NetBSD/sys/opencrypto/cryptosoft.c
tls f27d6532f5 Remove arc4random() and arc4randbytes() from the kernel API. Replace
arc4random() hacks in rump with stubs that call the host arc4random() to
get numbers that are hopefully actually random (arc4random() keyed with
stack junk is not).  This should fix some of the currently failing anita
tests -- we should no longer generate duplicate "random" MAC addresses in
the test environment.
2011-11-28 08:05:05 +00:00

1322 lines
32 KiB
C

/* $NetBSD: cryptosoft.c,v 1.39 2011/11/28 08:05:06 tls Exp $ */
/* $FreeBSD: src/sys/opencrypto/cryptosoft.c,v 1.2.2.1 2002/11/21 23:34:23 sam Exp $ */
/* $OpenBSD: cryptosoft.c,v 1.35 2002/04/26 08:43:50 deraadt Exp $ */
/*
* The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu)
*
* This code was written by Angelos D. Keromytis in Athens, Greece, in
* February 2000. Network Security Technologies Inc. (NSTI) kindly
* supported the development of this code.
*
* Copyright (c) 2000, 2001 Angelos D. Keromytis
*
* Permission to use, copy, and modify this software with or without fee
* is hereby granted, provided that this entire notice is included in
* all source code copies of any software which is or includes a copy or
* modification of this software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR
* IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE
* MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR
* PURPOSE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cryptosoft.c,v 1.39 2011/11/28 08:05:06 tls Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/sysctl.h>
#include <sys/errno.h>
#include "opt_ocf.h"
#include <opencrypto/cryptodev.h>
#include <opencrypto/cryptosoft.h>
#include <opencrypto/xform.h>
#include <opencrypto/cryptosoft_xform.c>
union authctx {
MD5_CTX md5ctx;
SHA1_CTX sha1ctx;
RMD160_CTX rmd160ctx;
SHA256_CTX sha256ctx;
SHA384_CTX sha384ctx;
SHA512_CTX sha512ctx;
aesxcbc_ctx aesxcbcctx;
AES_GMAC_CTX aesgmacctx;
};
struct swcr_data **swcr_sessions = NULL;
u_int32_t swcr_sesnum = 0;
int32_t swcr_id = -1;
#define COPYBACK(x, a, b, c, d) \
(x) == CRYPTO_BUF_MBUF ? m_copyback((struct mbuf *)a,b,c,d) \
: cuio_copyback((struct uio *)a,b,c,d)
#define COPYDATA(x, a, b, c, d) \
(x) == CRYPTO_BUF_MBUF ? m_copydata((struct mbuf *)a,b,c,d) \
: cuio_copydata((struct uio *)a,b,c,d)
static int swcr_encdec(struct cryptodesc *, const struct swcr_data *, void *, int);
static int swcr_compdec(struct cryptodesc *, const struct swcr_data *, void *, int, int *);
static int swcr_combined(struct cryptop *, int);
static int swcr_process(void *, struct cryptop *, int);
static int swcr_newsession(void *, u_int32_t *, struct cryptoini *);
static int swcr_freesession(void *, u_int64_t);
/*
* Apply a symmetric encryption/decryption algorithm.
*/
static int
swcr_encdec(struct cryptodesc *crd, const struct swcr_data *sw, void *bufv,
int outtype)
{
char *buf = bufv;
unsigned char iv[EALG_MAX_BLOCK_LEN], blk[EALG_MAX_BLOCK_LEN], *idat;
unsigned char *ivp, piv[EALG_MAX_BLOCK_LEN];
const struct swcr_enc_xform *exf;
int i, k, j, blks, ivlen;
int count, ind;
exf = sw->sw_exf;
blks = exf->enc_xform->blocksize;
ivlen = exf->enc_xform->ivsize;
KASSERT(exf->reinit ? ivlen <= blks : ivlen == blks);
/* Check for non-padded data */
if (crd->crd_len % blks)
return EINVAL;
/* Initialize the IV */
if (crd->crd_flags & CRD_F_ENCRYPT) {
/* IV explicitly provided ? */
if (crd->crd_flags & CRD_F_IV_EXPLICIT) {
memcpy(iv, crd->crd_iv, ivlen);
if (exf->reinit)
exf->reinit(sw->sw_kschedule, iv, 0);
} else if (exf->reinit) {
exf->reinit(sw->sw_kschedule, 0, iv);
} else {
/* Get random IV */
for (i = 0;
i + sizeof (u_int32_t) <= EALG_MAX_BLOCK_LEN;
i += sizeof (u_int32_t)) {
u_int32_t temp = cprng_fast32();
memcpy(iv + i, &temp, sizeof(u_int32_t));
}
/*
* What if the block size is not a multiple
* of sizeof (u_int32_t), which is the size of
* what arc4random() returns ?
*/
if (EALG_MAX_BLOCK_LEN % sizeof (u_int32_t) != 0) {
u_int32_t temp = cprng_fast32();
bcopy (&temp, iv + i,
EALG_MAX_BLOCK_LEN - i);
}
}
/* Do we need to write the IV */
if (!(crd->crd_flags & CRD_F_IV_PRESENT)) {
COPYBACK(outtype, buf, crd->crd_inject, ivlen, iv);
}
} else { /* Decryption */
/* IV explicitly provided ? */
if (crd->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crd->crd_iv, ivlen);
else {
/* Get IV off buf */
COPYDATA(outtype, buf, crd->crd_inject, ivlen, iv);
}
if (exf->reinit)
exf->reinit(sw->sw_kschedule, iv, 0);
}
ivp = iv;
if (outtype == CRYPTO_BUF_CONTIG) {
if (exf->reinit) {
for (i = crd->crd_skip;
i < crd->crd_skip + crd->crd_len; i += blks) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(sw->sw_kschedule, buf + i);
} else {
exf->decrypt(sw->sw_kschedule, buf + i);
}
}
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
for (i = crd->crd_skip;
i < crd->crd_skip + crd->crd_len; i += blks) {
/* XOR with the IV/previous block, as appropriate. */
if (i == crd->crd_skip)
for (k = 0; k < blks; k++)
buf[i + k] ^= ivp[k];
else
for (k = 0; k < blks; k++)
buf[i + k] ^= buf[i + k - blks];
exf->encrypt(sw->sw_kschedule, buf + i);
}
} else { /* Decrypt */
/*
* Start at the end, so we don't need to keep the encrypted
* block as the IV for the next block.
*/
for (i = crd->crd_skip + crd->crd_len - blks;
i >= crd->crd_skip; i -= blks) {
exf->decrypt(sw->sw_kschedule, buf + i);
/* XOR with the IV/previous block, as appropriate */
if (i == crd->crd_skip)
for (k = 0; k < blks; k++)
buf[i + k] ^= ivp[k];
else
for (k = 0; k < blks; k++)
buf[i + k] ^= buf[i + k - blks];
}
}
return 0;
} else if (outtype == CRYPTO_BUF_MBUF) {
struct mbuf *m = (struct mbuf *) buf;
/* Find beginning of data */
m = m_getptr(m, crd->crd_skip, &k);
if (m == NULL)
return EINVAL;
i = crd->crd_len;
while (i > 0) {
/*
* If there's insufficient data at the end of
* an mbuf, we have to do some copying.
*/
if (m->m_len < k + blks && m->m_len != k) {
m_copydata(m, k, blks, blk);
/* Actual encryption/decryption */
if (exf->reinit) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(sw->sw_kschedule,
blk);
} else {
exf->decrypt(sw->sw_kschedule,
blk);
}
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, blk);
/*
* Keep encrypted block for XOR'ing
* with next block
*/
memcpy(iv, blk, blks);
ivp = iv;
} else { /* decrypt */
/*
* Keep encrypted block for XOR'ing
* with next block
*/
if (ivp == iv)
memcpy(piv, blk, blks);
else
memcpy(iv, blk, blks);
exf->decrypt(sw->sw_kschedule, blk);
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
if (ivp == iv)
memcpy(iv, piv, blks);
else
ivp = iv;
}
/* Copy back decrypted block */
m_copyback(m, k, blks, blk);
/* Advance pointer */
m = m_getptr(m, k + blks, &k);
if (m == NULL)
return EINVAL;
i -= blks;
/* Could be done... */
if (i == 0)
break;
}
/* Skip possibly empty mbufs */
if (k == m->m_len) {
for (m = m->m_next; m && m->m_len == 0;
m = m->m_next)
;
k = 0;
}
/* Sanity check */
if (m == NULL)
return EINVAL;
/*
* Warning: idat may point to garbage here, but
* we only use it in the while() loop, only if
* there are indeed enough data.
*/
idat = mtod(m, unsigned char *) + k;
while (m->m_len >= k + blks && i > 0) {
if (exf->reinit) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(sw->sw_kschedule,
idat);
} else {
exf->decrypt(sw->sw_kschedule,
idat);
}
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, idat);
ivp = idat;
} else { /* decrypt */
/*
* Keep encrypted block to be used
* in next block's processing.
*/
if (ivp == iv)
memcpy(piv, idat, blks);
else
memcpy(iv, idat, blks);
exf->decrypt(sw->sw_kschedule, idat);
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
if (ivp == iv)
memcpy(iv, piv, blks);
else
ivp = iv;
}
idat += blks;
k += blks;
i -= blks;
}
}
return 0; /* Done with mbuf encryption/decryption */
} else if (outtype == CRYPTO_BUF_IOV) {
struct uio *uio = (struct uio *) buf;
/* Find beginning of data */
count = crd->crd_skip;
ind = cuio_getptr(uio, count, &k);
if (ind == -1)
return EINVAL;
i = crd->crd_len;
while (i > 0) {
/*
* If there's insufficient data at the end,
* we have to do some copying.
*/
if (uio->uio_iov[ind].iov_len < k + blks &&
uio->uio_iov[ind].iov_len != k) {
cuio_copydata(uio, k, blks, blk);
/* Actual encryption/decryption */
if (exf->reinit) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(sw->sw_kschedule,
blk);
} else {
exf->decrypt(sw->sw_kschedule,
blk);
}
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, blk);
/*
* Keep encrypted block for XOR'ing
* with next block
*/
memcpy(iv, blk, blks);
ivp = iv;
} else { /* decrypt */
/*
* Keep encrypted block for XOR'ing
* with next block
*/
if (ivp == iv)
memcpy(piv, blk, blks);
else
memcpy(iv, blk, blks);
exf->decrypt(sw->sw_kschedule, blk);
/* XOR with previous block */
for (j = 0; j < blks; j++)
blk[j] ^= ivp[j];
if (ivp == iv)
memcpy(iv, piv, blks);
else
ivp = iv;
}
/* Copy back decrypted block */
cuio_copyback(uio, k, blks, blk);
count += blks;
/* Advance pointer */
ind = cuio_getptr(uio, count, &k);
if (ind == -1)
return (EINVAL);
i -= blks;
/* Could be done... */
if (i == 0)
break;
}
/*
* Warning: idat may point to garbage here, but
* we only use it in the while() loop, only if
* there are indeed enough data.
*/
idat = ((char *)uio->uio_iov[ind].iov_base) + k;
while (uio->uio_iov[ind].iov_len >= k + blks &&
i > 0) {
if (exf->reinit) {
if (crd->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(sw->sw_kschedule,
idat);
} else {
exf->decrypt(sw->sw_kschedule,
idat);
}
} else if (crd->crd_flags & CRD_F_ENCRYPT) {
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
exf->encrypt(sw->sw_kschedule, idat);
ivp = idat;
} else { /* decrypt */
/*
* Keep encrypted block to be used
* in next block's processing.
*/
if (ivp == iv)
memcpy(piv, idat, blks);
else
memcpy(iv, idat, blks);
exf->decrypt(sw->sw_kschedule, idat);
/* XOR with previous block/IV */
for (j = 0; j < blks; j++)
idat[j] ^= ivp[j];
if (ivp == iv)
memcpy(iv, piv, blks);
else
ivp = iv;
}
idat += blks;
count += blks;
k += blks;
i -= blks;
}
}
return 0; /* Done with mbuf encryption/decryption */
}
/* Unreachable */
return EINVAL;
}
/*
* Compute keyed-hash authenticator.
*/
int
swcr_authcompute(struct cryptop *crp, struct cryptodesc *crd,
const struct swcr_data *sw, void *buf, int outtype)
{
unsigned char aalg[AALG_MAX_RESULT_LEN];
const struct swcr_auth_hash *axf;
union authctx ctx;
int err;
if (sw->sw_ictx == 0)
return EINVAL;
axf = sw->sw_axf;
memcpy(&ctx, sw->sw_ictx, axf->ctxsize);
switch (outtype) {
case CRYPTO_BUF_CONTIG:
axf->Update(&ctx, (char *)buf + crd->crd_skip, crd->crd_len);
break;
case CRYPTO_BUF_MBUF:
err = m_apply((struct mbuf *) buf, crd->crd_skip, crd->crd_len,
(int (*)(void*, void *, unsigned int)) axf->Update,
(void *) &ctx);
if (err)
return err;
break;
case CRYPTO_BUF_IOV:
err = cuio_apply((struct uio *) buf, crd->crd_skip,
crd->crd_len,
(int (*)(void *, void *, unsigned int)) axf->Update,
(void *) &ctx);
if (err) {
return err;
}
break;
default:
return EINVAL;
}
switch (sw->sw_alg) {
case CRYPTO_MD5_HMAC:
case CRYPTO_MD5_HMAC_96:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA1_HMAC_96:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_RIPEMD160_HMAC_96:
if (sw->sw_octx == NULL)
return EINVAL;
axf->Final(aalg, &ctx);
memcpy(&ctx, sw->sw_octx, axf->ctxsize);
axf->Update(&ctx, aalg, axf->auth_hash->hashsize);
axf->Final(aalg, &ctx);
break;
case CRYPTO_MD5_KPDK:
case CRYPTO_SHA1_KPDK:
if (sw->sw_octx == NULL)
return EINVAL;
axf->Update(&ctx, sw->sw_octx, sw->sw_klen);
axf->Final(aalg, &ctx);
break;
case CRYPTO_NULL_HMAC:
case CRYPTO_MD5:
case CRYPTO_SHA1:
case CRYPTO_AES_XCBC_MAC_96:
axf->Final(aalg, &ctx);
break;
}
/* Inject the authentication data */
switch (outtype) {
case CRYPTO_BUF_CONTIG:
(void)memcpy((char *)buf + crd->crd_inject, aalg,
axf->auth_hash->authsize);
break;
case CRYPTO_BUF_MBUF:
m_copyback((struct mbuf *) buf, crd->crd_inject,
axf->auth_hash->authsize, aalg);
break;
case CRYPTO_BUF_IOV:
memcpy(crp->crp_mac, aalg, axf->auth_hash->authsize);
break;
default:
return EINVAL;
}
return 0;
}
/*
* Apply a combined encryption-authentication transformation
*/
static int
swcr_combined(struct cryptop *crp, int outtype)
{
uint32_t blkbuf[howmany(EALG_MAX_BLOCK_LEN, sizeof(uint32_t))];
u_char *blk = (u_char *)blkbuf;
u_char aalg[AALG_MAX_RESULT_LEN];
u_char iv[EALG_MAX_BLOCK_LEN];
union authctx ctx;
struct cryptodesc *crd, *crda = NULL, *crde = NULL;
struct swcr_data *sw, *swa, *swe = NULL;
const struct swcr_auth_hash *axf = NULL;
const struct swcr_enc_xform *exf = NULL;
void *buf = (void *)crp->crp_buf;
uint32_t *blkp;
int i, blksz = 0, ivlen = 0, len;
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
for (sw = swcr_sessions[crp->crp_sid & 0xffffffff];
sw && sw->sw_alg != crd->crd_alg;
sw = sw->sw_next)
;
if (sw == NULL)
return (EINVAL);
switch (sw->sw_alg) {
case CRYPTO_AES_GCM_16:
case CRYPTO_AES_GMAC:
swe = sw;
crde = crd;
exf = swe->sw_exf;
ivlen = exf->enc_xform->ivsize;
break;
case CRYPTO_AES_128_GMAC:
case CRYPTO_AES_192_GMAC:
case CRYPTO_AES_256_GMAC:
swa = sw;
crda = crd;
axf = swa->sw_axf;
if (swa->sw_ictx == 0)
return (EINVAL);
memcpy(&ctx, swa->sw_ictx, axf->ctxsize);
blksz = axf->auth_hash->blocksize;
break;
default:
return (EINVAL);
}
}
if (crde == NULL || crda == NULL)
return (EINVAL);
if (outtype == CRYPTO_BUF_CONTIG)
return (EINVAL);
/* Initialize the IV */
if (crde->crd_flags & CRD_F_ENCRYPT) {
/* IV explicitly provided ? */
if (crde->crd_flags & CRD_F_IV_EXPLICIT) {
memcpy(iv, crde->crd_iv, ivlen);
if (exf->reinit)
exf->reinit(swe->sw_kschedule, iv, 0);
} else if (exf->reinit)
exf->reinit(swe->sw_kschedule, 0, iv);
else
cprng_fast(iv, ivlen);
/* Do we need to write the IV */
if (!(crde->crd_flags & CRD_F_IV_PRESENT))
COPYBACK(outtype, buf, crde->crd_inject, ivlen, iv);
} else { /* Decryption */
/* IV explicitly provided ? */
if (crde->crd_flags & CRD_F_IV_EXPLICIT)
memcpy(iv, crde->crd_iv, ivlen);
else {
/* Get IV off buf */
COPYDATA(outtype, buf, crde->crd_inject, ivlen, iv);
}
if (exf->reinit)
exf->reinit(swe->sw_kschedule, iv, 0);
}
/* Supply MAC with IV */
if (axf->Reinit)
axf->Reinit(&ctx, iv, ivlen);
/* Supply MAC with AAD */
for (i = 0; i < crda->crd_len; i += blksz) {
len = MIN(crda->crd_len - i, blksz);
COPYDATA(outtype, buf, crda->crd_skip + i, len, blk);
axf->Update(&ctx, blk, len);
}
/* Do encryption/decryption with MAC */
for (i = 0; i < crde->crd_len; i += blksz) {
len = MIN(crde->crd_len - i, blksz);
if (len < blksz)
memset(blk, 0, blksz);
COPYDATA(outtype, buf, crde->crd_skip + i, len, blk);
if (crde->crd_flags & CRD_F_ENCRYPT) {
exf->encrypt(swe->sw_kschedule, blk);
axf->Update(&ctx, blk, len);
} else {
axf->Update(&ctx, blk, len);
exf->decrypt(swe->sw_kschedule, blk);
}
COPYBACK(outtype, buf, crde->crd_skip + i, len, blk);
}
/* Do any required special finalization */
switch (crda->crd_alg) {
case CRYPTO_AES_128_GMAC:
case CRYPTO_AES_192_GMAC:
case CRYPTO_AES_256_GMAC:
/* length block */
memset(blk, 0, blksz);
blkp = (uint32_t *)blk + 1;
*blkp = htobe32(crda->crd_len * 8);
blkp = (uint32_t *)blk + 3;
*blkp = htobe32(crde->crd_len * 8);
axf->Update(&ctx, blk, blksz);
break;
}
/* Finalize MAC */
axf->Final(aalg, &ctx);
/* Inject the authentication data */
if (outtype == CRYPTO_BUF_MBUF)
COPYBACK(outtype, buf, crda->crd_inject, axf->auth_hash->authsize, aalg);
else
memcpy(crp->crp_mac, aalg, axf->auth_hash->authsize);
return (0);
}
/*
* Apply a compression/decompression algorithm
*/
static int
swcr_compdec(struct cryptodesc *crd, const struct swcr_data *sw,
void *buf, int outtype, int *res_size)
{
u_int8_t *data, *out;
const struct swcr_comp_algo *cxf;
int adj;
u_int32_t result;
cxf = sw->sw_cxf;
/* We must handle the whole buffer of data in one time
* then if there is not all the data in the mbuf, we must
* copy in a buffer.
*/
data = malloc(crd->crd_len, M_CRYPTO_DATA, M_NOWAIT);
if (data == NULL)
return (EINVAL);
COPYDATA(outtype, buf, crd->crd_skip, crd->crd_len, data);
if (crd->crd_flags & CRD_F_COMP)
result = cxf->compress(data, crd->crd_len, &out);
else
result = cxf->decompress(data, crd->crd_len, &out,
*res_size);
free(data, M_CRYPTO_DATA);
if (result == 0)
return EINVAL;
/* Copy back the (de)compressed data. m_copyback is
* extending the mbuf as necessary.
*/
*res_size = (int)result;
/* Check the compressed size when doing compression */
if (crd->crd_flags & CRD_F_COMP &&
sw->sw_alg == CRYPTO_DEFLATE_COMP_NOGROW &&
result >= crd->crd_len) {
/* Compression was useless, we lost time */
free(out, M_CRYPTO_DATA);
return 0;
}
COPYBACK(outtype, buf, crd->crd_skip, result, out);
if (result < crd->crd_len) {
adj = result - crd->crd_len;
if (outtype == CRYPTO_BUF_MBUF) {
adj = result - crd->crd_len;
m_adj((struct mbuf *)buf, adj);
}
/* Don't adjust the iov_len, it breaks the kmem_free */
}
free(out, M_CRYPTO_DATA);
return 0;
}
/*
* Generate a new software session.
*/
static int
swcr_newsession(void *arg, u_int32_t *sid, struct cryptoini *cri)
{
struct swcr_data **swd;
const struct swcr_auth_hash *axf;
const struct swcr_enc_xform *txf;
const struct swcr_comp_algo *cxf;
u_int32_t i;
int k, error;
if (sid == NULL || cri == NULL)
return EINVAL;
if (swcr_sessions) {
for (i = 1; i < swcr_sesnum; i++)
if (swcr_sessions[i] == NULL)
break;
} else
i = 1; /* NB: to silence compiler warning */
if (swcr_sessions == NULL || i == swcr_sesnum) {
if (swcr_sessions == NULL) {
i = 1; /* We leave swcr_sessions[0] empty */
swcr_sesnum = CRYPTO_SW_SESSIONS;
} else
swcr_sesnum *= 2;
swd = malloc(swcr_sesnum * sizeof(struct swcr_data *),
M_CRYPTO_DATA, M_NOWAIT);
if (swd == NULL) {
/* Reset session number */
if (swcr_sesnum == CRYPTO_SW_SESSIONS)
swcr_sesnum = 0;
else
swcr_sesnum /= 2;
return ENOBUFS;
}
memset(swd, 0, swcr_sesnum * sizeof(struct swcr_data *));
/* Copy existing sessions */
if (swcr_sessions) {
memcpy(swd, swcr_sessions,
(swcr_sesnum / 2) * sizeof(struct swcr_data *));
free(swcr_sessions, M_CRYPTO_DATA);
}
swcr_sessions = swd;
}
swd = &swcr_sessions[i];
*sid = i;
while (cri) {
*swd = malloc(sizeof **swd, M_CRYPTO_DATA, M_NOWAIT);
if (*swd == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
memset(*swd, 0, sizeof(struct swcr_data));
switch (cri->cri_alg) {
case CRYPTO_DES_CBC:
txf = &swcr_enc_xform_des;
goto enccommon;
case CRYPTO_3DES_CBC:
txf = &swcr_enc_xform_3des;
goto enccommon;
case CRYPTO_BLF_CBC:
txf = &swcr_enc_xform_blf;
goto enccommon;
case CRYPTO_CAST_CBC:
txf = &swcr_enc_xform_cast5;
goto enccommon;
case CRYPTO_SKIPJACK_CBC:
txf = &swcr_enc_xform_skipjack;
goto enccommon;
case CRYPTO_RIJNDAEL128_CBC:
txf = &swcr_enc_xform_rijndael128;
goto enccommon;
case CRYPTO_CAMELLIA_CBC:
txf = &swcr_enc_xform_camellia;
goto enccommon;
case CRYPTO_AES_CTR:
txf = &swcr_enc_xform_aes_ctr;
goto enccommon;
case CRYPTO_AES_GCM_16:
txf = &swcr_enc_xform_aes_gcm;
goto enccommon;
case CRYPTO_AES_GMAC:
txf = &swcr_enc_xform_aes_gmac;
goto enccommon;
case CRYPTO_NULL_CBC:
txf = &swcr_enc_xform_null;
goto enccommon;
enccommon:
error = txf->setkey(&((*swd)->sw_kschedule),
cri->cri_key, cri->cri_klen / 8);
if (error) {
swcr_freesession(NULL, i);
return error;
}
(*swd)->sw_exf = txf;
break;
case CRYPTO_MD5_HMAC:
axf = &swcr_auth_hash_hmac_md5;
goto authcommon;
case CRYPTO_MD5_HMAC_96:
axf = &swcr_auth_hash_hmac_md5_96;
goto authcommon;
case CRYPTO_SHA1_HMAC:
axf = &swcr_auth_hash_hmac_sha1;
goto authcommon;
case CRYPTO_SHA1_HMAC_96:
axf = &swcr_auth_hash_hmac_sha1_96;
goto authcommon;
case CRYPTO_SHA2_256_HMAC:
axf = &swcr_auth_hash_hmac_sha2_256;
goto authcommon;
case CRYPTO_SHA2_384_HMAC:
axf = &swcr_auth_hash_hmac_sha2_384;
goto authcommon;
case CRYPTO_SHA2_512_HMAC:
axf = &swcr_auth_hash_hmac_sha2_512;
goto authcommon;
case CRYPTO_NULL_HMAC:
axf = &swcr_auth_hash_null;
goto authcommon;
case CRYPTO_RIPEMD160_HMAC:
axf = &swcr_auth_hash_hmac_ripemd_160;
goto authcommon;
case CRYPTO_RIPEMD160_HMAC_96:
axf = &swcr_auth_hash_hmac_ripemd_160_96;
goto authcommon; /* leave this for safety */
authcommon:
(*swd)->sw_ictx = malloc(axf->ctxsize,
M_CRYPTO_DATA, M_NOWAIT);
if ((*swd)->sw_ictx == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
(*swd)->sw_octx = malloc(axf->ctxsize,
M_CRYPTO_DATA, M_NOWAIT);
if ((*swd)->sw_octx == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
for (k = 0; k < cri->cri_klen / 8; k++)
cri->cri_key[k] ^= HMAC_IPAD_VAL;
axf->Init((*swd)->sw_ictx);
axf->Update((*swd)->sw_ictx, cri->cri_key,
cri->cri_klen / 8);
axf->Update((*swd)->sw_ictx, hmac_ipad_buffer,
axf->auth_hash->blocksize - (cri->cri_klen / 8));
for (k = 0; k < cri->cri_klen / 8; k++)
cri->cri_key[k] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
axf->Init((*swd)->sw_octx);
axf->Update((*swd)->sw_octx, cri->cri_key,
cri->cri_klen / 8);
axf->Update((*swd)->sw_octx, hmac_opad_buffer,
axf->auth_hash->blocksize - (cri->cri_klen / 8));
for (k = 0; k < cri->cri_klen / 8; k++)
cri->cri_key[k] ^= HMAC_OPAD_VAL;
(*swd)->sw_axf = axf;
break;
case CRYPTO_MD5_KPDK:
axf = &swcr_auth_hash_key_md5;
goto auth2common;
case CRYPTO_SHA1_KPDK:
axf = &swcr_auth_hash_key_sha1;
auth2common:
(*swd)->sw_ictx = malloc(axf->ctxsize,
M_CRYPTO_DATA, M_NOWAIT);
if ((*swd)->sw_ictx == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
/* Store the key so we can "append" it to the payload */
(*swd)->sw_octx = malloc(cri->cri_klen / 8, M_CRYPTO_DATA,
M_NOWAIT);
if ((*swd)->sw_octx == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
(*swd)->sw_klen = cri->cri_klen / 8;
memcpy((*swd)->sw_octx, cri->cri_key, cri->cri_klen / 8);
axf->Init((*swd)->sw_ictx);
axf->Update((*swd)->sw_ictx, cri->cri_key,
cri->cri_klen / 8);
axf->Final(NULL, (*swd)->sw_ictx);
(*swd)->sw_axf = axf;
break;
case CRYPTO_MD5:
axf = &swcr_auth_hash_md5;
goto auth3common;
case CRYPTO_SHA1:
axf = &swcr_auth_hash_sha1;
auth3common:
(*swd)->sw_ictx = malloc(axf->ctxsize,
M_CRYPTO_DATA, M_NOWAIT);
if ((*swd)->sw_ictx == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
axf->Init((*swd)->sw_ictx);
(*swd)->sw_axf = axf;
break;
case CRYPTO_AES_XCBC_MAC_96:
axf = &swcr_auth_hash_aes_xcbc_mac;
goto auth4common;
case CRYPTO_AES_128_GMAC:
axf = &swcr_auth_hash_gmac_aes_128;
goto auth4common;
case CRYPTO_AES_192_GMAC:
axf = &swcr_auth_hash_gmac_aes_192;
goto auth4common;
case CRYPTO_AES_256_GMAC:
axf = &swcr_auth_hash_gmac_aes_256;
auth4common:
(*swd)->sw_ictx = malloc(axf->ctxsize,
M_CRYPTO_DATA, M_NOWAIT);
if ((*swd)->sw_ictx == NULL) {
swcr_freesession(NULL, i);
return ENOBUFS;
}
axf->Init((*swd)->sw_ictx);
axf->Setkey((*swd)->sw_ictx,
cri->cri_key, cri->cri_klen / 8);
(*swd)->sw_axf = axf;
break;
case CRYPTO_DEFLATE_COMP:
cxf = &swcr_comp_algo_deflate;
(*swd)->sw_cxf = cxf;
break;
case CRYPTO_DEFLATE_COMP_NOGROW:
cxf = &swcr_comp_algo_deflate_nogrow;
(*swd)->sw_cxf = cxf;
break;
case CRYPTO_GZIP_COMP:
cxf = &swcr_comp_algo_gzip;
(*swd)->sw_cxf = cxf;
break;
default:
swcr_freesession(NULL, i);
return EINVAL;
}
(*swd)->sw_alg = cri->cri_alg;
cri = cri->cri_next;
swd = &((*swd)->sw_next);
}
return 0;
}
/*
* Free a session.
*/
static int
swcr_freesession(void *arg, u_int64_t tid)
{
struct swcr_data *swd;
const struct swcr_enc_xform *txf;
const struct swcr_auth_hash *axf;
const struct swcr_comp_algo *cxf;
u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
if (sid > swcr_sesnum || swcr_sessions == NULL ||
swcr_sessions[sid] == NULL)
return EINVAL;
/* Silently accept and return */
if (sid == 0)
return 0;
while ((swd = swcr_sessions[sid]) != NULL) {
swcr_sessions[sid] = swd->sw_next;
switch (swd->sw_alg) {
case CRYPTO_DES_CBC:
case CRYPTO_3DES_CBC:
case CRYPTO_BLF_CBC:
case CRYPTO_CAST_CBC:
case CRYPTO_SKIPJACK_CBC:
case CRYPTO_RIJNDAEL128_CBC:
case CRYPTO_CAMELLIA_CBC:
case CRYPTO_AES_CTR:
case CRYPTO_AES_GCM_16:
case CRYPTO_AES_GMAC:
case CRYPTO_NULL_CBC:
txf = swd->sw_exf;
if (swd->sw_kschedule)
txf->zerokey(&(swd->sw_kschedule));
break;
case CRYPTO_MD5_HMAC:
case CRYPTO_MD5_HMAC_96:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA1_HMAC_96:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_RIPEMD160_HMAC_96:
case CRYPTO_NULL_HMAC:
axf = swd->sw_axf;
if (swd->sw_ictx) {
memset(swd->sw_ictx, 0, axf->ctxsize);
free(swd->sw_ictx, M_CRYPTO_DATA);
}
if (swd->sw_octx) {
memset(swd->sw_octx, 0, axf->ctxsize);
free(swd->sw_octx, M_CRYPTO_DATA);
}
break;
case CRYPTO_MD5_KPDK:
case CRYPTO_SHA1_KPDK:
axf = swd->sw_axf;
if (swd->sw_ictx) {
memset(swd->sw_ictx, 0, axf->ctxsize);
free(swd->sw_ictx, M_CRYPTO_DATA);
}
if (swd->sw_octx) {
memset(swd->sw_octx, 0, swd->sw_klen);
free(swd->sw_octx, M_CRYPTO_DATA);
}
break;
case CRYPTO_MD5:
case CRYPTO_SHA1:
case CRYPTO_AES_XCBC_MAC_96:
case CRYPTO_AES_128_GMAC:
case CRYPTO_AES_192_GMAC:
case CRYPTO_AES_256_GMAC:
axf = swd->sw_axf;
if (swd->sw_ictx)
free(swd->sw_ictx, M_CRYPTO_DATA);
break;
case CRYPTO_DEFLATE_COMP:
case CRYPTO_DEFLATE_COMP_NOGROW:
case CRYPTO_GZIP_COMP:
cxf = swd->sw_cxf;
break;
}
free(swd, M_CRYPTO_DATA);
}
return 0;
}
/*
* Process a software request.
*/
static int
swcr_process(void *arg, struct cryptop *crp, int hint)
{
struct cryptodesc *crd;
struct swcr_data *sw;
u_int32_t lid;
int type;
/* Sanity check */
if (crp == NULL)
return EINVAL;
if (crp->crp_desc == NULL || crp->crp_buf == NULL) {
crp->crp_etype = EINVAL;
goto done;
}
lid = crp->crp_sid & 0xffffffff;
if (lid >= swcr_sesnum || lid == 0 || swcr_sessions[lid] == NULL) {
crp->crp_etype = ENOENT;
goto done;
}
if (crp->crp_flags & CRYPTO_F_IMBUF) {
type = CRYPTO_BUF_MBUF;
} else if (crp->crp_flags & CRYPTO_F_IOV) {
type = CRYPTO_BUF_IOV;
} else {
type = CRYPTO_BUF_CONTIG;
}
/* Go through crypto descriptors, processing as we go */
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
/*
* Find the crypto context.
*
* XXX Note that the logic here prevents us from having
* XXX the same algorithm multiple times in a session
* XXX (or rather, we can but it won't give us the right
* XXX results). To do that, we'd need some way of differentiating
* XXX between the various instances of an algorithm (so we can
* XXX locate the correct crypto context).
*/
for (sw = swcr_sessions[lid];
sw && sw->sw_alg != crd->crd_alg;
sw = sw->sw_next)
;
/* No such context ? */
if (sw == NULL) {
crp->crp_etype = EINVAL;
goto done;
}
switch (sw->sw_alg) {
case CRYPTO_DES_CBC:
case CRYPTO_3DES_CBC:
case CRYPTO_BLF_CBC:
case CRYPTO_CAST_CBC:
case CRYPTO_SKIPJACK_CBC:
case CRYPTO_RIJNDAEL128_CBC:
case CRYPTO_CAMELLIA_CBC:
case CRYPTO_AES_CTR:
if ((crp->crp_etype = swcr_encdec(crd, sw,
crp->crp_buf, type)) != 0)
goto done;
break;
case CRYPTO_NULL_CBC:
crp->crp_etype = 0;
break;
case CRYPTO_MD5_HMAC:
case CRYPTO_MD5_HMAC_96:
case CRYPTO_SHA1_HMAC:
case CRYPTO_SHA1_HMAC_96:
case CRYPTO_SHA2_256_HMAC:
case CRYPTO_SHA2_384_HMAC:
case CRYPTO_SHA2_512_HMAC:
case CRYPTO_RIPEMD160_HMAC:
case CRYPTO_RIPEMD160_HMAC_96:
case CRYPTO_NULL_HMAC:
case CRYPTO_MD5_KPDK:
case CRYPTO_SHA1_KPDK:
case CRYPTO_MD5:
case CRYPTO_SHA1:
case CRYPTO_AES_XCBC_MAC_96:
if ((crp->crp_etype = swcr_authcompute(crp, crd, sw,
crp->crp_buf, type)) != 0)
goto done;
break;
case CRYPTO_AES_GCM_16:
case CRYPTO_AES_GMAC:
case CRYPTO_AES_128_GMAC:
case CRYPTO_AES_192_GMAC:
case CRYPTO_AES_256_GMAC:
crp->crp_etype = swcr_combined(crp, type);
goto done;
case CRYPTO_DEFLATE_COMP:
case CRYPTO_DEFLATE_COMP_NOGROW:
case CRYPTO_GZIP_COMP:
DPRINTF(("swcr_process: compdec for %d\n", sw->sw_alg));
if ((crp->crp_etype = swcr_compdec(crd, sw,
crp->crp_buf, type, &crp->crp_olen)) != 0)
goto done;
break;
default:
/* Unknown/unsupported algorithm */
crp->crp_etype = EINVAL;
goto done;
}
}
done:
DPRINTF(("request %p done\n", crp));
crypto_done(crp);
return 0;
}
static void
swcr_init(void)
{
swcr_id = crypto_get_driverid(CRYPTOCAP_F_SOFTWARE);
if (swcr_id < 0) {
/* This should never happen */
panic("Software crypto device cannot initialize!");
}
crypto_register(swcr_id, CRYPTO_DES_CBC,
0, 0, swcr_newsession, swcr_freesession, swcr_process, NULL);
#define REGISTER(alg) \
crypto_register(swcr_id, alg, 0, 0, NULL, NULL, NULL, NULL)
REGISTER(CRYPTO_3DES_CBC);
REGISTER(CRYPTO_BLF_CBC);
REGISTER(CRYPTO_CAST_CBC);
REGISTER(CRYPTO_SKIPJACK_CBC);
REGISTER(CRYPTO_CAMELLIA_CBC);
REGISTER(CRYPTO_AES_CTR);
REGISTER(CRYPTO_AES_GCM_16);
REGISTER(CRYPTO_AES_GMAC);
REGISTER(CRYPTO_NULL_CBC);
REGISTER(CRYPTO_MD5_HMAC);
REGISTER(CRYPTO_MD5_HMAC_96);
REGISTER(CRYPTO_SHA1_HMAC);
REGISTER(CRYPTO_SHA1_HMAC_96);
REGISTER(CRYPTO_SHA2_256_HMAC);
REGISTER(CRYPTO_SHA2_384_HMAC);
REGISTER(CRYPTO_SHA2_512_HMAC);
REGISTER(CRYPTO_RIPEMD160_HMAC);
REGISTER(CRYPTO_RIPEMD160_HMAC_96);
REGISTER(CRYPTO_NULL_HMAC);
REGISTER(CRYPTO_MD5_KPDK);
REGISTER(CRYPTO_SHA1_KPDK);
REGISTER(CRYPTO_MD5);
REGISTER(CRYPTO_SHA1);
REGISTER(CRYPTO_AES_XCBC_MAC_96);
REGISTER(CRYPTO_AES_128_GMAC);
REGISTER(CRYPTO_AES_192_GMAC);
REGISTER(CRYPTO_AES_256_GMAC);
REGISTER(CRYPTO_RIJNDAEL128_CBC);
REGISTER(CRYPTO_DEFLATE_COMP);
REGISTER(CRYPTO_DEFLATE_COMP_NOGROW);
REGISTER(CRYPTO_GZIP_COMP);
#undef REGISTER
}
/*
* Pseudo-device init routine for software crypto.
*/
void swcryptoattach(int);
void
swcryptoattach(int num)
{
swcr_init();
}