NetBSD/sys/dev/isa/if_ed.c
1994-11-18 22:25:12 +00:00

2333 lines
62 KiB
C

/* $NetBSD: if_ed.c,v 1.64 1994/11/18 22:25:12 mycroft Exp $ */
/*
* Device driver for National Semiconductor DS8390/WD83C690 based ethernet
* adapters.
*
* Copyright (c) 1994 Charles Hannum.
*
* Copyright (C) 1993, David Greenman. This software may be used, modified,
* copied, distributed, and sold, in both source and binary form provided that
* the above copyright and these terms are retained. Under no circumstances is
* the author responsible for the proper functioning of this software, nor does
* the author assume any responsibility for damages incurred with its use.
*
* Currently supports the Western Digital/SMC 8003 and 8013 series, the SMC
* Elite Ultra (8216), the 3Com 3c503, the NE1000 and NE2000, and a variety of
* similar clones.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/netisr.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <machine/cpu.h>
#include <machine/pio.h>
#include <i386/isa/isavar.h>
#include <i386/isa/if_edreg.h>
/*
* ed_softc: per line info and status
*/
struct ed_softc {
struct device sc_dev;
struct intrhand sc_ih;
struct arpcom sc_arpcom; /* ethernet common */
char *type_str; /* pointer to type string */
u_char vendor; /* interface vendor */
u_char type; /* interface type code */
int asic_addr; /* ASIC I/O bus address */
int nic_addr; /* NIC (DS8390) I/O bus address */
/*
* The following 'proto' variable is part of a work-around for 8013EBT asics
* being write-only. It's sort of a prototype/shadow of the real thing.
*/
u_char wd_laar_proto;
/*
* This `proto' variable is so we can turn MENB on and off without reading
* the value back from the card all the time.
*/
u_char wd_msr_proto;
u_char cr_proto; /* ED_CR_RD2 if not 790; 0 if 790 */
u_char isa16bit; /* width of access to card 0=8 or 1=16 */
u_char is790; /* set by probe if NIC is a 790 */
caddr_t mem_start; /* NIC memory start address */
caddr_t mem_end; /* NIC memory end address */
u_long mem_size; /* total NIC memory size */
caddr_t mem_ring; /* start of RX ring-buffer (in NIC mem) */
u_char mem_shared; /* NIC memory is shared with host */
u_char xmit_busy; /* transmitter is busy */
u_char txb_cnt; /* number of transmit buffers */
u_char txb_inuse; /* number of TX buffers currently in-use*/
u_char txb_new; /* pointer to where new buffer will be added */
u_char txb_next_tx; /* pointer to next buffer ready to xmit */
u_short txb_len[8]; /* buffered xmit buffer lengths */
u_char tx_page_start; /* first page of TX buffer area */
u_char rec_page_start; /* first page of RX ring-buffer */
u_char rec_page_stop; /* last page of RX ring-buffer */
u_char next_packet; /* pointer to next unread RX packet */
};
int edprobe __P((struct device *, void *, void *));
void edattach __P((struct device *, struct device *, void *));
int edintr __P((struct ed_softc *));
int ed_ioctl __P((struct ifnet *, u_long, caddr_t));
int ed_start __P((struct ifnet *));
int ed_watchdog __P((/* short */));
void ed_reset __P((struct ed_softc *));
void ed_init __P((struct ed_softc *));
void ed_stop __P((struct ed_softc *));
void ed_getmcaf __P((struct arpcom *, u_long *));
#define inline /* XXX for debugging porpoises */
void ed_get_packet __P((/* struct ed_softc *, caddr_t, u_short */));
static inline void ed_rint __P((struct ed_softc *));
static inline void ed_xmit __P((struct ed_softc *));
static inline caddr_t ed_ring_copy __P((/* struct ed_Softc *, caddr_t, caddr_t,
u_short */));
void ed_pio_readmem __P((/* struct ed_softc *, u_short, caddr_t, u_short */));
void ed_pio_writemem __P((/* struct ed_softc *, caddr_t, u_short, u_short */));
u_short ed_pio_write_mbufs __P((/* struct ed_softc *, struct mbuf *, u_short */));
struct cfdriver edcd = {
NULL, "ed", edprobe, edattach, DV_IFNET, sizeof(struct ed_softc)
};
/*
* Interrupt conversion table for WD/SMC ASIC.
*/
static int ed_intr[] = { 9, 3, 5, 7, 10, 11, 15, 4 };
/*
* Interrupt conversion table for 585/790 Combo.
*/
static int ed_790_intr[] = { IRQUNK, 9, 3, 5, 7, 10, 11, 15 };
#define ETHER_MIN_LEN 64
#define ETHER_MAX_LEN 1518
#define ETHER_ADDR_LEN 6
/*
* Determine if the device is present.
*/
int
edprobe(parent, match, aux)
struct device *parent;
void *match, *aux;
{
struct ed_softc *sc = match;
struct cfdata *cf = sc->sc_dev.dv_cfdata;
struct isa_attach_args *ia = aux;
if (ed_probe_WD80x3(sc, cf, ia))
return (1);
if (ed_probe_3Com(sc, cf, ia))
return (1);
if (ed_probe_Novell(sc, cf, ia))
return (1);
return (0);
}
/*
* Generic probe routine for testing for the existance of a DS8390. Must be
* called after the NIC has just been reset. This routine works by looking at
* certain register values that are gauranteed to be initialized a certain way
* after power-up or reset. Seems not to currently work on the 83C690.
*
* Specifically:
*
* Register reset bits set bits
* Command Register (CR) TXP, STA RD2, STP
* Interrupt Status (ISR) RST
* Interrupt Mask (IMR) All bits
* Data Control (DCR) LAS
* Transmit Config. (TCR) LB1, LB0
*
* We only look at the CR and ISR registers, however, because looking at the
* others would require changing register pages (which would be intrusive if
* this isn't an 8390).
*
* Return 1 if 8390 was found, 0 if not.
*/
int
ed_probe_generic8390(sc)
struct ed_softc *sc;
{
if ((inb(sc->nic_addr + ED_P0_CR) &
(ED_CR_RD2 | ED_CR_TXP | ED_CR_STA | ED_CR_STP)) !=
(ED_CR_RD2 | ED_CR_STP))
return (0);
if ((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RST) != ED_ISR_RST)
return (0);
return (1);
}
/*
* Probe and vendor-specific initialization routine for SMC/WD80x3 boards.
*/
int
ed_probe_WD80x3(sc, cf, ia)
struct ed_softc *sc;
struct cfdata *cf;
struct isa_attach_args *ia;
{
int i;
u_int memsize;
u_char iptr, isa16bit, sum;
sc->asic_addr = ia->ia_iobase;
sc->nic_addr = sc->asic_addr + ED_WD_NIC_OFFSET;
sc->is790 = 0;
#ifdef TOSH_ETHER
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_POW);
delay(10000);
#endif
/*
* Attempt to do a checksum over the station address PROM. If it
* fails, it's probably not a SMC/WD board. There is a problem with
* this, though: some clone WD boards don't pass the checksum test.
* Danpex boards for one.
*/
for (sum = 0, i = 0; i < 8; ++i)
sum += inb(sc->asic_addr + ED_WD_PROM + i);
if (sum != ED_WD_ROM_CHECKSUM_TOTAL) {
/*
* Checksum is invalid. This often happens with cheap WD8003E
* clones. In this case, the checksum byte (the eighth byte)
* seems to always be zero.
*/
if (inb(sc->asic_addr + ED_WD_CARD_ID) != ED_TYPE_WD8003E ||
inb(sc->asic_addr + ED_WD_PROM + 7) != 0)
return (0);
}
/* Reset card to force it into a known state. */
#ifdef TOSH_ETHER
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_RST | ED_WD_MSR_POW);
#else
outb(sc->asic_addr + ED_WD_MSR, ED_WD_MSR_RST);
#endif
delay(100);
outb(sc->asic_addr + ED_WD_MSR,
inb(sc->asic_addr + ED_WD_MSR) & ~ED_WD_MSR_RST);
/* Wait in the case this card is reading it's EEROM. */
delay(5000);
sc->vendor = ED_VENDOR_WD_SMC;
sc->type = inb(sc->asic_addr + ED_WD_CARD_ID);
/* Set initial values for width/size. */
memsize = 8192;
isa16bit = 0;
switch (sc->type) {
case ED_TYPE_WD8003S:
sc->type_str = "WD8003S";
break;
case ED_TYPE_WD8003E:
sc->type_str = "WD8003E";
break;
case ED_TYPE_WD8003EB:
sc->type_str = "WD8003EB";
break;
case ED_TYPE_WD8003W:
sc->type_str = "WD8003W";
break;
case ED_TYPE_WD8013EBT:
sc->type_str = "WD8013EBT";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_WD8013W:
sc->type_str = "WD8013W";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_WD8013EP: /* also WD8003EP */
if (inb(sc->asic_addr + ED_WD_ICR) & ED_WD_ICR_16BIT) {
isa16bit = 1;
memsize = 16384;
sc->type_str = "WD8013EP";
} else
sc->type_str = "WD8003EP";
break;
case ED_TYPE_WD8013WC:
sc->type_str = "WD8013WC";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_WD8013EBP:
sc->type_str = "WD8013EBP";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_WD8013EPC:
sc->type_str = "WD8013EPC";
memsize = 16384;
isa16bit = 1;
break;
case ED_TYPE_SMC8216C:
sc->type_str = "SMC8216/SMC8216C";
memsize = 16384;
isa16bit = 1;
sc->is790 = 1;
break;
case ED_TYPE_SMC8216T:
sc->type_str = "SMC8216T";
memsize = 16384;
isa16bit = 1;
sc->is790 = 1;
break;
#ifdef TOSH_ETHER
case ED_TYPE_TOSHIBA1:
sc->type_str = "Toshiba1";
memsize = 32768;
isa16bit = 1;
break;
case ED_TYPE_TOSHIBA4:
sc->type_str = "Toshiba4";
memsize = 32768;
isa16bit = 1;
break;
#endif
default:
sc->type_str = NULL;
break;
}
/*
* Make some adjustments to initial values depending on what is found
* in the ICR.
*/
if (isa16bit && (sc->type != ED_TYPE_WD8013EBT) &&
#ifdef TOSH_ETHER
(sc->type != ED_TYPE_TOSHIBA1) && (sc->type != ED_TYPE_TOSHIBA4) &&
#endif
((inb(sc->asic_addr + ED_WD_ICR) & ED_WD_ICR_16BIT) == 0)) {
isa16bit = 0;
memsize = 8192;
}
#ifdef ED_DEBUG
printf("type=%x type_str=%s isa16bit=%d memsize=%d id_msize=%d\n",
sc->type, sc->type_str ?: "unknown", isa16bit, memsize,
ia->ia_msize);
for (i = 0; i < 8; i++)
printf("%x -> %x\n", i, inb(sc->asic_addr + i));
#endif
/* Allow the user to override the autoconfiguration. */
if (ia->ia_msize)
memsize = ia->ia_msize;
/*
* (Note that if the user specifies both of the following flags that
* '8-bit' mode intentionally has precedence.)
*/
if (cf->cf_flags & ED_FLAGS_FORCE_16BIT_MODE)
isa16bit = 1;
if (cf->cf_flags & ED_FLAGS_FORCE_8BIT_MODE)
isa16bit = 0;
/*
* Check 83C584 interrupt configuration register if this board has one
* XXX - We could also check the IO address register. But why
* bother... if we get past this, it *has* to be correct.
*/
if (sc->is790) {
u_char x;
/* Assemble together the encoded interrupt number. */
outb(ia->ia_iobase + ED_WD790_HWR,
inb(ia->ia_iobase + ED_WD790_HWR) | ED_WD790_HWR_SWH);
x = inb(ia->ia_iobase + ED_WD790_GCR);
iptr = ((x & ED_WD790_GCR_IR2) >> 4) |
((x & (ED_WD790_GCR_IR1|ED_WD790_GCR_IR0)) >> 2);
outb(ia->ia_iobase + ED_WD790_HWR,
inb(ia->ia_iobase + ED_WD790_HWR) & ~ED_WD790_HWR_SWH);
/*
* Translate it using translation table, and check for
* correctness.
*/
if (ed_790_intr[iptr] != ia->ia_irq) {
printf("%s: kernel configured irq %d doesn't match board configured irq %d\n",
sc->sc_dev.dv_xname, ia->ia_irq,
ed_790_intr[iptr]);
return (0);
}
/* Enable the interrupt. */
outb(ia->ia_iobase + ED_WD790_ICR,
inb(ia->ia_iobase + ED_WD790_ICR) | ED_WD790_ICR_EIL);
} else if (sc->type & ED_WD_SOFTCONFIG) {
/* Assemble together the encoded interrupt number. */
iptr = (inb(ia->ia_iobase + ED_WD_ICR) & ED_WD_ICR_IR2) |
((inb(ia->ia_iobase + ED_WD_IRR) &
(ED_WD_IRR_IR0 | ED_WD_IRR_IR1)) >> 5);
/*
* Translate it using translation table, and check for
* correctness.
*/
if (ed_intr[iptr] != ia->ia_irq) {
printf("%s: kernel configured irq %d doesn't match board configured irq %d\n",
sc->sc_dev.dv_xname, ia->ia_irq,
ed_intr[iptr]);
return (0);
}
/* Enable the interrupt. */
outb(ia->ia_iobase + ED_WD_IRR,
inb(ia->ia_iobase + ED_WD_IRR) | ED_WD_IRR_IEN);
}
sc->isa16bit = isa16bit;
sc->mem_shared = 1;
ia->ia_msize = memsize;
sc->mem_start = (caddr_t)ia->ia_maddr;
/* Allocate one xmit buffer if < 16k, two buffers otherwise. */
if ((memsize < 16384) || (cf->cf_flags & ED_FLAGS_NO_MULTI_BUFFERING))
sc->txb_cnt = 1;
else
sc->txb_cnt = 2;
sc->tx_page_start = ED_WD_PAGE_OFFSET;
sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE;
sc->rec_page_stop = sc->tx_page_start + (memsize >> ED_PAGE_SHIFT);
sc->mem_ring = sc->mem_start + (sc->rec_page_start << ED_PAGE_SHIFT);
sc->mem_size = memsize;
sc->mem_end = sc->mem_start + memsize;
/* Get station address from on-board ROM. */
for (i = 0; i < ETHER_ADDR_LEN; ++i)
sc->sc_arpcom.ac_enaddr[i] =
inb(sc->asic_addr + ED_WD_PROM + i);
/*
* Set upper address bits and 8/16 bit access to shared memory.
*/
if (isa16bit) {
if (sc->is790) {
sc->wd_laar_proto =
inb(sc->asic_addr + ED_WD_LAAR) &
~ED_WD_LAAR_M16EN;
} else {
sc->wd_laar_proto =
ED_WD_LAAR_L16EN |
((kvtop(sc->mem_start) >> 19) &
ED_WD_LAAR_ADDRHI);
}
outb(sc->asic_addr + ED_WD_LAAR,
sc->wd_laar_proto | ED_WD_LAAR_M16EN);
} else {
if ((sc->type & ED_WD_SOFTCONFIG) ||
#ifdef TOSH_ETHER
(sc->type == ED_TYPE_TOSHIBA1) ||
(sc->type == ED_TYPE_TOSHIBA4) ||
#endif
(sc->type == ED_TYPE_WD8013EBT) && !sc->is790) {
sc->wd_laar_proto =
((kvtop(sc->mem_start) >> 19) &
ED_WD_LAAR_ADDRHI);
outb(sc->asic_addr + ED_WD_LAAR,
sc->wd_laar_proto);
}
}
/*
* Set address and enable interface shared memory.
*/
if (!sc->is790) {
#ifdef TOSH_ETHER
outb(sc->asic_addr + ED_WD_MSR + 1,
((kvtop(sc->mem_start) >> 8) & 0xe0) | 4);
outb(sc->asic_addr + ED_WD_MSR + 2,
((kvtop(sc->mem_start) >> 16) & 0x0f));
sc->wd_msr_proto = ED_WD_MSR_POW;
#else
sc->wd_msr_proto =
(kvtop(sc->mem_start) >> 13) & ED_WD_MSR_ADDR;
#endif
sc->cr_proto = ED_CR_RD2;
} else {
outb(sc->asic_addr + 0x04,
inb(sc->asic_addr + 0x04) | 0x80);
outb(sc->asic_addr + 0x0b,
((kvtop(sc->mem_start) >> 13) & 0x0f) |
((kvtop(sc->mem_start) >> 11) & 0x40) |
(inb(sc->asic_addr + 0x0b) & 0xb0));
outb(sc->asic_addr + 0x04,
inb(sc->asic_addr + 0x04) & ~0x80);
sc->wd_msr_proto = 0x00;
sc->cr_proto = 0;
}
outb(sc->asic_addr + ED_WD_MSR,
sc->wd_msr_proto | ED_WD_MSR_MENB);
(void) inb(0x84);
(void) inb(0x84);
/* Now zero memory and verify that it is clear. */
bzero(sc->mem_start, memsize);
for (i = 0; i < memsize; ++i)
if (sc->mem_start[i]) {
printf("%s: failed to clear shared memory at %x - check configuration\n",
sc->sc_dev.dv_xname,
kvtop(sc->mem_start + i));
/* Disable 16 bit access to shared memory. */
outb(sc->asic_addr + ED_WD_MSR,
sc->wd_msr_proto);
if (isa16bit)
outb(sc->asic_addr + ED_WD_LAAR,
sc->wd_laar_proto);
(void) inb(0x84);
(void) inb(0x84);
return (0);
}
/*
* Disable 16bit access to shared memory - we leave it disabled
* so that 1) machines reboot properly when the board is set 16
* 16 bit mode and there are conflicting 8bit devices/ROMS in
* the same 128k address space as this boards shared memory,
* and 2) so that other 8 bit devices with shared memory can be
* used in this 128k region, too.
*/
outb(sc->asic_addr + ED_WD_MSR, sc->wd_msr_proto);
if (isa16bit)
outb(sc->asic_addr + ED_WD_LAAR, sc->wd_laar_proto);
(void) inb(0x84);
(void) inb(0x84);
ia->ia_iosize = ED_WD_IO_PORTS;
return (1);
}
/*
* Probe and vendor-specific initialization routine for 3Com 3c503 boards.
*/
int
ed_probe_3Com(sc, cf, ia)
struct ed_softc *sc;
struct cfdata *cf;
struct isa_attach_args *ia;
{
int i;
u_int memsize;
u_char isa16bit, sum;
sc->asic_addr = ia->ia_iobase + ED_3COM_ASIC_OFFSET;
sc->nic_addr = ia->ia_iobase + ED_3COM_NIC_OFFSET;
/*
* Verify that the kernel configured I/O address matches the board
* configured address.
*
* This is really only useful to see if something that looks like the
* board is there; after all, we are already talking it at that
* address.
*/
switch (inb(sc->asic_addr + ED_3COM_BCFR)) {
case ED_3COM_BCFR_300:
if (ia->ia_iobase != 0x300)
return (0);
break;
case ED_3COM_BCFR_310:
if (ia->ia_iobase != 0x310)
return (0);
break;
case ED_3COM_BCFR_330:
if (ia->ia_iobase != 0x330)
return (0);
break;
case ED_3COM_BCFR_350:
if (ia->ia_iobase != 0x350)
return (0);
break;
case ED_3COM_BCFR_250:
if (ia->ia_iobase != 0x250)
return (0);
break;
case ED_3COM_BCFR_280:
if (ia->ia_iobase != 0x280)
return (0);
break;
case ED_3COM_BCFR_2A0:
if (ia->ia_iobase != 0x2a0)
return (0);
break;
case ED_3COM_BCFR_2E0:
if (ia->ia_iobase != 0x2e0)
return (0);
break;
default:
return (0);
}
/*
* Verify that the kernel shared memory address matches the board
* configured address.
*/
switch (inb(sc->asic_addr + ED_3COM_PCFR)) {
case ED_3COM_PCFR_DC000:
if (kvtop(ia->ia_maddr) != 0xdc000)
return (0);
break;
case ED_3COM_PCFR_D8000:
if (kvtop(ia->ia_maddr) != 0xd8000)
return (0);
break;
case ED_3COM_PCFR_CC000:
if (kvtop(ia->ia_maddr) != 0xcc000)
return (0);
break;
case ED_3COM_PCFR_C8000:
if (kvtop(ia->ia_maddr) != 0xc8000)
return (0);
break;
default:
return (0);
}
/*
* Reset NIC and ASIC. Enable on-board transceiver throughout reset
* sequence because it'll lock up if the cable isn't connected if we
* don't.
*/
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_RST | ED_3COM_CR_XSEL);
/* Wait for a while, then un-reset it. */
delay(50);
/*
* The 3Com ASIC defaults to rather strange settings for the CR after a
* reset - it's important to set it again after the following outb
* (this is done when we map the PROM below).
*/
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
/* Wait a bit for the NIC to recover from the reset. */
delay(5000);
sc->vendor = ED_VENDOR_3COM;
sc->type_str = "3c503";
sc->mem_shared = 1;
sc->cr_proto = ED_CR_RD2;
/*
* Hmmm...a 16bit 3Com board has 16k of memory, but only an 8k window
* to it.
*/
memsize = 8192;
/*
* Get station address from on-board ROM.
*
* First, map ethernet address PROM over the top of where the NIC
* registers normally appear.
*/
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_EALO | ED_3COM_CR_XSEL);
for (i = 0; i < ETHER_ADDR_LEN; ++i)
sc->sc_arpcom.ac_enaddr[i] = inb(sc->nic_addr + i);
/*
* Unmap PROM - select NIC registers. The proper setting of the
* tranceiver is set in ed_init so that the attach code is given a
* chance to set the default based on a compile-time config option.
*/
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
/* Determine if this is an 8bit or 16bit board. */
/* Select page 0 registers. */
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STP);
/*
* Attempt to clear WTS bit. If it doesn't clear, then this is a
* 16-bit board.
*/
outb(sc->nic_addr + ED_P0_DCR, 0);
/* Select page 2 registers. */
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_2 | ED_CR_STP);
/* The 3c503 forces the WTS bit to a one if this is a 16bit board. */
if (inb(sc->nic_addr + ED_P2_DCR) & ED_DCR_WTS)
isa16bit = 1;
else
isa16bit = 0;
/* Select page 0 registers. */
outb(sc->nic_addr + ED_P2_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STP);
sc->mem_start = (caddr_t)ia->ia_maddr;
sc->mem_size = memsize;
sc->mem_end = sc->mem_start + memsize;
/*
* We have an entire 8k window to put the transmit buffers on the
* 16-bit boards. But since the 16bit 3c503's shared memory is only
* fast enough to overlap the loading of one full-size packet, trying
* to load more than 2 buffers can actually leave the transmitter idle
* during the load. So 2 seems the best value. (Although a mix of
* variable-sized packets might change this assumption. Nonetheless,
* we optimize for linear transfers of same-size packets.)
*/
if (isa16bit) {
if (cf->cf_flags & ED_FLAGS_NO_MULTI_BUFFERING)
sc->txb_cnt = 1;
else
sc->txb_cnt = 2;
sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_16BIT;
sc->rec_page_start = ED_3COM_RX_PAGE_OFFSET_16BIT;
sc->rec_page_stop =
(memsize >> ED_PAGE_SHIFT) + ED_3COM_RX_PAGE_OFFSET_16BIT;
sc->mem_ring = sc->mem_start;
} else {
sc->txb_cnt = 1;
sc->tx_page_start = ED_3COM_TX_PAGE_OFFSET_8BIT;
sc->rec_page_start =
ED_TXBUF_SIZE + ED_3COM_TX_PAGE_OFFSET_8BIT;
sc->rec_page_stop =
(memsize >> ED_PAGE_SHIFT) + ED_3COM_TX_PAGE_OFFSET_8BIT;
sc->mem_ring =
sc->mem_start + (ED_TXBUF_SIZE << ED_PAGE_SHIFT);
}
sc->isa16bit = isa16bit;
/*
* Initialize GA page start/stop registers. Probably only needed if
* doing DMA, but what the Hell.
*/
outb(sc->asic_addr + ED_3COM_PSTR, sc->rec_page_start);
outb(sc->asic_addr + ED_3COM_PSPR, sc->rec_page_stop);
/* Set IRQ. 3c503 only allows a choice of irq 3-5 or 9. */
switch (ia->ia_irq) {
case 9:
outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ2);
break;
case 3:
outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ3);
break;
case 4:
outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ4);
break;
case 5:
outb(sc->asic_addr + ED_3COM_IDCFR, ED_3COM_IDCFR_IRQ5);
break;
default:
printf("%s: invalid irq configuration (%d) must be 3-5 or 9 for 3c503\n",
sc->sc_dev.dv_xname, ia->ia_irq);
return (0);
}
/*
* Initialize GA configuration register. Set bank and enable shared
* mem.
*/
outb(sc->asic_addr + ED_3COM_GACFR,
ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0);
/*
* Initialize "Vector Pointer" registers. These gawd-awful things are
* compared to 20 bits of the address on ISA, and if they match, the
* shared memory is disabled. We set them to 0xffff0...allegedly the
* reset vector.
*/
outb(sc->asic_addr + ED_3COM_VPTR2, 0xff);
outb(sc->asic_addr + ED_3COM_VPTR1, 0xff);
outb(sc->asic_addr + ED_3COM_VPTR0, 0x00);
/* Zero memory and verify that it is clear. */
bzero(sc->mem_start, memsize);
for (i = 0; i < memsize; ++i)
if (sc->mem_start[i]) {
printf("%s: failed to clear shared memory at %x - check configuration\n",
sc->sc_dev.dv_xname, kvtop(sc->mem_start + i));
return (0);
}
ia->ia_msize = memsize;
ia->ia_iosize = ED_3COM_IO_PORTS;
return (1);
}
/*
* Probe and vendor-specific initialization routine for NE1000/2000 boards.
*/
int
ed_probe_Novell(sc, cf, ia)
struct ed_softc *sc;
struct cfdata *cf;
struct isa_attach_args *ia;
{
u_int memsize, n;
u_char romdata[16], isa16bit = 0, tmp;
static u_char test_pattern[32] = "THIS is A memory TEST pattern";
u_char test_buffer[32];
sc->asic_addr = ia->ia_iobase + ED_NOVELL_ASIC_OFFSET;
sc->nic_addr = ia->ia_iobase + ED_NOVELL_NIC_OFFSET;
/* XXX - do Novell-specific probe here */
/* Reset the board. */
#ifdef GWETHER
outb(sc->asic_addr + ED_NOVELL_RESET, 0);
delay(200);
#endif /* GWETHER */
tmp = inb(sc->asic_addr + ED_NOVELL_RESET);
/*
* I don't know if this is necessary; probably cruft leftover from
* Clarkson packet driver code. Doesn't do a thing on the boards I've
* tested. -DG [note that a outb(0x84, 0) seems to work here, and is
* non-invasive...but some boards don't seem to reset and I don't have
* complete documentation on what the 'right' thing to do is...so we do
* the invasive thing for now. Yuck.]
*/
outb(sc->asic_addr + ED_NOVELL_RESET, tmp);
delay(5000);
/*
* This is needed because some NE clones apparently don't reset the NIC
* properly (or the NIC chip doesn't reset fully on power-up)
* XXX - this makes the probe invasive! ...Done against my better
* judgement. -DLG
*/
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STP);
delay(5000);
/* Make sure that we really have an 8390 based board. */
if (!ed_probe_generic8390(sc))
return (0);
sc->vendor = ED_VENDOR_NOVELL;
sc->mem_shared = 0;
sc->cr_proto = ED_CR_RD2;
ia->ia_msize = 0;
/*
* Test the ability to read and write to the NIC memory. This has the
* side affect of determining if this is an NE1000 or an NE2000.
*/
/*
* This prevents packets from being stored in the NIC memory when the
* readmem routine turns on the start bit in the CR.
*/
outb(sc->nic_addr + ED_P0_RCR, ED_RCR_MON);
/* Temporarily initialize DCR for byte operations. */
outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
outb(sc->nic_addr + ED_P0_PSTART, 8192 >> ED_PAGE_SHIFT);
outb(sc->nic_addr + ED_P0_PSTOP, 16384 >> ED_PAGE_SHIFT);
sc->isa16bit = 0;
/*
* Write a test pattern in byte mode. If this fails, then there
* probably isn't any memory at 8k - which likely means that the board
* is an NE2000.
*/
ed_pio_writemem(sc, test_pattern, 8192, sizeof(test_pattern));
ed_pio_readmem(sc, 8192, test_buffer, sizeof(test_pattern));
if (bcmp(test_pattern, test_buffer, sizeof(test_pattern))) {
/* not an NE1000 - try NE2000 */
outb(sc->nic_addr + ED_P0_DCR,
ED_DCR_WTS | ED_DCR_FT1 | ED_DCR_LS);
outb(sc->nic_addr + ED_P0_PSTART, 16384 >> ED_PAGE_SHIFT);
outb(sc->nic_addr + ED_P0_PSTOP, 32768 >> ED_PAGE_SHIFT);
sc->isa16bit = 1;
/*
* Write a test pattern in word mode. If this also fails, then
* we don't know what this board is.
*/
ed_pio_writemem(sc, test_pattern, 16384, sizeof(test_pattern));
ed_pio_readmem(sc, 16384, test_buffer, sizeof(test_pattern));
if (bcmp(test_pattern, test_buffer, sizeof(test_pattern)))
return (0); /* not an NE2000 either */
sc->type = ED_TYPE_NE2000;
sc->type_str = "NE2000";
} else {
sc->type = ED_TYPE_NE1000;
sc->type_str = "NE1000";
}
/* 8k of memory plus an additional 8k if 16-bit. */
memsize = 8192 + sc->isa16bit * 8192;
#if 0 /* probably not useful - NE boards only come two ways */
/* Allow kernel config file overrides. */
if (ia->ia_msize)
memsize = ia->ia_msize;
#endif
/* NIC memory doesn't start at zero on an NE board. */
/* The start address is tied to the bus width. */
sc->mem_start = (caddr_t)(8192 + sc->isa16bit * 8192);
sc->tx_page_start = memsize >> ED_PAGE_SHIFT;
#ifdef GWETHER
{
int x, i, mstart = 0;
char pbuf0[ED_PAGE_SIZE], pbuf[ED_PAGE_SIZE], tbuf[ED_PAGE_SIZE];
for (i = 0; i < ED_PAGE_SIZE; i++)
pbuf0[i] = 0;
/* Search for the start of RAM. */
for (x = 1; x < 256; x++) {
ed_pio_writemem(sc, pbuf0, x << ED_PAGE_SHIFT, ED_PAGE_SIZE);
ed_pio_readmem(sc, x << ED_PAGE_SHIFT, tbuf, ED_PAGE_SIZE);
if (!bcmp(pbuf0, tbuf, ED_PAGE_SIZE)) {
for (i = 0; i < ED_PAGE_SIZE; i++)
pbuf[i] = 255 - x;
ed_pio_writemem(sc, pbuf, x << ED_PAGE_SHIFT, ED_PAGE_SIZE);
ed_pio_readmem(sc, x << ED_PAGE_SHIFT, tbuf, ED_PAGE_SIZE);
if (!bcmp(pbuf, tbuf, ED_PAGE_SIZE)) {
mstart = x << ED_PAGE_SHIFT;
memsize = ED_PAGE_SIZE;
break;
}
}
}
if (mstart == 0) {
printf("%s: cannot find start of RAM\n",
sc->sc_dev.dv_xname);
return (0);
}
/* Search for the end of RAM. */
for (++x; x < 256; x++) {
ed_pio_writemem(sc, pbuf0, x << ED_PAGE_SHIFT, ED_PAGE_SIZE);
ed_pio_readmem(sc, x << ED_PAGE_SHIFT, tbuf, ED_PAGE_SIZE);
if (!bcmp(pbuf0, tbuf, ED_PAGE_SIZE)) {
for (i = 0; i < ED_PAGE_SIZE; i++)
pbuf[i] = 255 - x;
ed_pio_writemem(sc, pbuf, x << ED_PAGE_SHIFT, ED_PAGE_SIZE);
ed_pio_readmem(sc, x << ED_PAGE_SHIFT, tbuf, ED_PAGE_SIZE);
if (!bcmp(pbuf, tbuf, ED_PAGE_SIZE))
memsize += ED_PAGE_SIZE;
else
break;
} else
break;
}
printf("%s: RAM start %x, size %d\n",
sc->sc_dev.dv_xname, mstart, memsize);
sc->mem_start = (caddr_t)mstart;
sc->tx_page_start = mstart >> ED_PAGE_SHIFT;
}
#endif /* GWETHER */
sc->mem_size = memsize;
sc->mem_end = sc->mem_start + memsize;
/*
* Use one xmit buffer if < 16k, two buffers otherwise (if not told
* otherwise).
*/
if ((memsize < 16384) || (cf->cf_flags & ED_FLAGS_NO_MULTI_BUFFERING))
sc->txb_cnt = 1;
else
sc->txb_cnt = 2;
sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE;
sc->rec_page_stop = sc->tx_page_start + (memsize >> ED_PAGE_SHIFT);
sc->mem_ring =
sc->mem_start + ((sc->txb_cnt * ED_TXBUF_SIZE) << ED_PAGE_SHIFT);
ed_pio_readmem(sc, 0, romdata, 16);
for (n = 0; n < ETHER_ADDR_LEN; n++)
sc->sc_arpcom.ac_enaddr[n] = romdata[n*(sc->isa16bit+1)];
#ifdef GWETHER
if (sc->arpcom.ac_enaddr[2] == 0x86)
sc->type_str = "Gateway AT";
#endif /* GWETHER */
/* Clear any pending interrupts that might have occurred above. */
outb(sc->nic_addr + ED_P0_ISR, 0xff);
ia->ia_iosize = ED_NOVELL_IO_PORTS;
return (1);
}
/*
* Install interface into kernel networking data structures.
*/
void
edattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct ed_softc *sc = (void *)self;
struct isa_attach_args *ia = aux;
struct cfdata *cf = sc->sc_dev.dv_cfdata;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
/* Set interface to stopped condition (reset). */
ed_stop(sc);
/* Initialize ifnet structure. */
ifp->if_unit = sc->sc_dev.dv_unit;
ifp->if_name = edcd.cd_name;
ifp->if_output = ether_output;
ifp->if_start = ed_start;
ifp->if_ioctl = ed_ioctl;
ifp->if_watchdog = ed_watchdog;
ifp->if_flags =
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
/*
* Set default state for LINK0 flag (used to disable the tranceiver
* for AUI operation), based on compile-time config option.
*/
switch (sc->vendor) {
case ED_VENDOR_3COM:
if (cf->cf_flags & ED_FLAGS_DISABLE_TRANCEIVER)
ifp->if_flags |= IFF_LINK0;
break;
case ED_VENDOR_WD_SMC:
if ((sc->type & ED_WD_SOFTCONFIG) == 0)
break;
if ((inb(sc->asic_addr + ED_WD_IRR) & ED_WD_IRR_OUT2) == 0)
ifp->if_flags |= IFF_LINK0;
break;
}
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp);
/* Print additional info when attached. */
printf(": address %s, ", ether_sprintf(sc->sc_arpcom.ac_enaddr));
if (sc->type_str)
printf("type %s ", sc->type_str);
else
printf("type unknown (0x%x) ", sc->type);
printf("%s", sc->isa16bit ? "(16-bit)" : "(8-bit)");
switch (sc->vendor) {
case ED_VENDOR_WD_SMC:
if ((sc->type & ED_WD_SOFTCONFIG) == 0)
break;
case ED_VENDOR_3COM:
if (ifp->if_flags & IFF_LINK0)
printf(" aui");
else
printf(" bnc");
break;
}
printf("\n");
#if NBPFILTER > 0
bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
sc->sc_ih.ih_fun = edintr;
sc->sc_ih.ih_arg = sc;
sc->sc_ih.ih_level = IPL_NET;
intr_establish(ia->ia_irq, &sc->sc_ih);
}
/*
* Reset interface.
*/
void
ed_reset(sc)
struct ed_softc *sc;
{
int s;
s = splimp();
ed_stop(sc);
ed_init(sc);
splx(s);
}
/*
* Take interface offline.
*/
void
ed_stop(sc)
struct ed_softc *sc;
{
int n = 5000;
/* Stop everything on the interface, and select page 0 registers. */
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
/*
* Wait for interface to enter stopped state, but limit # of checks to
* 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but
* just in case it's an old one.
*/
while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RST) == 0) && --n);
}
/*
* Device timeout/watchdog routine. Entered if the device neglects to generate
* an interrupt after a transmit has been started on it.
*/
int
ed_watchdog(unit)
short unit;
{
struct ed_softc *sc = edcd.cd_devs[unit];
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
++sc->sc_arpcom.ac_if.if_oerrors;
ed_reset(sc);
}
/*
* Initialize device.
*/
void
ed_init(sc)
struct ed_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
int i, s;
u_char command;
u_long mcaf[2];
/* Address not known. */
if (ifp->if_addrlist == 0)
return;
/*
* Initialize the NIC in the exact order outlined in the NS manual.
* This init procedure is "mandatory"...don't change what or when
* things happen.
*/
s = splimp();
/* Reset transmitter flags. */
sc->xmit_busy = 0;
sc->sc_arpcom.ac_if.if_timer = 0;
sc->txb_inuse = 0;
sc->txb_new = 0;
sc->txb_next_tx = 0;
/* Set interface for page 0, remote DMA complete, stopped. */
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
if (sc->isa16bit) {
/*
* Set FIFO threshold to 8, No auto-init Remote DMA, byte
* order=80x86, word-wide DMA xfers,
*/
outb(sc->nic_addr + ED_P0_DCR,
ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS);
} else {
/* Same as above, but byte-wide DMA xfers. */
outb(sc->nic_addr + ED_P0_DCR, ED_DCR_FT1 | ED_DCR_LS);
}
/* Clear remote byte count registers. */
outb(sc->nic_addr + ED_P0_RBCR0, 0);
outb(sc->nic_addr + ED_P0_RBCR1, 0);
/* Tell RCR to do nothing for now. */
outb(sc->nic_addr + ED_P0_RCR, ED_RCR_MON);
/* Place NIC in internal loopback mode. */
outb(sc->nic_addr + ED_P0_TCR, ED_TCR_LB0);
/* Set lower bits of byte addressable framing to 0. */
if (sc->is790)
outb(sc->nic_addr + 0x09, 0);
/* Initialize receive buffer ring. */
outb(sc->nic_addr + ED_P0_BNRY, sc->rec_page_start);
outb(sc->nic_addr + ED_P0_PSTART, sc->rec_page_start);
outb(sc->nic_addr + ED_P0_PSTOP, sc->rec_page_stop);
/*
* Clear all interrupts. A '1' in each bit position clears the
* corresponding flag.
*/
outb(sc->nic_addr + ED_P0_ISR, 0xff);
/*
* Enable the following interrupts: receive/transmit complete,
* receive/transmit error, and Receiver OverWrite.
*
* Counter overflow and Remote DMA complete are *not* enabled.
*/
outb(sc->nic_addr + ED_P0_IMR,
ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE |
ED_IMR_OVWE);
/* Program command register for page 1. */
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
/* Copy out our station address. */
for (i = 0; i < ETHER_ADDR_LEN; ++i)
outb(sc->nic_addr + ED_P1_PAR0 + i, sc->sc_arpcom.ac_enaddr[i]);
/* Set multicast filter on chip. */
ed_getmcaf(&sc->sc_arpcom, mcaf);
for (i = 0; i < 8; i++)
outb(sc->nic_addr + ED_P1_MAR0 + i, ((u_char *)mcaf)[i]);
/*
* Set current page pointer to one page after the boundary pointer, as
* recommended in the National manual.
*/
sc->next_packet = sc->rec_page_start + 1;
outb(sc->nic_addr + ED_P1_CURR, sc->next_packet);
/* Program command register for page 0. */
outb(sc->nic_addr + ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
i = ED_RCR_AB | ED_RCR_AM;
if (ifp->if_flags & IFF_PROMISC) {
/*
* Set promiscuous mode. Multicast filter was set earlier so
* that we should receive all multicast packets.
*/
i |= ED_RCR_PRO | ED_RCR_AR | ED_RCR_SEP;
}
outb(sc->nic_addr + ED_P0_RCR, i);
/* Take interface out of loopback. */
outb(sc->nic_addr + ED_P0_TCR, 0);
/*
* If this is a 3Com board, the tranceiver must be software enabled
* (there is no settable hardware default).
*/
switch (sc->vendor) {
u_char x;
case ED_VENDOR_3COM:
if (ifp->if_flags & IFF_LINK0)
outb(sc->asic_addr + ED_3COM_CR, 0);
else
outb(sc->asic_addr + ED_3COM_CR, ED_3COM_CR_XSEL);
break;
case ED_VENDOR_WD_SMC:
if ((sc->type & ED_WD_SOFTCONFIG) == 0)
break;
x = inb(sc->asic_addr + ED_WD_IRR);
if (ifp->if_flags & IFF_LINK0)
x &= ~ED_WD_IRR_OUT2;
else
x |= ED_WD_IRR_OUT2;
outb(sc->asic_addr + ED_WD_IRR, x);
break;
}
/* Fire up the interface. */
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
/* Set 'running' flag, and clear output active flag. */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/* ...and attempt to start output. */
ed_start(ifp);
(void) splx(s);
}
/*
* This routine actually starts the transmission on the interface.
*/
static inline void
ed_xmit(sc)
struct ed_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
u_short len;
len = sc->txb_len[sc->txb_next_tx];
/* Set NIC for page 0 register access. */
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
/* Set TX buffer start page. */
outb(sc->nic_addr + ED_P0_TPSR, sc->tx_page_start +
sc->txb_next_tx * ED_TXBUF_SIZE);
/* Set TX length. */
outb(sc->nic_addr + ED_P0_TBCR0, len);
outb(sc->nic_addr + ED_P0_TBCR1, len >> 8);
/* Set page 0, remote DMA complete, transmit packet, and *start*. */
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_TXP | ED_CR_STA);
sc->xmit_busy = 1;
/* Point to next transmit buffer slot and wrap if necessary. */
sc->txb_next_tx++;
if (sc->txb_next_tx == sc->txb_cnt)
sc->txb_next_tx = 0;
/* Set a timer just in case we never hear from the board again. */
ifp->if_timer = 2;
}
/*
* Start output on interface.
* We make two assumptions here:
* 1) that the current priority is set to splimp _before_ this code
* is called *and* is returned to the appropriate priority after
* return
* 2) that the IFF_OACTIVE flag is checked before this code is called
* (i.e. that the output part of the interface is idle)
*/
int
ed_start(ifp)
struct ifnet *ifp;
{
struct ed_softc *sc = edcd.cd_devs[ifp->if_unit];
struct mbuf *m0, *m;
caddr_t buffer;
int len;
outloop:
/*
* First, see if there are buffered packets and an idle transmitter -
* should never happen at this point.
*/
if (sc->txb_inuse && (sc->xmit_busy == 0)) {
printf("%s: packets buffered, but transmitter idle\n",
sc->sc_dev.dv_xname);
ed_xmit(sc);
}
/* See if there is room to put another packet in the buffer. */
if (sc->txb_inuse == sc->txb_cnt) {
/* No room. Indicate this to the outside world and exit. */
ifp->if_flags |= IFF_OACTIVE;
return;
}
IF_DEQUEUE(&sc->sc_arpcom.ac_if.if_snd, m);
if (m == 0) {
/*
* We are using the !OACTIVE flag to indicate to the outside
* world that we can accept an additional packet rather than
* that the transmitter is _actually_ active. Indeed, the
* transmitter may be active, but if we haven't filled all the
* buffers with data then we still want to accept more.
*/
ifp->if_flags &= ~IFF_OACTIVE;
return;
}
/* Copy the mbuf chain into the transmit buffer. */
m0 = m;
/* txb_new points to next open buffer slot. */
buffer = sc->mem_start + ((sc->txb_new * ED_TXBUF_SIZE) << ED_PAGE_SHIFT);
if (sc->mem_shared) {
/* Special case setup for 16 bit boards... */
switch (sc->vendor) {
/*
* For 16bit 3Com boards (which have 16k of memory), we
* have the xmit buffers in a different page of memory
* ('page 0') - so change pages.
*/
case ED_VENDOR_3COM:
if (sc->isa16bit)
outb(sc->asic_addr + ED_3COM_GACFR,
ED_3COM_GACFR_RSEL);
break;
/*
* Enable 16bit access to shared memory on WD/SMC
* boards.
*/
case ED_VENDOR_WD_SMC:
if (sc->isa16bit)
outb(sc->asic_addr + ED_WD_LAAR,
sc->wd_laar_proto | ED_WD_LAAR_M16EN);
outb(sc->asic_addr + ED_WD_MSR,
sc->wd_msr_proto | ED_WD_MSR_MENB);
(void) inb(0x84);
(void) inb(0x84);
break;
}
for (len = 0; m; m = m->m_next) {
bcopy(mtod(m, caddr_t), buffer, m->m_len);
buffer += m->m_len;
len += m->m_len;
}
/* Restore previous shared memory access. */
switch (sc->vendor) {
case ED_VENDOR_3COM:
if (sc->isa16bit)
outb(sc->asic_addr + ED_3COM_GACFR,
ED_3COM_GACFR_RSEL | ED_3COM_GACFR_MBS0);
break;
case ED_VENDOR_WD_SMC:
outb(sc->asic_addr + ED_WD_MSR,
sc->wd_msr_proto);
if (sc->isa16bit)
outb(sc->asic_addr + ED_WD_LAAR,
sc->wd_laar_proto);
(void) inb(0x84);
(void) inb(0x84);
break;
}
} else
len = ed_pio_write_mbufs(sc, m, (u_short)buffer);
sc->txb_len[sc->txb_new] = max(len, ETHER_MIN_LEN);
sc->txb_inuse++;
/* Point to next buffer slot and wrap if necessary. */
if (++sc->txb_new == sc->txb_cnt)
sc->txb_new = 0;
if (sc->xmit_busy == 0)
ed_xmit(sc);
#if NBPFILTER > 0
/* Tap off here if there is a BPF listener. */
if (sc->sc_arpcom.ac_if.if_bpf)
bpf_mtap(sc->sc_arpcom.ac_if.if_bpf, m0);
#endif
m_freem(m0);
/* Loop back to the top to possibly buffer more packets. */
goto outloop;
}
/*
* Ethernet interface receiver interrupt.
*/
static inline void
ed_rint(sc)
struct ed_softc *sc;
{
u_char boundary, current;
u_short len;
u_char nlen;
struct ed_ring packet_hdr;
caddr_t packet_ptr;
loop:
/* Set NIC to page 1 registers to get 'current' pointer. */
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
/*
* 'sc->next_packet' is the logical beginning of the ring-buffer - i.e.
* it points to where new data has been buffered. The 'CURR' (current)
* register points to the logical end of the ring-buffer - i.e. it
* points to where additional new data will be added. We loop here
* until the logical beginning equals the logical end (or in other
* words, until the ring-buffer is empty).
*/
current = inb(sc->nic_addr + ED_P1_CURR);
if (sc->next_packet == current)
return;
do {
/* Get pointer to this buffer's header structure. */
packet_ptr = sc->mem_ring +
((sc->next_packet - sc->rec_page_start) << ED_PAGE_SHIFT);
/*
* The byte count includes a 4 byte header that was added by
* the NIC.
*/
if (sc->mem_shared)
packet_hdr = *(struct ed_ring *)packet_ptr;
else
ed_pio_readmem(sc, (u_short)packet_ptr,
(caddr_t) &packet_hdr, sizeof(packet_hdr));
len = packet_hdr.count;
/*
* Try do deal with old, buggy chips that sometimes duplicate
* the low byte of the length into the high byte. We do this
* by simply ignoring the high byte of the length and always
* recalculating it.
*
* NOTE: sc->next_packet is pointing at the current packet.
*/
if (packet_hdr.next_packet >= sc->next_packet)
nlen = (packet_hdr.next_packet - sc->next_packet);
else
nlen = ((packet_hdr.next_packet - sc->rec_page_start) +
(sc->rec_page_stop - sc->next_packet));
--nlen;
if ((len & ED_PAGE_MASK) + sizeof(packet_hdr) > ED_PAGE_SIZE)
--nlen;
len = (len & ED_PAGE_MASK) | (nlen << ED_PAGE_SHIFT);
#ifdef DIAGNOSTIC
if (len != packet_hdr.count) {
printf("%s: length does not match next packet pointer\n",
sc->sc_dev.dv_xname);
printf("%s: len %04x nlen %04x start %02x curr %02x next %02x stop %02x\n",
sc->sc_dev.dv_xname, packet_hdr.count, len,
sc->rec_page_start, sc->next_packet,
packet_hdr.next_packet, sc->rec_page_stop);
}
#endif
/*
* Be fairly liberal about what we allow as a "reasonable"
* length so that a [crufty] packet will make it to BPF (and
* can thus be analyzed). Note that all that is really
* important is that we have a length that will fit into one
* mbuf cluster or less; the upper layer protocols can then
* figure out the length from their own length field(s).
*/
if (len <= MCLBYTES &&
packet_hdr.next_packet >= sc->rec_page_start &&
packet_hdr.next_packet < sc->rec_page_stop) {
/* Go get packet. */
ed_get_packet(sc, packet_ptr + sizeof(struct ed_ring),
len - sizeof(struct ed_ring));
++sc->sc_arpcom.ac_if.if_ipackets;
} else {
/* Really BAD. The ring pointers are corrupted. */
log(LOG_ERR,
"%s: NIC memory corrupt - invalid packet length %d\n",
sc->sc_dev.dv_xname, len);
++sc->sc_arpcom.ac_if.if_ierrors;
ed_reset(sc);
return;
}
/* Update next packet pointer. */
sc->next_packet = packet_hdr.next_packet;
/*
* Update NIC boundary pointer - being careful to keep it one
* buffer behind (as recommended by NS databook).
*/
boundary = sc->next_packet - 1;
if (boundary < sc->rec_page_start)
boundary = sc->rec_page_stop - 1;
/* Set NIC to page 0 registers to update boundary register. */
outb(sc->nic_addr + ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
outb(sc->nic_addr + ED_P0_BNRY, boundary);
} while (sc->next_packet != current);
goto loop;
}
/* Ethernet interface interrupt processor. */
int
edintr(sc)
struct ed_softc *sc;
{
u_char isr;
/* Set NIC to page 0 registers. */
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
isr = inb(sc->nic_addr + ED_P0_ISR);
if (!isr)
return (0);
/* Loop until there are no more new interrupts. */
for (;;) {
/*
* Reset all the bits that we are 'acknowledging' by writing a
* '1' to each bit position that was set.
* (Writing a '1' *clears* the bit.)
*/
outb(sc->nic_addr + ED_P0_ISR, isr);
/*
* Handle transmitter interrupts. Handle these first because
* the receiver will reset the board under some conditions.
*/
if (isr & (ED_ISR_PTX | ED_ISR_TXE)) {
u_char collisions =
inb(sc->nic_addr + ED_P0_NCR) & 0x0f;
/*
* Check for transmit error. If a TX completed with an
* error, we end up throwing the packet away. Really
* the only error that is possible is excessive
* collisions, and in this case it is best to allow the
* automatic mechanisms of TCP to backoff the flow. Of
* course, with UDP we're screwed, but this is expected
* when a network is heavily loaded.
*/
(void) inb(sc->nic_addr + ED_P0_TSR);
if (isr & ED_ISR_TXE) {
/*
* Excessive collisions (16).
*/
if ((inb(sc->nic_addr + ED_P0_TSR) & ED_TSR_ABT)
&& (collisions == 0)) {
/*
* When collisions total 16, the P0_NCR
* will indicate 0, and the TSR_ABT is
* set.
*/
collisions = 16;
}
/* Update output errors counter. */
++sc->sc_arpcom.ac_if.if_oerrors;
} else {
/*
* Update total number of successfully
* transmitted packets.
*/
++sc->sc_arpcom.ac_if.if_opackets;
}
/* Reset TX busy and output active flags. */
sc->xmit_busy = 0;
sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
/* Clear watchdog timer. */
sc->sc_arpcom.ac_if.if_timer = 0;
/*
* Add in total number of collisions on last
* transmission.
*/
sc->sc_arpcom.ac_if.if_collisions += collisions;
/*
* Decrement buffer in-use count if not zero (can only
* be zero if a transmitter interrupt occured while not
* actually transmitting).
* If data is ready to transmit, start it transmitting,
* otherwise defer until after handling receiver.
*/
if (sc->txb_inuse && --sc->txb_inuse)
ed_xmit(sc);
}
/* Handle receiver interrupts. */
if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) {
/*
* Overwrite warning. In order to make sure that a
* lockup of the local DMA hasn't occurred, we reset
* and re-init the NIC. The NSC manual suggests only a
* partial reset/re-init is necessary - but some chips
* seem to want more. The DMA lockup has been seen
* only with early rev chips - Methinks this bug was
* fixed in later revs. -DG
*/
if (isr & ED_ISR_OVW) {
++sc->sc_arpcom.ac_if.if_ierrors;
#ifdef DIAGNOSTIC
log(LOG_WARNING,
"%s: warning - receiver ring buffer overrun\n",
sc->sc_dev.dv_xname);
#endif
/* Stop/reset/re-init NIC. */
ed_reset(sc);
} else {
/*
* Receiver Error. One or more of: CRC error,
* frame alignment error FIFO overrun, or
* missed packet.
*/
if (isr & ED_ISR_RXE) {
++sc->sc_arpcom.ac_if.if_ierrors;
#ifdef ED_DEBUG
printf("%s: receive error %x\n",
sc->sc_dev.dv_xname,
inb(sc->nic_addr + ED_P0_RSR));
#endif
}
/*
* Go get the packet(s).
* XXX - Doing this on an error is dubious
* because there shouldn't be any data to get
* (we've configured the interface to not
* accept packets with errors).
*/
/*
* Enable 16bit access to shared memory first
* on WD/SMC boards.
*/
if (sc->vendor == ED_VENDOR_WD_SMC) {
if (sc->isa16bit)
outb(sc->asic_addr + ED_WD_LAAR,
sc->wd_laar_proto | ED_WD_LAAR_M16EN);
outb(sc->asic_addr + ED_WD_MSR,
sc->wd_msr_proto | ED_WD_MSR_MENB);
(void) inb(0x84);
(void) inb(0x84);
}
ed_rint(sc);
/* Disable 16-bit access. */
if (sc->vendor == ED_VENDOR_WD_SMC) {
outb(sc->asic_addr + ED_WD_MSR,
sc->wd_msr_proto);
if (sc->isa16bit)
outb(sc->asic_addr + ED_WD_LAAR,
sc->wd_laar_proto);
(void) inb(0x84);
(void) inb(0x84);
}
}
}
/*
* If it looks like the transmitter can take more data, attempt
* to start output on the interface. This is done after
* handling the receiver to give the receiver priority.
*/
if ((sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
ed_start(&sc->sc_arpcom.ac_if);
/*
* Return NIC CR to standard state: page 0, remote DMA
* complete, start (toggling the TXP bit off, even if was just
* set in the transmit routine, is *okay* - it is 'edge'
* triggered from low to high).
*/
outb(sc->nic_addr + ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
/*
* If the Network Talley Counters overflow, read them to reset
* them. It appears that old 8390's won't clear the ISR flag
* otherwise - resulting in an infinite loop.
*/
if (isr & ED_ISR_CNT) {
(void) inb(sc->nic_addr + ED_P0_CNTR0);
(void) inb(sc->nic_addr + ED_P0_CNTR1);
(void) inb(sc->nic_addr + ED_P0_CNTR2);
}
isr = inb(sc->nic_addr + ED_P0_ISR);
if (!isr)
return (1);
}
}
/*
* Process an ioctl request. This code needs some work - it looks pretty ugly.
*/
int
ed_ioctl(ifp, command, data)
register struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct ed_softc *sc = edcd.cd_devs[ifp->if_unit];
register struct ifaddr *ifa = (struct ifaddr *)data;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splimp();
switch (command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
ed_init(sc); /* before arpwhohas */
/*
* See if another station has *our* IP address.
* i.e.: There is an address conflict! If a
* conflict exists, a message is sent to the
* console.
*/
sc->sc_arpcom.ac_ipaddr = IA_SIN(ifa)->sin_addr;
arpwhohas(&sc->sc_arpcom, &IA_SIN(ifa)->sin_addr);
break;
#endif
#ifdef NS
/* XXX - This code is probably wrong. */
case AF_NS:
{
register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *)(sc->sc_arpcom.ac_enaddr);
else
bcopy(ina->x_host.c_host,
sc->sc_arpcom.ac_enaddr,
sizeof(sc->sc_arpcom.ac_enaddr));
/* Set new address. */
ed_init(sc);
break;
}
#endif
default:
ed_init(sc);
break;
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
ed_stop(sc);
ifp->if_flags &= ~IFF_RUNNING;
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
ed_init(sc);
} else {
/*
* Reset the interface to pick up changes in any other
* flags that affect hardware registers.
*/
ed_stop(sc);
ed_init(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* Update our multicast list. */
error = (command == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_arpcom) :
ether_delmulti(ifr, &sc->sc_arpcom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
ed_stop(sc); /* XXX for ds_setmcaf? */
ed_init(sc);
error = 0;
}
break;
default:
error = EINVAL;
}
(void) splx(s);
return (error);
}
/*
* Macro to calculate a new address within shared memory when given an offset
* from an address, taking into account ring-wrap.
*/
#define ringoffset(sc, start, off, type) \
((type)( ((caddr_t)(start)+(off) >= (sc)->mem_end) ? \
(((caddr_t)(start)+(off))) - (sc)->mem_end \
+ (sc)->mem_ring: \
((caddr_t)(start)+(off)) ))
/*
* Retreive packet from shared memory and send to the next level up via
* ether_input(). If there is a BPF listener, give a copy to BPF, too.
*/
void
ed_get_packet(sc, buf, len)
struct ed_softc *sc;
caddr_t buf;
u_short len;
{
struct ether_header *eh;
struct mbuf *m, *ed_ring_to_mbuf();
/* Allocate a header mbuf. */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return;
m->m_pkthdr.rcvif = &sc->sc_arpcom.ac_if;
m->m_pkthdr.len = len;
m->m_len = 0;
/* The following silliness is to make NFS happy. */
#define EROUND ((sizeof(struct ether_header) + 3) & ~3)
#define EOFF (EROUND - sizeof(struct ether_header))
/*
* The following assumes there is room for the ether header in the
* header mbuf.
*/
m->m_data += EOFF;
eh = mtod(m, struct ether_header *);
if (sc->mem_shared)
bcopy(buf, mtod(m, caddr_t), sizeof(struct ether_header));
else
ed_pio_readmem(sc, (u_short)buf, mtod(m, caddr_t),
sizeof(struct ether_header));
buf += sizeof(struct ether_header);
m->m_len += sizeof(struct ether_header);
len -= sizeof(struct ether_header);
/* Pull packet off interface. */
if (ed_ring_to_mbuf(sc, buf, m, len) == 0) {
m_freem(m);
return;
}
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface. If so, hand off
* the raw packet to bpf.
*/
if (sc->sc_arpcom.ac_if.if_bpf) {
bpf_mtap(sc->sc_arpcom.ac_if.if_bpf, m);
/*
* Note that the interface cannot be in promiscuous mode if
* there are no BPF listeners. And if we are in promiscuous
* mode, we have to check if this packet is really ours.
*/
if ((sc->sc_arpcom.ac_if.if_flags & IFF_PROMISC) &&
(eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
sizeof(eh->ether_dhost)) != 0) {
m_freem(m);
return;
}
}
#endif
/* Fix up data start offset in mbuf to point past ether header. */
m_adj(m, sizeof(struct ether_header));
ether_input(&sc->sc_arpcom.ac_if, eh, m);
}
/*
* Supporting routines.
*/
/*
* Given a NIC memory source address and a host memory destination address,
* copy 'amount' from NIC to host using Programmed I/O. The 'amount' is
* rounded up to a word - okay as long as mbufs are word sized.
* This routine is currently Novell-specific.
*/
void
ed_pio_readmem(sc, src, dst, amount)
struct ed_softc *sc;
u_short src;
caddr_t dst;
u_short amount;
{
u_short tmp_amount;
/* Select page 0 registers. */
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STA);
/* Round up to a word. */
tmp_amount = amount;
if (amount & 1)
++amount;
/* Set up DMA byte count. */
outb(sc->nic_addr + ED_P0_RBCR0, amount);
outb(sc->nic_addr + ED_P0_RBCR1, amount >> 8);
/* Set up source address in NIC mem. */
outb(sc->nic_addr + ED_P0_RSAR0, src);
outb(sc->nic_addr + ED_P0_RSAR1, src >> 8);
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD0 | ED_CR_PAGE_0 | ED_CR_STA);
if (sc->isa16bit)
insw(sc->asic_addr + ED_NOVELL_DATA, dst, amount / 2);
else
insb(sc->asic_addr + ED_NOVELL_DATA, dst, amount);
}
/*
* Stripped down routine for writing a linear buffer to NIC memory. Only used
* in the probe routine to test the memory. 'len' must be even.
*/
void
ed_pio_writemem(sc, src, dst, len)
struct ed_softc *sc;
caddr_t src;
u_short dst;
u_short len;
{
int maxwait = 100; /* about 120us */
/* Select page 0 registers. */
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STA);
/* Reset remote DMA complete flag. */
outb(sc->nic_addr + ED_P0_ISR, ED_ISR_RDC);
/* Set up DMA byte count. */
outb(sc->nic_addr + ED_P0_RBCR0, len);
outb(sc->nic_addr + ED_P0_RBCR1, len >> 8);
/* Set up destination address in NIC mem. */
outb(sc->nic_addr + ED_P0_RSAR0, dst);
outb(sc->nic_addr + ED_P0_RSAR1, dst >> 8);
/* Set remote DMA write. */
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD1 | ED_CR_PAGE_0 | ED_CR_STA);
if (sc->isa16bit)
outsw(sc->asic_addr + ED_NOVELL_DATA, src, len / 2);
else
outsb(sc->asic_addr + ED_NOVELL_DATA, src, len);
/*
* Wait for remote DMA complete. This is necessary because on the
* transmit side, data is handled internally by the NIC in bursts and
* we can't start another remote DMA until this one completes. Not
* waiting causes really bad things to happen - like the NIC
* irrecoverably jamming the ISA bus.
*/
while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait);
}
/*
* Write an mbuf chain to the destination NIC memory address using programmed
* I/O.
*/
u_short
ed_pio_write_mbufs(sc, m, dst)
struct ed_softc *sc;
struct mbuf *m;
u_short dst;
{
u_short len;
struct mbuf *mp;
int maxwait = 100; /* about 120us */
/* First, count up the total number of bytes to copy. */
for (len = 0, mp = m; mp; mp = mp->m_next)
len += mp->m_len;
/* Select page 0 registers. */
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD2 | ED_CR_PAGE_0 | ED_CR_STA);
/* Reset remote DMA complete flag. */
outb(sc->nic_addr + ED_P0_ISR, ED_ISR_RDC);
/* Set up DMA byte count. */
outb(sc->nic_addr + ED_P0_RBCR0, len);
outb(sc->nic_addr + ED_P0_RBCR1, len >> 8);
/* Set up destination address in NIC mem. */
outb(sc->nic_addr + ED_P0_RSAR0, dst);
outb(sc->nic_addr + ED_P0_RSAR1, dst >> 8);
/* Set remote DMA write. */
outb(sc->nic_addr + ED_P0_CR, ED_CR_RD1 | ED_CR_PAGE_0 | ED_CR_STA);
/*
* Transfer the mbuf chain to the NIC memory.
* 16-bit cards require that data be transferred as words, and only
* words, so that case requires some extra code to patch over
* odd-length mbufs.
*/
if (!sc->isa16bit) {
/* NE1000s are easy. */
for (; m != 0; m = m->m_next) {
if (m->m_len) {
outsb(sc->asic_addr + ED_NOVELL_DATA,
mtod(m, u_char *), m->m_len);
}
}
} else {
/* NE2000s are a bit trickier. */
u_char *data, savebyte[2];
int len, wantbyte;
wantbyte = 0;
for (; m != 0; m = m->m_next) {
data = mtod(m, u_char *);
len = m->m_len;
if (len > 0) {
/* Finish the last word. */
if (wantbyte) {
savebyte[1] = *data;
outw(sc->asic_addr + ED_NOVELL_DATA,
*(u_short *)savebyte);
data++;
len--;
wantbyte = 0;
}
/* Output contiguous words. */
if (len > 1) {
outsw(sc->asic_addr + ED_NOVELL_DATA,
data, len >> 1);
data += len & ~1;
len &= 1;
}
/* Save last byte, if necessary. */
if (len == 1) {
savebyte[0] = *data;
wantbyte = 1;
}
}
}
if (wantbyte) {
savebyte[1] = 0;
outw(sc->asic_addr + ED_NOVELL_DATA,
*(u_short *)savebyte);
}
}
/*
* Wait for remote DMA complete. This is necessary because on the
* transmit side, data is handled internally by the NIC in bursts and
* we can't start another remote DMA until this one completes. Not
* waiting causes really bad things to happen - like the NIC
* irrecoverably jamming the ISA bus.
*/
while (((inb(sc->nic_addr + ED_P0_ISR) & ED_ISR_RDC) != ED_ISR_RDC) && --maxwait);
if (!maxwait) {
log(LOG_WARNING,
"%s: remote transmit DMA failed to complete\n",
sc->sc_dev.dv_xname);
ed_reset(sc);
}
return (len);
}
/*
* Given a source and destination address, copy 'amount' of a packet from the
* ring buffer into a linear destination buffer. Takes into account ring-wrap.
*/
static inline char *
ed_ring_copy(sc, src, dst, amount)
struct ed_softc *sc;
char *src;
char *dst;
u_short amount;
{
u_short tmp_amount;
/* Does copy wrap to lower addr in ring buffer? */
if (src + amount > sc->mem_end) {
tmp_amount = sc->mem_end - src;
/* Copy amount up to end of NIC memory. */
if (sc->mem_shared)
bcopy(src, dst, tmp_amount);
else
ed_pio_readmem(sc, (u_short)src, dst, tmp_amount);
amount -= tmp_amount;
src = sc->mem_ring;
dst += tmp_amount;
}
if (sc->mem_shared)
bcopy(src, dst, amount);
else
ed_pio_readmem(sc, (u_short)src, dst, amount);
return (src + amount);
}
/*
* Copy data from receive buffer to end of mbuf chain allocate additional mbufs
* as needed. Return pointer to last mbuf in chain.
* sc = ed info (softc)
* src = pointer in ed ring buffer
* dst = pointer to last mbuf in mbuf chain to copy to
* amount = amount of data to copy
*/
struct mbuf *
ed_ring_to_mbuf(sc, src, dst, total_len)
struct ed_softc *sc;
caddr_t src;
struct mbuf *dst;
u_short total_len;
{
register struct mbuf *m = dst;
while (total_len) {
register u_short amount = min(total_len, M_TRAILINGSPACE(m));
if (amount == 0) {
/*
* No more data in this mbuf; alloc another.
*
* If there is enough data for an mbuf cluster, attempt
* to allocate one of those, otherwise, a regular mbuf
* will do.
* Note that a regular mbuf is always required, even if
* we get a cluster - getting a cluster does not
* allocate any mbufs, and one is needed to assign the
* cluster to. The mbuf that has a cluster extension
* can not be used to contain data - only the cluster
* can contain data.
*/
dst = m;
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return (0);
if (total_len >= MINCLSIZE)
MCLGET(m, M_DONTWAIT);
m->m_len = 0;
dst->m_next = m;
amount = min(total_len, M_TRAILINGSPACE(m));
}
src = ed_ring_copy(sc, src, mtod(m, caddr_t) + m->m_len,
amount);
m->m_len += amount;
total_len -= amount;
}
return (m);
}
/*
* Compute the multicast address filter from the list of multicast addresses we
* need to listen to.
*/
void
ed_getmcaf(ac, af)
struct arpcom *ac;
u_long *af;
{
struct ifnet *ifp = &ac->ac_if;
struct ether_multi *enm;
register u_char *cp, c;
register u_long crc;
register int i, len;
struct ether_multistep step;
/*
* Set up multicast address filter by passing all multicast addresses
* through a crc generator, and then using the high order 6 bits as an
* index into the 64 bit logical address filter. The high order bit
* selects the word, while the rest of the bits select the bit within
* the word.
*/
if (ifp->if_flags & IFF_PROMISC) {
ifp->if_flags |= IFF_ALLMULTI;
af[0] = af[1] = 0xffffffff;
return;
}
af[0] = af[1] = 0;
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
sizeof(enm->enm_addrlo)) != 0) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
ifp->if_flags |= IFF_ALLMULTI;
af[0] = af[1] = 0xffffffff;
return;
}
cp = enm->enm_addrlo;
crc = 0xffffffff;
for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
c = *cp++;
for (i = 8; --i >= 0;) {
if (((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01)) {
crc <<= 1;
crc ^= 0x04c11db6 | 1;
} else
crc <<= 1;
c >>= 1;
}
}
/* Just want the 6 most significant bits. */
crc >>= 26;
/* Turn on the corresponding bit in the filter. */
af[crc >> 5] |= 1 << ((crc & 0x1f) ^ 24);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
}