1223 lines
37 KiB
C
1223 lines
37 KiB
C
/* $NetBSD: gemini_machdep.c,v 1.24 2016/12/30 07:35:14 rin Exp $ */
|
|
|
|
/* adapted from:
|
|
* NetBSD: sdp24xx_machdep.c,v 1.4 2008/08/27 11:03:10 matt Exp
|
|
*/
|
|
|
|
/*
|
|
* Machine dependent functions for kernel setup for TI OSK5912 board.
|
|
* Based on lubbock_machdep.c which in turn was based on iq80310_machhdep.c
|
|
*
|
|
* Copyright (c) 2002, 2003, 2005 Genetec Corporation. All rights reserved.
|
|
* Written by Hiroyuki Bessho for Genetec Corporation.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. The name of Genetec Corporation may not be used to endorse or
|
|
* promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY GENETEC CORPORATION ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL GENETEC CORPORATION
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Copyright (c) 2001 Wasabi Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the NetBSD Project by
|
|
* Wasabi Systems, Inc.
|
|
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Copyright (c) 1997,1998 Mark Brinicombe.
|
|
* Copyright (c) 1997,1998 Causality Limited.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Mark Brinicombe
|
|
* for the NetBSD Project.
|
|
* 4. The name of the company nor the name of the author may be used to
|
|
* endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* Copyright (c) 2007 Microsoft
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Microsoft
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTERS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: gemini_machdep.c,v 1.24 2016/12/30 07:35:14 rin Exp $");
|
|
|
|
#include "opt_machdep.h"
|
|
#include "opt_ddb.h"
|
|
#include "opt_kgdb.h"
|
|
#include "opt_ipkdb.h"
|
|
#include "opt_md.h"
|
|
#include "opt_com.h"
|
|
#include "opt_gemini.h"
|
|
#include "geminiwdt.h"
|
|
#include "geminiipm.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/device.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/termios.h>
|
|
#include <sys/ksyms.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/conf.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <dev/cons.h>
|
|
#include <dev/md.h>
|
|
|
|
#include <machine/db_machdep.h>
|
|
#include <ddb/db_sym.h>
|
|
#include <ddb/db_extern.h>
|
|
#ifdef KGDB
|
|
#include <sys/kgdb.h>
|
|
#endif
|
|
|
|
#include <arm/locore.h>
|
|
#include <arm/undefined.h>
|
|
|
|
#include <arm/arm32/machdep.h>
|
|
|
|
#include <machine/bootconfig.h>
|
|
|
|
#include <arm/gemini/gemini_reg.h>
|
|
#include <arm/gemini/gemini_var.h>
|
|
#include <arm/gemini/gemini_wdtvar.h>
|
|
#include <arm/gemini/gemini_com.h>
|
|
#include <arm/gemini/lpc_com.h>
|
|
|
|
#include <evbarm/gemini/gemini.h>
|
|
|
|
#if defined(VERBOSE_INIT_ARM)
|
|
# define GEMINI_PUTCHAR(c) gemini_putchar(c)
|
|
# define GEMINI_PUTHEX(n) gemini_puthex(n)
|
|
#else /* VERBOSE_INIT_ARM */
|
|
# define GEMINI_PUTCHAR(c)
|
|
# define GEMINI_PUTHEX(n)
|
|
#endif /* VERBOSE_INIT_ARM */
|
|
|
|
BootConfig bootconfig; /* Boot config storage */
|
|
char *boot_args = NULL;
|
|
char *boot_file = NULL;
|
|
|
|
/* Physical address of the beginning of SDRAM. */
|
|
paddr_t physical_start;
|
|
/* Physical address of the first byte after the end of SDRAM. */
|
|
paddr_t physical_end;
|
|
|
|
/* Same things, but for the free (unused by the kernel) memory. */
|
|
static paddr_t physical_freestart, physical_freeend;
|
|
static u_int free_pages;
|
|
|
|
/* Physical address of the message buffer. */
|
|
paddr_t msgbufphys;
|
|
|
|
extern char KERNEL_BASE_phys[];
|
|
extern char KERNEL_BASE_virt[];
|
|
extern char etext[], __data_start[], _edata[], __bss_start[], __bss_end__[];
|
|
extern char _end[];
|
|
|
|
#define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
|
|
#define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
|
|
#define KERNEL_PT_KERNEL_NUM 4
|
|
#define KERNEL_PT_VMDATA (KERNEL_PT_KERNEL+KERNEL_PT_KERNEL_NUM)
|
|
/* Page tables for mapping kernel VM */
|
|
#define KERNEL_PT_VMDATA_NUM 4 /* start with 16MB of KVM */
|
|
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
|
|
|
|
pv_addr_t kernel_pt_table[NUM_KERNEL_PTS];
|
|
|
|
|
|
#if (NGEMINIIPM > 0)
|
|
pv_addr_t ipmq_pt; /* L2 Page table for mapping IPM queues */
|
|
#if defined(DEBUG) || 1
|
|
unsigned long gemini_ipmq_pbase = GEMINI_IPMQ_PBASE;
|
|
unsigned long gemini_ipmq_vbase = GEMINI_IPMQ_VBASE;
|
|
#endif /* DEBUG */
|
|
#endif /* NGEMINIIPM > 0 */
|
|
|
|
|
|
/*
|
|
* Macros to translate between physical and virtual for a subset of the
|
|
* kernel address space. *Not* for general use.
|
|
*/
|
|
#define KERNEL_BASE_PHYS ((paddr_t)&KERNEL_BASE_phys)
|
|
|
|
#define KERN_VTOPHYS(va) \
|
|
((paddr_t)((vaddr_t)va - KERNEL_BASE + GEMINI_DRAM_BASE))
|
|
#define KERN_PHYSTOV(pa) \
|
|
((vaddr_t)((paddr_t)pa - GEMINI_DRAM_BASE + KERNEL_BASE))
|
|
|
|
/* Prototypes */
|
|
|
|
void gemini_intr_init(bus_space_tag_t);
|
|
void consinit(void);
|
|
#ifdef KGDB
|
|
static void kgdb_port_init(void);
|
|
#endif
|
|
|
|
static void setup_real_page_tables(void);
|
|
static void init_clocks(void);
|
|
|
|
bs_protos(bs_notimpl);
|
|
|
|
#include "com.h"
|
|
#if NCOM > 0
|
|
#include <dev/ic/comreg.h>
|
|
#include <dev/ic/comvar.h>
|
|
#endif
|
|
|
|
|
|
static void gemini_global_reset(void) __attribute__ ((noreturn));
|
|
static void gemini_cpu1_start(void);
|
|
static void gemini_memchk(void);
|
|
|
|
static void
|
|
gemini_global_reset(void)
|
|
{
|
|
#if defined(GEMINI_MASTER) || defined(GEMINI_SINGLE)
|
|
volatile uint32_t *rp;
|
|
uint32_t r;
|
|
|
|
rp = (volatile uint32_t *)
|
|
(GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
|
|
r = *rp;
|
|
r |= GLOBAL_RESET_GLOBAL;
|
|
*rp = r;
|
|
#endif
|
|
for(;;);
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
static void
|
|
gemini_cpu1_start(void)
|
|
{
|
|
#ifdef GEMINI_MASTER
|
|
volatile uint32_t *rp;
|
|
uint32_t r;
|
|
|
|
rp = (volatile uint32_t *)
|
|
(GEMINI_GLOBAL_VBASE + GEMINI_GLOBAL_RESET_CTL);
|
|
r = *rp;
|
|
r &= ~GLOBAL_RESET_CPU1;
|
|
*rp = r;
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
gemini_memchk(void)
|
|
{
|
|
volatile uint32_t *rp;
|
|
uint32_t r;
|
|
uint32_t base;
|
|
uint32_t size;
|
|
|
|
rp = (volatile uint32_t *)
|
|
(GEMINI_DRAMC_VBASE + GEMINI_DRAMC_RMCR);
|
|
r = *rp;
|
|
base = (r & DRAMC_RMCR_RMBAR) >> DRAMC_RMCR_RMBAR_SHFT;
|
|
size = (r & DRAMC_RMCR_RMSZR) >> DRAMC_RMCR_RMSZR_SHFT;
|
|
#if defined(GEMINI_SINGLE)
|
|
if (r != 0)
|
|
panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
|
|
__FUNCTION__, r, MEMSIZE);
|
|
#elif defined(GEMINI_MASTER)
|
|
if (base != MEMSIZE)
|
|
panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
|
|
__FUNCTION__, r, MEMSIZE);
|
|
#elif defined(GEMINI_SLAVE)
|
|
if (size != MEMSIZE)
|
|
panic("%s: RMCR %#x, MEMSIZE %d mismatch\n",
|
|
__FUNCTION__, r, MEMSIZE);
|
|
#endif
|
|
#if defined(VERBOSE_INIT_ARM) || 1
|
|
printf("DRAM Remap: base=%dMB, size=%dMB\n", base, size);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* void cpu_reboot(int howto, char *bootstr)
|
|
*
|
|
* Reboots the system
|
|
*
|
|
* Deal with any syncing, unmounting, dumping and shutdown hooks,
|
|
* then reset the CPU.
|
|
*/
|
|
void
|
|
cpu_reboot(int howto, char *bootstr)
|
|
{
|
|
extern struct geminitmr_softc *ref_sc;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/* info */
|
|
printf("boot: howto=%08x curproc=%p\n", howto, curproc);
|
|
#endif
|
|
|
|
/*
|
|
* If we are still cold then hit the air brakes
|
|
* and crash to earth fast
|
|
*/
|
|
if (cold) {
|
|
doshutdownhooks();
|
|
pmf_system_shutdown(boothowto);
|
|
printf("The operating system has halted.\n");
|
|
printf("Please press any key to reboot.\n\n");
|
|
cngetc();
|
|
printf("rebooting...\n");
|
|
if (ref_sc != NULL)
|
|
delay(2000); /* cnflush(); */
|
|
gemini_global_reset();
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
/* Disable console buffering */
|
|
cnpollc(1);
|
|
|
|
/*
|
|
* If RB_NOSYNC was not specified sync the discs.
|
|
* Note: Unless cold is set to 1 here, syslogd will die during the
|
|
* unmount. It looks like syslogd is getting woken up only to find
|
|
* that it cannot page part of the binary in as the filesystem has
|
|
* been unmounted.
|
|
*/
|
|
if (!(howto & RB_NOSYNC))
|
|
bootsync();
|
|
|
|
/* Say NO to interrupts */
|
|
splhigh();
|
|
|
|
/* Do a dump if requested. */
|
|
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
|
|
dumpsys();
|
|
|
|
/* Run any shutdown hooks */
|
|
doshutdownhooks();
|
|
|
|
pmf_system_shutdown(boothowto);
|
|
|
|
/* Make sure IRQ's are disabled */
|
|
IRQdisable;
|
|
|
|
if (howto & RB_HALT) {
|
|
printf("The operating system has halted.\n");
|
|
printf("Please press any key to reboot.\n\n");
|
|
cngetc();
|
|
}
|
|
|
|
printf("rebooting...\n");
|
|
if (ref_sc != NULL)
|
|
delay(2000); /* cnflush(); */
|
|
gemini_global_reset();
|
|
/*NOTREACHED*/
|
|
}
|
|
|
|
/*
|
|
* Static device mappings. These peripheral registers are mapped at
|
|
* fixed virtual addresses very early in initarm() so that we can use
|
|
* them while booting the kernel, and stay at the same address
|
|
* throughout whole kernel's life time.
|
|
*
|
|
* We use this table twice; once with bootstrap page table, and once
|
|
* with kernel's page table which we build up in initarm().
|
|
*
|
|
* Since we map these registers into the bootstrap page table using
|
|
* pmap_devmap_bootstrap() which calls pmap_map_chunk(), we map
|
|
* registers segment-aligned and segment-rounded in order to avoid
|
|
* using the 2nd page tables.
|
|
*/
|
|
|
|
#define _A(a) ((a) & ~L1_S_OFFSET)
|
|
#define _S(s) (((s) + L1_S_SIZE - 1) & ~(L1_S_SIZE-1))
|
|
|
|
static const struct pmap_devmap devmap[] = {
|
|
/* Global regs */
|
|
{
|
|
.pd_va = _A(GEMINI_GLOBAL_VBASE),
|
|
.pd_pa = _A(GEMINI_GLOBAL_BASE),
|
|
.pd_size = _S(L1_S_SIZE),
|
|
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
|
|
.pd_cache = PTE_NOCACHE
|
|
},
|
|
|
|
/* Watchdog */
|
|
{
|
|
.pd_va = _A(GEMINI_WATCHDOG_VBASE),
|
|
.pd_pa = _A(GEMINI_WATCHDOG_BASE),
|
|
.pd_size = _S(L1_S_SIZE),
|
|
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
|
|
.pd_cache = PTE_NOCACHE
|
|
},
|
|
|
|
/* UART */
|
|
{
|
|
.pd_va = _A(GEMINI_UART_VBASE),
|
|
.pd_pa = _A(GEMINI_UART_BASE),
|
|
.pd_size = _S(L1_S_SIZE),
|
|
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
|
|
.pd_cache = PTE_NOCACHE
|
|
},
|
|
|
|
/* LPCHC */
|
|
{
|
|
.pd_va = _A(GEMINI_LPCHC_VBASE),
|
|
.pd_pa = _A(GEMINI_LPCHC_BASE),
|
|
.pd_size = _S(L1_S_SIZE),
|
|
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
|
|
.pd_cache = PTE_NOCACHE
|
|
},
|
|
|
|
/* LPCIO */
|
|
{
|
|
.pd_va = _A(GEMINI_LPCIO_VBASE),
|
|
.pd_pa = _A(GEMINI_LPCIO_BASE),
|
|
.pd_size = _S(L1_S_SIZE),
|
|
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
|
|
.pd_cache = PTE_NOCACHE
|
|
},
|
|
|
|
/* Timers */
|
|
{
|
|
.pd_va = _A(GEMINI_TIMER_VBASE),
|
|
.pd_pa = _A(GEMINI_TIMER_BASE),
|
|
.pd_size = _S(L1_S_SIZE),
|
|
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
|
|
.pd_cache = PTE_NOCACHE
|
|
},
|
|
|
|
/* DRAM Controller */
|
|
{
|
|
.pd_va = _A(GEMINI_DRAMC_VBASE),
|
|
.pd_pa = _A(GEMINI_DRAMC_BASE),
|
|
.pd_size = _S(L1_S_SIZE),
|
|
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
|
|
.pd_cache = PTE_NOCACHE
|
|
},
|
|
|
|
#if defined(MEMORY_DISK_DYNAMIC)
|
|
/* Ramdisk */
|
|
{
|
|
.pd_va = _A(GEMINI_RAMDISK_VBASE),
|
|
.pd_pa = _A(GEMINI_RAMDISK_PBASE),
|
|
.pd_size = _S(GEMINI_RAMDISK_SIZE),
|
|
.pd_prot = VM_PROT_READ|VM_PROT_WRITE,
|
|
.pd_cache = PTE_NOCACHE
|
|
},
|
|
#endif
|
|
|
|
{0} /* list terminator */
|
|
};
|
|
|
|
#undef _A
|
|
#undef _S
|
|
|
|
#ifdef DDB
|
|
static void gemini_db_trap(int where)
|
|
{
|
|
#if NGEMINIWDT > 0
|
|
static int oldwatchdogstate;
|
|
|
|
if (where) {
|
|
oldwatchdogstate = geminiwdt_enable(0);
|
|
} else {
|
|
geminiwdt_enable(oldwatchdogstate);
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if defined(VERBOSE_INIT_ARM) || 1
|
|
void gemini_putchar(char c);
|
|
void
|
|
gemini_putchar(char c)
|
|
{
|
|
unsigned char *com0addr = (unsigned char *)GEMINI_UART_VBASE;
|
|
int timo = 150000;
|
|
|
|
while ((com0addr[COM_REG_LSR * 4] & LSR_TXRDY) == 0)
|
|
if (--timo == 0)
|
|
break;
|
|
|
|
com0addr[COM_REG_TXDATA] = c;
|
|
|
|
while ((com0addr[COM_REG_LSR * 4] & LSR_TSRE) == 0)
|
|
if (--timo == 0)
|
|
break;
|
|
}
|
|
|
|
void gemini_puthex(unsigned int);
|
|
void
|
|
gemini_puthex(unsigned int val)
|
|
{
|
|
char hexc[] = "0123456789abcdef";
|
|
|
|
gemini_putchar('0');
|
|
gemini_putchar('x');
|
|
gemini_putchar(hexc[(val >> 28) & 0xf]);
|
|
gemini_putchar(hexc[(val >> 24) & 0xf]);
|
|
gemini_putchar(hexc[(val >> 20) & 0xf]);
|
|
gemini_putchar(hexc[(val >> 16) & 0xf]);
|
|
gemini_putchar(hexc[(val >> 12) & 0xf]);
|
|
gemini_putchar(hexc[(val >> 8) & 0xf]);
|
|
gemini_putchar(hexc[(val >> 4) & 0xf]);
|
|
gemini_putchar(hexc[(val >> 0) & 0xf]);
|
|
}
|
|
#endif /* VERBOSE_INIT_ARM */
|
|
|
|
/*
|
|
* u_int initarm(...)
|
|
*
|
|
* Initial entry point on startup. This gets called before main() is
|
|
* entered.
|
|
* It should be responsible for setting up everything that must be
|
|
* in place when main is called.
|
|
* This includes
|
|
* Taking a copy of the boot configuration structure.
|
|
* Initialising the physical console so characters can be printed.
|
|
* Setting up page tables for the kernel
|
|
* Relocating the kernel to the bottom of physical memory
|
|
*/
|
|
u_int
|
|
initarm(void *arg)
|
|
{
|
|
GEMINI_PUTCHAR('0');
|
|
|
|
/*
|
|
* start cpu#1 now
|
|
*/
|
|
gemini_cpu1_start();
|
|
|
|
/*
|
|
* When we enter here, we are using a temporary first level
|
|
* translation table with section entries in it to cover the OBIO
|
|
* peripherals and SDRAM. The temporary first level translation table
|
|
* is at the end of SDRAM.
|
|
*/
|
|
|
|
/* Heads up ... Setup the CPU / MMU / TLB functions. */
|
|
GEMINI_PUTCHAR('1');
|
|
if (set_cpufuncs())
|
|
panic("cpu not recognized!");
|
|
|
|
GEMINI_PUTCHAR('2');
|
|
init_clocks();
|
|
GEMINI_PUTCHAR('3');
|
|
|
|
/* The console is going to try to map things. Give pmap a devmap. */
|
|
pmap_devmap_register(devmap);
|
|
GEMINI_PUTCHAR('4');
|
|
consinit();
|
|
GEMINI_PUTCHAR('5');
|
|
#ifdef KGDB
|
|
kgdb_port_init();
|
|
#endif
|
|
|
|
/* Talk to the user */
|
|
printf("\nNetBSD/evbarm (gemini) booting ...\n");
|
|
|
|
#ifdef BOOT_ARGS
|
|
char mi_bootargs[] = BOOT_ARGS;
|
|
parse_mi_bootargs(mi_bootargs);
|
|
#endif
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("initarm: Configuring system ...\n");
|
|
#endif
|
|
|
|
/*
|
|
* Set up the variables that define the availability of physical
|
|
* memory.
|
|
*/
|
|
gemini_memchk();
|
|
physical_start = GEMINI_DRAM_BASE;
|
|
#define MEMSIZE_BYTES (MEMSIZE * 1024 * 1024)
|
|
physical_end = (physical_start & ~(0x400000-1)) + MEMSIZE_BYTES;
|
|
physmem = (physical_end - physical_start) / PAGE_SIZE;
|
|
|
|
/* Fake bootconfig structure for the benefit of pmap.c. */
|
|
bootconfig.dramblocks = 1;
|
|
bootconfig.dram[0].address = physical_start;
|
|
bootconfig.dram[0].pages = physmem;
|
|
|
|
/*
|
|
* Our kernel is at the beginning of memory, so set our free space to
|
|
* all the memory after the kernel.
|
|
*/
|
|
physical_freestart = KERN_VTOPHYS(round_page((vaddr_t) _end));
|
|
physical_freeend = physical_end;
|
|
free_pages = (physical_freeend - physical_freestart) / PAGE_SIZE;
|
|
|
|
/*
|
|
* This is going to do all the hard work of setting up the first and
|
|
* and second level page tables. Pages of memory will be allocated
|
|
* and mapped for other structures that are required for system
|
|
* operation. When it returns, physical_freestart and free_pages will
|
|
* have been updated to reflect the allocations that were made. In
|
|
* addition, kernel_l1pt, kernel_pt_table[], systempage, irqstack,
|
|
* abtstack, undstack, kernelstack, msgbufphys will be set to point to
|
|
* the memory that was allocated for them.
|
|
*/
|
|
setup_real_page_tables();
|
|
|
|
/*
|
|
* Moved from cpu_startup() as data_abort_handler() references
|
|
* this during uvm init.
|
|
*/
|
|
uvm_lwp_setuarea(&lwp0, kernelstack.pv_va);
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("bootstrap done.\n");
|
|
#endif
|
|
|
|
arm32_vector_init(ARM_VECTORS_HIGH, ARM_VEC_ALL);
|
|
|
|
/*
|
|
* Pages were allocated during the secondary bootstrap for the
|
|
* stacks for different CPU modes.
|
|
* We must now set the r13 registers in the different CPU modes to
|
|
* point to these stacks.
|
|
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
|
|
* of the stack memory.
|
|
*/
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("init subsystems: stacks ");
|
|
#endif
|
|
|
|
set_stackptr(PSR_FIQ32_MODE, fiqstack.pv_va + FIQ_STACK_SIZE * PAGE_SIZE);
|
|
set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * PAGE_SIZE);
|
|
set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * PAGE_SIZE);
|
|
set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * PAGE_SIZE);
|
|
|
|
/*
|
|
* Well we should set a data abort handler.
|
|
* Once things get going this will change as we will need a proper
|
|
* handler.
|
|
* Until then we will use a handler that just panics but tells us
|
|
* why.
|
|
* Initialisation of the vectors will just panic on a data abort.
|
|
* This just fills in a slightly better one.
|
|
*/
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("vectors ");
|
|
#endif
|
|
data_abort_handler_address = (u_int)data_abort_handler;
|
|
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
|
|
undefined_handler_address = (u_int)undefinedinstruction_bounce;
|
|
|
|
/* Initialise the undefined instruction handlers */
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("undefined ");
|
|
#endif
|
|
undefined_init();
|
|
|
|
/* Load memory into UVM. */
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("page ");
|
|
#endif
|
|
uvm_md_init();
|
|
|
|
#if (GEMINI_RAM_RESV_PBASE != 0)
|
|
uvm_page_physload(atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
|
|
atop(physical_freestart), atop(GEMINI_RAM_RESV_PBASE),
|
|
VM_FREELIST_DEFAULT);
|
|
uvm_page_physload(atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
|
|
atop(GEMINI_RAM_RESV_PEND), atop(physical_freeend),
|
|
VM_FREELIST_DEFAULT);
|
|
#else
|
|
uvm_page_physload(atop(physical_freestart), atop(physical_freeend),
|
|
atop(physical_freestart), atop(physical_freeend),
|
|
VM_FREELIST_DEFAULT);
|
|
#endif
|
|
uvm_page_physload(atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
|
|
atop(GEMINI_DRAM_BASE), atop(KERNEL_BASE_phys),
|
|
VM_FREELIST_DEFAULT);
|
|
|
|
/* Boot strap pmap telling it where the kernel page table is */
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("pmap ");
|
|
#endif
|
|
pmap_bootstrap(KERNEL_VM_BASE, KERNEL_VM_BASE + KERNEL_VM_SIZE);
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("done.\n");
|
|
#endif
|
|
|
|
#ifdef IPKDB
|
|
/* Initialise ipkdb */
|
|
ipkdb_init();
|
|
if (boothowto & RB_KDB)
|
|
ipkdb_connect(0);
|
|
#endif
|
|
|
|
#if defined(MEMORY_DISK_DYNAMIC)
|
|
md_root_setconf((char *)GEMINI_RAMDISK_VBASE, GEMINI_RAMDISK_SIZE);
|
|
#endif
|
|
|
|
#ifdef KGDB
|
|
if (boothowto & RB_KDB) {
|
|
kgdb_debug_init = 1;
|
|
kgdb_connect(1);
|
|
}
|
|
#endif
|
|
|
|
#ifdef DDB
|
|
db_trap_callback = gemini_db_trap;
|
|
db_machine_init();
|
|
|
|
/* Firmware doesn't load symbols. */
|
|
ddb_init(0, NULL, NULL);
|
|
|
|
if (boothowto & RB_KDB)
|
|
Debugger();
|
|
#endif
|
|
printf("initarm done.\n");
|
|
|
|
/* We return the new stack pointer address */
|
|
return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
|
|
}
|
|
|
|
static void
|
|
init_clocks(void)
|
|
{
|
|
}
|
|
|
|
#ifndef CONSADDR
|
|
#error Specify the address of the console UART with the CONSADDR option.
|
|
#endif
|
|
#ifndef CONSPEED
|
|
#define CONSPEED 19200
|
|
#endif
|
|
#ifndef CONMODE
|
|
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
|
|
#endif
|
|
|
|
static const bus_addr_t consaddr = CONSADDR;
|
|
static const int conspeed = CONSPEED;
|
|
static const int conmode = CONMODE;
|
|
|
|
#if CONSADDR==0x42000000
|
|
/*
|
|
* console initialization for obio com console
|
|
*/
|
|
void
|
|
consinit(void)
|
|
{
|
|
static int consinit_called = 0;
|
|
|
|
if (consinit_called != 0)
|
|
return;
|
|
consinit_called = 1;
|
|
|
|
if (comcnattach(&gemini_a4x_bs_tag, consaddr, conspeed,
|
|
GEMINI_COM_FREQ, COM_TYPE_16550_NOERS, conmode))
|
|
panic("Serial console can not be initialized.");
|
|
}
|
|
|
|
#elif CONSADDR==0x478003f8
|
|
# include <arm/gemini/gemini_lpcvar.h>
|
|
/*
|
|
* console initialization for lpc com console
|
|
*/
|
|
void
|
|
consinit(void)
|
|
{
|
|
static int consinit_called = 0;
|
|
bus_space_tag_t iot = &gemini_bs_tag;
|
|
bus_space_handle_t lpchc_ioh;
|
|
bus_space_handle_t lpcio_ioh;
|
|
bus_size_t sz = L1_S_SIZE;
|
|
gemini_lpc_softc_t lpcsoftc;
|
|
gemini_lpc_bus_ops_t *ops;
|
|
void *lpctag = &lpcsoftc;
|
|
uint32_t r;
|
|
extern gemini_lpc_bus_ops_t gemini_lpc_bus_ops;
|
|
|
|
ops = &gemini_lpc_bus_ops;
|
|
|
|
if (consinit_called != 0)
|
|
return;
|
|
consinit_called = 1;
|
|
|
|
if (bus_space_map(iot, GEMINI_LPCHC_BASE, sz, 0, &lpchc_ioh))
|
|
panic("consinit: LPCHC can not be mapped.");
|
|
|
|
if (bus_space_map(iot, GEMINI_LPCIO_BASE, sz, 0, &lpcio_ioh))
|
|
panic("consinit: LPCIO can not be mapped.");
|
|
|
|
/* enable the LPC bus */
|
|
r = bus_space_read_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR);
|
|
r |= LPCHC_CSR_BEN;
|
|
bus_space_write_4(iot, lpchc_ioh, GEMINI_LPCHC_CSR, r);
|
|
|
|
memset(&lpcsoftc, 0, sizeof(lpcsoftc));
|
|
lpcsoftc.sc_iot = iot;
|
|
lpcsoftc.sc_ioh = lpcio_ioh;
|
|
|
|
/* activate Serial Port 1 */
|
|
(*ops->lpc_pnp_enter)(lpctag);
|
|
(*ops->lpc_pnp_write)(lpctag, 1, 0x30, 0x01);
|
|
(*ops->lpc_pnp_exit)(lpctag);
|
|
|
|
if (comcnattach(iot, consaddr, conspeed,
|
|
IT8712F_COM_FREQ, COM_TYPE_NORMAL, conmode)) {
|
|
panic("Serial console can not be initialized.");
|
|
}
|
|
|
|
bus_space_unmap(iot, lpcio_ioh, sz);
|
|
bus_space_unmap(iot, lpchc_ioh, sz);
|
|
}
|
|
#else
|
|
# error unknown console
|
|
#endif
|
|
|
|
#ifdef KGDB
|
|
#ifndef KGDB_DEVADDR
|
|
#error Specify the address of the kgdb UART with the KGDB_DEVADDR option.
|
|
#endif
|
|
#ifndef KGDB_DEVRATE
|
|
#define KGDB_DEVRATE 19200
|
|
#endif
|
|
|
|
#ifndef KGDB_DEVMODE
|
|
#define KGDB_DEVMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
|
|
#endif
|
|
static const vaddr_t comkgdbaddr = KGDB_DEVADDR;
|
|
static const int comkgdbspeed = KGDB_DEVRATE;
|
|
static const int comkgdbmode = KGDB_DEVMODE;
|
|
|
|
void
|
|
static kgdb_port_init(void)
|
|
{
|
|
static int kgdbsinit_called = 0;
|
|
|
|
if (kgdbsinit_called != 0)
|
|
return;
|
|
|
|
kgdbsinit_called = 1;
|
|
|
|
bus_space_handle_t bh;
|
|
if (bus_space_map(&gemini_a4x_bs_tag, comkgdbaddr,
|
|
GEMINI_UART_SIZE, 0, &bh))
|
|
panic("kgdb port can not be mapped.");
|
|
|
|
if (com_kgdb_attach(&gemini_a4x_bs_tag, comkgdbaddr, comkgdbspeed,
|
|
GEMINI_UART_SIZE, COM_TYPE_16550_NOERS, comkgdbmode))
|
|
panic("KGDB uart can not be initialized.");
|
|
|
|
bus_space_unmap(&gemini_a4x_bs_tag, bh, GEMINI_UART_SIZE);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
setup_real_page_tables(void)
|
|
{
|
|
/*
|
|
* We need to allocate some fixed page tables to get the kernel going.
|
|
*
|
|
* We are going to allocate our bootstrap pages from the beginning of
|
|
* the free space that we just calculated. We allocate one page
|
|
* directory and a number of page tables and store the physical
|
|
* addresses in the kernel_pt_table array.
|
|
*
|
|
* The kernel page directory must be on a 16K boundary. The page
|
|
* tables must be on 4K boundaries. What we do is allocate the
|
|
* page directory on the first 16K boundary that we encounter, and
|
|
* the page tables on 4K boundaries otherwise. Since we allocate
|
|
* at least 3 L2 page tables, we are guaranteed to encounter at
|
|
* least one 16K aligned region.
|
|
*/
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Allocating page tables\n");
|
|
#endif
|
|
|
|
/*
|
|
* Define a macro to simplify memory allocation. As we allocate the
|
|
* memory, make sure that we don't walk over our temporary first level
|
|
* translation table.
|
|
*/
|
|
#define valloc_pages(var, np) \
|
|
(var).pv_pa = physical_freestart; \
|
|
physical_freestart += ((np) * PAGE_SIZE); \
|
|
if (physical_freestart > (physical_freeend - L1_TABLE_SIZE)) \
|
|
panic("initarm: out of memory"); \
|
|
free_pages -= (np); \
|
|
(var).pv_va = KERN_PHYSTOV((var).pv_pa); \
|
|
memset((char *)(var).pv_va, 0, ((np) * PAGE_SIZE));
|
|
|
|
int loop, pt_index;
|
|
|
|
pt_index = 0;
|
|
kernel_l1pt.pv_pa = 0;
|
|
kernel_l1pt.pv_va = 0;
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("%s: physical_freestart %#lx\n", __func__, physical_freestart);
|
|
#endif
|
|
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
|
|
/* Are we 16KB aligned for an L1 ? */
|
|
if ((physical_freestart & (L1_TABLE_SIZE - 1)) == 0
|
|
&& kernel_l1pt.pv_pa == 0) {
|
|
valloc_pages(kernel_l1pt, L1_TABLE_SIZE / PAGE_SIZE);
|
|
} else {
|
|
valloc_pages(kernel_pt_table[pt_index],
|
|
L2_TABLE_SIZE / PAGE_SIZE);
|
|
++pt_index;
|
|
}
|
|
}
|
|
|
|
#if (NGEMINIIPM > 0)
|
|
valloc_pages(ipmq_pt, L2_TABLE_SIZE / PAGE_SIZE);
|
|
#endif
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
pt_index=0;
|
|
printf("%s: kernel_l1pt: %#lx:%#lx\n",
|
|
__func__, kernel_l1pt.pv_va, kernel_l1pt.pv_pa);
|
|
printf("%s: kernel_pt_table:\n", __func__);
|
|
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
|
|
printf("\t%#lx:%#lx\n", kernel_pt_table[pt_index].pv_va,
|
|
kernel_pt_table[pt_index].pv_pa);
|
|
++pt_index;
|
|
}
|
|
#if (NGEMINIIPM > 0)
|
|
printf("%s: ipmq_pt:\n", __func__);
|
|
printf("\t%#lx:%#lx\n", ipmq_pt.pv_va, ipmq_pt.pv_pa);
|
|
#endif
|
|
#endif
|
|
|
|
/* This should never be able to happen but better confirm that. */
|
|
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (L1_TABLE_SIZE-1)) != 0)
|
|
panic("initarm: Failed to align the kernel page directory");
|
|
|
|
/*
|
|
* Allocate a page for the system page mapped to V0x00000000
|
|
* This page will just contain the system vectors and can be
|
|
* shared by all processes.
|
|
*/
|
|
valloc_pages(systempage, 1);
|
|
systempage.pv_va = ARM_VECTORS_HIGH;
|
|
|
|
/* Allocate stacks for all modes */
|
|
valloc_pages(fiqstack, FIQ_STACK_SIZE);
|
|
valloc_pages(irqstack, IRQ_STACK_SIZE);
|
|
valloc_pages(abtstack, ABT_STACK_SIZE);
|
|
valloc_pages(undstack, UND_STACK_SIZE);
|
|
valloc_pages(kernelstack, UPAGES);
|
|
|
|
/* Allocate the message buffer. */
|
|
pv_addr_t msgbuf;
|
|
int msgbuf_pgs = round_page(MSGBUFSIZE) / PAGE_SIZE;
|
|
valloc_pages(msgbuf, msgbuf_pgs);
|
|
msgbufphys = msgbuf.pv_pa;
|
|
|
|
/*
|
|
* Ok we have allocated physical pages for the primary kernel
|
|
* page tables
|
|
*/
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
|
|
#endif
|
|
|
|
/*
|
|
* Now we start construction of the L1 page table
|
|
* We start by mapping the L2 page tables into the L1.
|
|
* This means that we can replace L1 mappings later on if necessary
|
|
*/
|
|
vaddr_t l1_va = kernel_l1pt.pv_va;
|
|
paddr_t l1_pa = kernel_l1pt.pv_pa;
|
|
|
|
/* Map the L2 pages tables in the L1 page table */
|
|
pmap_link_l2pt(l1_va, ARM_VECTORS_HIGH & ~(0x00400000 - 1),
|
|
&kernel_pt_table[KERNEL_PT_SYS]);
|
|
for (loop = 0; loop < KERNEL_PT_KERNEL_NUM; loop++)
|
|
pmap_link_l2pt(l1_va, KERNEL_BASE + loop * 0x00400000,
|
|
&kernel_pt_table[KERNEL_PT_KERNEL + loop]);
|
|
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; loop++)
|
|
pmap_link_l2pt(l1_va, KERNEL_VM_BASE + loop * 0x00400000,
|
|
&kernel_pt_table[KERNEL_PT_VMDATA + loop]);
|
|
|
|
/* update the top of the kernel VM */
|
|
pmap_curmaxkvaddr =
|
|
KERNEL_VM_BASE + (KERNEL_PT_VMDATA_NUM * 0x00400000);
|
|
|
|
#if (NGEMINIIPM > 0)
|
|
printf("%s:%d: pmap_link_l2pt ipmq_pt\n", __FUNCTION__, __LINE__);
|
|
pmap_link_l2pt(l1_va, GEMINI_IPMQ_VBASE, &ipmq_pt);
|
|
#endif
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Mapping kernel\n");
|
|
#endif
|
|
|
|
/* Now we fill in the L2 pagetable for the kernel static code/data */
|
|
#define round_L_page(x) (((x) + L2_L_OFFSET) & L2_L_FRAME)
|
|
size_t textsize = round_L_page(etext - KERNEL_BASE_virt);
|
|
size_t totalsize = round_L_page(_end - KERNEL_BASE_virt);
|
|
/* offset of kernel in RAM */
|
|
u_int offset = (u_int)KERNEL_BASE_virt - KERNEL_BASE;
|
|
|
|
#ifdef DDB
|
|
/* Map text section read-write. */
|
|
offset += pmap_map_chunk(l1_va,
|
|
(vaddr_t)KERNEL_BASE + offset,
|
|
physical_start + offset, textsize,
|
|
VM_PROT_READ|VM_PROT_WRITE|VM_PROT_EXECUTE,
|
|
PTE_CACHE);
|
|
#else
|
|
/* Map text section read-only. */
|
|
offset += pmap_map_chunk(l1_va,
|
|
(vaddr_t)KERNEL_BASE + offset,
|
|
physical_start + offset, textsize,
|
|
VM_PROT_READ|VM_PROT_EXECUTE, PTE_CACHE);
|
|
#endif
|
|
/* Map data and bss sections read-write. */
|
|
offset += pmap_map_chunk(l1_va,
|
|
(vaddr_t)KERNEL_BASE + offset,
|
|
physical_start + offset, totalsize - textsize,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("Constructing L2 page tables\n");
|
|
#endif
|
|
|
|
/* Map the stack pages */
|
|
pmap_map_chunk(l1_va, fiqstack.pv_va, fiqstack.pv_pa,
|
|
FIQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
pmap_map_chunk(l1_va, irqstack.pv_va, irqstack.pv_pa,
|
|
IRQ_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
pmap_map_chunk(l1_va, abtstack.pv_va, abtstack.pv_pa,
|
|
ABT_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
pmap_map_chunk(l1_va, undstack.pv_va, undstack.pv_pa,
|
|
UND_STACK_SIZE * PAGE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
pmap_map_chunk(l1_va, kernelstack.pv_va, kernelstack.pv_pa,
|
|
UPAGES * PAGE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_CACHE);
|
|
|
|
pmap_map_chunk(l1_va, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
|
|
L1_TABLE_SIZE, VM_PROT_READ | VM_PROT_WRITE, PTE_PAGETABLE);
|
|
|
|
for (loop = 0; loop < NUM_KERNEL_PTS; ++loop) {
|
|
pmap_map_chunk(l1_va, kernel_pt_table[loop].pv_va,
|
|
kernel_pt_table[loop].pv_pa, L2_TABLE_SIZE,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
|
|
}
|
|
|
|
/* Map the vector page. */
|
|
pmap_map_entry(l1_va, ARM_VECTORS_HIGH, systempage.pv_pa,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
|
|
#if (NGEMINIIPM > 0)
|
|
/* Map the IPM queue l2pt */
|
|
pmap_map_chunk(l1_va, ipmq_pt.pv_va, ipmq_pt.pv_pa,
|
|
L2_TABLE_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_PAGETABLE);
|
|
|
|
/* Map the IPM queue pages */
|
|
pmap_map_chunk(l1_va, GEMINI_IPMQ_VBASE, GEMINI_IPMQ_PBASE,
|
|
GEMINI_IPMQ_SIZE, VM_PROT_READ|VM_PROT_WRITE, PTE_NOCACHE);
|
|
|
|
#ifdef GEMINI_SLAVE
|
|
/*
|
|
* Map all memory, incluuding that owned by other core
|
|
* take into account the RAM remap, so view in this region
|
|
* is consistent with MASTER
|
|
*/
|
|
pmap_map_chunk(l1_va,
|
|
GEMINI_ALLMEM_VBASE,
|
|
GEMINI_ALLMEM_PBASE + ((GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024),
|
|
(GEMINI_ALLMEM_SIZE - MEMSIZE) * 1024 * 1024,
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
pmap_map_chunk(l1_va,
|
|
GEMINI_ALLMEM_VBASE + GEMINI_BUSBASE * 1024 * 1024,
|
|
GEMINI_ALLMEM_PBASE,
|
|
(MEMSIZE * 1024 * 1024),
|
|
VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
#else
|
|
/* Map all memory, incluuding that owned by other core */
|
|
pmap_map_chunk(l1_va, GEMINI_ALLMEM_VBASE, GEMINI_ALLMEM_PBASE,
|
|
GEMINI_ALLMEM_SIZE * 1024 * 1024, VM_PROT_READ|VM_PROT_WRITE, PTE_CACHE);
|
|
#endif /* GEMINI_SLAVE */
|
|
#endif /* NGEMINIIPM */
|
|
|
|
/*
|
|
* Map integrated peripherals at same address in first level page
|
|
* table so that we can continue to use console.
|
|
*/
|
|
pmap_devmap_bootstrap(l1_va, devmap);
|
|
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
/* Tell the user about where all the bits and pieces live. */
|
|
printf("%22s Physical Virtual Num\n", " ");
|
|
printf("%22s Starting Ending Starting Ending Pages\n", " ");
|
|
|
|
static const char mem_fmt[] =
|
|
"%20s: 0x%08lx 0x%08lx 0x%08lx 0x%08lx %d\n";
|
|
static const char mem_fmt_nov[] =
|
|
"%20s: 0x%08lx 0x%08lx %d\n";
|
|
|
|
printf(mem_fmt, "SDRAM", physical_start, physical_end-1,
|
|
KERN_PHYSTOV(physical_start), KERN_PHYSTOV(physical_end-1),
|
|
(int)physmem);
|
|
printf(mem_fmt, "text section",
|
|
KERN_VTOPHYS(KERNEL_BASE_virt), KERN_VTOPHYS(etext-1),
|
|
(vaddr_t)KERNEL_BASE_virt, (vaddr_t)etext-1,
|
|
(int)(textsize / PAGE_SIZE));
|
|
printf(mem_fmt, "data section",
|
|
KERN_VTOPHYS(__data_start), KERN_VTOPHYS(_edata),
|
|
(vaddr_t)__data_start, (vaddr_t)_edata,
|
|
(int)((round_page((vaddr_t)_edata)
|
|
- trunc_page((vaddr_t)__data_start)) / PAGE_SIZE));
|
|
printf(mem_fmt, "bss section",
|
|
KERN_VTOPHYS(__bss_start), KERN_VTOPHYS(__bss_end__),
|
|
(vaddr_t)__bss_start, (vaddr_t)__bss_end__,
|
|
(int)((round_page((vaddr_t)__bss_end__)
|
|
- trunc_page((vaddr_t)__bss_start)) / PAGE_SIZE));
|
|
printf(mem_fmt, "L1 page directory",
|
|
kernel_l1pt.pv_pa, kernel_l1pt.pv_pa + L1_TABLE_SIZE - 1,
|
|
kernel_l1pt.pv_va, kernel_l1pt.pv_va + L1_TABLE_SIZE - 1,
|
|
L1_TABLE_SIZE / PAGE_SIZE);
|
|
printf(mem_fmt, "Exception Vectors",
|
|
systempage.pv_pa, systempage.pv_pa + PAGE_SIZE - 1,
|
|
(vaddr_t)ARM_VECTORS_HIGH, (vaddr_t)ARM_VECTORS_HIGH + PAGE_SIZE - 1,
|
|
1);
|
|
printf(mem_fmt, "FIQ stack",
|
|
fiqstack.pv_pa, fiqstack.pv_pa + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
|
|
fiqstack.pv_va, fiqstack.pv_va + (FIQ_STACK_SIZE * PAGE_SIZE) - 1,
|
|
FIQ_STACK_SIZE);
|
|
printf(mem_fmt, "IRQ stack",
|
|
irqstack.pv_pa, irqstack.pv_pa + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
|
|
irqstack.pv_va, irqstack.pv_va + (IRQ_STACK_SIZE * PAGE_SIZE) - 1,
|
|
IRQ_STACK_SIZE);
|
|
printf(mem_fmt, "ABT stack",
|
|
abtstack.pv_pa, abtstack.pv_pa + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
|
|
abtstack.pv_va, abtstack.pv_va + (ABT_STACK_SIZE * PAGE_SIZE) - 1,
|
|
ABT_STACK_SIZE);
|
|
printf(mem_fmt, "UND stack",
|
|
undstack.pv_pa, undstack.pv_pa + (UND_STACK_SIZE * PAGE_SIZE) - 1,
|
|
undstack.pv_va, undstack.pv_va + (UND_STACK_SIZE * PAGE_SIZE) - 1,
|
|
UND_STACK_SIZE);
|
|
printf(mem_fmt, "SVC stack",
|
|
kernelstack.pv_pa, kernelstack.pv_pa + (UPAGES * PAGE_SIZE) - 1,
|
|
kernelstack.pv_va, kernelstack.pv_va + (UPAGES * PAGE_SIZE) - 1,
|
|
UPAGES);
|
|
printf(mem_fmt_nov, "Message Buffer",
|
|
msgbufphys, msgbufphys + msgbuf_pgs * PAGE_SIZE - 1, msgbuf_pgs);
|
|
printf(mem_fmt, "Free Memory", physical_freestart, physical_freeend-1,
|
|
KERN_PHYSTOV(physical_freestart), KERN_PHYSTOV(physical_freeend-1),
|
|
free_pages);
|
|
#endif
|
|
|
|
/*
|
|
* Now we have the real page tables in place so we can switch to them.
|
|
* Once this is done we will be running with the REAL kernel page
|
|
* tables.
|
|
*/
|
|
|
|
/* Switch tables */
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("switching to new L1 page table @%#lx...", l1_pa);
|
|
#endif
|
|
|
|
cpu_domains((DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2)) | DOMAIN_CLIENT);
|
|
cpu_setttb(l1_pa, true);
|
|
cpu_tlb_flushID();
|
|
cpu_domains(DOMAIN_CLIENT << (PMAP_DOMAIN_KERNEL*2));
|
|
|
|
#ifdef VERBOSE_INIT_ARM
|
|
printf("OK.\n");
|
|
#endif
|
|
}
|