|
|
cmd = SFAS_CMD_MESSAGE_ACCEPTED;
|
|
break;
|
|
}
|
|
nexus->flags &= ~SFAS_NF_HAS_MSG;
|
|
dev->sc_msg_in_len = 0;
|
|
}
|
|
break;
|
|
default:
|
|
printf("SFASINTR: UNKNOWN PHASE! phase: %d\n",
|
|
dev->sc_status & SFAS_STAT_PHASE_MASK);
|
|
dev->sc_led(dev, 0);
|
|
sfas_scsidone(dev, nexus->xs, -4);
|
|
|
|
return(-1);
|
|
}
|
|
|
|
if (cmd)
|
|
*rp->sfas_command = cmd;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Stub for interrupt machine.
|
|
*/
|
|
void
|
|
sfasintr(dev)
|
|
struct sfas_softc *dev;
|
|
{
|
|
sfas_regmap_p rp;
|
|
struct nexus *nexus;
|
|
|
|
rp = dev->sc_fas;
|
|
|
|
if (!sfas_pretests(dev, rp)) {
|
|
|
|
nexus = dev->sc_cur_nexus;
|
|
if (nexus == NULL)
|
|
nexus = dev->sc_sel_nexus;
|
|
|
|
if (nexus)
|
|
if (!sfas_midaction(dev, rp, nexus))
|
|
sfas_postaction(dev, rp, nexus);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* sfasicmd is used to perform IO when we can't use interrupts. sfasicmd
|
|
* emulates the normal environment by waiting for the chip and calling
|
|
* sfasintr.
|
|
*/
|
|
void
|
|
sfasicmd(dev, pendp)
|
|
struct sfas_softc *dev;
|
|
struct sfas_pending *pendp;
|
|
{
|
|
sfas_regmap_p rp;
|
|
struct nexus *nexus;
|
|
|
|
nexus = &dev->sc_nexus[pendp->xs->sc_link->target];
|
|
rp = dev->sc_fas;
|
|
|
|
if (!sfasselect(dev, pendp, (char *)pendp->xs->cmd, pendp->xs->cmdlen,
|
|
(char *)pendp->xs->data, pendp->xs->datalen,
|
|
SFAS_SELECT_I))
|
|
panic("sfasicmd: Couldn't select unit");
|
|
|
|
while(nexus->state != SFAS_NS_FINISHED) {
|
|
sfasiwait(dev);
|
|
sfasintr(dev);
|
|
}
|
|
|
|
nexus->flags &= ~SFAS_NF_SYNC_TESTED;
|
|
}
|