NetBSD/lib/libcrypto/man/RAND_seed.3

355 lines
10 KiB
Groff

.rn '' }`
'''
'''
.de Sh
.br
.if t .Sp
.ne 5
.PP
\fB\\$1\fR
.PP
..
.de Sp
.if t .sp .5v
.if n .sp
..
.de Ip
.br
.ie \\n(.$>=3 .ne \\$3
.el .ne 3
.IP "\\$1" \\$2
..
.de Vb
.ft CW
.nf
.ne \\$1
..
.de Ve
.ft R
.fi
..
'''
'''
''' Set up \*(-- to give an unbreakable dash;
''' string Tr holds user defined translation string.
''' Bell System Logo is used as a dummy character.
'''
.tr \(*W-|\(bv\*(Tr
.ie n \{\
.ds -- \(*W-
.ds PI pi
.if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
.if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
.ds L" ""
.ds R" ""
''' \*(M", \*(S", \*(N" and \*(T" are the equivalent of
''' \*(L" and \*(R", except that they are used on ".xx" lines,
''' such as .IP and .SH, which do another additional levels of
''' double-quote interpretation
.ds M" """
.ds S" """
.ds N" """""
.ds T" """""
.ds L' '
.ds R' '
.ds M' '
.ds S' '
.ds N' '
.ds T' '
'br\}
.el\{\
.ds -- \(em\|
.tr \*(Tr
.ds L" ``
.ds R" ''
.ds M" ``
.ds S" ''
.ds N" ``
.ds T" ''
.ds L' `
.ds R' '
.ds M' `
.ds S' '
.ds N' `
.ds T' '
.ds PI \(*p
'br\}
.\" If the F register is turned on, we'll generate
.\" index entries out stderr for the following things:
.\" TH Title
.\" SH Header
.\" Sh Subsection
.\" Ip Item
.\" X<> Xref (embedded
.\" Of course, you have to process the output yourself
.\" in some meaninful fashion.
.if \nF \{
.de IX
.tm Index:\\$1\t\\n%\t"\\$2"
..
.nr % 0
.rr F
.\}
.TH rand 3 "0.9.5a" "22/Jul/2000" "OpenSSL"
.UC
.if n .hy 0
.if n .na
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.de CQ \" put $1 in typewriter font
.ft CW
'if n "\c
'if t \\&\\$1\c
'if n \\&\\$1\c
'if n \&"
\\&\\$2 \\$3 \\$4 \\$5 \\$6 \\$7
'.ft R
..
.\" @(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2
. \" AM - accent mark definitions
.bd B 3
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds ? ?
. ds ! !
. ds /
. ds q
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds ? \s-2c\h'-\w'c'u*7/10'\u\h'\*(#H'\zi\d\s+2\h'\w'c'u*8/10'
. ds ! \s-2\(or\s+2\h'-\w'\(or'u'\v'-.8m'.\v'.8m'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
. ds q o\h'-\w'o'u*8/10'\s-4\v'.4m'\z\(*i\v'-.4m'\s+4\h'\w'o'u*8/10'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds v \\k:\h'-(\\n(.wu*9/10-\*(#H)'\v'-\*(#V'\*(#[\s-4v\s0\v'\*(#V'\h'|\\n:u'\*(#]
.ds _ \\k:\h'-(\\n(.wu*9/10-\*(#H+(\*(#F*2/3))'\v'-.4m'\z\(hy\v'.4m'\h'|\\n:u'
.ds . \\k:\h'-(\\n(.wu*8/10)'\v'\*(#V*4/10'\z.\v'-\*(#V*4/10'\h'|\\n:u'
.ds 3 \*(#[\v'.2m'\s-2\&3\s0\v'-.2m'\*(#]
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
.ds oe o\h'-(\w'o'u*4/10)'e
.ds Oe O\h'-(\w'O'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds v \h'-1'\o'\(aa\(ga'
. ds _ \h'-1'^
. ds . \h'-1'.
. ds 3 3
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
. ds oe oe
. ds Oe OE
.\}
.rm #[ #] #H #V #F C
.SH "NAME"
rand \- pseudo-random number generator
.SH "LIBRARY"
libcrypto, -lcrypto
.SH "SYNOPSIS"
.PP
.Vb 1
\& #include <openssl/rand.h>
.Ve
.Vb 2
\& int RAND_bytes(unsigned char *buf,int num);
\& int RAND_pseudo_bytes(unsigned char *buf,int num);
.Ve
.Vb 4
\& void RAND_seed(const void *buf,int num);
\& void RAND_add(const void *buf,int num,int entropy);
\& int RAND_status(void);
\& void RAND_screen(void);
.Ve
.Vb 3
\& int RAND_load_file(const char *file,long max_bytes);
\& int RAND_write_file(const char *file);
\& const char *RAND_file_name(char *file,int num);
.Ve
.Vb 1
\& int RAND_egd(const char *path);
.Ve
.Vb 3
\& void RAND_set_rand_method(RAND_METHOD *meth);
\& RAND_METHOD *RAND_get_rand_method(void);
\& RAND_METHOD *RAND_SSLeay(void);
.Ve
.Vb 1
\& void RAND_cleanup(void);
.Ve
.SH "DESCRIPTION"
These functions implement a cryptographically secure pseudo-random
number generator (PRNG). It is used by other library functions for
example to generate random keys, and applications can use it when they
need randomness.
.PP
A cryptographic PRNG must be seeded with unpredictable data such as
mouse movements or keys pressed at random by the user. This is
described in the \fIRAND_add(3)|RAND_add(3)\fR manpage. Its state can be saved in a seed file
(see the \fIRAND_load_file(3)|RAND_load_file(3)\fR manpage) to avoid having to go through the
seeding process whenever the application is started.
.PP
the \fIRAND_bytes(3)|RAND_bytes(3)\fR manpage describes how to obtain random data from the
PRNG.
.SH "INTERNALS"
The \fIRAND_SSLeay()\fR method implements a PRNG based on a cryptographic
hash function.
.PP
The following description of its design is based on the SSLeay
documentation:
.PP
First up I will state the things I believe I need for a good RNG.
.Ip "1" 4
A good hashing algorithm to mix things up and to convert the \s-1RNG\s0 \*(L'state\*(R'
to random numbers.
.Ip "2" 4
An initial source of random \*(L'state\*(R'.
.Ip "3" 4
The state should be very large. If the \s-1RNG\s0 is being used to generate
4096 bit \s-1RSA\s0 keys, 2 2048 bit random strings are required (at a minimum).
If your \s-1RNG\s0 state only has 128 bits, you are obviously limiting the
search space to 128 bits, not 2048. I'm probably getting a little
carried away on this last point but it does indicate that it may not be
a bad idea to keep quite a lot of \s-1RNG\s0 state. It should be easier to
break a cipher than guess the \s-1RNG\s0 seed data.
.Ip "4" 4
Any \s-1RNG\s0 seed data should influence all subsequent random numbers
generated. This implies that any random seed data entered will have
an influence on all subsequent random numbers generated.
.Ip "5" 4
When using data to seed the \s-1RNG\s0 state, the data used should not be
extractable from the \s-1RNG\s0 state. I believe this should be a
requirement because one possible source of \*(L'secret\*(R' semi random
data would be a private key or a password. This data must
not be disclosed by either subsequent random numbers or a
\&'core\*(R' dump left by a program crash.
.Ip "6" 4
Given the same initial \*(L'state\*(R', 2 systems should deviate in their \s-1RNG\s0 state
(and hence the random numbers generated) over time if at all possible.
.Ip "7" 4
Given the random number output stream, it should not be possible to determine
the \s-1RNG\s0 state or the next random number.
.PP
The algorithm is as follows.
.PP
There is global state made up of a 1023 byte buffer (the \*(L'state'), a
working hash value ('md'), and a counter ('count').
.PP
Whenever seed data is added, it is inserted into the \*(L'state\*(R' as
follows.
.PP
The input is chopped up into units of 20 bytes (or less for
the last block). Each of these blocks is run through the hash
function as follows: The data passed to the hash function
is the current \*(L'md\*(R', the same number of bytes from the \*(L'state\*(R'
(the location determined by in incremented looping index) as
the current \*(L'block\*(R', the new key data \*(L'block\*(R', and \*(L'count\*(R'
(which is incremented after each use).
The result of this is kept in \*(L'md\*(R' and also xored into the
\&'state\*(R' at the same locations that were used as input into the
hash function. I
believe this system addresses points 1 (hash function; currently
\s-1SHA\s0\-1), 3 (the \*(L'state'), 4 (via the \*(L'md'), 5 (by the use of a hash
function and xor).
.PP
When bytes are extracted from the \s-1RNG\s0, the following process is used.
For each group of 10 bytes (or less), we do the following:
.PP
Input into the hash function the top 10 bytes from the local \*(L'md\*(R'
(which is initialized from the global \*(L'md\*(R' before any bytes are
generated), the bytes that are to be overwritten by the random bytes,
and bytes from the \*(L'state\*(R' (incrementing looping index). From this
digest output (which is kept in \*(L'md'), the top (up to) 10 bytes are
returned to the caller and the bottom (up to) 10 bytes are xored into
the \*(L'state\*(R'.
.PP
Finally, after we have finished \*(L'num\*(R' random bytes for the caller,
\&'count\*(R' (which is incremented) and the local and global \*(L'md\*(R' are fed
into the hash function and the results are kept in the global \*(L'md\*(R'.
.PP
I believe the above addressed points 1 (use of \s-1SHA\s0\-1), 6 (by hashing
into the \*(L'state\*(R' the \*(L'old\*(R' data from the caller that is about to be
overwritten) and 7 (by not using the 10 bytes given to the caller to
update the \*(L'state\*(R', but they are used to update \*(L'md').
.PP
So of the points raised, only 2 is not addressed (but see
the \fIRAND_add(3)|RAND_add(3)\fR manpage).
.SH "SEE ALSO"
the \fIBN_rand(3)|BN_rand(3)\fR manpage, the \fIRAND_add(3)|RAND_add(3)\fR manpage,
the \fIRAND_load_file(3)|RAND_load_file(3)\fR manpage, the \fIRAND_egd(3)|RAND_egd(3)\fR manpage,
the \fIRAND_bytes(3)|RAND_bytes(3)\fR manpage,
the \fIRAND_set_rand_method(3)|RAND_set_rand_method(3)\fR manpage,
the \fIRAND_cleanup(3)|RAND_cleanup(3)\fR manpage
.rn }` ''
.IX Title "rand 3"
.IX Name "rand - pseudo-random number generator"
.IX Header "NAME"
.IX Header "SYNOPSIS"
.IX Header "DESCRIPTION"
.IX Header "INTERNALS"
.IX Item "1"
.IX Item "2"
.IX Item "3"
.IX Item "4"
.IX Item "5"
.IX Item "6"
.IX Item "7"
.IX Header "SEE ALSO"