NetBSD/sys/arch/evbarm/gemini/gemini_machdep.c

1223 lines
37 KiB
C

/* $NetBSD: gemini_machdep.c,v 1.24 2016/12/30 07:35:14 rin Exp $ */
/* adapted from:
* NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp
*/
/*
* Machine dependent functions for kernel setup for TI OSK5912 board.
* Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c
*
* Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
* Written by Hiroyuki Bessho for Genetec Corporation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of Genetec Corporation may not be used to endorse or
* promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Copyright (c) 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997,1998 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Copyright (c) 2007 Microsoft
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Microsoft
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: gemini_machdep.c,v 1.24 2016/12/30 07:35:14 rin Exp $");
#include "opt_machdep.h"
#include "opt_ddb.h"
#include "opt_kgdb.h"
#include "opt_ipkdb.h"
#include "opt_md.h"
#include "opt_com.h"
#include "opt_gemini.h"
#include "geminiwdt.h"
#include "geminiipm.h"
#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <sys/ksyms.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/conf.h>
#include <uvm/uvm_extern.h>
#include <dev/cons.h>
#include <dev/md.h>
#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#ifdef KGDB
#include <sys/kgdb.h>
#endif
#include <arm/locore.h>
#include <arm/undefined.h>
#include <arm/arm32/machdep.h>
#include <machine/bootconfig.h>
#include <arm/gemini/gemini_reg.h>
#include <arm/gemini/gemini_var.h>
#include <arm/gemini/gemini_wdtvar.h>
#include <arm/gemini/gemini_com.h>
#include <arm/gemini/lpc_com.h>
#include <evbarm/gemini/gemini.h>
#if defined(VERBOSE_INIT_ARM)
# define GEMINI_PUTCHAR(c) gemini_putchar(c)
# define GEMINI_PUTHEX(n) gemini_puthex(n)
#else /* VERBOSE_INIT_ARM */
# define GEMINI_PUTCHAR(c)
# define GEMINI_PUTHEX(n)
#endif /* VERBOSE_INIT_ARM */
BootConfig bootconfig; /* Boot config storage */
char *boot_args = NULL;
char *boot_file = NULL;
/* Physical address of the beginning of SDRAM. */
paddr_t physical_start;
/* Physical address of the first byte after the end of SDRAM. */
paddr_t physical_end;
/* Same things, but for the free (unused by the kernel) memory. */
static paddr_t physical_freestart, physical_freeend;
static u_int free_pages;
/* Physical address of the message buffer. */
paddr_t msgbufphys;
extern char KERNEL_BASE_phys[];
extern char KERNEL_BASE_virt[];
extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[];
extern char _end[];
#define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
#define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
#define KERNEL_PT_KERNEL_NUM 4
#define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
/* Page tables for mapping kernel VM */
#define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
#if (NGEMINIIPM > 0)
pv_addr_t ipmq_pt; /* L2 Page table for mapping IPM queues */
#if defined(DEBUG) || 1
unsigned long gemini_ipmq_pbase = GEMINI_IPMQ_PBASE;
unsigned long gemini_ipmq_vbase = GEMINI_IPMQ_VBASE;
#endif /* DEBUG */
#endif /* NGEMINIIPM > 0 */
/*
* Macros to translate between physical and virtual for a subset of the
* kernel address space. *Not* for general use.
*/
#define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys)
#define KERN_VTOPHYS(va) \
((paddr_t)((vaddr_t)va - KERNEL_BASE + GEMINI_DRAM_BASE))
#define KERN_PHYSTOV(pa) \
((vaddr_t)((paddr_t)pa - GEMINI_DRAM_BASE + KERNEL_BASE))
/* Prototypes */
void gemini_intr_init(bus_space_tag_t);
void consinit(void);
#ifdef KGDB
static void kgdb_port_init(void);
#endif
static void setup_real_page_tables(void);
static void init_clocks(void);
bs_protos(bs_notimpl);
#include "com.h"
#if NCOM > 0
#include <dev/ic/comreg.h>
#include <dev/ic/comvar.h>
#endif
static void gemini_global_reset(void) __attribute__ ((noreturn));
static void gemini_cpu1_start(void);
static void gemini_memchk(void);
static void
gemini_global_reset(void)
{
#if defined(GEMINI_MASTER) || defined(GEMINI_SINGLE)
volatile uint32_t *rp;
uint32_t r;
rp = (volatile uint32_t *)
(GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
r = *rp;
r |= GLOBAL_RESET_GLOBAL;
*rp = r;
#endif
for(;;);
/* NOTREACHED */
}
static void
gemini_cpu1_start(void)
{
#ifdef GEMINI_MASTER
volatile uint32_t *rp;
uint32_t r;
rp = (volatile uint32_t *)
(GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
r = *rp;
r &= ~GLOBAL_RESET_CPU1;
*rp = r;
#endif
}
static void
gemini_memchk(void)
{
volatile uint32_t *rp;
uint32_t r;
uint32_t base;
uint32_t size;
rp = (volatile uint32_t *)
(GEMINI_DRAMC_VBASE + GEMINI_DRAMC_RMCR);
r = *rp;
base = (r & DRAMC_RMCR_RMBAR) >> DRAMC_RMCR_RMBAR_SHFT;
size = (r & DRAMC_RMCR_RMSZR) >> DRAMC_RMCR_RMSZR_SHFT;
#if defined(GEMINI_SINGLE)
if (r != 0)
panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
__FUNCTION__, r, MEMSIZE);
#elif defined(GEMINI_MASTER)
if (base != MEMSIZE)
panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
__FUNCTION__, r, MEMSIZE);
#elif defined(GEMINI_SLAVE)
if (size != MEMSIZE)
panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
__FUNCTION__, r, MEMSIZE);
#endif
#if defined(VERBOSE_INIT_ARM) || 1
printf("DRAM Remap: base=%dMB, size=%dMB\n", base, size);
#endif
}
/*
* void cpu_reboot(int howto, char *bootstr)
*
* Reboots the system
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
void
cpu_reboot(int howto, char *bootstr)
{
extern struct geminitmr_softc *ref_sc;
#ifdef DIAGNOSTIC
/* info */
printf("boot: howto=%08x curproc=%p\n", howto, curproc);
#endif
/*
* If we are still cold then hit the air brakes
* and crash to earth fast
*/
if (cold) {
doshutdownhooks();
pmf_system_shutdown(boothowto);
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
printf("rebooting...\n");
if (ref_sc != NULL)
delay(2000); /* cnflush(); */
gemini_global_reset();
/*NOTREACHED*/
}
/* Disable console buffering */
cnpollc(1);
/*
* If RB_NOSYNC was not specified sync the discs.
* Note: Unless cold is set to 1 here, syslogd will die during the
* unmount. It looks like syslogd is getting woken up only to find
* that it cannot page part of the binary in as the filesystem has
* been unmounted.
*/
if (!(howto & RB_NOSYNC))
bootsync();
/* Say NO to interrupts */
splhigh();
/* Do a dump if requested. */
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
dumpsys();
/* Run any shutdown hooks */
doshutdownhooks();
pmf_system_shutdown(boothowto);
/* Make sure IRQ's are disabled */
IRQdisable;
if (howto & RB_HALT) {
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
}
printf("rebooting...\n");
if (ref_sc != NULL)
delay(2000); /* cnflush(); */
gemini_global_reset();
/*NOTREACHED*/
}
/*
* Static device mappings. These peripheral registers are mapped at
* fixed virtual addresses very early in initarm() so that we can use
* them while booting the kernel, and stay at the same address
* throughout whole kernel's life time.
*
* We use this table twice; once with bootstrap page table, and once
* with kernel's page table which we build up in initarm().
*
* Since we map these registers into the bootstrap page table using
* pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
* registers segment-aligned and segment-rounded in order to avoid
* using the 2nd page tables.
*/
#define _A(a) ((a) & ~L1_S_OFFSET)
#define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
static const struct pmap_devmap devmap[] = {
/* Global regs */
{
.pd_va = _A(GEMINI_GLOBAL_VBASE),
.pd_pa = _A(GEMINI_GLOBAL_BASE),
.pd_size = _S(L1_S_SIZE),
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
.pd_cache = PTE_NOCACHE
},
/* Watchdog */
{
.pd_va = _A(GEMINI_WATCHDOG_VBASE),
.pd_pa = _A(GEMINI_WATCHDOG_BASE),
.pd_size = _S(L1_S_SIZE),
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
.pd_cache = PTE_NOCACHE
},
/* UART */
{
.pd_va = _A(GEMINI_UART_VBASE),
.pd_pa = _A(GEMINI_UART_BASE),
.pd_size = _S(L1_S_SIZE),
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
.pd_cache = PTE_NOCACHE
},
/* LPCHC */
{
.pd_va = _A(GEMINI_LPCHC_VBASE),
.pd_pa = _A(GEMINI_LPCHC_BASE),
.pd_size = _S(L1_S_SIZE),
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
.pd_cache = PTE_NOCACHE
},
/* LPCIO */
{
.pd_va = _A(GEMINI_LPCIO_VBASE),
.pd_pa = _A(GEMINI_LPCIO_BASE),
.pd_size = _S(L1_S_SIZE),
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
.pd_cache = PTE_NOCACHE
},
/* Timers */
{
.pd_va = _A(GEMINI_TIMER_VBASE),
.pd_pa = _A(GEMINI_TIMER_BASE),
.pd_size = _S(L1_S_SIZE),
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
.pd_cache = PTE_NOCACHE
},
/* DRAM Controller */
{
.pd_va = _A(GEMINI_DRAMC_VBASE),
.pd_pa = _A(GEMINI_DRAMC_BASE),
.pd_size = _S(L1_S_SIZE),
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
.pd_cache = PTE_NOCACHE
},
#if defined(MEMORY_DISK_DYNAMIC)
/* Ramdisk */
{
.pd_va = _A(GEMINI_RAMDISK_VBASE),
.pd_pa = _A(GEMINI_RAMDISK_PBASE),
.pd_size = _S(GEMINI_RAMDISK_SIZE),
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
.pd_cache = PTE_NOCACHE
},
#endif
{0} /* list terminator */
};
#undef _A
#undef _S
#ifdef DDB
static void gemini_db_trap(int where)
{
#if NGEMINIWDT > 0
static int oldwatchdogstate;
if (where) {
oldwatchdogstate = geminiwdt_enable(0);
} else {
geminiwdt_enable(oldwatchdogstate);
}
#endif
}
#endif
#if defined(VERBOSE_INIT_ARM) || 1
void gemini_putchar(char c);
void
gemini_putchar(char c)
{
unsigned char *com0addr = (unsigned char *)GEMINI_UART_VBASE;
int timo = 150000;
while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0)
if (--timo == 0)
break;
com0addr[COM_REG_TXDATA] = c;
while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0)
if (--timo == 0)
break;
}
void gemini_puthex(unsigned int);
void
gemini_puthex(unsigned int val)
{
char hexc[] = "0123456789abcdef";
gemini_putchar('0');
gemini_putchar('x');
gemini_putchar(hexc[(val >> 28) & 0xf]);
gemini_putchar(hexc[(val >> 24) & 0xf]);
gemini_putchar(hexc[(val >> 20) & 0xf]);
gemini_putchar(hexc[(val >> 16) & 0xf]);
gemini_putchar(hexc[(val >> 12) & 0xf]);
gemini_putchar(hexc[(val >> 8) & 0xf]);
gemini_putchar(hexc[(val >> 4) & 0xf]);
gemini_putchar(hexc[(val >> 0) & 0xf]);
}
#endif /* VERBOSE_INIT_ARM */
/*
* u_int initarm(...)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
* Taking a copy of the boot configuration structure.
* Initialising the physical console so characters can be printed.
* Setting up page tables for the kernel
* Relocating the kernel to the bottom of physical memory
*/
u_int
initarm(void *arg)
{
GEMINI_PUTCHAR('0');
/*
* start cpu#1 now
*/
gemini_cpu1_start();
/*
* When we enter here, we are using a temporary first level
* translation table with section entries in it to cover the OBIO
* peripherals and SDRAM. The temporary first level translation table
* is at the end of SDRAM.
*/
/* Heads up ... Setup the CPU / MMU / TLB functions. */
GEMINI_PUTCHAR('1');
if (set_cpufuncs())
panic("cpu not recognized!");
GEMINI_PUTCHAR('2');
init_clocks();
GEMINI_PUTCHAR('3');
/* The console is going to try to map things. Give pmap a devmap. */
pmap_devmap_register(devmap);
GEMINI_PUTCHAR('4');
consinit();
GEMINI_PUTCHAR('5');
#ifdef KGDB
kgdb_port_init();
#endif
/* Talk to the user */
printf("\nNetBSD/evbarm (gemini) booting ...\n");
#ifdef BOOT_ARGS
char mi_bootargs[] = BOOT_ARGS;
parse_mi_bootargs(mi_bootargs);
#endif
#ifdef VERBOSE_INIT_ARM
printf("initarm: Configuring system ...\n");
#endif
/*
* Set up the variables that define the availability of physical
* memory.
*/
gemini_memchk();
physical_start = GEMINI_DRAM_BASE;
#define MEMSIZE_BYTES (MEMSIZE * 1024 * 1024)
physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES;
physmem = (physical_end - physical_start) / PAGE_SIZE;
/* Fake bootconfig structure for the benefit of pmap.c. */
bootconfig.dramblocks = 1;
bootconfig.dram[0].address = physical_start;
bootconfig.dram[0].pages = physmem;
/*
* Our kernel is at the beginning of memory, so set our free space to
* all the memory after the kernel.
*/
physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end));
physical_freeend = physical_end;
free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
/*
* This is going to do all the hard work of setting up the first and
* and second level page tables. Pages of memory will be allocated
* and mapped for other structures that are required for system
* operation. When it returns, physical_freestart and free_pages will
* have been updated to reflect the allocations that were made. In
* addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack,
* abtstack, undstack, kernelstack, msgbufphys will be set to point to
* the memory that was allocated for them.
*/
setup_real_page_tables();
/*
* Moved from cpu_startup() as data_abort_handler() references
* this during uvm init.
*/
uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
#ifdef VERBOSE_INIT_ARM
printf("bootstrap done.\n");
#endif
arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
#ifdef VERBOSE_INIT_ARM
printf("init subsystems: stacks ");
#endif
set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper
* handler.
* Until then we will use a handler that just panics but tells us
* why.
* Initialisation of the vectors will just panic on a data abort.
* This just fills in a slightly better one.
*/
#ifdef VERBOSE_INIT_ARM
printf("vectors ");
#endif
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
/* Initialise the undefined instruction handlers */
#ifdef VERBOSE_INIT_ARM
printf("undefined ");
#endif
undefined_init();
/* Load memory into UVM. */
#ifdef VERBOSE_INIT_ARM
printf("page ");
#endif
uvm_md_init();
#if (GEMINI_RAM_RESV_PBASE != 0)
uvm_page_physload(atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
VM_FREELIST_DEFAULT);
uvm_page_physload(atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
VM_FREELIST_DEFAULT);
#else
uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
atop(physical_freestart), atop(physical_freeend),
VM_FREELIST_DEFAULT);
#endif
uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
VM_FREELIST_DEFAULT);
/* Boot strap pmap telling it where the kernel page table is */
#ifdef VERBOSE_INIT_ARM
printf("pmap ");
#endif
pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
#ifdef VERBOSE_INIT_ARM
printf("done.\n");
#endif
#ifdef IPKDB
/* Initialise ipkdb */
ipkdb_init();
if (boothowto & RB_KDB)
ipkdb_connect(0);
#endif
#if defined(MEMORY_DISK_DYNAMIC)
md_root_setconf((char *)GEMINI_RAMDISK_VBASE, GEMINI_RAMDISK_SIZE);
#endif
#ifdef KGDB
if (boothowto & RB_KDB) {
kgdb_debug_init = 1;
kgdb_connect(1);
}
#endif
#ifdef DDB
db_trap_callback = gemini_db_trap;
db_machine_init();
/* Firmware doesn't load symbols. */
ddb_init(0, NULL, NULL);
if (boothowto & RB_KDB)
Debugger();
#endif
printf("initarm done.\n");
/* We return the new stack pointer address */
return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}
static void
init_clocks(void)
{
}
#ifndef CONSADDR
#error Specify the address of the console UART with the CONSADDR option.
#endif
#ifndef CONSPEED
#define CONSPEED 19200
#endif
#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
static const bus_addr_t consaddr = CONSADDR;
static const int conspeed = CONSPEED;
static const int conmode = CONMODE;
#if CONSADDR==0x42000000
/*
* console initialization for obio com console
*/
void
consinit(void)
{
static int consinit_called = 0;
if (consinit_called != 0)
return;
consinit_called = 1;
if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed,
GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode))
panic("Serial console can not be initialized.");
}
#elif CONSADDR==0x478003f8
# include <arm/gemini/gemini_lpcvar.h>
/*
* console initialization for lpc com console
*/
void
consinit(void)
{
static int consinit_called = 0;
bus_space_tag_t iot = &gemini_bs_tag;
bus_space_handle_t lpchc_ioh;
bus_space_handle_t lpcio_ioh;
bus_size_t sz = L1_S_SIZE;
gemini_lpc_softc_t lpcsoftc;
gemini_lpc_bus_ops_t *ops;
void *lpctag = &lpcsoftc;
uint32_t r;
extern gemini_lpc_bus_ops_t gemini_lpc_bus_ops;
ops = &gemini_lpc_bus_ops;
if (consinit_called != 0)
return;
consinit_called = 1;
if (bus_space_map(iot, GEMINI_LPCHC_BASE, sz, 0, &lpchc_ioh))
panic("consinit: LPCHC can not be mapped.");
if (bus_space_map(iot, GEMINI_LPCIO_BASE, sz, 0, &lpcio_ioh))
panic("consinit: LPCIO can not be mapped.");
/* enable the LPC bus */
r = bus_space_read_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR);
r |= LPCHC_CSR_BEN;
bus_space_write_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR, r);
memset(&lpcsoftc, 0, sizeof(lpcsoftc));
lpcsoftc.sc_iot = iot;
lpcsoftc.sc_ioh = lpcio_ioh;
/* activate Serial Port 1 */
(*ops->lpc_pnp_enter)(lpctag);
(*ops->lpc_pnp_write)(lpctag, 1, 0x30, 0x01);
(*ops->lpc_pnp_exit)(lpctag);
if (comcnattach(iot, consaddr, conspeed,
IT8712F_COM_FREQ, COM_TYPE_NORMAL, conmode)) {
panic("Serial console can not be initialized.");
}
bus_space_unmap(iot, lpcio_ioh, sz);
bus_space_unmap(iot, lpchc_ioh, sz);
}
#else
# error unknown console
#endif
#ifdef KGDB
#ifndef KGDB_DEVADDR
#error Specify the address of the kgdb UART with the KGDB_DEVADDR option.
#endif
#ifndef KGDB_DEVRATE
#define KGDB_DEVRATE 19200
#endif
#ifndef KGDB_DEVMODE
#define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
static const vaddr_t comkgdbaddr = KGDB_DEVADDR;
static const int comkgdbspeed = KGDB_DEVRATE;
static const int comkgdbmode = KGDB_DEVMODE;
void
static kgdb_port_init(void)
{
static int kgdbsinit_called = 0;
if (kgdbsinit_called != 0)
return;
kgdbsinit_called = 1;
bus_space_handle_t bh;
if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr,
GEMINI_UART_SIZE, 0, &bh))
panic("kgdb port can not be mapped.");
if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed,
GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode))
panic("KGDB uart can not be initialized.");
bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE);
}
#endif
static void
setup_real_page_tables(void)
{
/*
* We need to allocate some fixed page tables to get the kernel going.
*
* We are going to allocate our bootstrap pages from the beginning of
* the free space that we just calculated. We allocate one page
* directory and a number of page tables and store the physical
* addresses in the kernel_pt_table array.
*
* The kernel page directory must be on a 16K boundary. The page
* tables must be on 4K boundaries. What we do is allocate the
* page directory on the first 16K boundary that we encounter, and
* the page tables on 4K boundaries otherwise. Since we allocate
* at least 3 L2 page tables, we are guaranteed to encounter at
* least one 16K aligned region.
*/
#ifdef VERBOSE_INIT_ARM
printf("Allocating page tables\n");
#endif
/*
* Define a macro to simplify memory allocation. As we allocate the
* memory, make sure that we don't walk over our temporary first level
* translation table.
*/
#define valloc_pages(var, np) \
(var).pv_pa = physical_freestart; \
physical_freestart += ((np) * PAGE_SIZE); \
if (physical_freestart > (physical_freeend - L1_TABLE_SIZE)) \
panic("initarm: out of memory"); \
free_pages -= (np); \
(var).pv_va = KERN_PHYSTOV((var).pv_pa); \
memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));
int loop, pt_index;
pt_index = 0;
kernel_l1pt.pv_pa = 0;
kernel_l1pt.pv_va = 0;
#ifdef VERBOSE_INIT_ARM
printf("%s: physical_freestart %#lx\n", __func__, physical_freestart);
#endif
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
/* Are we 16KB aligned for an L1 ? */
if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
&& kernel_l1pt.pv_pa == 0) {
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
} else {
valloc_pages(kernel_pt_table[pt_index],
L2_TABLE_SIZE / PAGE_SIZE);
++pt_index;
}
}
#if (NGEMINIIPM > 0)
valloc_pages(ipmq_pt, L2_TABLE_SIZE / PAGE_SIZE);
#endif
#ifdef VERBOSE_INIT_ARM
pt_index=0;
printf("%s: kernel_l1pt: %#lx:%#lx\n",
__func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
printf("%s: kernel_pt_table:\n", __func__);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va,
kernel_pt_table[pt_index].pv_pa);
++pt_index;
}
#if (NGEMINIIPM > 0)
printf("%s: ipmq_pt:\n", __func__);
printf("\t%#lx:%#lx\n", ipmq_pt.pv_va, ipmq_pt.pv_pa);
#endif
#endif
/* This should never be able to happen but better confirm that. */
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
panic("initarm: Failed to align the kernel page directory");
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
valloc_pages(systempage, 1);
systempage.pv_va = ARM_VECTORS_HIGH;
/* Allocate stacks for all modes */
valloc_pages(fiqstack, FIQ_STACK_SIZE);
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, UPAGES);
/* Allocate the message buffer. */
pv_addr_t msgbuf;
int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
valloc_pages(msgbuf, msgbuf_pgs);
msgbufphys = msgbuf.pv_pa;
/*
* Ok we have allocated physical pages for the primary kernel
* page tables
*/
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif
/*
* Now we start construction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
vaddr_t l1_va = kernel_l1pt.pv_va;
paddr_t l1_pa = kernel_l1pt.pv_pa;
/* Map the L2 pages tables in the L1 page table */
pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
&kernel_pt_table[KERNEL_PT_SYS]);
for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_KERNEL + loop]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000,
&kernel_pt_table[KERNEL_PT_VMDATA + loop]);
/* update the top of the kernel VM */
pmap_curmaxkvaddr =
KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
#if (NGEMINIIPM > 0)
printf("%s:%d: pmap_link_l2pt ipmq_pt\n", __FUNCTION__, __LINE__);
pmap_link_l2pt(l1_va, GEMINI_IPMQ_VBASE, &ipmq_pt);
#endif
#ifdef VERBOSE_INIT_ARM
printf("Mapping kernel\n");
#endif
/* Now we fill in the L2 pagetable for the kernel static code/data */
#define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME)
size_t textsize = round_L_page(etext - KERNEL_BASE_virt);
size_t totalsize = round_L_page(_end - KERNEL_BASE_virt);
/* offset of kernel in RAM */
u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE;
#ifdef DDB
/* Map text section read-write. */
offset += pmap_map_chunk(l1_va,
(vaddr_t)KERNEL_BASE + offset,
physical_start + offset, textsize,
VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
PTE_CACHE);
#else
/* Map text section read-only. */
offset += pmap_map_chunk(l1_va,
(vaddr_t)KERNEL_BASE + offset,
physical_start + offset, textsize,
VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE);
#endif
/* Map data and bss sections read-write. */
offset += pmap_map_chunk(l1_va,
(vaddr_t)KERNEL_BASE + offset,
physical_start + offset, totalsize - textsize,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#ifdef VERBOSE_INIT_ARM
printf("Constructing L2 page tables\n");
#endif
/* Map the stack pages */
pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa,
FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa,
UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va,
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
}
/* Map the vector page. */
pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#if (NGEMINIIPM > 0)
/* Map the IPM queue l2pt */
pmap_map_chunk(l1_va, ipmq_pt.pv_va, ipmq_pt.pv_pa,
L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
/* Map the IPM queue pages */
pmap_map_chunk(l1_va, GEMINI_IPMQ_VBASE, GEMINI_IPMQ_PBASE,
GEMINI_IPMQ_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
#ifdef GEMINI_SLAVE
/*
* Map all memory, incluuding that owned by other core
* take into account the RAM remap, so view in this region
* is consistent with MASTER
*/
pmap_map_chunk(l1_va,
GEMINI_ALLMEM_VBASE,
GEMINI_ALLMEM_PBASE + ((GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024),
(GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024,
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
pmap_map_chunk(l1_va,
GEMINI_ALLMEM_VBASE + GEMINI_BUSBASE * 1024 * 1024,
GEMINI_ALLMEM_PBASE,
(MEMSIZE * 1024 * 1024),
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#else
/* Map all memory, incluuding that owned by other core */
pmap_map_chunk(l1_va, GEMINI_ALLMEM_VBASE, GEMINI_ALLMEM_PBASE,
GEMINI_ALLMEM_SIZE * 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
#endif /* GEMINI_SLAVE */
#endif /* NGEMINIIPM */
/*
* Map integrated peripherals at same address in first level page
* table so that we can continue to use console.
*/
pmap_devmap_bootstrap(l1_va, devmap);
#ifdef VERBOSE_INIT_ARM
/* Tell the user about where all the bits and pieces live. */
printf("%22s Physical Virtual Num\n", " ");
printf("%22s Starting Ending Starting Ending Pages\n", " ");
static const char mem_fmt[] =
"%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n";
static const char mem_fmt_nov[] =
"%20s: 0x%08lx 0x%08lx %d\n";
printf(mem_fmt, "SDRAM", physical_start, physical_end-1,
KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1),
(int)physmem);
printf(mem_fmt, "text section",
KERN_VTOPHYS(KERNEL_BASE_virt), KERN_VTOPHYS(etext-1),
(vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1,
(int)(textsize / PAGE_SIZE));
printf(mem_fmt, "data section",
KERN_VTOPHYS(__data_start), KERN_VTOPHYS(_edata),
(vaddr_t)__data_start, (vaddr_t)_edata,
(int)((round_page((vaddr_t)_edata)
- trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
printf(mem_fmt, "bss section",
KERN_VTOPHYS(__bss_start), KERN_VTOPHYS(__bss_end__),
(vaddr_t)__bss_start, (vaddr_t)__bss_end__,
(int)((round_page((vaddr_t)__bss_end__)
- trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
printf(mem_fmt, "L1 page directory",
kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
L1_TABLE_SIZE / PAGE_SIZE);
printf(mem_fmt, "Exception Vectors",
systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
(vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1,
1);
printf(mem_fmt, "FIQ stack",
fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
FIQ_STACK_SIZE);
printf(mem_fmt, "IRQ stack",
irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
IRQ_STACK_SIZE);
printf(mem_fmt, "ABT stack",
abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
ABT_STACK_SIZE);
printf(mem_fmt, "UND stack",
undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
UND_STACK_SIZE);
printf(mem_fmt, "SVC stack",
kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
UPAGES);
printf(mem_fmt_nov, "Message Buffer",
msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1,
KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1),
free_pages);
#endif
/*
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page
* tables.
*/
/* Switch tables */
#ifdef VERBOSE_INIT_ARM
printf("switching to new L1 page table @%#lx...", l1_pa);
#endif
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
cpu_setttb(l1_pa, true);
cpu_tlb_flushID();
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
#ifdef VERBOSE_INIT_ARM
printf("OK.\n");
#endif
}