NetBSD/sys/arch/i386/include/pmap.new.h
thorpej 5f3034757f Move the user-set LDT out of the PCB and into the pmap. Applications
which set the LDT and share VM space (e.g. new versions of WINE) expect
the LDT to be logically coupled to the address space.  Use the new pmap_fork()
interface to copy non-shared user-set LDTs when the address space is forked.
1999-05-12 19:28:28 +00:00

538 lines
17 KiB
C

/* $NetBSD: pmap.new.h,v 1.9 1999/05/12 19:28:30 thorpej Exp $ */
/*
*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgment:
* This product includes software developed by Charles D. Cranor and
* Washington University.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* pmap.h: see pmap.c for the history of this pmap module.
*/
#ifndef _I386_PMAP_H_
#define _I386_PMAP_H_
#include <machine/cpufunc.h>
#include <machine/pte.h>
#include <machine/segments.h>
#include <uvm/uvm_object.h>
/*
* see pte.h for a description of i386 MMU terminology and hardware
* interface.
*
* a pmap describes a processes' 4GB virtual address space. this
* virtual address space can be broken up into 1024 4MB regions which
* are described by PDEs in the PDP. the PDEs are defined as follows:
*
* (ranges are inclusive -> exclusive, just like vm_map_entry start/end)
* (the following assumes that KERNBASE is 0xf0000000)
*
* PDE#s VA range usage
* 0->959 0x0 -> 0xefc00000 user address space, note that the
* max user address is 0xefbfe000
* the final two pages in the last 4MB
* used to be reserved for the UAREA
* but now are no longer used
* 959 0xefc00000-> recursive mapping of PDP (used for
* 0xf0000000 linear mapping of PTPs)
* 960->1023 0xf0000000-> kernel address space (constant
* 0xffc00000 across all pmap's/processes)
* 1023 0xffc00000-> "alternate" recursive PDP mapping
* <end> (for other pmaps)
*
*
* note: a recursive PDP mapping provides a way to map all the PTEs for
* a 4GB address space into a linear chunk of virtual memory. in other
* words, the PTE for page 0 is the first int mapped into the 4MB recursive
* area. the PTE for page 1 is the second int. the very last int in the
* 4MB range is the PTE that maps VA 0xffffe000 (the last page in a 4GB
* address).
*
* all pmap's PD's must have the same values in slots 960->1023 so that
* the kernel is always mapped in every process. these values are loaded
* into the PD at pmap creation time.
*
* at any one time only one pmap can be active on a processor. this is
* the pmap whose PDP is pointed to by processor register %cr3. this pmap
* will have all its PTEs mapped into memory at the recursive mapping
* point (slot #959 as show above). when the pmap code wants to find the
* PTE for a virtual address, all it has to do is the following:
*
* address of PTE = (959 * 4MB) + (VA / NBPG) * sizeof(pt_entry_t)
* = 0xefc00000 + (VA /4096) * 4
*
* what happens if the pmap layer is asked to perform an operation
* on a pmap that is not the one which is currently active? in that
* case we take the PA of the PDP of non-active pmap and put it in
* slot 1023 of the active pmap. this causes the non-active pmap's
* PTEs to get mapped in the final 4MB of the 4GB address space
* (e.g. starting at 0xffc00000).
*
* the following figure shows the effects of the recursive PDP mapping:
*
* PDP (%cr3)
* +----+
* | 0| -> PTP#0 that maps VA 0x0 -> 0x400000
* | |
* | |
* | 959| -> points back to PDP (%cr3) mapping VA 0xefc00000 -> 0xf0000000
* | 960| -> first kernel PTP (maps 0xf0000000 -> 0xf0400000)
* | |
* |1023| -> points to alternate pmap's PDP (maps 0xffc00000 -> end)
* +----+
*
* note that the PDE#959 VA (0xefc00000) is defined as "PTE_BASE"
* note that the PDE#1023 VA (0xffc00000) is defined as "APTE_BASE"
*
* starting at VA 0xefc00000 the current active PDP (%cr3) acts as a
* PTP:
*
* PTP#959 == PDP(%cr3) => maps VA 0xefc00000 -> 0xf0000000
* +----+
* | 0| -> maps the contents of PTP#0 at VA 0xefc00000->0xefc01000
* | |
* | |
* | 959| -> maps contents of PTP#959 (the PDP) at VA 0xeffbf000
* | 960| -> maps contents of first kernel PTP
* | |
* |1023|
* +----+
*
* note that mapping of the PDP at PTP#959's VA (0xeffbf000) is
* defined as "PDP_BASE".... within that mapping there are two
* defines:
* "PDP_PDE" (0xeffbfefc) is the VA of the PDE in the PDP
* which points back to itself.
* "APDP_PDE" (0xeffbfffc) is the VA of the PDE in the PDP which
* establishes the recursive mapping of the alternate pmap.
* to set the alternate PDP, one just has to put the correct
* PA info in *APDP_PDE.
*
* note that in the APTE_BASE space, the APDP appears at VA
* "APDP_BASE" (0xfffff000).
*/
/*
* the following defines identify the slots used as described above.
*/
#define PDSLOT_PTE ((KERNBASE/NBPD)-1) /* 959: for recursive PDP map */
#define PDSLOT_KERN (KERNBASE/NBPD) /* 960: start of kernel space */
#define PDSLOT_APTE ((unsigned)1023) /* 1023: alternative recursive slot */
/*
* the following defines give the virtual addresses of various MMU
* data structures:
* PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
* PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
* PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
*/
#define PTE_BASE ((pt_entry_t *) (PDSLOT_PTE * NBPD) )
#define APTE_BASE ((pt_entry_t *) (PDSLOT_APTE * NBPD) )
#define PDP_BASE ((pd_entry_t *) (((char *)PTE_BASE) + (PDSLOT_PTE * NBPG)) )
#define APDP_BASE ((pd_entry_t *) (((char *)APTE_BASE) + (PDSLOT_APTE * NBPG)) )
#define PDP_PDE (PDP_BASE + PDSLOT_PTE)
#define APDP_PDE (PDP_BASE + PDSLOT_APTE)
/*
* XXXCDC: tmp xlate from old names:
* PTDPTDI -> PDSLOT_PTE
* KPTDI -> PDSLOT_KERN
* APTDPTDI -> PDSLOT_APTE
*/
/*
* the follow define determines how many PTPs should be set up for the
* kernel by locore.s at boot time. this should be large enough to
* get the VM system running. once the VM system is running, the
* pmap module can add more PTPs to the kernel area on demand.
*/
#ifndef NKPTP
#define NKPTP 4 /* 16MB to start */
#endif
#define NKPTP_MIN 4 /* smallest value we allow */
#define NKPTP_MAX (1024 - (KERNBASE/NBPD) - 1)
/* largest value (-1 for APTP space) */
/*
* various address macros
*
* vtopte: return a pointer to the PTE mapping a VA
* kvtopte: same as above (takes a KVA, but doesn't matter with this pmap)
* ptetov: given a pointer to a PTE, return the VA that it maps
* vtophys: translate a VA to the PA mapped to it
*
* plus alternative versions of the above
*/
#define vtopte(VA) (PTE_BASE + i386_btop(VA))
#define kvtopte(VA) vtopte(VA)
#define ptetov(PT) (i386_ptob(PT - PTE_BASE))
#define vtophys(VA) ((*vtopte(VA) & PG_FRAME) | ((unsigned)(VA) & ~PG_FRAME))
#define avtopte(VA) (APTE_BASE + i386_btop(VA))
#define ptetoav(PT) (i386_ptob(PT - APTE_BASE))
#define avtophys(VA) ((*avtopte(VA) & PG_FRAME) | ((unsigned)(VA) & ~PG_FRAME))
/*
* pdei/ptei: generate index into PDP/PTP from a VA
*/
#define pdei(VA) (((VA) & PD_MASK) >> PDSHIFT)
#define ptei(VA) (((VA) & PT_MASK) >> PGSHIFT)
/*
* PTP macros:
* a PTP's index is the PD index of the PDE that points to it
* a PTP's offset is the byte-offset in the PTE space that this PTP is at
* a PTP's VA is the first VA mapped by that PTP
*
* note that NBPG == number of bytes in a PTP (4096 bytes == 1024 entries)
* NBPD == number of bytes a PTP can map (4MB)
*/
#define ptp_i2o(I) ((I) * NBPG) /* index => offset */
#define ptp_o2i(O) ((O) / NBPG) /* offset => index */
#define ptp_i2v(I) ((I) * NBPD) /* index => VA */
#define ptp_v2i(V) ((V) / NBPD) /* VA => index (same as pdei) */
/*
* PG_AVAIL usage: we make use of the ignored bits of the PTE
*/
#define PG_W PG_AVAIL1 /* "wired" mapping */
#define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
/* PG_AVAIL3 not used */
#ifdef _KERNEL
/*
* pmap data structures: see pmap.c for details of locking.
*/
struct pmap;
typedef struct pmap *pmap_t;
/*
* we maintain a list of all non-kernel pmaps
*/
LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
/*
* the pmap structure
*
* note that the pm_obj contains the simple_lock, the reference count,
* page list, and number of PTPs within the pmap.
*/
struct pmap {
struct uvm_object pm_obj; /* object (lck by object lock) */
#define pm_lock pm_obj.vmobjlock
LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
u_int32_t pm_pdirpa; /* PA of PD (read-only after create) */
struct vm_page *pm_ptphint; /* pointer to a random PTP in our pmap */
struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
int pm_flags; /* see below */
union descriptor *pm_ldt; /* user-set LDT */
int pm_ldt_len; /* number of LDT entries */
int pm_ldt_sel; /* LDT selector */
};
/* pm_flags */
#define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
/*
* for each managed physical page we maintain a list of <PMAP,VA>'s
* which it is mapped at. the list is headed by a pv_head structure.
* there is one pv_head per managed phys page (allocated at boot time).
* the pv_head structure points to a list of pv_entry structures (each
* describes one mapping).
*/
struct pv_entry;
struct pv_head {
simple_lock_data_t pvh_lock; /* locks every pv on this list */
struct pv_entry *pvh_list; /* head of list (locked by pvh_lock) */
};
struct pv_entry { /* all fields locked by their pvh_lock */
struct pv_entry *pv_next; /* next entry */
struct pmap *pv_pmap; /* the pmap */
vaddr_t pv_va; /* the virtual address */
struct vm_page *pv_ptp; /* the vm_page of the PTP */
};
/*
* pv_entrys are dynamically allocated in chunks from a single page.
* we keep track of how many pv_entrys are in use for each page and
* we can free pv_entry pages if needed. there is one lock for the
* entire allocation system.
*/
struct pv_page_info {
TAILQ_ENTRY(pv_page) pvpi_list;
struct pv_entry *pvpi_pvfree;
int pvpi_nfree;
};
/*
* number of pv_entry's in a pv_page
* (note: won't work on systems where NPBG isn't a constant)
*/
#define PVE_PER_PVPAGE ( (NBPG - sizeof(struct pv_page_info)) / \
sizeof(struct pv_entry) )
/*
* a pv_page: where pv_entrys are allocated from
*/
struct pv_page {
struct pv_page_info pvinfo;
struct pv_entry pvents[PVE_PER_PVPAGE];
};
/*
* pmap_remove_record: a record of VAs that have been unmapped, used to
* flush TLB. if we have more than PMAP_RR_MAX then we stop recording.
*/
#define PMAP_RR_MAX 16 /* max of 16 pages (64K) */
struct pmap_remove_record {
int prr_npages;
vaddr_t prr_vas[PMAP_RR_MAX];
};
/*
* pmap_transfer_location: used to pass the current location in the
* pmap between pmap_transfer and pmap_transfer_ptes [e.g. during
* a pmap_copy].
*/
struct pmap_transfer_location {
vaddr_t addr; /* the address (page-aligned) */
pt_entry_t *pte; /* the PTE that maps address */
struct vm_page *ptp; /* the PTP that the PTE lives in */
};
/*
* global kernel variables
*/
/* PTDpaddr: is the physical address of the kernel's PDP */
extern u_long PTDpaddr;
extern struct pmap kernel_pmap_store; /* kernel pmap */
extern int nkpde; /* current # of PDEs for kernel */
extern int pmap_pg_g; /* do we support PG_G? */
/*
* macros
*/
#define pmap_kernel() (&kernel_pmap_store)
#define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
#define pmap_update() tlbflush()
#define pmap_clear_modify(pg) pmap_change_attrs(pg, 0, PG_M)
#define pmap_clear_reference(pg) pmap_change_attrs(pg, 0, PG_U)
#define pmap_copy(DP,SP,D,L,S) pmap_transfer(DP,SP,D,L,S, FALSE)
#define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
#define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
#define pmap_move(DP,SP,D,L,S) pmap_transfer(DP,SP,D,L,S, TRUE)
#define pmap_phys_address(ppn) i386_ptob(ppn)
#define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
/*
* prototypes
*/
void pmap_activate __P((struct proc *));
void pmap_bootstrap __P((vaddr_t));
boolean_t pmap_change_attrs __P((struct vm_page *, int, int));
void pmap_deactivate __P((struct proc *));
static void pmap_kenter_pa __P((vaddr_t, paddr_t, vm_prot_t));
static void pmap_page_protect __P((struct vm_page *, vm_prot_t));
void pmap_page_remove __P((struct vm_page *));
static void pmap_protect __P((struct pmap *, vaddr_t,
vaddr_t, vm_prot_t));
void pmap_remove __P((struct pmap *, vaddr_t, vaddr_t));
boolean_t pmap_test_attrs __P((struct vm_page *, int));
void pmap_transfer __P((struct pmap *, struct pmap *, vaddr_t,
vsize_t, vaddr_t, boolean_t));
static void pmap_update_pg __P((vaddr_t));
static void pmap_update_2pg __P((vaddr_t,vaddr_t));
void pmap_write_protect __P((struct pmap *, vaddr_t,
vaddr_t, vm_prot_t));
vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */
#define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
/*
* inline functions
*/
/*
* pmap_update_pg: flush one page from the TLB (or flush the whole thing
* if hardware doesn't support one-page flushing)
*/
__inline static void pmap_update_pg(va)
vaddr_t va;
{
#if defined(I386_CPU)
if (cpu_class == CPUCLASS_386)
pmap_update();
else
#endif
invlpg((u_int) va);
}
/*
* pmap_update_2pg: flush two pages from the TLB
*/
__inline static void pmap_update_2pg(va, vb)
vaddr_t va, vb;
{
#if defined(I386_CPU)
if (cpu_class == CPUCLASS_386)
pmap_update();
else
#endif
{
invlpg((u_int) va);
invlpg((u_int) vb);
}
}
/*
* pmap_page_protect: change the protection of all recorded mappings
* of a managed page
*
* => this function is a frontend for pmap_page_remove/pmap_change_attrs
* => we only have to worry about making the page more protected.
* unprotecting a page is done on-demand at fault time.
*/
__inline static void pmap_page_protect(pg, prot)
struct vm_page *pg;
vm_prot_t prot;
{
if ((prot & VM_PROT_WRITE) == 0) {
if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
(void) pmap_change_attrs(pg, PG_RO, PG_RW);
} else {
pmap_page_remove(pg);
}
}
}
/*
* pmap_protect: change the protection of pages in a pmap
*
* => this function is a frontend for pmap_remove/pmap_write_protect
* => we only have to worry about making the page more protected.
* unprotecting a page is done on-demand at fault time.
*/
__inline static void pmap_protect(pmap, sva, eva, prot)
struct pmap *pmap;
vaddr_t sva, eva;
vm_prot_t prot;
{
if ((prot & VM_PROT_WRITE) == 0) {
if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
pmap_write_protect(pmap, sva, eva, prot);
} else {
pmap_remove(pmap, sva, eva);
}
}
}
/*
* pmap_kenter_pa: enter a kernel mapping without R/M (pv_entry) tracking
*
* => no need to lock anything, assume va is already allocated
* => should be faster than normal pmap enter function
*/
__inline static void pmap_kenter_pa(va, pa, prot)
vaddr_t va;
paddr_t pa;
vm_prot_t prot;
{
struct pmap *pm = pmap_kernel();
pt_entry_t *pte, opte;
int s;
s = splimp();
simple_lock(&pm->pm_obj.vmobjlock);
pm->pm_stats.resident_count++;
pm->pm_stats.wired_count++;
simple_unlock(&pm->pm_obj.vmobjlock);
splx(s);
pte = vtopte(va);
opte = *pte;
*pte = pa | ((prot & VM_PROT_WRITE)? PG_RW : PG_RO) |
PG_V | pmap_pg_g; /* zap! */
if (pmap_valid_entry(opte))
pmap_update_pg(va);
}
vaddr_t pmap_map __P((vaddr_t, paddr_t, paddr_t, int));
#if defined(USER_LDT)
void pmap_ldt_cleanup __P((struct proc *));
#define PMAP_FORK
#endif /* USER_LDT */
#endif /* _KERNEL */
#endif /* _I386_PMAP_H_ */