NetBSD/sys/dev/ic/iavcreg.h
pooka a99f02d0ee Add a driver for the CAPI-compliant AVM B1/T1 cards.
The driver backend is capable of supporting also ISA cards (no DMA)
and primary rate (PRI) cards in addition to the basic rate ones,
but I don't any to test on right now, so we don't support those
currently.

This code was originally written by Juha-Matti Liukkonen <jml@cubical.fi>
of Cubical Solutions Ltd. for FreeBSD, and was ported to NetBSD by
myself for the same company.
2003-09-25 15:53:26 +00:00

484 lines
13 KiB
C

/* $NetBSD: iavcreg.h,v 1.1 2003/09/25 15:53:26 pooka Exp $ */
/*
* Copyright (c) 2001-2003 Cubical Solutions Ltd. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* capi/iavc/iavc.h The AVM ISDN controllers' common declarations.
*
* $FreeBSD: src/sys/i4b/capi/iavc/iavc.h,v 1.1.2.1 2001/08/10 14:08:34 obrien Exp $
*/
/*
// AMCC_{READ,WRITE}
// Routines to access the memory mapped registers of the
// S5933 DMA controller.
*/
static __inline u_int32_t AMCC_READ(iavc_softc_t *sc, int off)
{
return bus_space_read_4(sc->sc_mem_bt, sc->sc_mem_bh, off);
}
static __inline void AMCC_WRITE(iavc_softc_t *sc, int off, u_int32_t value)
{
bus_space_write_4(sc->sc_mem_bt, sc->sc_mem_bh, off, value);
}
/*
// amcc_{put,get}_{byte,word}
// Routines to access the DMA buffers byte- or wordwise.
*/
static __inline u_int8_t* amcc_put_byte(u_int8_t *buf, u_int8_t value)
{
*buf++ = value;
return buf;
}
static __inline u_int8_t* amcc_get_byte(u_int8_t *buf, u_int8_t *value)
{
*value = *buf++;
return buf;
}
static __inline u_int8_t* amcc_put_word(u_int8_t *buf, u_int32_t value)
{
*buf++ = (value & 0xff);
*buf++ = (value >> 8) & 0xff;
*buf++ = (value >> 16) & 0xff;
*buf++ = (value >> 24) & 0xff;
return buf;
}
static __inline u_int8_t* amcc_get_word(u_int8_t *buf, u_int32_t *value)
{
*value = *buf++;
*value |= (*buf++ << 8);
*value |= (*buf++ << 16);
*value |= (*buf++ << 24);
return buf;
}
/*
// Controller LLI message numbers.
*/
#define SEND_POLL 0x72
#define SEND_INIT 0x11
#define SEND_REGISTER 0x12
#define SEND_DATA_B3_REQ 0x13
#define SEND_RELEASE 0x14
#define SEND_MESSAGE 0x15
#define SEND_CONFIG 0x71
#define SEND_POLLACK 0x73
#define RECEIVE_POLL 0x32
#define RECEIVE_INIT 0x27
#define RECEIVE_MESSAGE 0x21
#define RECEIVE_DATA_B3_IND 0x22
#define RECEIVE_START 0x23
#define RECEIVE_STOP 0x24
#define RECEIVE_NEW_NCCI 0x25
#define RECEIVE_FREE_NCCI 0x26
#define RECEIVE_RELEASE 0x26
#define RECEIVE_TASK_READY 0x31
#define RECEIVE_DEBUGMSG 0x71
#define RECEIVE_POLLDWORD 0x75
/* Operation constants */
#define WRITE_REGISTER 0x00
#define READ_REGISTER 0x01
/* Port offsets in I/O space */
#define B1_READ 0x00
#define B1_WRITE 0x01
#define B1_INSTAT 0x02
#define B1_OUTSTAT 0x03
#define B1_ANALYSE 0x04
#define B1_REVISION 0x05
#define B1_RESET 0x10
#define T1_FASTLINK 0x00
#define T1_SLOWLINK 0x08
#define T1_READ B1_READ
#define T1_WRITE B1_WRITE
#define T1_INSTAT B1_INSTAT
#define T1_OUTSTAT B1_OUTSTAT
#define T1_IRQENABLE 0x05
#define T1_FIFOSTAT 0x06
#define T1_RESETLINK 0x10
#define T1_ANALYSE 0x11
#define T1_IRQMASTER 0x12
#define T1_IDENT 0x17
#define T1_RESETBOARD 0x1f
#define T1F_IREADY 0x01
#define T1F_IHALF 0x02
#define T1F_IFULL 0x04
#define T1F_IEMPTY 0x08
#define T1F_IFLAGS 0xf0
#define T1F_OREADY 0x10
#define T1F_OHALF 0x20
#define T1F_OEMPTY 0x40
#define T1F_OFULL 0x80
#define T1F_OFLAGS 0xf0
#define FIFO_OUTBSIZE 256
#define FIFO_INPBSIZE 512
#define HEMA_VERSION_ID 0
#define HEMA_PAL_ID 0
/*
// S5933 DMA controller register offsets in memory, and bitmasks.
*/
#define AMCC_RXPTR 0x24
#define AMCC_RXLEN 0x28
#define AMCC_TXPTR 0x2c
#define AMCC_TXLEN 0x30
#define AMCC_INTCSR 0x38
#define EN_READ_TC_INT 0x00008000
#define EN_WRITE_TC_INT 0x00004000
#define EN_TX_TC_INT EN_READ_TC_INT
#define EN_RX_TC_INT EN_WRITE_TC_INT
#define AVM_FLAG 0x30000000
#define ANY_S5933_INT 0x00800000
#define READ_TC_INT 0x00080000
#define WRITE_TC_INT 0x00040000
#define TX_TC_INT READ_TC_INT
#define RX_TC_INT WRITE_TC_INT
#define MASTER_ABORT_INT 0x00100000
#define TARGET_ABORT_INT 0x00200000
#define BUS_MASTER_INT 0x00200000
#define ALL_INT 0x000c0000
#define AMCC_MCSR 0x3c
#define A2P_HI_PRIORITY 0x00000100
#define EN_A2P_TRANSFERS 0x00000400
#define P2A_HI_PRIORITY 0x00001000
#define EN_P2A_TRANSFERS 0x00004000
#define RESET_A2P_FLAGS 0x04000000
#define RESET_P2A_FLAGS 0x02000000
/*
// (B1IO_WAIT_MAX * B1IO_WAIT_DLY) is the max wait in us for the card
// to become ready after an I/O operation. The default is 1 ms.
*/
#define B1IO_WAIT_MAX 1000
#define B1IO_WAIT_DLY 1
/*
// b1io_outp
// Diagnostic output routine, returns the written value via
// the device's analysis register.
//
// b1io_rx_full
// Returns nonzero if data is readable from the card via the
// I/O ports.
//
// b1io_tx_empty
// Returns nonzero if data can be written to the card via the
// I/O ports.
*/
static __inline u_int8_t b1io_outp(iavc_softc_t *sc, int off, u_int8_t val)
{
bus_space_write_1(sc->sc_io_bt, sc->sc_io_bh, off, val);
DELAY(1);
return bus_space_read_1(sc->sc_io_bt, sc->sc_io_bh, B1_ANALYSE);
}
static __inline int b1io_rx_full(iavc_softc_t *sc)
{
u_int8_t val = bus_space_read_1(sc->sc_io_bt, sc->sc_io_bh, B1_INSTAT);
return (val & 0x01);
}
static __inline int b1io_tx_empty(iavc_softc_t *sc)
{
u_int8_t val = bus_space_read_1(sc->sc_io_bt, sc->sc_io_bh, B1_OUTSTAT);
return (val & 0x01);
}
/*
// b1io_{get,put}_{byte,word}
// Routines to read and write the device I/O registers byte- or
// wordwise.
//
// b1io_{get,put}_slice
// Routines to read and write sequential bytes to the device
// I/O registers.
*/
static __inline u_int8_t b1io_get_byte(iavc_softc_t *sc)
{
int spin = 0;
while (!b1io_rx_full(sc) && spin < B1IO_WAIT_MAX) {
spin++; DELAY(B1IO_WAIT_DLY);
}
if (b1io_rx_full(sc))
return bus_space_read_1(sc->sc_io_bt, sc->sc_io_bh, B1_READ);
printf("iavc%d: rx not completed\n", sc->sc_unit);
return 0xff;
}
static __inline int b1io_put_byte(iavc_softc_t *sc, u_int8_t val)
{
int spin = 0;
while (!b1io_tx_empty(sc) && spin < B1IO_WAIT_MAX) {
spin++; DELAY(B1IO_WAIT_DLY);
}
if (b1io_tx_empty(sc)) {
bus_space_write_1(sc->sc_io_bt, sc->sc_io_bh, B1_WRITE, val);
return 0;
}
printf("iavc%d: tx not emptied\n", sc->sc_unit);
return -1;
}
static __inline int b1io_save_put_byte(iavc_softc_t *sc, u_int8_t val)
{
int spin = 0;
while (!b1io_tx_empty(sc) && spin < B1IO_WAIT_MAX) {
spin++; DELAY(B1IO_WAIT_DLY);
}
if (b1io_tx_empty(sc)) {
b1io_outp(sc, B1_WRITE, val);
return 0;
}
printf("iavc%d: tx not emptied\n", sc->sc_unit);
return -1;
}
static __inline u_int32_t b1io_get_word(iavc_softc_t *sc)
{
u_int32_t val = 0;
val |= b1io_get_byte(sc);
val |= (b1io_get_byte(sc) << 8);
val |= (b1io_get_byte(sc) << 16);
val |= (b1io_get_byte(sc) << 24);
return val;
}
static __inline void b1io_put_word(iavc_softc_t *sc, u_int32_t val)
{
b1io_put_byte(sc, (val & 0xff));
b1io_put_byte(sc, (val >> 8) & 0xff);
b1io_put_byte(sc, (val >> 16) & 0xff);
b1io_put_byte(sc, (val >> 24) & 0xff);
}
static __inline int b1io_get_slice(iavc_softc_t *sc, u_int8_t *dp)
{
int len, i;
len = i = b1io_get_word(sc);
while (i--) *dp++ = b1io_get_byte(sc);
return len;
}
static __inline void b1io_put_slice(iavc_softc_t *sc, u_int8_t *dp, int len)
{
b1io_put_word(sc, len);
while (len--) b1io_put_byte(sc, *dp++);
}
/*
// b1io_{read,write}_reg
// Routines to read and write the device registers via the I/O
// ports.
*/
static __inline u_int32_t b1io_read_reg(iavc_softc_t *sc, int reg)
{
b1io_put_byte(sc, READ_REGISTER);
b1io_put_word(sc, reg);
return b1io_get_word(sc);
}
static __inline u_int32_t b1io_write_reg(iavc_softc_t *sc, int reg, u_int32_t val)
{
b1io_put_byte(sc, WRITE_REGISTER);
b1io_put_word(sc, reg);
b1io_put_word(sc, val);
return b1io_get_word(sc);
}
/*
// t1io_outp
// I/O port write operation for the T1, which does not seem
// to have the analysis port.
*/
static __inline void t1io_outp(iavc_softc_t *sc, int off, u_int8_t val)
{
bus_space_write_1(sc->sc_io_bt, sc->sc_io_bh, off, val);
}
static __inline u_int8_t t1io_inp(iavc_softc_t *sc, int off)
{
return bus_space_read_1(sc->sc_io_bt, sc->sc_io_bh, off);
}
static __inline int t1io_isfastlink(iavc_softc_t *sc)
{
return ((bus_space_read_1(sc->sc_io_bt, sc->sc_io_bh, T1_IDENT) & ~0x82) == 1);
}
static __inline u_int8_t t1io_fifostatus(iavc_softc_t *sc)
{
return bus_space_read_1(sc->sc_io_bt, sc->sc_io_bh, T1_FIFOSTAT);
}
static __inline int t1io_get_slice(iavc_softc_t *sc, u_int8_t *dp)
{
int len, i;
len = i = b1io_get_word(sc);
if (t1io_isfastlink(sc)) {
int status;
while (i) {
status = t1io_fifostatus(sc) & (T1F_IREADY|T1F_IHALF);
if (i >= FIFO_INPBSIZE) status |= T1F_IFULL;
switch (status) {
case T1F_IREADY|T1F_IHALF|T1F_IFULL:
bus_space_read_multi_1(sc->sc_io_bt, sc->sc_io_bh,
T1_READ, dp, FIFO_INPBSIZE);
dp += FIFO_INPBSIZE;
i -= FIFO_INPBSIZE;
break;
case T1F_IREADY|T1F_IHALF:
bus_space_read_multi_1(sc->sc_io_bt, sc->sc_io_bh,
T1_READ, dp, i);
dp += i;
i = 0;
break;
default:
*dp++ = b1io_get_byte(sc);
i--;
}
}
} else { /* not fastlink */
if (i--) *dp++ = b1io_get_byte(sc);
}
return len;
}
static __inline void t1io_put_slice(iavc_softc_t *sc, u_int8_t *dp, int len)
{
int i = len;
b1io_put_word(sc, i);
if (t1io_isfastlink(sc)) {
int status;
while (i) {
status = t1io_fifostatus(sc) & (T1F_OREADY|T1F_OHALF);
if (i >= FIFO_OUTBSIZE) status |= T1F_OFULL;
switch (status) {
case T1F_OREADY|T1F_OHALF|T1F_OFULL:
bus_space_write_multi_1(sc->sc_io_bt, sc->sc_io_bh,
T1_WRITE, dp, FIFO_OUTBSIZE);
dp += FIFO_OUTBSIZE;
i -= FIFO_OUTBSIZE;
break;
case T1F_OREADY|T1F_OHALF:
bus_space_write_multi_1(sc->sc_io_bt, sc->sc_io_bh,
T1_WRITE, dp, i);
dp += i;
i = 0;
break;
default:
b1io_put_byte(sc, *dp++);
i--;
}
}
} else {
while (i--) b1io_put_byte(sc, *dp++);
}
}
/*
// An attempt to bring it all together:
// ------------------------------------
//
// iavc_{read,write}_reg
// Routines to access the device registers via the I/O port.
//
// iavc_{read,write}_port
// Routines to access the device I/O ports.
//
// iavc_tx_empty, iavc_rx_full
// Routines to check when the device has drained the last written
// byte, or produced a full byte to read.
//
// iavc_{get,put}_byte
// Routines to read/write byte values to the device via the I/O port.
//
// iavc_{get,put}_word
// Routines to read/write 32-bit words to the device via the I/O port.
//
// iavc_{get,put}_slice
// Routines to read/write {length, data} pairs to the device via the
// ubiquituous I/O port. Uses the HEMA FIFO on a T1.
*/
#define iavc_read_reg(sc, reg) b1io_read_reg(sc, reg)
#define iavc_write_reg(sc, reg, val) b1io_write_reg(sc, reg, val)
#define iavc_read_port(sc, port) \
bus_space_read_1(sc->sc_io_bt, sc->sc_io_bh, (port))
#define iavc_write_port(sc, port, val) \
bus_space_write_1(sc->sc_io_bt, sc->sc_io_bh, (port), (val))
#define iavc_tx_empty(sc) b1io_tx_empty(sc)
#define iavc_rx_full(sc) b1io_rx_full(sc)
#define iavc_get_byte(sc) b1io_get_byte(sc)
#define iavc_put_byte(sc, val) b1io_put_byte(sc, val)
#define iavc_get_word(sc) b1io_get_word(sc)
#define iavc_put_word(sc, val) b1io_put_word(sc, val)
static __inline u_int32_t iavc_get_slice(iavc_softc_t *sc, u_int8_t *dp)
{
if (sc->sc_t1) return t1io_get_slice(sc, dp);
else return b1io_get_slice(sc, dp);
}
static __inline void iavc_put_slice(iavc_softc_t *sc, u_int8_t *dp, int len)
{
if (sc->sc_t1) t1io_put_slice(sc, dp, len);
else b1io_put_slice(sc, dp, len);
}