NetBSD/sys/kern/kern_ntptime.c

1248 lines
37 KiB
C

/* $NetBSD: kern_ntptime.c,v 1.41 2006/11/01 10:17:58 yamt Exp $ */
#include <sys/types.h> /* XXX to get __HAVE_TIMECOUNTER, remove
after all ports are converted. */
#ifdef __HAVE_TIMECOUNTER
/*-
***********************************************************************
* *
* Copyright (c) David L. Mills 1993-2001 *
* *
* Permission to use, copy, modify, and distribute this software and *
* its documentation for any purpose and without fee is hereby *
* granted, provided that the above copyright notice appears in all *
* copies and that both the copyright notice and this permission *
* notice appear in supporting documentation, and that the name *
* University of Delaware not be used in advertising or publicity *
* pertaining to distribution of the software without specific, *
* written prior permission. The University of Delaware makes no *
* representations about the suitability this software for any *
* purpose. It is provided "as is" without express or implied *
* warranty. *
* *
**********************************************************************/
/*
* Adapted from the original sources for FreeBSD and timecounters by:
* Poul-Henning Kamp <phk@FreeBSD.org>.
*
* The 32bit version of the "LP" macros seems a bit past its "sell by"
* date so I have retained only the 64bit version and included it directly
* in this file.
*
* Only minor changes done to interface with the timecounters over in
* sys/kern/kern_clock.c. Some of the comments below may be (even more)
* confusing and/or plain wrong in that context.
*/
#include <sys/cdefs.h>
/* __FBSDID("$FreeBSD: src/sys/kern/kern_ntptime.c,v 1.59 2005/05/28 14:34:41 rwatson Exp $"); */
__KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.41 2006/11/01 10:17:58 yamt Exp $");
#include "opt_ntp.h"
#include "opt_compat_netbsd.h"
#include <sys/param.h>
#include <sys/resourcevar.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/timex.h>
#ifdef COMPAT_30
#include <compat/sys/timex.h>
#endif
#include <sys/vnode.h>
#include <sys/kauth.h>
#include <sys/mount.h>
#include <sys/sa.h>
#include <sys/syscallargs.h>
#include <machine/cpu.h>
/*
* Single-precision macros for 64-bit machines
*/
typedef int64_t l_fp;
#define L_ADD(v, u) ((v) += (u))
#define L_SUB(v, u) ((v) -= (u))
#define L_ADDHI(v, a) ((v) += (int64_t)(a) << 32)
#define L_NEG(v) ((v) = -(v))
#define L_RSHIFT(v, n) \
do { \
if ((v) < 0) \
(v) = -(-(v) >> (n)); \
else \
(v) = (v) >> (n); \
} while (0)
#define L_MPY(v, a) ((v) *= (a))
#define L_CLR(v) ((v) = 0)
#define L_ISNEG(v) ((v) < 0)
#define L_LINT(v, a) ((v) = (int64_t)(a) << 32)
#define L_GINT(v) ((v) < 0 ? -(-(v) >> 32) : (v) >> 32)
#ifdef NTP
/*
* Generic NTP kernel interface
*
* These routines constitute the Network Time Protocol (NTP) interfaces
* for user and daemon application programs. The ntp_gettime() routine
* provides the time, maximum error (synch distance) and estimated error
* (dispersion) to client user application programs. The ntp_adjtime()
* routine is used by the NTP daemon to adjust the system clock to an
* externally derived time. The time offset and related variables set by
* this routine are used by other routines in this module to adjust the
* phase and frequency of the clock discipline loop which controls the
* system clock.
*
* When the kernel time is reckoned directly in nanoseconds (NTP_NANO
* defined), the time at each tick interrupt is derived directly from
* the kernel time variable. When the kernel time is reckoned in
* microseconds, (NTP_NANO undefined), the time is derived from the
* kernel time variable together with a variable representing the
* leftover nanoseconds at the last tick interrupt. In either case, the
* current nanosecond time is reckoned from these values plus an
* interpolated value derived by the clock routines in another
* architecture-specific module. The interpolation can use either a
* dedicated counter or a processor cycle counter (PCC) implemented in
* some architectures.
*
* Note that all routines must run at priority splclock or higher.
*/
/*
* Phase/frequency-lock loop (PLL/FLL) definitions
*
* The nanosecond clock discipline uses two variable types, time
* variables and frequency variables. Both types are represented as 64-
* bit fixed-point quantities with the decimal point between two 32-bit
* halves. On a 32-bit machine, each half is represented as a single
* word and mathematical operations are done using multiple-precision
* arithmetic. On a 64-bit machine, ordinary computer arithmetic is
* used.
*
* A time variable is a signed 64-bit fixed-point number in ns and
* fraction. It represents the remaining time offset to be amortized
* over succeeding tick interrupts. The maximum time offset is about
* 0.5 s and the resolution is about 2.3e-10 ns.
*
* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* |s s s| ns |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | fraction |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* A frequency variable is a signed 64-bit fixed-point number in ns/s
* and fraction. It represents the ns and fraction to be added to the
* kernel time variable at each second. The maximum frequency offset is
* about +-500000 ns/s and the resolution is about 2.3e-10 ns/s.
*
* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* |s s s s s s s s s s s s s| ns/s |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | fraction |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*/
/*
* The following variables establish the state of the PLL/FLL and the
* residual time and frequency offset of the local clock.
*/
#define SHIFT_PLL 4 /* PLL loop gain (shift) */
#define SHIFT_FLL 2 /* FLL loop gain (shift) */
static int time_state = TIME_OK; /* clock state */
static int time_status = STA_UNSYNC; /* clock status bits */
static long time_tai; /* TAI offset (s) */
static long time_monitor; /* last time offset scaled (ns) */
static long time_constant; /* poll interval (shift) (s) */
static long time_precision = 1; /* clock precision (ns) */
static long time_maxerror = MAXPHASE / 1000; /* maximum error (us) */
static long time_esterror = MAXPHASE / 1000; /* estimated error (us) */
static long time_reftime; /* time at last adjustment (s) */
static l_fp time_offset; /* time offset (ns) */
static l_fp time_freq; /* frequency offset (ns/s) */
#endif /* NTP */
static l_fp time_adj; /* tick adjust (ns/s) */
int64_t time_adjtime; /* correction from adjtime(2) (usec) */
extern int time_adjusted; /* ntp might have changed the system time */
#ifdef NTP
#ifdef PPS_SYNC
/*
* The following variables are used when a pulse-per-second (PPS) signal
* is available and connected via a modem control lead. They establish
* the engineering parameters of the clock discipline loop when
* controlled by the PPS signal.
*/
#define PPS_FAVG 2 /* min freq avg interval (s) (shift) */
#define PPS_FAVGDEF 8 /* default freq avg int (s) (shift) */
#define PPS_FAVGMAX 15 /* max freq avg interval (s) (shift) */
#define PPS_PAVG 4 /* phase avg interval (s) (shift) */
#define PPS_VALID 120 /* PPS signal watchdog max (s) */
#define PPS_MAXWANDER 100000 /* max PPS wander (ns/s) */
#define PPS_POPCORN 2 /* popcorn spike threshold (shift) */
static struct timespec pps_tf[3]; /* phase median filter */
static l_fp pps_freq; /* scaled frequency offset (ns/s) */
static long pps_fcount; /* frequency accumulator */
static long pps_jitter; /* nominal jitter (ns) */
static long pps_stabil; /* nominal stability (scaled ns/s) */
static long pps_lastsec; /* time at last calibration (s) */
static int pps_valid; /* signal watchdog counter */
static int pps_shift = PPS_FAVG; /* interval duration (s) (shift) */
static int pps_shiftmax = PPS_FAVGDEF; /* max interval duration (s) (shift) */
static int pps_intcnt; /* wander counter */
/*
* PPS signal quality monitors
*/
static long pps_calcnt; /* calibration intervals */
static long pps_jitcnt; /* jitter limit exceeded */
static long pps_stbcnt; /* stability limit exceeded */
static long pps_errcnt; /* calibration errors */
#endif /* PPS_SYNC */
/*
* End of phase/frequency-lock loop (PLL/FLL) definitions
*/
static void hardupdate(long offset);
/*
* ntp_gettime() - NTP user application interface
*/
void
ntp_gettime(ntv)
struct ntptimeval *ntv;
{
nanotime(&ntv->time);
ntv->maxerror = time_maxerror;
ntv->esterror = time_esterror;
ntv->tai = time_tai;
ntv->time_state = time_state;
}
/* ARGSUSED */
/*
* ntp_adjtime() - NTP daemon application interface
*/
int
sys_ntp_adjtime(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct sys_ntp_adjtime_args /* {
syscallarg(struct timex *) tp;
} */ *uap = v;
struct timex ntv;
int error = 0;
error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv, sizeof(ntv));
if (error != 0)
return (error);
if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
NULL, NULL)) != 0)
return (error);
ntp_adjtime1(&ntv);
error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
if (!error)
*retval = ntp_timestatus();
return error;
}
void
ntp_adjtime1(ntv)
struct timex *ntv;
{
long freq;
int modes;
int s;
/*
* Update selected clock variables - only the superuser can
* change anything. Note that there is no error checking here on
* the assumption the superuser should know what it is doing.
* Note that either the time constant or TAI offset are loaded
* from the ntv.constant member, depending on the mode bits. If
* the STA_PLL bit in the status word is cleared, the state and
* status words are reset to the initial values at boot.
*/
modes = ntv->modes;
if (modes != 0)
/* We need to save the system time during shutdown */
time_adjusted |= 2;
s = splclock();
if (modes & MOD_MAXERROR)
time_maxerror = ntv->maxerror;
if (modes & MOD_ESTERROR)
time_esterror = ntv->esterror;
if (modes & MOD_STATUS) {
if (time_status & STA_PLL && !(ntv->status & STA_PLL)) {
time_state = TIME_OK;
time_status = STA_UNSYNC;
#ifdef PPS_SYNC
pps_shift = PPS_FAVG;
#endif /* PPS_SYNC */
}
time_status &= STA_RONLY;
time_status |= ntv->status & ~STA_RONLY;
}
if (modes & MOD_TIMECONST) {
if (ntv->constant < 0)
time_constant = 0;
else if (ntv->constant > MAXTC)
time_constant = MAXTC;
else
time_constant = ntv->constant;
}
if (modes & MOD_TAI) {
if (ntv->constant > 0) /* XXX zero & negative numbers ? */
time_tai = ntv->constant;
}
#ifdef PPS_SYNC
if (modes & MOD_PPSMAX) {
if (ntv->shift < PPS_FAVG)
pps_shiftmax = PPS_FAVG;
else if (ntv->shift > PPS_FAVGMAX)
pps_shiftmax = PPS_FAVGMAX;
else
pps_shiftmax = ntv->shift;
}
#endif /* PPS_SYNC */
if (modes & MOD_NANO)
time_status |= STA_NANO;
if (modes & MOD_MICRO)
time_status &= ~STA_NANO;
if (modes & MOD_CLKB)
time_status |= STA_CLK;
if (modes & MOD_CLKA)
time_status &= ~STA_CLK;
if (modes & MOD_FREQUENCY) {
freq = (ntv->freq * 1000LL) >> 16;
if (freq > MAXFREQ)
L_LINT(time_freq, MAXFREQ);
else if (freq < -MAXFREQ)
L_LINT(time_freq, -MAXFREQ);
else {
/*
* ntv.freq is [PPM * 2^16] = [us/s * 2^16]
* time_freq is [ns/s * 2^32]
*/
time_freq = ntv->freq * 1000LL * 65536LL;
}
#ifdef PPS_SYNC
pps_freq = time_freq;
#endif /* PPS_SYNC */
}
if (modes & MOD_OFFSET) {
if (time_status & STA_NANO)
hardupdate(ntv->offset);
else
hardupdate(ntv->offset * 1000);
}
/*
* Retrieve all clock variables. Note that the TAI offset is
* returned only by ntp_gettime();
*/
if (time_status & STA_NANO)
ntv->offset = L_GINT(time_offset);
else
ntv->offset = L_GINT(time_offset) / 1000; /* XXX rounding ? */
ntv->freq = L_GINT((time_freq / 1000LL) << 16);
ntv->maxerror = time_maxerror;
ntv->esterror = time_esterror;
ntv->status = time_status;
ntv->constant = time_constant;
if (time_status & STA_NANO)
ntv->precision = time_precision;
else
ntv->precision = time_precision / 1000;
ntv->tolerance = MAXFREQ * SCALE_PPM;
#ifdef PPS_SYNC
ntv->shift = pps_shift;
ntv->ppsfreq = L_GINT((pps_freq / 1000LL) << 16);
if (time_status & STA_NANO)
ntv->jitter = pps_jitter;
else
ntv->jitter = pps_jitter / 1000;
ntv->stabil = pps_stabil;
ntv->calcnt = pps_calcnt;
ntv->errcnt = pps_errcnt;
ntv->jitcnt = pps_jitcnt;
ntv->stbcnt = pps_stbcnt;
#endif /* PPS_SYNC */
splx(s);
}
#endif /* NTP */
/*
* second_overflow() - called after ntp_tick_adjust()
*
* This routine is ordinarily called immediately following the above
* routine ntp_tick_adjust(). While these two routines are normally
* combined, they are separated here only for the purposes of
* simulation.
*/
void
ntp_update_second(int64_t *adjustment, time_t *newsec)
{
int tickrate;
l_fp ftemp; /* 32/64-bit temporary */
#ifdef NTP
/*
* On rollover of the second both the nanosecond and microsecond
* clocks are updated and the state machine cranked as
* necessary. The phase adjustment to be used for the next
* second is calculated and the maximum error is increased by
* the tolerance.
*/
time_maxerror += MAXFREQ / 1000;
/*
* Leap second processing. If in leap-insert state at
* the end of the day, the system clock is set back one
* second; if in leap-delete state, the system clock is
* set ahead one second. The nano_time() routine or
* external clock driver will insure that reported time
* is always monotonic.
*/
switch (time_state) {
/*
* No warning.
*/
case TIME_OK:
if (time_status & STA_INS)
time_state = TIME_INS;
else if (time_status & STA_DEL)
time_state = TIME_DEL;
break;
/*
* Insert second 23:59:60 following second
* 23:59:59.
*/
case TIME_INS:
if (!(time_status & STA_INS))
time_state = TIME_OK;
else if ((*newsec) % 86400 == 0) {
(*newsec)--;
time_state = TIME_OOP;
time_tai++;
}
break;
/*
* Delete second 23:59:59.
*/
case TIME_DEL:
if (!(time_status & STA_DEL))
time_state = TIME_OK;
else if (((*newsec) + 1) % 86400 == 0) {
(*newsec)++;
time_tai--;
time_state = TIME_WAIT;
}
break;
/*
* Insert second in progress.
*/
case TIME_OOP:
time_state = TIME_WAIT;
break;
/*
* Wait for status bits to clear.
*/
case TIME_WAIT:
if (!(time_status & (STA_INS | STA_DEL)))
time_state = TIME_OK;
}
/*
* Compute the total time adjustment for the next second
* in ns. The offset is reduced by a factor depending on
* whether the PPS signal is operating. Note that the
* value is in effect scaled by the clock frequency,
* since the adjustment is added at each tick interrupt.
*/
ftemp = time_offset;
#ifdef PPS_SYNC
/* XXX even if PPS signal dies we should finish adjustment ? */
if (time_status & STA_PPSTIME && time_status &
STA_PPSSIGNAL)
L_RSHIFT(ftemp, pps_shift);
else
L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
#else
L_RSHIFT(ftemp, SHIFT_PLL + time_constant);
#endif /* PPS_SYNC */
time_adj = ftemp;
L_SUB(time_offset, ftemp);
L_ADD(time_adj, time_freq);
#ifdef PPS_SYNC
if (pps_valid > 0)
pps_valid--;
else
time_status &= ~STA_PPSSIGNAL;
#endif /* PPS_SYNC */
#else /* !NTP */
L_CLR(time_adj);
#endif /* !NTP */
/*
* Apply any correction from adjtime(2). If more than one second
* off we slew at a rate of 5ms/s (5000 PPM) else 500us/s (500PPM)
* until the last second is slewed the final < 500 usecs.
*/
if (time_adjtime != 0) {
if (time_adjtime > 1000000)
tickrate = 5000;
else if (time_adjtime < -1000000)
tickrate = -5000;
else if (time_adjtime > 500)
tickrate = 500;
else if (time_adjtime < -500)
tickrate = -500;
else
tickrate = time_adjtime;
time_adjtime -= tickrate;
L_LINT(ftemp, tickrate * 1000);
L_ADD(time_adj, ftemp);
}
*adjustment = time_adj;
}
/*
* ntp_init() - initialize variables and structures
*
* This routine must be called after the kernel variables hz and tick
* are set or changed and before the next tick interrupt. In this
* particular implementation, these values are assumed set elsewhere in
* the kernel. The design allows the clock frequency and tick interval
* to be changed while the system is running. So, this routine should
* probably be integrated with the code that does that.
*/
void
ntp_init(void)
{
/*
* The following variables are initialized only at startup. Only
* those structures not cleared by the compiler need to be
* initialized, and these only in the simulator. In the actual
* kernel, any nonzero values here will quickly evaporate.
*/
L_CLR(time_adj);
#ifdef NTP
L_CLR(time_offset);
L_CLR(time_freq);
#ifdef PPS_SYNC
pps_tf[0].tv_sec = pps_tf[0].tv_nsec = 0;
pps_tf[1].tv_sec = pps_tf[1].tv_nsec = 0;
pps_tf[2].tv_sec = pps_tf[2].tv_nsec = 0;
pps_fcount = 0;
L_CLR(pps_freq);
#endif /* PPS_SYNC */
#endif
}
#ifdef NTP
/*
* hardupdate() - local clock update
*
* This routine is called by ntp_adjtime() to update the local clock
* phase and frequency. The implementation is of an adaptive-parameter,
* hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
* time and frequency offset estimates for each call. If the kernel PPS
* discipline code is configured (PPS_SYNC), the PPS signal itself
* determines the new time offset, instead of the calling argument.
* Presumably, calls to ntp_adjtime() occur only when the caller
* believes the local clock is valid within some bound (+-128 ms with
* NTP). If the caller's time is far different than the PPS time, an
* argument will ensue, and it's not clear who will lose.
*
* For uncompensated quartz crystal oscillators and nominal update
* intervals less than 256 s, operation should be in phase-lock mode,
* where the loop is disciplined to phase. For update intervals greater
* than 1024 s, operation should be in frequency-lock mode, where the
* loop is disciplined to frequency. Between 256 s and 1024 s, the mode
* is selected by the STA_MODE status bit.
*
* Note: splclock() is in effect.
*/
void
hardupdate(long offset)
{
long mtemp;
l_fp ftemp;
/*
* Select how the phase is to be controlled and from which
* source. If the PPS signal is present and enabled to
* discipline the time, the PPS offset is used; otherwise, the
* argument offset is used.
*/
if (!(time_status & STA_PLL))
return;
if (!(time_status & STA_PPSTIME && time_status &
STA_PPSSIGNAL)) {
if (offset > MAXPHASE)
time_monitor = MAXPHASE;
else if (offset < -MAXPHASE)
time_monitor = -MAXPHASE;
else
time_monitor = offset;
L_LINT(time_offset, time_monitor);
}
/*
* Select how the frequency is to be controlled and in which
* mode (PLL or FLL). If the PPS signal is present and enabled
* to discipline the frequency, the PPS frequency is used;
* otherwise, the argument offset is used to compute it.
*/
if (time_status & STA_PPSFREQ && time_status & STA_PPSSIGNAL) {
time_reftime = time_second;
return;
}
if (time_status & STA_FREQHOLD || time_reftime == 0)
time_reftime = time_second;
mtemp = time_second - time_reftime;
L_LINT(ftemp, time_monitor);
L_RSHIFT(ftemp, (SHIFT_PLL + 2 + time_constant) << 1);
L_MPY(ftemp, mtemp);
L_ADD(time_freq, ftemp);
time_status &= ~STA_MODE;
if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp >
MAXSEC)) {
L_LINT(ftemp, (time_monitor << 4) / mtemp);
L_RSHIFT(ftemp, SHIFT_FLL + 4);
L_ADD(time_freq, ftemp);
time_status |= STA_MODE;
}
time_reftime = time_second;
if (L_GINT(time_freq) > MAXFREQ)
L_LINT(time_freq, MAXFREQ);
else if (L_GINT(time_freq) < -MAXFREQ)
L_LINT(time_freq, -MAXFREQ);
}
#ifdef PPS_SYNC
/*
* hardpps() - discipline CPU clock oscillator to external PPS signal
*
* This routine is called at each PPS interrupt in order to discipline
* the CPU clock oscillator to the PPS signal. It measures the PPS phase
* and leaves it in a handy spot for the hardclock() routine. It
* integrates successive PPS phase differences and calculates the
* frequency offset. This is used in hardclock() to discipline the CPU
* clock oscillator so that intrinsic frequency error is cancelled out.
* The code requires the caller to capture the time and hardware counter
* value at the on-time PPS signal transition.
*
* Note that, on some Unix systems, this routine runs at an interrupt
* priority level higher than the timer interrupt routine hardclock().
* Therefore, the variables used are distinct from the hardclock()
* variables, except for certain exceptions: The PPS frequency pps_freq
* and phase pps_offset variables are determined by this routine and
* updated atomically. The time_tolerance variable can be considered a
* constant, since it is infrequently changed, and then only when the
* PPS signal is disabled. The watchdog counter pps_valid is updated
* once per second by hardclock() and is atomically cleared in this
* routine.
*/
void
hardpps(struct timespec *tsp, /* time at PPS */
long nsec /* hardware counter at PPS */)
{
long u_sec, u_nsec, v_nsec; /* temps */
l_fp ftemp;
/*
* The signal is first processed by a range gate and frequency
* discriminator. The range gate rejects noise spikes outside
* the range +-500 us. The frequency discriminator rejects input
* signals with apparent frequency outside the range 1 +-500
* PPM. If two hits occur in the same second, we ignore the
* later hit; if not and a hit occurs outside the range gate,
* keep the later hit for later comparison, but do not process
* it.
*/
time_status |= STA_PPSSIGNAL | STA_PPSJITTER;
time_status &= ~(STA_PPSWANDER | STA_PPSERROR);
pps_valid = PPS_VALID;
u_sec = tsp->tv_sec;
u_nsec = tsp->tv_nsec;
if (u_nsec >= (NANOSECOND >> 1)) {
u_nsec -= NANOSECOND;
u_sec++;
}
v_nsec = u_nsec - pps_tf[0].tv_nsec;
if (u_sec == pps_tf[0].tv_sec && v_nsec < NANOSECOND -
MAXFREQ)
return;
pps_tf[2] = pps_tf[1];
pps_tf[1] = pps_tf[0];
pps_tf[0].tv_sec = u_sec;
pps_tf[0].tv_nsec = u_nsec;
/*
* Compute the difference between the current and previous
* counter values. If the difference exceeds 0.5 s, assume it
* has wrapped around, so correct 1.0 s. If the result exceeds
* the tick interval, the sample point has crossed a tick
* boundary during the last second, so correct the tick. Very
* intricate.
*/
u_nsec = nsec;
if (u_nsec > (NANOSECOND >> 1))
u_nsec -= NANOSECOND;
else if (u_nsec < -(NANOSECOND >> 1))
u_nsec += NANOSECOND;
pps_fcount += u_nsec;
if (v_nsec > MAXFREQ || v_nsec < -MAXFREQ)
return;
time_status &= ~STA_PPSJITTER;
/*
* A three-stage median filter is used to help denoise the PPS
* time. The median sample becomes the time offset estimate; the
* difference between the other two samples becomes the time
* dispersion (jitter) estimate.
*/
if (pps_tf[0].tv_nsec > pps_tf[1].tv_nsec) {
if (pps_tf[1].tv_nsec > pps_tf[2].tv_nsec) {
v_nsec = pps_tf[1].tv_nsec; /* 0 1 2 */
u_nsec = pps_tf[0].tv_nsec - pps_tf[2].tv_nsec;
} else if (pps_tf[2].tv_nsec > pps_tf[0].tv_nsec) {
v_nsec = pps_tf[0].tv_nsec; /* 2 0 1 */
u_nsec = pps_tf[2].tv_nsec - pps_tf[1].tv_nsec;
} else {
v_nsec = pps_tf[2].tv_nsec; /* 0 2 1 */
u_nsec = pps_tf[0].tv_nsec - pps_tf[1].tv_nsec;
}
} else {
if (pps_tf[1].tv_nsec < pps_tf[2].tv_nsec) {
v_nsec = pps_tf[1].tv_nsec; /* 2 1 0 */
u_nsec = pps_tf[2].tv_nsec - pps_tf[0].tv_nsec;
} else if (pps_tf[2].tv_nsec < pps_tf[0].tv_nsec) {
v_nsec = pps_tf[0].tv_nsec; /* 1 0 2 */
u_nsec = pps_tf[1].tv_nsec - pps_tf[2].tv_nsec;
} else {
v_nsec = pps_tf[2].tv_nsec; /* 1 2 0 */
u_nsec = pps_tf[1].tv_nsec - pps_tf[0].tv_nsec;
}
}
/*
* Nominal jitter is due to PPS signal noise and interrupt
* latency. If it exceeds the popcorn threshold, the sample is
* discarded. otherwise, if so enabled, the time offset is
* updated. We can tolerate a modest loss of data here without
* much degrading time accuracy.
*/
if (u_nsec > (pps_jitter << PPS_POPCORN)) {
time_status |= STA_PPSJITTER;
pps_jitcnt++;
} else if (time_status & STA_PPSTIME) {
time_monitor = -v_nsec;
L_LINT(time_offset, time_monitor);
}
pps_jitter += (u_nsec - pps_jitter) >> PPS_FAVG;
u_sec = pps_tf[0].tv_sec - pps_lastsec;
if (u_sec < (1 << pps_shift))
return;
/*
* At the end of the calibration interval the difference between
* the first and last counter values becomes the scaled
* frequency. It will later be divided by the length of the
* interval to determine the frequency update. If the frequency
* exceeds a sanity threshold, or if the actual calibration
* interval is not equal to the expected length, the data are
* discarded. We can tolerate a modest loss of data here without
* much degrading frequency accuracy.
*/
pps_calcnt++;
v_nsec = -pps_fcount;
pps_lastsec = pps_tf[0].tv_sec;
pps_fcount = 0;
u_nsec = MAXFREQ << pps_shift;
if (v_nsec > u_nsec || v_nsec < -u_nsec || u_sec != (1 <<
pps_shift)) {
time_status |= STA_PPSERROR;
pps_errcnt++;
return;
}
/*
* Here the raw frequency offset and wander (stability) is
* calculated. If the wander is less than the wander threshold
* for four consecutive averaging intervals, the interval is
* doubled; if it is greater than the threshold for four
* consecutive intervals, the interval is halved. The scaled
* frequency offset is converted to frequency offset. The
* stability metric is calculated as the average of recent
* frequency changes, but is used only for performance
* monitoring.
*/
L_LINT(ftemp, v_nsec);
L_RSHIFT(ftemp, pps_shift);
L_SUB(ftemp, pps_freq);
u_nsec = L_GINT(ftemp);
if (u_nsec > PPS_MAXWANDER) {
L_LINT(ftemp, PPS_MAXWANDER);
pps_intcnt--;
time_status |= STA_PPSWANDER;
pps_stbcnt++;
} else if (u_nsec < -PPS_MAXWANDER) {
L_LINT(ftemp, -PPS_MAXWANDER);
pps_intcnt--;
time_status |= STA_PPSWANDER;
pps_stbcnt++;
} else {
pps_intcnt++;
}
if (pps_intcnt >= 4) {
pps_intcnt = 4;
if (pps_shift < pps_shiftmax) {
pps_shift++;
pps_intcnt = 0;
}
} else if (pps_intcnt <= -4 || pps_shift > pps_shiftmax) {
pps_intcnt = -4;
if (pps_shift > PPS_FAVG) {
pps_shift--;
pps_intcnt = 0;
}
}
if (u_nsec < 0)
u_nsec = -u_nsec;
pps_stabil += (u_nsec * SCALE_PPM - pps_stabil) >> PPS_FAVG;
/*
* The PPS frequency is recalculated and clamped to the maximum
* MAXFREQ. If enabled, the system clock frequency is updated as
* well.
*/
L_ADD(pps_freq, ftemp);
u_nsec = L_GINT(pps_freq);
if (u_nsec > MAXFREQ)
L_LINT(pps_freq, MAXFREQ);
else if (u_nsec < -MAXFREQ)
L_LINT(pps_freq, -MAXFREQ);
if (time_status & STA_PPSFREQ)
time_freq = pps_freq;
}
#endif /* PPS_SYNC */
#endif /* NTP */
#else /* !__HAVE_TIMECOUNTER */
/******************************************************************************
* *
* Copyright (c) David L. Mills 1993, 1994 *
* *
* Permission to use, copy, modify, and distribute this software and its *
* documentation for any purpose and without fee is hereby granted, provided *
* that the above copyright notice appears in all copies and that both the *
* copyright notice and this permission notice appear in supporting *
* documentation, and that the name University of Delaware not be used in *
* advertising or publicity pertaining to distribution of the software *
* without specific, written prior permission. The University of Delaware *
* makes no representations about the suitability this software for any *
* purpose. It is provided "as is" without express or implied warranty. *
* *
******************************************************************************/
/*
* Modification history kern_ntptime.c
*
* 24 Sep 94 David L. Mills
* Tightened code at exits.
*
* 24 Mar 94 David L. Mills
* Revised syscall interface to include new variables for PPS
* time discipline.
*
* 14 Feb 94 David L. Mills
* Added code for external clock
*
* 28 Nov 93 David L. Mills
* Revised frequency scaling to conform with adjusted parameters
*
* 17 Sep 93 David L. Mills
* Created file
*/
/*
* ntp_gettime(), ntp_adjtime() - precision time interface for SunOS
* V4.1.1 and V4.1.3
*
* These routines consitute the Network Time Protocol (NTP) interfaces
* for user and daemon application programs. The ntp_gettime() routine
* provides the time, maximum error (synch distance) and estimated error
* (dispersion) to client user application programs. The ntp_adjtime()
* routine is used by the NTP daemon to adjust the system clock to an
* externally derived time. The time offset and related variables set by
* this routine are used by hardclock() to adjust the phase and
* frequency of the phase-lock loop which controls the system clock.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_ntptime.c,v 1.41 2006/11/01 10:17:58 yamt Exp $");
#include "opt_ntp.h"
#include "opt_compat_netbsd.h"
#include <sys/param.h>
#include <sys/resourcevar.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/timex.h>
#ifdef COMPAT_30
#include <compat/sys/timex.h>
#endif
#include <sys/vnode.h>
#include <sys/kauth.h>
#include <sys/mount.h>
#include <sys/sa.h>
#include <sys/syscallargs.h>
#include <machine/cpu.h>
#ifdef NTP
/*
* The following variables are used by the hardclock() routine in the
* kern_clock.c module and are described in that module.
*/
extern int time_state; /* clock state */
extern int time_status; /* clock status bits */
extern long time_offset; /* time adjustment (us) */
extern long time_freq; /* frequency offset (scaled ppm) */
extern long time_maxerror; /* maximum error (us) */
extern long time_esterror; /* estimated error (us) */
extern long time_constant; /* pll time constant */
extern long time_precision; /* clock precision (us) */
extern long time_tolerance; /* frequency tolerance (scaled ppm) */
extern int time_adjusted; /* ntp might have changed the system time */
#ifdef PPS_SYNC
/*
* The following variables are used only if the PPS signal discipline
* is configured in the kernel.
*/
extern int pps_shift; /* interval duration (s) (shift) */
extern long pps_freq; /* pps frequency offset (scaled ppm) */
extern long pps_jitter; /* pps jitter (us) */
extern long pps_stabil; /* pps stability (scaled ppm) */
extern long pps_jitcnt; /* jitter limit exceeded */
extern long pps_calcnt; /* calibration intervals */
extern long pps_errcnt; /* calibration errors */
extern long pps_stbcnt; /* stability limit exceeded */
#endif /* PPS_SYNC */
/*ARGSUSED*/
/*
* ntp_gettime() - NTP user application interface
*/
void
ntp_gettime(ntvp)
struct ntptimeval *ntvp;
{
struct timeval atv;
int s;
memset(ntvp, 0, sizeof(struct ntptimeval));
s = splclock();
#ifdef EXT_CLOCK
/*
* The microtime() external clock routine returns a
* status code. If less than zero, we declare an error
* in the clock status word and return the kernel
* (software) time variable. While there are other
* places that call microtime(), this is the only place
* that matters from an application point of view.
*/
if (microtime(&atv) < 0) {
time_status |= STA_CLOCKERR;
ntvp->time = time;
} else
time_status &= ~STA_CLOCKERR;
#else /* EXT_CLOCK */
microtime(&atv);
#endif /* EXT_CLOCK */
ntvp->maxerror = time_maxerror;
ntvp->esterror = time_esterror;
(void) splx(s);
TIMEVAL_TO_TIMESPEC(&atv, &ntvp->time);
}
/* ARGSUSED */
/*
* ntp_adjtime() - NTP daemon application interface
*/
int
sys_ntp_adjtime(l, v, retval)
struct lwp *l;
void *v;
register_t *retval;
{
struct sys_ntp_adjtime_args /* {
syscallarg(struct timex *) tp;
} */ *uap = v;
struct timex ntv;
int error = 0;
error = copyin((caddr_t)SCARG(uap, tp), (caddr_t)&ntv, sizeof(ntv));
if (error != 0)
return (error);
if (ntv.modes != 0 && (error = kauth_authorize_system(l->l_cred,
KAUTH_SYSTEM_TIME, KAUTH_REQ_SYSTEM_TIME_NTPADJTIME, NULL,
NULL, NULL)) != 0)
return (error);
ntp_adjtime1(&ntv);
error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, tp), sizeof(ntv));
if (error == 0)
*retval = ntp_timestatus();
return error;
}
void
ntp_adjtime1(ntv)
struct timex *ntv;
{
int modes;
int s;
/*
* Update selected clock variables. Note that there is no error
* checking here on the assumption the superuser should know
* what it is doing.
*/
modes = ntv->modes;
if (modes != 0)
/* We need to save the system time during shutdown */
time_adjusted |= 2;
s = splclock();
if (modes & MOD_FREQUENCY)
#ifdef PPS_SYNC
time_freq = ntv->freq - pps_freq;
#else /* PPS_SYNC */
time_freq = ntv->freq;
#endif /* PPS_SYNC */
if (modes & MOD_MAXERROR)
time_maxerror = ntv->maxerror;
if (modes & MOD_ESTERROR)
time_esterror = ntv->esterror;
if (modes & MOD_STATUS) {
time_status &= STA_RONLY;
time_status |= ntv->status & ~STA_RONLY;
}
if (modes & MOD_TIMECONST)
time_constant = ntv->constant;
if (modes & MOD_OFFSET)
hardupdate(ntv->offset);
/*
* Retrieve all clock variables
*/
if (time_offset < 0)
ntv->offset = -(-time_offset >> SHIFT_UPDATE);
else
ntv->offset = time_offset >> SHIFT_UPDATE;
#ifdef PPS_SYNC
ntv->freq = time_freq + pps_freq;
#else /* PPS_SYNC */
ntv->freq = time_freq;
#endif /* PPS_SYNC */
ntv->maxerror = time_maxerror;
ntv->esterror = time_esterror;
ntv->status = time_status;
ntv->constant = time_constant;
ntv->precision = time_precision;
ntv->tolerance = time_tolerance;
#ifdef PPS_SYNC
ntv->shift = pps_shift;
ntv->ppsfreq = pps_freq;
ntv->jitter = pps_jitter >> PPS_AVG;
ntv->stabil = pps_stabil;
ntv->calcnt = pps_calcnt;
ntv->errcnt = pps_errcnt;
ntv->jitcnt = pps_jitcnt;
ntv->stbcnt = pps_stbcnt;
#endif /* PPS_SYNC */
(void)splx(s);
}
#endif /* NTP */
#endif /* !__HAVE_TIMECOUNTER */
#ifdef NTP
int
ntp_timestatus()
{
/*
* Status word error decode. If any of these conditions
* occur, an error is returned, instead of the status
* word. Most applications will care only about the fact
* the system clock may not be trusted, not about the
* details.
*
* Hardware or software error
*/
if ((time_status & (STA_UNSYNC | STA_CLOCKERR)) ||
/*
* PPS signal lost when either time or frequency
* synchronization requested
*/
(time_status & (STA_PPSFREQ | STA_PPSTIME) &&
!(time_status & STA_PPSSIGNAL)) ||
/*
* PPS jitter exceeded when time synchronization
* requested
*/
(time_status & STA_PPSTIME &&
time_status & STA_PPSJITTER) ||
/*
* PPS wander exceeded or calibration error when
* frequency synchronization requested
*/
(time_status & STA_PPSFREQ &&
time_status & (STA_PPSWANDER | STA_PPSERROR)))
return (TIME_ERROR);
else
return (time_state);
}
/*ARGSUSED*/
/*
* ntp_gettime() - NTP user application interface
*/
int
sys___ntp_gettime30(struct lwp *l, void *v, register_t *retval)
{
struct sys___ntp_gettime30_args /* {
syscallarg(struct ntptimeval *) ntvp;
} */ *uap = v;
struct ntptimeval ntv;
int error = 0;
if (SCARG(uap, ntvp)) {
ntp_gettime(&ntv);
error = copyout((caddr_t)&ntv, (caddr_t)SCARG(uap, ntvp),
sizeof(ntv));
}
if (!error) {
*retval = ntp_timestatus();
}
return(error);
}
#ifdef COMPAT_30
int
compat_30_sys_ntp_gettime(struct lwp *l, void *v, register_t *retval)
{
struct compat_30_sys_ntp_gettime_args /* {
syscallarg(struct ntptimeval30 *) ontvp;
} */ *uap = v;
struct ntptimeval ntv;
struct ntptimeval30 ontv;
int error = 0;
if (SCARG(uap, ntvp)) {
ntp_gettime(&ntv);
TIMESPEC_TO_TIMEVAL(&ontv.time, &ntv.time);
ontv.maxerror = ntv.maxerror;
ontv.esterror = ntv.esterror;
error = copyout((caddr_t)&ontv, (caddr_t)SCARG(uap, ntvp),
sizeof(ontv));
}
if (!error)
*retval = ntp_timestatus();
return (error);
}
#endif
/*
* return information about kernel precision timekeeping
*/
static int
sysctl_kern_ntptime(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct ntptimeval ntv;
ntp_gettime(&ntv);
node = *rnode;
node.sysctl_data = &ntv;
node.sysctl_size = sizeof(ntv);
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
SYSCTL_SETUP(sysctl_kern_ntptime_setup, "sysctl kern.ntptime node setup")
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "kern", NULL,
NULL, 0, NULL, 0,
CTL_KERN, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "ntptime",
SYSCTL_DESCR("Kernel clock values for NTP"),
sysctl_kern_ntptime, 0, NULL,
sizeof(struct ntptimeval),
CTL_KERN, KERN_NTPTIME, CTL_EOL);
}
#else /* !NTP */
/* For some reason, raising SIGSYS (as sys_nosys would) is problematic. */
int
sys___ntp_gettime30(struct lwp *l, void *v, register_t *retval)
{
return(ENOSYS);
}
#ifdef COMPAT_30
int
compat_30_sys_ntp_gettime(struct lwp *l, void *v, register_t *retval)
{
return(ENOSYS);
}
#endif
#endif /* !NTP */