NetBSD/sys/dev/rndpool.c
sommerfeld 7497ddcce5 /dev/random code cleanups:
- Add comments about which spls apply to which data structures.
 - Consistently protect the rnd_samples queue (the queue of
unprocessed samples) at splhigh().
 - allow MD code to supply cpu_timestamp() and cpu_havetimestamp() for
an optional higher-resolution clock/roulette wheel source.
 - Collect more statistics on the pool state (keeping track of where
collected bits are going, in addition to where they came from).
 - Add RNDGETPOOLSTAT ioctl to get the additional stats.
 - Flush a few unused rndpool calls.
 - XXX XXX Cryptographic changes:
  - 32-bit rotate is:
	((val << rp->rotate) | (val >> (32 - rp->rotate))),
    not
	(val << rp->rotate) | (val >> rp->rotate)
    or
	((val << rp->rotate) | (val >> (31 - rp->rotate)))
  - Avoid overloading of rp->rotate and double-rotation of data
(which limited pool mixing somewhat; "rotate" never got above 7).
  - Be more paranoid (but probably not paranoid enough) about mixing
output back into the pool.  This is an improvement, but it needs
revisiting soon.

We should follow the spirit of some of the recommendations in
the Schneier PRNG papers:

http://www.counterpane.com/yarrow-notes.html
http://www.counterpane.com/pseudorandom_number.html

including:
 - two (or more) stage operation for better isolation between inputs
and outputs.
 - use of keyed one-way functions (probably better even than
invertible keyed functions like 3DES) at key points in the data flow,
so that breaking the PRNG is clearly as hard as breaking the function.
2000-06-05 23:42:34 +00:00

318 lines
8.0 KiB
C

/* $NetBSD: rndpool.c,v 1.9 2000/06/05 23:42:34 sommerfeld Exp $ */
/*-
* Copyright (c) 1997 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Michael Graff <explorer@flame.org>. This code uses ideas and
* algorithms from the Linux driver written by Ted Ts'o.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/sha1.h>
#include <sys/rnd.h>
/*
* The random pool "taps"
*/
#define TAP1 99
#define TAP2 59
#define TAP3 31
#define TAP4 9
#define TAP5 7
static inline void rndpool_add_one_word(rndpool_t *, u_int32_t);
void
rndpool_init(rp)
rndpool_t *rp;
{
rp->cursor = 0;
rp->rotate = 0;
memset(&rp->stats, 0, sizeof(rp->stats));
rp->stats.curentropy = 0;
rp->stats.poolsize = RND_POOLWORDS;
rp->stats.threshold = RND_ENTROPY_THRESHOLD;
rp->stats.maxentropy = RND_POOLBITS;
assert(RND_ENTROPY_THRESHOLD*2 <= 20); /* XXX sha knowledge */
}
u_int32_t
rndpool_get_entropy_count(rp)
rndpool_t *rp;
{
return rp->stats.curentropy;
}
void rndpool_get_stats(rp, rsp, size)
rndpool_t *rp;
void *rsp;
int size;
{
memcpy(rsp, &rp->stats, size);
}
void
rndpool_increment_entropy_count(rp, entropy)
rndpool_t *rp;
u_int32_t entropy;
{
rp->stats.curentropy += entropy;
rp->stats.added += entropy;
if (rp->stats.curentropy > RND_POOLBITS) {
rp->stats.discarded += (rp->stats.curentropy - RND_POOLBITS);
rp->stats.curentropy = RND_POOLBITS;
}
}
u_int32_t *
rndpool_get_pool(rp)
rndpool_t *rp;
{
return (rp->pool);
}
u_int32_t
rndpool_get_poolsize(void)
{
return (RND_POOLWORDS);
}
/*
* Add one word to the pool, rotating the input as needed.
*/
static inline void
rndpool_add_one_word(rp, val)
rndpool_t *rp;
u_int32_t val;
{
/*
* Steal some values out of the pool, and xor them into the
* word we were given.
*
* Mix the new value into the pool using xor. This will
* prevent the actual values from being known to the caller
* since the previous values are assumed to be unknown as well.
*/
val ^= rp->pool[(rp->cursor + TAP1) & (RND_POOLWORDS - 1)];
val ^= rp->pool[(rp->cursor + TAP2) & (RND_POOLWORDS - 1)];
val ^= rp->pool[(rp->cursor + TAP3) & (RND_POOLWORDS - 1)];
val ^= rp->pool[(rp->cursor + TAP4) & (RND_POOLWORDS - 1)];
val ^= rp->pool[(rp->cursor + TAP5) & (RND_POOLWORDS - 1)];
rp->pool[rp->cursor++] ^=
((val << rp->rotate) | (val >> (32 - rp->rotate)));
/*
* If we have looped around the pool, increment the rotate
* variable so the next value will get xored in rotated to
* a different position.
* Increment by a value that is relativly prime to the word size
* to try to spread the bits throughout the pool quickly when the
* pool is empty.
*/
if (rp->cursor == RND_POOLWORDS) {
rp->cursor = 0;
rp->rotate = (rp->rotate + 7) & 31;
}
}
#if 0
/*
* Stir a 32-bit value (with possibly less entropy than that) into the pool.
* Update entropy estimate.
*/
void
rndpool_add_uint32(rp, val, entropy)
rndpool_t *rp;
u_int32_t val;
u_int32_t entropy;
{
rndpool_add_one_word(rp, val);
rp->entropy += entropy;
rp->stats.added += entropy;
if (rp->entropy > RND_POOLBITS) {
rp->stats.discarded += (rp->entropy - RND_POOLBITS);
rp->entropy = RND_POOLBITS;
}
}
#endif
/*
* add a buffer's worth of data to the pool.
*/
void
rndpool_add_data(rp, p, len, entropy)
rndpool_t *rp;
void *p;
u_int32_t len;
u_int32_t entropy;
{
u_int32_t val;
u_int8_t *buf;
buf = p;
for (; len > 3 ; len -= 4) {
val = *((u_int32_t *)buf);
rndpool_add_one_word(rp, val);
buf += 4;
}
if (len != 0) {
val = 0;
switch (len) {
case 3:
val = *buf++;
case 2:
val = val << 8 | *buf++;
case 1:
val = val << 8 | *buf++;
}
rndpool_add_one_word(rp, val);
}
rp->stats.curentropy += entropy;
rp->stats.added += entropy;
if (rp->stats.curentropy > RND_POOLBITS) {
rp->stats.discarded += (rp->stats.curentropy - RND_POOLBITS);
rp->stats.curentropy = RND_POOLBITS;
}
}
/*
* Extract some number of bytes from the random pool, decreasing the
* estimate of randomness as each byte is extracted.
*
* Do this by stiring the pool and returning a part of hash as randomness.
* Note that no secrets are given away here since parts of the hash are
* xored together before returned.
*
* Honor the request from the caller to only return good data, any data,
* etc. Note that we must have at least 64 bits of entropy in the pool
* before we return anything in the high-quality modes.
*/
int
rndpool_extract_data(rp, p, len, mode)
rndpool_t *rp;
void *p;
u_int32_t len;
u_int32_t mode;
{
u_int i;
SHA1_CTX hash;
u_char digest[20]; /* XXX SHA knowledge */
u_int32_t remain, deltae, count;
u_int8_t *buf;
int good;
buf = p;
remain = len;
if (mode == RND_EXTRACT_ANY)
good = 1;
else
good = (rp->stats.curentropy >= (8 * RND_ENTROPY_THRESHOLD));
assert(RND_ENTROPY_THRESHOLD*2 <= 20); /* XXX SHA knowledge */
while (good && (remain != 0)) {
/*
* While bytes are requested, compute the hash of the pool,
* and then "fold" the hash in half with XOR, keeping the
* exact hash value secret, as it will be stirred back into
* the pool.
*
* XXX this approach needs examination by competant
* cryptographers! It's rather expensive per bit but
* also involves every bit of the pool in the
* computation of every output bit..
*/
SHA1Init(&hash);
SHA1Update(&hash, (u_int8_t *)rp->pool, RND_POOLWORDS * 4);
SHA1Final(digest, &hash);
/*
* Stir the hash back into the pool. This guarantees
* that the next hash will generate a different value
* if no new values were added to the pool.
*/
for (i = 0 ; i < 5 ; i++) {
u_int32_t word;
memcpy(&word, &digest[i*4], 4);
rndpool_add_one_word(rp, word);
}
count = min(remain, RND_ENTROPY_THRESHOLD);
for (i=0; i<count; i++)
buf[i] = digest[i] ^ digest[i+RND_ENTROPY_THRESHOLD];
buf += count;
deltae = count * 8;
remain -= count;
deltae = min(deltae, rp->stats.curentropy);
rp->stats.removed += deltae;
rp->stats.curentropy -= deltae;
if (rp->stats.curentropy == 0)
rp->stats.generated += (count * 8) - deltae;
if (mode == RND_EXTRACT_GOOD)
good = (rp->stats.curentropy >=
(8 * RND_ENTROPY_THRESHOLD));
}
bzero(&hash, sizeof(hash));
bzero(digest, sizeof(digest));
return (len - remain);
}