NetBSD/sys/dev/ic/interwave.c
2008-04-28 20:22:51 +00:00

1549 lines
36 KiB
C

/* $NetBSD: interwave.c,v 1.33 2008/04/28 20:23:50 martin Exp $ */
/*
* Copyright (c) 1997, 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* Author: Kari Mettinen
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: interwave.c,v 1.33 2008/04/28 20:23:50 martin Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/fcntl.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/cpu.h>
#include <sys/intr.h>
#include <machine/pio.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/mulaw.h>
#include <dev/isa/isavar.h>
#include <dev/isa/isadmavar.h>
#include <dev/ic/interwavereg.h>
#include <dev/ic/interwavevar.h>
static void iwreset(struct iw_softc *, int);
static int iw_set_speed(struct iw_softc *, u_long, char);
static u_long iw_set_format(struct iw_softc *, u_long, int);
static void iw_mixer_line_level(struct iw_softc *, int, int, int);
static void iw_trigger_dma(struct iw_softc *, u_char);
static void iw_stop_dma(struct iw_softc *, u_char, u_char);
static void iw_dma_count(struct iw_softc *, u_short, int);
static int iwintr(void *);
static void iw_meminit(struct iw_softc *);
static void iw_mempoke(struct iw_softc *, u_long, u_char);
static u_char iw_mempeek(struct iw_softc *, u_long);
#ifdef USE_WAVETABLE
static void iw_set_voice_place(struct iw_softc *, u_char, u_long);
static void iw_voice_pan(struct iw_softc *, u_char, u_short, u_short);
static void iw_voice_freq(struct iw_softc *, u_char, u_long);
static void iw_set_loopmode(struct iw_softc *, u_char, u_char, u_char);
static void iw_set_voice_pos(struct iw_softc *, u_short, u_long, u_long);
static void iw_start_voice(struct iw_softc *, u_char);
static void iw_play_voice(struct iw_softc *, u_long, u_long, u_short);
static void iw_stop_voice(struct iw_softc *, u_char);
static void iw_move_voice_end(struct iw_softc *, u_short, u_long);
static void iw_initvoices(struct iw_softc *);
#endif
struct audio_device iw_device = {
"Am78C201",
"0.1",
"guspnp"
};
#ifdef AUDIO_DEBUG
int iw_debug;
#define DPRINTF(p) if (iw_debug) printf p
#else
#define DPRINTF(p)
#endif
static int iw_cc = 1;
#ifdef DIAGNOSTIC
static int outputs = 0;
static int iw_ints = 0;
static int inputs = 0;
static int iw_inints = 0;
#endif
int
iwintr(void *arg)
{
struct iw_softc *sc;
int val;
u_char intrs;
sc = arg;
val = 0;
intrs = 0;
IW_READ_DIRECT_1(6, sc->p2xr_h, intrs); /* UISR */
/* codec ints */
/*
* The proper order to do this seems to be to read CSR3 to get the
* int cause and fifo over underrrun status, then deal with the ints
* (new DMA set up), and to clear ints by writing the respective bit
* to 0.
*/
/* read what ints happened */
IW_READ_CODEC_1(CSR3I, intrs);
/* clear them */
IW_WRITE_DIRECT_1(2, sc->codec_index_h, 0x00);
/* and process them */
if (intrs & 0x20) {
#ifdef DIAGNOSTIC
iw_inints++;
#endif
if (sc->sc_recintr != 0)
sc->sc_recintr(sc->sc_recarg);
val = 1;
}
if (intrs & 0x10) {
#ifdef DIAGNOSTIC
iw_ints++;
#endif
if (sc->sc_playintr != 0)
sc->sc_playintr(sc->sc_playarg);
val = 1;
}
return val;
}
void
iwattach(struct iw_softc *sc)
{
int got_irq;
DPRINTF(("iwattach sc %p\n", sc));
got_irq = 0;
sc->cdatap = 1; /* relative offsets in region */
sc->csr1r = 2;
sc->cxdr = 3; /* CPDR or CRDR */
sc->gmxr = 0; /* sc->p3xr */
sc->gmxdr = 1; /* GMTDR or GMRDR */
sc->svsr = 2;
sc->igidxr = 3;
sc->i16dp = 4;
sc->i8dp = 5;
sc->lmbdr = 7;
sc->rec_precision = sc->play_precision = 8;
sc->rec_channels = sc->play_channels = 1;
sc->rec_encoding = sc->play_encoding = AUDIO_ENCODING_ULAW;
sc->sc_irate = 8000;
sc->sc_orate = 8000;
sc->sc_fullduplex = 1;
sc->sc_dma_flags = 0;
/*
* We can only use a few selected irqs, see if we got one from pnp
* code that suits us.
*/
if (sc->sc_irq > 0) {
sc->sc_ih = isa_intr_establish(sc->sc_p2xr_ic,
sc->sc_irq, IST_EDGE, IPL_AUDIO, iwintr, sc);
got_irq = 1;
}
if (!got_irq) {
printf("\niwattach: couldn't get a suitable irq\n");
return;
}
printf("\n");
iwreset(sc, 0);
iw_set_format(sc, AUDIO_ENCODING_ULAW, 0);
iw_set_format(sc, AUDIO_ENCODING_ULAW, 1);
printf("%s: interwave version %s\n",
device_xname(&sc->sc_dev), iw_device.version);
audio_attach_mi(sc->iw_hw_if, sc, &sc->sc_dev);
}
int
iwopen(struct iw_softc *sc, int flags)
{
DPRINTF(("iwopen: sc %p\n", sc));
#ifdef DIAGNOSTIC
outputs = 0;
iw_ints = 0;
inputs = 0;
iw_inints = 0;
#endif
iwreset(sc, 1);
return 0;
}
void
iwclose(void *addr)
{
DPRINTF(("iwclose sc %p\n", addr));
#ifdef DIAGNOSTIC
DPRINTF(("iwclose: outputs %d ints %d inputs %d in_ints %d\n",
outputs, iw_ints, inputs, iw_inints));
#endif
}
#define RAM_STEP 64*1024
static void
iw_mempoke(struct iw_softc *sc, u_long addy, u_char val)
{
IW_WRITE_GENERAL_2(LMALI, (u_short) addy);
IW_WRITE_GENERAL_1(LMAHI, (u_char) (addy >> 16));
/* Write byte to LMBDR */
IW_WRITE_DIRECT_1(sc->p3xr + 7, sc->p3xr_h, val);
}
static u_char
iw_mempeek(struct iw_softc *sc, u_long addy)
{
u_char ret;
IW_WRITE_GENERAL_2(LMALI, (u_short) addy);
IW_WRITE_GENERAL_1(LMAHI, (u_char) (addy >> 16));
IW_READ_DIRECT_1(sc->p3xr + 7, sc->p3xr_h, ret);
return ret; /* return byte from LMBDR */
}
static void
iw_meminit(struct iw_softc *sc)
{
u_long bank[4] = {0L, 0L, 0L, 0L};
u_long addr, base, cnt;
u_char i, ram /* ,memval=0 */ ;
u_short lmcfi;
u_long temppi;
u_long *lpbanks;
addr = 0L;
base = 0L;
cnt = 0L;
ram = 0;
lpbanks = &temppi;
IW_WRITE_GENERAL_1(LDMACI, 0x00);
IW_READ_GENERAL_2(LMCFI, lmcfi); /* 0x52 */
lmcfi |= 0x0A0C;
IW_WRITE_GENERAL_2(LMCFI, lmcfi); /* max addr span */
IW_WRITE_GENERAL_1(LMCI, 0x00);
/* fifo addresses */
IW_WRITE_GENERAL_2(LMRFAI, ((4 * 1024 * 1024) >> 8));
IW_WRITE_GENERAL_2(LMPFAI, ((4 * 1024 * 1024 + 16 * 1024) >> 8));
IW_WRITE_GENERAL_2(LMFSI, 0x000);
IW_WRITE_GENERAL_2(LDICI, 0x0000);
while (addr < (16 * 1024 * 1024)) {
iw_mempoke(sc, addr, 0x00);
addr += RAM_STEP;
}
printf("%s:", device_xname(&sc->sc_dev));
for (i = 0; i < 4; i++) {
iw_mempoke(sc, base, 0xAA); /* mark start of bank */
iw_mempoke(sc, base + 1L, 0x55);
if (iw_mempeek(sc, base) == 0xAA &&
iw_mempeek(sc, base + 1L) == 0x55)
ram = 1;
if (ram) {
while (cnt < (4 * 1024 * 1024)) {
bank[i] += RAM_STEP;
cnt += RAM_STEP;
addr = base + cnt;
if (iw_mempeek(sc, addr) == 0xAA)
break;
}
}
if (lpbanks != NULL) {
*lpbanks = bank[i];
lpbanks++;
}
bank[i] = bank[i] >> 10;
printf("%s bank[%d]: %ldK", i ? "," : "", i, bank[i]);
base += 4 * 1024 * 1024;
cnt = 0L;
ram = 0;
}
printf("\n");
/*
* this is not really useful since GUS PnP supports memory
* configurations that aren't really supported by Interwave...beware
* of holes! Also, we don't use the memory for anything in this
* version of the driver.
*
* we've configured for 4M-4M-4M-4M
*/
}
static void
iwreset(struct iw_softc *sc, int warm)
{
u_char reg, cmode, val, mixer_image;
val = 0;
mixer_image = 0;
reg = 0; /* XXX gcc -Wall */
cmode = 0x6c; /* enhanced codec mode (full duplex) */
/* reset */
IW_WRITE_GENERAL_1(URSTI, 0x00);
delay(10);
IW_WRITE_GENERAL_1(URSTI, 0x07);
IW_WRITE_GENERAL_1(ICMPTI, 0x1f); /* disable DSP and uici and
* udci writes */
IW_WRITE_GENERAL_1(IDECI, 0x7f); /* enable ints to ISA and
* codec access */
IW_READ_GENERAL_1(IVERI, reg);
IW_WRITE_GENERAL_1(IVERI, reg | 0x01); /* hidden reg lock disable */
IW_WRITE_GENERAL_1(UASBCI, 0x00);
/* synth enhanced mode (default), 0 active voices, disable ints */
IW_WRITE_GENERAL_1(SGMI_WR, 0x01); /* enhanced mode, LFOs
* disabled */
for (val = 0; val < 32; val++) {
/* set each synth sound volume to 0 */
IW_WRITE_DIRECT_1(sc->p3xr + 2, sc->p3xr_h, val);
IW_WRITE_GENERAL_1(SVSI_WR, 0x00);
IW_WRITE_GENERAL_2(SASLI_WR, 0x0000);
IW_WRITE_GENERAL_2(SASHI_WR, 0x0000);
IW_WRITE_GENERAL_2(SAELI_WR, 0x0000);
IW_WRITE_GENERAL_2(SAEHI_WR, 0x0000);
IW_WRITE_GENERAL_2(SFCI_WR, 0x0000);
IW_WRITE_GENERAL_1(SACI_WR, 0x02);
IW_WRITE_GENERAL_1(SVSI_WR, 0x00);
IW_WRITE_GENERAL_1(SVEI_WR, 0x00);
IW_WRITE_GENERAL_2(SVLI_WR, 0x0000);
IW_WRITE_GENERAL_1(SVCI_WR, 0x02);
IW_WRITE_GENERAL_1(SMSI_WR, 0x02);
}
IW_WRITE_GENERAL_1(SAVI_WR, 0x00);
/* codec mode/init */
/* first change mode to 1 */
IW_WRITE_CODEC_1(CMODEI, 0x00);
/* and mode 3 */
IW_WRITE_CODEC_1(CMODEI, cmode);
IW_READ_CODEC_1(CMODEI, reg);
DPRINTF(("cmode %x\n", reg));
sc->revision = ((reg & 0x80) >> 3) | (reg & 0x0f);
IW_WRITE_DIRECT_1(sc->codec_index + 2, sc->p2xr_h, 0x00);
IW_WRITE_CODEC_1(CFIG1I | IW_MCE, 0x00); /* DMA 2 chan access */
IW_WRITE_CODEC_1(CEXTI, 0x00); /* disable ints for now */
IW_WRITE_CODEC_1(CLPCTI, 0x00); /* reset playback sample counters */
IW_WRITE_CODEC_1(CUPCTI, 0x00); /* always upper byte last */
IW_WRITE_CODEC_1(CFIG2I, 0x80); /* full voltage range, enable record
* and playback sample counters, and
* don't center output in case or
* FIFO underrun */
IW_WRITE_CODEC_1(CFIG3I, 0xc0); /* enable record/playback irq (still
* turned off from CEXTI), max DMA
* rate */
IW_WRITE_CODEC_1(CSR3I, 0x00); /* clear status 3 reg */
IW_WRITE_CODEC_1(CLRCTI, 0x00); /* reset record sample counters */
IW_WRITE_CODEC_1(CURCTI, 0x00); /* always upper byte last */
IW_READ_GENERAL_1(IVERI, reg);
sc->vers = reg >> 4;
if (!warm)
snprintf(iw_device.version, sizeof(iw_device.version), "%d.%d",
sc->vers, sc->revision);
IW_WRITE_GENERAL_1(IDECI, 0x7f); /* irqs and codec decode
* enable */
/* ports */
if (!warm) {
iw_mixer_line_level(sc, IW_LINE_OUT, 255, 255);
iw_mixer_line_level(sc, IW_LINE_IN, 0, 0);
iw_mixer_line_level(sc, IW_AUX1, 0, 0);
iw_mixer_line_level(sc, IW_AUX2, 200, 200); /* CD */
sc->sc_dac.off = 0;
iw_mixer_line_level(sc, IW_DAC, 200, 200);
iw_mixer_line_level(sc, IW_MIC_IN, 0, 0);
iw_mixer_line_level(sc, IW_REC, 0, 0);
iw_mixer_line_level(sc, IW_LOOPBACK, 0, 0);
iw_mixer_line_level(sc, IW_MONO_IN, 0, 0);
/* mem stuff */
iw_meminit(sc);
}
IW_WRITE_CODEC_1(CEXTI, 0x02); /* codec int enable */
/* clear _LDMACI */
IW_WRITE_GENERAL_1(LDMACI, 0x00);
/* enable mixer paths */
mixer_image = 0x0c;
IW_WRITE_DIRECT_1(sc->p2xr, sc->p2xr_h, mixer_image);
/*
* enable output, line in. disable mic in bit 0 = 0 -> line in on
* (from codec?) bit 1 = 0 -> output on bit 2 = 1 -> mic in on bit 3
* = 1 -> irq&drq pin enable bit 4 = 1 -> channel interrupts to chan
* 1 bit 5 = 1 -> enable midi loop back bit 6 = 0 -> irq latches
* URCR[2:0] bit 6 = 1 -> DMA latches URCR[2:0]
*/
IW_READ_DIRECT_1(sc->p2xr, sc->p2xr_h, mixer_image);
#ifdef AUDIO_DEBUG
if (!warm)
DPRINTF(("mix image %x \n", mixer_image));
#endif
}
struct iw_codec_freq {
u_long freq;
u_char bits;
};
int
iw_set_speed(struct iw_softc *sc, u_long freq, char in)
{
u_char var, cfig3, reg;
static struct iw_codec_freq iw_cf[17] = {
#define FREQ_1 24576000
#define FREQ_2 16934400
#define XTAL1 0
#define XTAL2 1
{5510, 0x00 | XTAL2}, {6620, 0x0E | XTAL2},
{8000, 0x00 | XTAL1}, {9600, 0x0E | XTAL1},
{11025, 0x02 | XTAL2}, {16000, 0x02 | XTAL1},
{18900, 0x04 | XTAL2}, {22050, 0x06 | XTAL2},
{27420, 0x04 | XTAL1}, {32000, 0x06 | XTAL1},
{33075, 0x0C | XTAL2}, {37800, 0x08 | XTAL2},
{38400, 0x0A | XTAL1}, {44100, 0x0A | XTAL2},
{44800, 0x08 | XTAL1}, {48000, 0x0C | XTAL1},
{48000, 0x0C | XTAL1} /* really a dummy for indexing later */
#undef XTAL1
#undef XTAL2
};
cfig3 = 0; /* XXX gcc -Wall */
/*
* if the frequency is between 3493 Hz and 32 kHz we can use a more
* accurate frequency than the ones listed above base on the formula
* FREQ/((16*(48+x))) where FREQ is either FREQ_1 (24576000Hz) or
* FREQ_2 (16934400Hz) and x is the value to be written to either
* CPVFI or CRVFI. To enable this option, bit 2 in CFIG3 needs to be
* set high
*
* NOT IMPLEMENTED!
*
* Note that if you have a 'bad' XTAL_1 (higher than 18.5 MHz), 44.8 kHz
* and 38.4 kHz modes will provide wrong frequencies to output.
*/
if (freq > 48000)
freq = 48000;
if (freq < 5510)
freq = 5510;
/* reset CFIG3[2] */
IW_READ_CODEC_1(CFIG3I, cfig3);
cfig3 |= 0xc0; /* not full fifo treshhold */
DPRINTF(("cfig3i = %x -> ", cfig3));
cfig3 &= ~0x04;
IW_WRITE_CODEC_1(CFIG3I, cfig3);
IW_READ_CODEC_1(CFIG3I, cfig3);
DPRINTF(("%x\n", cfig3));
for (var = 0; var < 16; var++) /* select closest frequency */
if (freq <= iw_cf[var].freq)
break;
if (var != 16)
if (abs(freq - iw_cf[var].freq) > abs(iw_cf[var + 1].freq - freq))
var++;
if (in)
IW_WRITE_CODEC_1(CRDFI | IW_MCE, sc->recfmtbits | iw_cf[var].bits);
else
IW_WRITE_CODEC_1(CPDFI | IW_MCE, sc->playfmtbits | iw_cf[var].bits);
freq = iw_cf[var].freq;
DPRINTF(("setting %s frequency to %d bits %x \n",
in ? "in" : "out", (int) freq, iw_cf[var].bits));
IW_READ_CODEC_1(CPDFI, reg);
DPRINTF((" CPDFI %x ", reg));
IW_READ_CODEC_1(CRDFI, reg);
DPRINTF((" CRDFI %x ", reg));
return freq;
}
/* Encoding. */
int
iw_query_encoding(void *addr, audio_encoding_t *fp)
{
/*
* LINEAR, ALAW, ULAW, ADPCM in HW, we'll use linear unsigned
* hardware mode for all 8-bit modes due to buggy (?) codec.
*/
/*
* except in wavetable synth. there we have only mu-law and 8 and 16
* bit linear data
*/
switch (fp->index) {
case 0:
strcpy(fp->name, AudioEulinear);
fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
fp->precision = 8;
fp->flags = 0;
break;
case 1:
strcpy(fp->name, AudioEmulaw);
fp->encoding = AUDIO_ENCODING_ULAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 2:
strcpy(fp->name, AudioEalaw);
fp->encoding = AUDIO_ENCODING_ALAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
break;
case 3:
strcpy(fp->name, AudioEadpcm);
fp->encoding = AUDIO_ENCODING_ADPCM;
fp->precision = 8; /* really 4 bit */
fp->flags = 0;
break;
case 4:
strcpy(fp->name, AudioEslinear_le);
fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
fp->precision = 16;
fp->flags = 0;
break;
case 5:
strcpy(fp->name, AudioEslinear_be);
fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
fp->precision = 16;
fp->flags = 0;
break;
default:
return EINVAL;
/* NOTREACHED */
}
return 0;
}
u_long
iw_set_format(struct iw_softc *sc, u_long precision, int in)
{
u_char data;
int encoding, channels;
encoding = in ? sc->rec_encoding : sc->play_encoding;
channels = in ? sc->rec_channels : sc->play_channels;
DPRINTF(("iw_set_format\n"));
switch (encoding) {
case AUDIO_ENCODING_ULAW:
data = 0x00;
break;
case AUDIO_ENCODING_ALAW:
data = 0x00;
break;
case AUDIO_ENCODING_SLINEAR_LE:
if (precision == 16)
data = 0x40; /* little endian. 0xc0 is big endian */
else
data = 0x00;
break;
case AUDIO_ENCODING_SLINEAR_BE:
if (precision == 16)
data = 0xc0;
else
data = 0x00;
break;
case AUDIO_ENCODING_ADPCM:
data = 0xa0;
break;
default:
return -1;
}
if (channels == 2)
data |= 0x10; /* stereo */
if (in) {
/* in */
sc->recfmtbits = data;
/* This will zero the normal codec frequency,
* iw_set_speed should always be called afterwards.
*/
IW_WRITE_CODEC_1(CRDFI | IW_MCE, data);
} else {
/* out */
sc->playfmtbits = data;
IW_WRITE_CODEC_1(CPDFI | IW_MCE, data);
}
DPRINTF(("formatbits %s %x", in ? "in" : "out", data));
return encoding;
}
int
iw_set_params(void *addr, int setmode, int usemode, audio_params_t *p,
audio_params_t *q, stream_filter_list_t *pfil, stream_filter_list_t *rfil)
{
audio_params_t phw, rhw;
struct iw_softc *sc;
stream_filter_factory_t *swcode;
DPRINTF(("iw_setparams: code %u, prec %u, rate %u, chan %u\n",
p->encoding, p->precision, p->sample_rate, p->channels));
sc = addr;
swcode = NULL;
phw = *p;
rhw = *q;
switch (p->encoding) {
case AUDIO_ENCODING_ULAW:
if (p->precision != 8)
return EINVAL;
phw.encoding = AUDIO_ENCODING_ULINEAR_LE;
rhw.encoding = AUDIO_ENCODING_ULINEAR_LE;
swcode = setmode & AUMODE_PLAY ? mulaw_to_linear8 : linear8_to_mulaw;
break;
case AUDIO_ENCODING_ALAW:
if (p->precision != 8)
return EINVAL;
phw.encoding = AUDIO_ENCODING_ULINEAR_LE;
rhw.encoding = AUDIO_ENCODING_ULINEAR_LE;
swcode = setmode & AUMODE_PLAY ? alaw_to_linear8 : linear8_to_alaw;
break;
case AUDIO_ENCODING_ADPCM:
if (p->precision != 8)
return EINVAL;
else
break;
case AUDIO_ENCODING_SLINEAR_LE:
case AUDIO_ENCODING_SLINEAR_BE:
if (p->precision != 8 && p->precision != 16)
return EINVAL;
else
break;
default:
return EINVAL;
}
if (setmode & AUMODE_PLAY) {
sc->play_channels = p->channels;
sc->play_encoding = p->encoding;
sc->play_precision = p->precision;
iw_set_format(sc, p->precision, 0);
q->sample_rate = p->sample_rate = sc->sc_orate =
iw_set_speed(sc, p->sample_rate, 0);
if (swcode != NULL) {
phw.sample_rate = p->sample_rate;
pfil->append(pfil, swcode, &phw);
}
} else {
#if 0
q->channels = sc->rec_channels = p->channels;
q->encoding = sc->rec_encoding = p->encoding;
q->precision = sc->rec_precision = p->precision;
#endif
sc->rec_channels = q->channels;
sc->rec_encoding = q->encoding;
sc->rec_precision = q->precision;
iw_set_format(sc, p->precision, 1);
q->sample_rate = sc->sc_irate =
iw_set_speed(sc, q->sample_rate, 1);
if (swcode != NULL) {
rhw.sample_rate = q->sample_rate;
rfil->append(rfil, swcode, &rhw);
}
}
return 0;
}
int
iw_round_blocksize(void *addr, int blk, int mode,
const audio_params_t *param)
{
/* Round to a multiple of the biggest sample size. */
return blk &= -4;
}
void
iw_mixer_line_level(struct iw_softc *sc, int line, int levl, int levr)
{
u_char gainl, gainr, attenl, attenr;
switch (line) {
case IW_REC:
gainl = sc->sc_recsrcbits | (levl >> 4);
gainr = sc->sc_recsrcbits | (levr >> 4);
DPRINTF(("recording with %x", gainl));
IW_WRITE_CODEC_1(CLICI, gainl);
IW_WRITE_CODEC_1(CRICI, gainr);
sc->sc_rec.voll = levl & 0xf0;
sc->sc_rec.volr = levr & 0xf0;
break;
case IW_AUX1:
gainl = (255 - levl) >> 3;
gainr = (255 - levr) >> 3;
/* mute if 0 level */
if (levl == 0)
gainl |= 0x80;
if (levr == 0)
gainr |= 0x80;
IW_WRITE_CODEC_1(IW_LEFT_AUX1_PORT, gainl);
IW_WRITE_CODEC_1(IW_RIGHT_AUX1_PORT, gainr);
sc->sc_aux1.voll = levl & 0xf8;
sc->sc_aux1.volr = levr & 0xf8;
break;
case IW_AUX2:
gainl = (255 - levl) >> 3;
gainr = (255 - levr) >> 3;
/* mute if 0 level */
if (levl == 0)
gainl |= 0x80;
if (levr == 0)
gainr |= 0x80;
IW_WRITE_CODEC_1(IW_LEFT_AUX2_PORT, gainl);
IW_WRITE_CODEC_1(IW_RIGHT_AUX2_PORT, gainr);
sc->sc_aux2.voll = levl & 0xf8;
sc->sc_aux2.volr = levr & 0xf8;
break;
case IW_DAC:
attenl = ((255 - levl) >> 2) | ((levl && !sc->sc_dac.off) ? 0 : 0x80);
attenr = ((255 - levr) >> 2) | ((levr && !sc->sc_dac.off) ? 0 : 0x80);
IW_WRITE_CODEC_1(CLDACI, attenl);
IW_WRITE_CODEC_1(CRDACI, attenr);
sc->sc_dac.voll = levl & 0xfc;
sc->sc_dac.volr = levr & 0xfc;
break;
case IW_LOOPBACK:
attenl = ((255 - levl) & 0xfc) | (levl ? 0x01 : 0);
IW_WRITE_CODEC_1(CLCI, attenl);
sc->sc_loopback.voll = levl & 0xfc;
break;
case IW_LINE_IN:
gainl = (levl >> 3) | (levl ? 0 : 0x80);
gainr = (levr >> 3) | (levr ? 0 : 0x80);
IW_WRITE_CODEC_1(CLLICI, gainl);
IW_WRITE_CODEC_1(CRLICI, gainr);
sc->sc_linein.voll = levl & 0xf8;
sc->sc_linein.volr = levr & 0xf8;
break;
case IW_MIC_IN:
gainl = ((255 - levl) >> 3) | (levl ? 0 : 0x80);
gainr = ((255 - levr) >> 3) | (levr ? 0 : 0x80);
IW_WRITE_CODEC_1(CLMICI, gainl);
IW_WRITE_CODEC_1(CRMICI, gainr);
sc->sc_mic.voll = levl & 0xf8;
sc->sc_mic.volr = levr & 0xf8;
break;
case IW_LINE_OUT:
attenl = ((255 - levl) >> 3) | (levl ? 0 : 0x80);
attenr = ((255 - levr) >> 3) | (levr ? 0 : 0x80);
IW_WRITE_CODEC_1(CLOAI, attenl);
IW_WRITE_CODEC_1(CROAI, attenr);
sc->sc_lineout.voll = levl & 0xf8;
sc->sc_lineout.volr = levr & 0xf8;
break;
case IW_MONO_IN:
attenl = ((255 - levl) >> 4) | (levl ? 0 : 0xc0); /* in/out mute */
IW_WRITE_CODEC_1(CMONOI, attenl);
sc->sc_monoin.voll = levl & 0xf0;
break;
}
}
int
iw_commit_settings(void *addr)
{
return 0;
}
void
iw_trigger_dma(struct iw_softc *sc, u_char io)
{
u_char reg;
int s;
s = splaudio();
IW_READ_CODEC_1(CSR3I, reg);
IW_WRITE_CODEC_1(CSR3I, reg & ~(io == IW_DMA_PLAYBACK ? 0x10 : 0x20));
IW_READ_CODEC_1(CFIG1I, reg);
IW_WRITE_CODEC_1(CFIG1I, reg | io);
/* let the counter run */
IW_READ_CODEC_1(CFIG2I, reg);
IW_WRITE_CODEC_1(CFIG2I, reg & ~(io << 4));
splx(s);
}
void
iw_stop_dma(struct iw_softc *sc, u_char io, u_char hard)
{
u_char reg;
/* just stop the counter, no need to flush the fifo */
IW_READ_CODEC_1(CFIG2I, reg);
IW_WRITE_CODEC_1(CFIG2I, (reg | (io << 4)));
if (hard) {
/* unless we're closing the device */
IW_READ_CODEC_1(CFIG1I, reg);
IW_WRITE_CODEC_1(CFIG1I, reg & ~io);
}
}
void
iw_dma_count(struct iw_softc *sc, u_short count, int io)
{
if (io == IW_DMA_PLAYBACK) {
IW_WRITE_CODEC_1(CLPCTI, (u_char) (count & 0x00ff));
IW_WRITE_CODEC_1(CUPCTI, (u_char) ((count >> 8) & 0x00ff));
} else {
IW_WRITE_CODEC_1(CLRCTI, (u_char) (count & 0x00ff));
IW_WRITE_CODEC_1(CURCTI, (u_char) ((count >> 8) & 0x00ff));
}
}
int
iw_init_output(addr, sbuf, cc)
void *addr;
void *sbuf;
int cc;
{
struct iw_softc *sc = (struct iw_softc *) addr;
DPRINTF(("iw_init_output\n"));
isa_dmastart(sc->sc_ic, sc->sc_playdrq, sbuf,
cc, NULL, DMAMODE_WRITE | DMAMODE_LOOP, BUS_DMA_NOWAIT);
return 0;
}
int
iw_init_input(void *addr, void *sbuf, int cc)
{
struct iw_softc *sc;
DPRINTF(("iw_init_input\n"));
sc = (struct iw_softc *) addr;
isa_dmastart(sc->sc_ic, sc->sc_recdrq, sbuf,
cc, NULL, DMAMODE_READ | DMAMODE_LOOP, BUS_DMA_NOWAIT);
return 0;
}
int
iw_start_output(void *addr, void *p, int cc, void (*intr)(void *), void *arg)
{
struct iw_softc *sc;
#ifdef DIAGNOSTIC
if (!intr) {
printf("iw_start_output: no callback!\n");
return 1;
}
#endif
sc = addr;
sc->sc_playintr = intr;
sc->sc_playarg = arg;
sc->sc_dma_flags |= DMAMODE_WRITE;
sc->sc_playdma_bp = p;
isa_dmastart(sc->sc_ic, sc->sc_playdrq, sc->sc_playdma_bp,
cc, NULL, DMAMODE_WRITE, BUS_DMA_NOWAIT);
if (sc->play_encoding == AUDIO_ENCODING_ADPCM)
cc >>= 2;
if (sc->play_precision == 16)
cc >>= 1;
if (sc->play_channels == 2 && sc->play_encoding != AUDIO_ENCODING_ADPCM)
cc >>= 1;
cc -= iw_cc;
/* iw_dma_access(sc,1); */
if (cc != sc->sc_playdma_cnt) {
iw_dma_count(sc, (u_short) cc, IW_DMA_PLAYBACK);
sc->sc_playdma_cnt = cc;
iw_trigger_dma(sc, IW_DMA_PLAYBACK);
}
#ifdef DIAGNOSTIC
if (outputs != iw_ints)
printf("iw_start_output: out %d, int %d\n", outputs, iw_ints);
outputs++;
#endif
return 0;
}
int
iw_start_input(void *addr, void *p, int cc, void (*intr)(void *), void *arg)
{
struct iw_softc *sc;
#ifdef DIAGNOSTIC
if (!intr) {
printf("iw_start_input: no callback!\n");
return 1;
}
#endif
sc = addr;
sc->sc_recintr = intr;
sc->sc_recarg = arg;
sc->sc_dma_flags |= DMAMODE_READ;
sc->sc_recdma_bp = p;
isa_dmastart(sc->sc_ic, sc->sc_recdrq, sc->sc_recdma_bp,
cc, NULL, DMAMODE_READ, BUS_DMA_NOWAIT);
if (sc->rec_encoding == AUDIO_ENCODING_ADPCM)
cc >>= 2;
if (sc->rec_precision == 16)
cc >>= 1;
if (sc->rec_channels == 2 && sc->rec_encoding != AUDIO_ENCODING_ADPCM)
cc >>= 1;
cc -= iw_cc;
/* iw_dma_access(sc,0); */
if (sc->sc_recdma_cnt != cc) {
iw_dma_count(sc, (u_short) cc, IW_DMA_RECORD);
sc->sc_recdma_cnt = cc;
/* iw_dma_ctrl(sc, IW_DMA_RECORD); */
iw_trigger_dma(sc, IW_DMA_RECORD);
}
#ifdef DIAGNOSTIC
if ((inputs != iw_inints))
printf("iw_start_input: in %d, inints %d\n", inputs, iw_inints);
inputs++;
#endif
return 0;
}
int
iw_halt_output(void *addr)
{
struct iw_softc *sc;
sc = addr;
iw_stop_dma(sc, IW_DMA_PLAYBACK, 0);
return 0;
}
int
iw_halt_input(void *addr)
{
struct iw_softc *sc;
sc = addr;
iw_stop_dma(sc, IW_DMA_RECORD, 0);
return 0;
}
int
iw_speaker_ctl(void *addr, int newstate)
{
struct iw_softc *sc;
u_char reg;
sc = addr;
if (newstate == SPKR_ON) {
sc->sc_dac.off = 0;
IW_READ_CODEC_1(CLDACI, reg);
IW_WRITE_CODEC_1(CLDACI, reg & 0x7f);
IW_READ_CODEC_1(CRDACI, reg);
IW_WRITE_CODEC_1(CRDACI, reg & 0x7f);
} else {
/* SPKR_OFF */
sc->sc_dac.off = 1;
IW_READ_CODEC_1(CLDACI, reg);
IW_WRITE_CODEC_1(CLDACI, reg | 0x80);
IW_READ_CODEC_1(CRDACI, reg);
IW_WRITE_CODEC_1(CRDACI, reg | 0x80);
}
return 0;
}
int
iw_getdev(void *addr, struct audio_device *retp)
{
*retp = iw_device;
return 0;
}
int
iw_setfd(void *addr, int flag)
{
return 0;
}
/* Mixer (in/out ports) */
int
iw_set_port(void *addr, mixer_ctrl_t *cp)
{
struct iw_softc *sc;
u_char vall, valr;
int error;
sc = addr;
vall = 0;
valr = 0;
error = EINVAL;
switch (cp->dev) {
case IW_MIC_IN_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
error = 0;
if (cp->un.value.num_channels == 1) {
vall = valr = cp->un.value.level[0];
} else {
vall = cp->un.value.level[0];
valr = cp->un.value.level[1];
}
sc->sc_mic.voll = vall;
sc->sc_mic.volr = valr;
iw_mixer_line_level(sc, IW_MIC_IN, vall, valr);
}
break;
case IW_AUX1_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
error = 0;
if (cp->un.value.num_channels == 1) {
vall = valr = cp->un.value.level[0];
} else {
vall = cp->un.value.level[0];
valr = cp->un.value.level[1];
}
sc->sc_aux1.voll = vall;
sc->sc_aux1.volr = valr;
iw_mixer_line_level(sc, IW_AUX1, vall, valr);
}
break;
case IW_AUX2_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
error = 0;
if (cp->un.value.num_channels == 1) {
vall = valr = cp->un.value.level[0];
} else {
vall = cp->un.value.level[0];
valr = cp->un.value.level[1];
}
sc->sc_aux2.voll = vall;
sc->sc_aux2.volr = valr;
iw_mixer_line_level(sc, IW_AUX2, vall, valr);
}
break;
case IW_LINE_IN_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
error = 0;
if (cp->un.value.num_channels == 1) {
vall = valr = cp->un.value.level[0];
} else {
vall = cp->un.value.level[0];
valr = cp->un.value.level[1];
}
sc->sc_linein.voll = vall;
sc->sc_linein.volr = valr;
iw_mixer_line_level(sc, IW_LINE_IN, vall, valr);
}
break;
case IW_LINE_OUT_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
error = 0;
if (cp->un.value.num_channels == 1) {
vall = valr = cp->un.value.level[0];
} else {
vall = cp->un.value.level[0];
valr = cp->un.value.level[1];
}
sc->sc_lineout.voll = vall;
sc->sc_lineout.volr = valr;
iw_mixer_line_level(sc, IW_LINE_OUT, vall, valr);
}
break;
case IW_REC_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
error = 0;
if (cp->un.value.num_channels == 1) {
vall = valr = cp->un.value.level[0];
} else {
vall = cp->un.value.level[0];
valr = cp->un.value.level[1];
}
sc->sc_rec.voll = vall;
sc->sc_rec.volr = valr;
iw_mixer_line_level(sc, IW_REC, vall, valr);
}
break;
case IW_DAC_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
error = 0;
if (cp->un.value.num_channels == 1) {
vall = valr = cp->un.value.level[0];
} else {
vall = cp->un.value.level[0];
valr = cp->un.value.level[1];
}
sc->sc_dac.voll = vall;
sc->sc_dac.volr = valr;
iw_mixer_line_level(sc, IW_DAC, vall, valr);
}
break;
case IW_LOOPBACK_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
error = 0;
if (cp->un.value.num_channels != 1) {
return EINVAL;
} else {
valr = vall = cp->un.value.level[0];
}
sc->sc_loopback.voll = vall;
sc->sc_loopback.volr = valr;
iw_mixer_line_level(sc, IW_LOOPBACK, vall, valr);
}
break;
case IW_MONO_IN_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
error = 0;
if (cp->un.value.num_channels != 1) {
return EINVAL;
} else {
valr = vall = cp->un.value.level[0];
}
sc->sc_monoin.voll = vall;
sc->sc_monoin.volr = valr;
iw_mixer_line_level(sc, IW_MONO_IN, vall, valr);
}
break;
case IW_RECORD_SOURCE:
error = 0;
sc->sc_recsrcbits = cp->un.ord << 6;
DPRINTF(("record source %d bits %x\n", cp->un.ord, sc->sc_recsrcbits));
iw_mixer_line_level(sc, IW_REC, sc->sc_rec.voll, sc->sc_rec.volr);
break;
}
return error;
}
int
iw_get_port(void *addr, mixer_ctrl_t *cp)
{
struct iw_softc *sc;
int error;
sc = addr;
error = EINVAL;
switch (cp->dev) {
case IW_MIC_IN_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
cp->un.value.num_channels = 2;
cp->un.value.level[0] = sc->sc_mic.voll;
cp->un.value.level[1] = sc->sc_mic.volr;
error = 0;
}
break;
case IW_AUX1_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
cp->un.value.num_channels = 2;
cp->un.value.level[0] = sc->sc_aux1.voll;
cp->un.value.level[1] = sc->sc_aux1.volr;
error = 0;
}
break;
case IW_AUX2_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
cp->un.value.num_channels = 2;
cp->un.value.level[0] = sc->sc_aux2.voll;
cp->un.value.level[1] = sc->sc_aux2.volr;
error = 0;
}
break;
case IW_LINE_OUT_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
cp->un.value.num_channels = 2;
cp->un.value.level[0] = sc->sc_lineout.voll;
cp->un.value.level[1] = sc->sc_lineout.volr;
error = 0;
}
break;
case IW_LINE_IN_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
cp->un.value.num_channels = 2;
cp->un.value.level[0] = sc->sc_linein.voll;
cp->un.value.level[1] = sc->sc_linein.volr;
error = 0;
}
case IW_REC_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
cp->un.value.num_channels = 2;
cp->un.value.level[0] = sc->sc_rec.voll;
cp->un.value.level[1] = sc->sc_rec.volr;
error = 0;
}
break;
case IW_DAC_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
cp->un.value.num_channels = 2;
cp->un.value.level[0] = sc->sc_dac.voll;
cp->un.value.level[1] = sc->sc_dac.volr;
error = 0;
}
break;
case IW_LOOPBACK_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
cp->un.value.num_channels = 1;
cp->un.value.level[0] = sc->sc_loopback.voll;
error = 0;
}
break;
case IW_MONO_IN_LVL:
if (cp->type == AUDIO_MIXER_VALUE) {
cp->un.value.num_channels = 1;
cp->un.value.level[0] = sc->sc_monoin.voll;
error = 0;
}
break;
case IW_RECORD_SOURCE:
cp->un.ord = sc->sc_recsrcbits >> 6;
error = 0;
break;
}
return error;
}
int
iw_query_devinfo(void *addr, mixer_devinfo_t *dip)
{
switch (dip->index) {
case IW_MIC_IN_LVL: /* Microphone */
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = IW_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmicrophone);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case IW_AUX1_LVL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = IW_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNline);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case IW_AUX2_LVL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = IW_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNcd);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case IW_LINE_OUT_LVL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = IW_OUTPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNline);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case IW_DAC_LVL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = IW_OUTPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNdac);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case IW_LINE_IN_LVL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = IW_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNinput);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case IW_MONO_IN_LVL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = IW_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmono);
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case IW_REC_LVL: /* record level */
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = IW_RECORD_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNrecord);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case IW_LOOPBACK_LVL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = IW_RECORD_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, "filter");
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNvolume);
break;
case IW_RECORD_SOURCE:
dip->mixer_class = IW_RECORD_CLASS;
dip->type = AUDIO_MIXER_ENUM;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNsource);
dip->un.e.num_mem = 4;
strcpy(dip->un.e.member[0].label.name, AudioNline);
dip->un.e.member[0].ord = IW_LINE_IN_SRC;
strcpy(dip->un.e.member[1].label.name, "aux1");
dip->un.e.member[1].ord = IW_AUX1_SRC;
strcpy(dip->un.e.member[2].label.name, AudioNmicrophone);
dip->un.e.member[2].ord = IW_MIC_IN_SRC;
strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
dip->un.e.member[3].ord = IW_MIX_OUT_SRC;
break;
case IW_INPUT_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = IW_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCinputs);
break;
case IW_OUTPUT_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = IW_OUTPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCoutputs);
break;
case IW_RECORD_CLASS: /* record source class */
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = IW_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCrecord);
return 0;
default:
return ENXIO;
}
return 0;
}
void *
iw_malloc(void *addr, int direction, size_t size,
struct malloc_type *pool, int flags)
{
struct iw_softc *sc;
int drq;
sc = addr;
if (direction == AUMODE_PLAY)
drq = sc->sc_playdrq;
else
drq = sc->sc_recdrq;
return isa_malloc(sc->sc_ic, drq, size, pool, flags);
}
void
iw_free(void *addr, void *ptr, struct malloc_type *pool)
{
isa_free(ptr, pool);
}
size_t
iw_round_buffersize(void *addr, int direction, size_t size)
{
struct iw_softc *sc;
bus_size_t maxsize;
sc = addr;
if (direction == AUMODE_PLAY)
maxsize = sc->sc_play_maxsize;
else
maxsize = sc->sc_rec_maxsize;
if (size > maxsize)
size = maxsize;
return size;
}
paddr_t
iw_mappage(void *addr, void *mem, off_t off, int prot)
{
return isa_mappage(mem, off, prot);
}
int
iw_get_props(void *addr)
{
struct iw_softc *sc;
sc = addr;
return AUDIO_PROP_MMAP |
(sc->sc_fullduplex ? AUDIO_PROP_FULLDUPLEX : 0);
}