NetBSD/sys/uvm/uvm_page.c
2013-10-25 20:26:22 +00:00

2160 lines
52 KiB
C

/* $NetBSD: uvm_page.c,v 1.183 2013/10/25 20:26:22 martin Exp $ */
/*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* Copyright (c) 1991, 1993, The Regents of the University of California.
*
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* The Mach Operating System project at Carnegie-Mellon University.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vm_page.c 8.3 (Berkeley) 3/21/94
* from: Id: uvm_page.c,v 1.1.2.18 1998/02/06 05:24:42 chs Exp
*
*
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
* All rights reserved.
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/*
* uvm_page.c: page ops.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: uvm_page.c,v 1.183 2013/10/25 20:26:22 martin Exp $");
#include "opt_ddb.h"
#include "opt_uvmhist.h"
#include "opt_readahead.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sched.h>
#include <sys/kernel.h>
#include <sys/vnode.h>
#include <sys/proc.h>
#include <sys/atomic.h>
#include <sys/cpu.h>
#include <uvm/uvm.h>
#include <uvm/uvm_ddb.h>
#include <uvm/uvm_pdpolicy.h>
/*
* global vars... XXXCDC: move to uvm. structure.
*/
/*
* physical memory config is stored in vm_physmem.
*/
struct vm_physseg vm_physmem[VM_PHYSSEG_MAX]; /* XXXCDC: uvm.physmem */
int vm_nphysseg = 0; /* XXXCDC: uvm.nphysseg */
#define vm_nphysmem vm_nphysseg
/*
* Some supported CPUs in a given architecture don't support all
* of the things necessary to do idle page zero'ing efficiently.
* We therefore provide a way to enable it from machdep code here.
*/
bool vm_page_zero_enable = false;
/*
* number of pages per-CPU to reserve for the kernel.
*/
int vm_page_reserve_kernel = 5;
/*
* physical memory size;
*/
int physmem;
/*
* local variables
*/
/*
* these variables record the values returned by vm_page_bootstrap,
* for debugging purposes. The implementation of uvm_pageboot_alloc
* and pmap_startup here also uses them internally.
*/
static vaddr_t virtual_space_start;
static vaddr_t virtual_space_end;
/*
* we allocate an initial number of page colors in uvm_page_init(),
* and remember them. We may re-color pages as cache sizes are
* discovered during the autoconfiguration phase. But we can never
* free the initial set of buckets, since they are allocated using
* uvm_pageboot_alloc().
*/
static size_t recolored_pages_memsize /* = 0 */;
#ifdef DEBUG
vaddr_t uvm_zerocheckkva;
#endif /* DEBUG */
/*
* local prototypes
*/
static void uvm_pageinsert(struct uvm_object *, struct vm_page *);
static void uvm_pageremove(struct uvm_object *, struct vm_page *);
/*
* per-object tree of pages
*/
static signed int
uvm_page_compare_nodes(void *ctx, const void *n1, const void *n2)
{
const struct vm_page *pg1 = n1;
const struct vm_page *pg2 = n2;
const voff_t a = pg1->offset;
const voff_t b = pg2->offset;
if (a < b)
return -1;
if (a > b)
return 1;
return 0;
}
static signed int
uvm_page_compare_key(void *ctx, const void *n, const void *key)
{
const struct vm_page *pg = n;
const voff_t a = pg->offset;
const voff_t b = *(const voff_t *)key;
if (a < b)
return -1;
if (a > b)
return 1;
return 0;
}
const rb_tree_ops_t uvm_page_tree_ops = {
.rbto_compare_nodes = uvm_page_compare_nodes,
.rbto_compare_key = uvm_page_compare_key,
.rbto_node_offset = offsetof(struct vm_page, rb_node),
.rbto_context = NULL
};
/*
* inline functions
*/
/*
* uvm_pageinsert: insert a page in the object.
*
* => caller must lock object
* => caller must lock page queues
* => call should have already set pg's object and offset pointers
* and bumped the version counter
*/
static inline void
uvm_pageinsert_list(struct uvm_object *uobj, struct vm_page *pg,
struct vm_page *where)
{
KASSERT(uobj == pg->uobject);
KASSERT(mutex_owned(uobj->vmobjlock));
KASSERT((pg->flags & PG_TABLED) == 0);
KASSERT(where == NULL || (where->flags & PG_TABLED));
KASSERT(where == NULL || (where->uobject == uobj));
if (UVM_OBJ_IS_VNODE(uobj)) {
if (uobj->uo_npages == 0) {
struct vnode *vp = (struct vnode *)uobj;
vholdl(vp);
}
if (UVM_OBJ_IS_VTEXT(uobj)) {
atomic_inc_uint(&uvmexp.execpages);
} else {
atomic_inc_uint(&uvmexp.filepages);
}
} else if (UVM_OBJ_IS_AOBJ(uobj)) {
atomic_inc_uint(&uvmexp.anonpages);
}
if (where)
TAILQ_INSERT_AFTER(&uobj->memq, where, pg, listq.queue);
else
TAILQ_INSERT_TAIL(&uobj->memq, pg, listq.queue);
pg->flags |= PG_TABLED;
uobj->uo_npages++;
}
static inline void
uvm_pageinsert_tree(struct uvm_object *uobj, struct vm_page *pg)
{
struct vm_page *ret __diagused;
KASSERT(uobj == pg->uobject);
ret = rb_tree_insert_node(&uobj->rb_tree, pg);
KASSERT(ret == pg);
}
static inline void
uvm_pageinsert(struct uvm_object *uobj, struct vm_page *pg)
{
KDASSERT(uobj != NULL);
uvm_pageinsert_tree(uobj, pg);
uvm_pageinsert_list(uobj, pg, NULL);
}
/*
* uvm_page_remove: remove page from object.
*
* => caller must lock object
* => caller must lock page queues
*/
static inline void
uvm_pageremove_list(struct uvm_object *uobj, struct vm_page *pg)
{
KASSERT(uobj == pg->uobject);
KASSERT(mutex_owned(uobj->vmobjlock));
KASSERT(pg->flags & PG_TABLED);
if (UVM_OBJ_IS_VNODE(uobj)) {
if (uobj->uo_npages == 1) {
struct vnode *vp = (struct vnode *)uobj;
holdrelel(vp);
}
if (UVM_OBJ_IS_VTEXT(uobj)) {
atomic_dec_uint(&uvmexp.execpages);
} else {
atomic_dec_uint(&uvmexp.filepages);
}
} else if (UVM_OBJ_IS_AOBJ(uobj)) {
atomic_dec_uint(&uvmexp.anonpages);
}
/* object should be locked */
uobj->uo_npages--;
TAILQ_REMOVE(&uobj->memq, pg, listq.queue);
pg->flags &= ~PG_TABLED;
pg->uobject = NULL;
}
static inline void
uvm_pageremove_tree(struct uvm_object *uobj, struct vm_page *pg)
{
KASSERT(uobj == pg->uobject);
rb_tree_remove_node(&uobj->rb_tree, pg);
}
static inline void
uvm_pageremove(struct uvm_object *uobj, struct vm_page *pg)
{
KDASSERT(uobj != NULL);
uvm_pageremove_tree(uobj, pg);
uvm_pageremove_list(uobj, pg);
}
static void
uvm_page_init_buckets(struct pgfreelist *pgfl)
{
int color, i;
for (color = 0; color < uvmexp.ncolors; color++) {
for (i = 0; i < PGFL_NQUEUES; i++) {
LIST_INIT(&pgfl->pgfl_buckets[color].pgfl_queues[i]);
}
}
}
/*
* uvm_page_init: init the page system. called from uvm_init().
*
* => we return the range of kernel virtual memory in kvm_startp/kvm_endp
*/
void
uvm_page_init(vaddr_t *kvm_startp, vaddr_t *kvm_endp)
{
static struct uvm_cpu boot_cpu;
psize_t freepages, pagecount, bucketcount, n;
struct pgflbucket *bucketarray, *cpuarray;
struct vm_physseg *seg;
struct vm_page *pagearray;
int lcv;
u_int i;
paddr_t paddr;
KASSERT(ncpu <= 1);
CTASSERT(sizeof(pagearray->offset) >= sizeof(struct uvm_cpu *));
/*
* init the page queues and page queue locks, except the free
* list; we allocate that later (with the initial vm_page
* structures).
*/
uvm.cpus[0] = &boot_cpu;
curcpu()->ci_data.cpu_uvm = &boot_cpu;
uvmpdpol_init();
mutex_init(&uvm_pageqlock, MUTEX_DRIVER, IPL_NONE);
mutex_init(&uvm_fpageqlock, MUTEX_DRIVER, IPL_VM);
/*
* allocate vm_page structures.
*/
/*
* sanity check:
* before calling this function the MD code is expected to register
* some free RAM with the uvm_page_physload() function. our job
* now is to allocate vm_page structures for this memory.
*/
if (vm_nphysmem == 0)
panic("uvm_page_bootstrap: no memory pre-allocated");
/*
* first calculate the number of free pages...
*
* note that we use start/end rather than avail_start/avail_end.
* this allows us to allocate extra vm_page structures in case we
* want to return some memory to the pool after booting.
*/
freepages = 0;
for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
seg = VM_PHYSMEM_PTR(lcv);
freepages += (seg->end - seg->start);
}
/*
* Let MD code initialize the number of colors, or default
* to 1 color if MD code doesn't care.
*/
if (uvmexp.ncolors == 0)
uvmexp.ncolors = 1;
uvmexp.colormask = uvmexp.ncolors - 1;
KASSERT((uvmexp.colormask & uvmexp.ncolors) == 0);
/*
* we now know we have (PAGE_SIZE * freepages) bytes of memory we can
* use. for each page of memory we use we need a vm_page structure.
* thus, the total number of pages we can use is the total size of
* the memory divided by the PAGE_SIZE plus the size of the vm_page
* structure. we add one to freepages as a fudge factor to avoid
* truncation errors (since we can only allocate in terms of whole
* pages).
*/
bucketcount = uvmexp.ncolors * VM_NFREELIST;
pagecount = ((freepages + 1) << PAGE_SHIFT) /
(PAGE_SIZE + sizeof(struct vm_page));
bucketarray = (void *)uvm_pageboot_alloc((bucketcount *
sizeof(struct pgflbucket) * 2) + (pagecount *
sizeof(struct vm_page)));
cpuarray = bucketarray + bucketcount;
pagearray = (struct vm_page *)(bucketarray + bucketcount * 2);
for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
uvm.page_free[lcv].pgfl_buckets =
(bucketarray + (lcv * uvmexp.ncolors));
uvm_page_init_buckets(&uvm.page_free[lcv]);
uvm.cpus[0]->page_free[lcv].pgfl_buckets =
(cpuarray + (lcv * uvmexp.ncolors));
uvm_page_init_buckets(&uvm.cpus[0]->page_free[lcv]);
}
memset(pagearray, 0, pagecount * sizeof(struct vm_page));
/*
* init the vm_page structures and put them in the correct place.
*/
for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
seg = VM_PHYSMEM_PTR(lcv);
n = seg->end - seg->start;
/* set up page array pointers */
seg->pgs = pagearray;
pagearray += n;
pagecount -= n;
seg->lastpg = seg->pgs + n;
/* init and free vm_pages (we've already zeroed them) */
paddr = ctob(seg->start);
for (i = 0 ; i < n ; i++, paddr += PAGE_SIZE) {
seg->pgs[i].phys_addr = paddr;
#ifdef __HAVE_VM_PAGE_MD
VM_MDPAGE_INIT(&seg->pgs[i]);
#endif
if (atop(paddr) >= seg->avail_start &&
atop(paddr) < seg->avail_end) {
uvmexp.npages++;
/* add page to free pool */
uvm_pagefree(&seg->pgs[i]);
}
}
}
/*
* pass up the values of virtual_space_start and
* virtual_space_end (obtained by uvm_pageboot_alloc) to the upper
* layers of the VM.
*/
*kvm_startp = round_page(virtual_space_start);
*kvm_endp = trunc_page(virtual_space_end);
#ifdef DEBUG
/*
* steal kva for uvm_pagezerocheck().
*/
uvm_zerocheckkva = *kvm_startp;
*kvm_startp += PAGE_SIZE;
#endif /* DEBUG */
/*
* init various thresholds.
*/
uvmexp.reserve_pagedaemon = 1;
uvmexp.reserve_kernel = vm_page_reserve_kernel;
/*
* determine if we should zero pages in the idle loop.
*/
uvm.cpus[0]->page_idle_zero = vm_page_zero_enable;
/*
* done!
*/
uvm.page_init_done = true;
}
/*
* uvm_setpagesize: set the page size
*
* => sets page_shift and page_mask from uvmexp.pagesize.
*/
void
uvm_setpagesize(void)
{
/*
* If uvmexp.pagesize is 0 at this point, we expect PAGE_SIZE
* to be a constant (indicated by being a non-zero value).
*/
if (uvmexp.pagesize == 0) {
if (PAGE_SIZE == 0)
panic("uvm_setpagesize: uvmexp.pagesize not set");
uvmexp.pagesize = PAGE_SIZE;
}
uvmexp.pagemask = uvmexp.pagesize - 1;
if ((uvmexp.pagemask & uvmexp.pagesize) != 0)
panic("uvm_setpagesize: page size %u (%#x) not a power of two",
uvmexp.pagesize, uvmexp.pagesize);
for (uvmexp.pageshift = 0; ; uvmexp.pageshift++)
if ((1 << uvmexp.pageshift) == uvmexp.pagesize)
break;
}
/*
* uvm_pageboot_alloc: steal memory from physmem for bootstrapping
*/
vaddr_t
uvm_pageboot_alloc(vsize_t size)
{
static bool initialized = false;
vaddr_t addr;
#if !defined(PMAP_STEAL_MEMORY)
vaddr_t vaddr;
paddr_t paddr;
#endif
/*
* on first call to this function, initialize ourselves.
*/
if (initialized == false) {
pmap_virtual_space(&virtual_space_start, &virtual_space_end);
/* round it the way we like it */
virtual_space_start = round_page(virtual_space_start);
virtual_space_end = trunc_page(virtual_space_end);
initialized = true;
}
/* round to page size */
size = round_page(size);
#if defined(PMAP_STEAL_MEMORY)
/*
* defer bootstrap allocation to MD code (it may want to allocate
* from a direct-mapped segment). pmap_steal_memory should adjust
* virtual_space_start/virtual_space_end if necessary.
*/
addr = pmap_steal_memory(size, &virtual_space_start,
&virtual_space_end);
return(addr);
#else /* !PMAP_STEAL_MEMORY */
/*
* allocate virtual memory for this request
*/
if (virtual_space_start == virtual_space_end ||
(virtual_space_end - virtual_space_start) < size)
panic("uvm_pageboot_alloc: out of virtual space");
addr = virtual_space_start;
#ifdef PMAP_GROWKERNEL
/*
* If the kernel pmap can't map the requested space,
* then allocate more resources for it.
*/
if (uvm_maxkaddr < (addr + size)) {
uvm_maxkaddr = pmap_growkernel(addr + size);
if (uvm_maxkaddr < (addr + size))
panic("uvm_pageboot_alloc: pmap_growkernel() failed");
}
#endif
virtual_space_start += size;
/*
* allocate and mapin physical pages to back new virtual pages
*/
for (vaddr = round_page(addr) ; vaddr < addr + size ;
vaddr += PAGE_SIZE) {
if (!uvm_page_physget(&paddr))
panic("uvm_pageboot_alloc: out of memory");
/*
* Note this memory is no longer managed, so using
* pmap_kenter is safe.
*/
pmap_kenter_pa(vaddr, paddr, VM_PROT_READ|VM_PROT_WRITE, 0);
}
pmap_update(pmap_kernel());
return(addr);
#endif /* PMAP_STEAL_MEMORY */
}
#if !defined(PMAP_STEAL_MEMORY)
/*
* uvm_page_physget: "steal" one page from the vm_physmem structure.
*
* => attempt to allocate it off the end of a segment in which the "avail"
* values match the start/end values. if we can't do that, then we
* will advance both values (making them equal, and removing some
* vm_page structures from the non-avail area).
* => return false if out of memory.
*/
/* subroutine: try to allocate from memory chunks on the specified freelist */
static bool uvm_page_physget_freelist(paddr_t *, int);
static bool
uvm_page_physget_freelist(paddr_t *paddrp, int freelist)
{
struct vm_physseg *seg;
int lcv, x;
/* pass 1: try allocating from a matching end */
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
#else
for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
#endif
{
seg = VM_PHYSMEM_PTR(lcv);
if (uvm.page_init_done == true)
panic("uvm_page_physget: called _after_ bootstrap");
if (seg->free_list != freelist)
continue;
/* try from front */
if (seg->avail_start == seg->start &&
seg->avail_start < seg->avail_end) {
*paddrp = ctob(seg->avail_start);
seg->avail_start++;
seg->start++;
/* nothing left? nuke it */
if (seg->avail_start == seg->end) {
if (vm_nphysmem == 1)
panic("uvm_page_physget: out of memory!");
vm_nphysmem--;
for (x = lcv ; x < vm_nphysmem ; x++)
/* structure copy */
VM_PHYSMEM_PTR_SWAP(x, x + 1);
}
return (true);
}
/* try from rear */
if (seg->avail_end == seg->end &&
seg->avail_start < seg->avail_end) {
*paddrp = ctob(seg->avail_end - 1);
seg->avail_end--;
seg->end--;
/* nothing left? nuke it */
if (seg->avail_end == seg->start) {
if (vm_nphysmem == 1)
panic("uvm_page_physget: out of memory!");
vm_nphysmem--;
for (x = lcv ; x < vm_nphysmem ; x++)
/* structure copy */
VM_PHYSMEM_PTR_SWAP(x, x + 1);
}
return (true);
}
}
/* pass2: forget about matching ends, just allocate something */
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
for (lcv = vm_nphysmem - 1 ; lcv >= 0 ; lcv--)
#else
for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
#endif
{
seg = VM_PHYSMEM_PTR(lcv);
/* any room in this bank? */
if (seg->avail_start >= seg->avail_end)
continue; /* nope */
*paddrp = ctob(seg->avail_start);
seg->avail_start++;
/* truncate! */
seg->start = seg->avail_start;
/* nothing left? nuke it */
if (seg->avail_start == seg->end) {
if (vm_nphysmem == 1)
panic("uvm_page_physget: out of memory!");
vm_nphysmem--;
for (x = lcv ; x < vm_nphysmem ; x++)
/* structure copy */
VM_PHYSMEM_PTR_SWAP(x, x + 1);
}
return (true);
}
return (false); /* whoops! */
}
bool
uvm_page_physget(paddr_t *paddrp)
{
int i;
/* try in the order of freelist preference */
for (i = 0; i < VM_NFREELIST; i++)
if (uvm_page_physget_freelist(paddrp, i) == true)
return (true);
return (false);
}
#endif /* PMAP_STEAL_MEMORY */
/*
* uvm_page_physload: load physical memory into VM system
*
* => all args are PFs
* => all pages in start/end get vm_page structures
* => areas marked by avail_start/avail_end get added to the free page pool
* => we are limited to VM_PHYSSEG_MAX physical memory segments
*/
void
uvm_page_physload(paddr_t start, paddr_t end, paddr_t avail_start,
paddr_t avail_end, int free_list)
{
int preload, lcv;
psize_t npages;
struct vm_page *pgs;
struct vm_physseg *ps;
if (uvmexp.pagesize == 0)
panic("uvm_page_physload: page size not set!");
if (free_list >= VM_NFREELIST || free_list < VM_FREELIST_DEFAULT)
panic("uvm_page_physload: bad free list %d", free_list);
if (start >= end)
panic("uvm_page_physload: start >= end");
/*
* do we have room?
*/
if (vm_nphysmem == VM_PHYSSEG_MAX) {
printf("uvm_page_physload: unable to load physical memory "
"segment\n");
printf("\t%d segments allocated, ignoring 0x%llx -> 0x%llx\n",
VM_PHYSSEG_MAX, (long long)start, (long long)end);
printf("\tincrease VM_PHYSSEG_MAX\n");
return;
}
/*
* check to see if this is a "preload" (i.e. uvm_page_init hasn't been
* called yet, so kmem is not available).
*/
for (lcv = 0 ; lcv < vm_nphysmem ; lcv++) {
if (VM_PHYSMEM_PTR(lcv)->pgs)
break;
}
preload = (lcv == vm_nphysmem);
/*
* if VM is already running, attempt to kmem_alloc vm_page structures
*/
if (!preload) {
panic("uvm_page_physload: tried to add RAM after vm_mem_init");
} else {
pgs = NULL;
npages = 0;
}
/*
* now insert us in the proper place in vm_physmem[]
*/
#if (VM_PHYSSEG_STRAT == VM_PSTRAT_RANDOM)
/* random: put it at the end (easy!) */
ps = VM_PHYSMEM_PTR(vm_nphysmem);
#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
{
int x;
/* sort by address for binary search */
for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
if (start < VM_PHYSMEM_PTR(lcv)->start)
break;
ps = VM_PHYSMEM_PTR(lcv);
/* move back other entries, if necessary ... */
for (x = vm_nphysmem ; x > lcv ; x--)
/* structure copy */
VM_PHYSMEM_PTR_SWAP(x, x - 1);
}
#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BIGFIRST)
{
int x;
/* sort by largest segment first */
for (lcv = 0 ; lcv < vm_nphysmem ; lcv++)
if ((end - start) >
(VM_PHYSMEM_PTR(lcv)->end - VM_PHYSMEM_PTR(lcv)->start))
break;
ps = VM_PHYSMEM_PTR(lcv);
/* move back other entries, if necessary ... */
for (x = vm_nphysmem ; x > lcv ; x--)
/* structure copy */
VM_PHYSMEM_PTR_SWAP(x, x - 1);
}
#else
panic("uvm_page_physload: unknown physseg strategy selected!");
#endif
ps->start = start;
ps->end = end;
ps->avail_start = avail_start;
ps->avail_end = avail_end;
if (preload) {
ps->pgs = NULL;
} else {
ps->pgs = pgs;
ps->lastpg = pgs + npages;
}
ps->free_list = free_list;
vm_nphysmem++;
if (!preload) {
uvmpdpol_reinit();
}
}
/*
* when VM_PHYSSEG_MAX is 1, we can simplify these functions
*/
#if VM_PHYSSEG_MAX == 1
static inline int vm_physseg_find_contig(struct vm_physseg *, int, paddr_t, int *);
#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
static inline int vm_physseg_find_bsearch(struct vm_physseg *, int, paddr_t, int *);
#else
static inline int vm_physseg_find_linear(struct vm_physseg *, int, paddr_t, int *);
#endif
/*
* vm_physseg_find: find vm_physseg structure that belongs to a PA
*/
int
vm_physseg_find(paddr_t pframe, int *offp)
{
#if VM_PHYSSEG_MAX == 1
return vm_physseg_find_contig(vm_physmem, vm_nphysseg, pframe, offp);
#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
return vm_physseg_find_bsearch(vm_physmem, vm_nphysseg, pframe, offp);
#else
return vm_physseg_find_linear(vm_physmem, vm_nphysseg, pframe, offp);
#endif
}
#if VM_PHYSSEG_MAX == 1
static inline int
vm_physseg_find_contig(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
{
/* 'contig' case */
if (pframe >= segs[0].start && pframe < segs[0].end) {
if (offp)
*offp = pframe - segs[0].start;
return(0);
}
return(-1);
}
#elif (VM_PHYSSEG_STRAT == VM_PSTRAT_BSEARCH)
static inline int
vm_physseg_find_bsearch(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
{
/* binary search for it */
u_int start, len, try;
/*
* if try is too large (thus target is less than try) we reduce
* the length to trunc(len/2) [i.e. everything smaller than "try"]
*
* if the try is too small (thus target is greater than try) then
* we set the new start to be (try + 1). this means we need to
* reduce the length to (round(len/2) - 1).
*
* note "adjust" below which takes advantage of the fact that
* (round(len/2) - 1) == trunc((len - 1) / 2)
* for any value of len we may have
*/
for (start = 0, len = nsegs ; len != 0 ; len = len / 2) {
try = start + (len / 2); /* try in the middle */
/* start past our try? */
if (pframe >= segs[try].start) {
/* was try correct? */
if (pframe < segs[try].end) {
if (offp)
*offp = pframe - segs[try].start;
return(try); /* got it */
}
start = try + 1; /* next time, start here */
len--; /* "adjust" */
} else {
/*
* pframe before try, just reduce length of
* region, done in "for" loop
*/
}
}
return(-1);
}
#else
static inline int
vm_physseg_find_linear(struct vm_physseg *segs, int nsegs, paddr_t pframe, int *offp)
{
/* linear search for it */
int lcv;
for (lcv = 0; lcv < nsegs; lcv++) {
if (pframe >= segs[lcv].start &&
pframe < segs[lcv].end) {
if (offp)
*offp = pframe - segs[lcv].start;
return(lcv); /* got it */
}
}
return(-1);
}
#endif
/*
* PHYS_TO_VM_PAGE: find vm_page for a PA. used by MI code to get vm_pages
* back from an I/O mapping (ugh!). used in some MD code as well.
*/
struct vm_page *
uvm_phys_to_vm_page(paddr_t pa)
{
paddr_t pf = atop(pa);
int off;
int psi;
psi = vm_physseg_find(pf, &off);
if (psi != -1)
return(&VM_PHYSMEM_PTR(psi)->pgs[off]);
return(NULL);
}
paddr_t
uvm_vm_page_to_phys(const struct vm_page *pg)
{
return pg->phys_addr;
}
/*
* uvm_page_recolor: Recolor the pages if the new bucket count is
* larger than the old one.
*/
void
uvm_page_recolor(int newncolors)
{
struct pgflbucket *bucketarray, *cpuarray, *oldbucketarray;
struct pgfreelist gpgfl, pgfl;
struct vm_page *pg;
vsize_t bucketcount;
size_t bucketmemsize, oldbucketmemsize;
int lcv, color, i, ocolors;
struct uvm_cpu *ucpu;
KASSERT(((newncolors - 1) & newncolors) == 0);
if (newncolors <= uvmexp.ncolors)
return;
if (uvm.page_init_done == false) {
uvmexp.ncolors = newncolors;
return;
}
bucketcount = newncolors * VM_NFREELIST;
bucketmemsize = bucketcount * sizeof(struct pgflbucket) * 2;
bucketarray = kmem_alloc(bucketmemsize, KM_SLEEP);
cpuarray = bucketarray + bucketcount;
if (bucketarray == NULL) {
printf("WARNING: unable to allocate %ld page color buckets\n",
(long) bucketcount);
return;
}
mutex_spin_enter(&uvm_fpageqlock);
/* Make sure we should still do this. */
if (newncolors <= uvmexp.ncolors) {
mutex_spin_exit(&uvm_fpageqlock);
kmem_free(bucketarray, bucketmemsize);
return;
}
oldbucketarray = uvm.page_free[0].pgfl_buckets;
ocolors = uvmexp.ncolors;
uvmexp.ncolors = newncolors;
uvmexp.colormask = uvmexp.ncolors - 1;
ucpu = curcpu()->ci_data.cpu_uvm;
for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
gpgfl.pgfl_buckets = (bucketarray + (lcv * newncolors));
pgfl.pgfl_buckets = (cpuarray + (lcv * uvmexp.ncolors));
uvm_page_init_buckets(&gpgfl);
uvm_page_init_buckets(&pgfl);
for (color = 0; color < ocolors; color++) {
for (i = 0; i < PGFL_NQUEUES; i++) {
while ((pg = LIST_FIRST(&uvm.page_free[
lcv].pgfl_buckets[color].pgfl_queues[i]))
!= NULL) {
LIST_REMOVE(pg, pageq.list); /* global */
LIST_REMOVE(pg, listq.list); /* cpu */
LIST_INSERT_HEAD(&gpgfl.pgfl_buckets[
VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
i], pg, pageq.list);
LIST_INSERT_HEAD(&pgfl.pgfl_buckets[
VM_PGCOLOR_BUCKET(pg)].pgfl_queues[
i], pg, listq.list);
}
}
}
uvm.page_free[lcv].pgfl_buckets = gpgfl.pgfl_buckets;
ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
}
oldbucketmemsize = recolored_pages_memsize;
recolored_pages_memsize = bucketmemsize;
mutex_spin_exit(&uvm_fpageqlock);
if (oldbucketmemsize) {
kmem_free(oldbucketarray, recolored_pages_memsize);
}
/*
* this calls uvm_km_alloc() which may want to hold
* uvm_fpageqlock.
*/
uvm_pager_realloc_emerg();
}
/*
* uvm_cpu_attach: initialize per-CPU data structures.
*/
void
uvm_cpu_attach(struct cpu_info *ci)
{
struct pgflbucket *bucketarray;
struct pgfreelist pgfl;
struct uvm_cpu *ucpu;
vsize_t bucketcount;
int lcv;
if (CPU_IS_PRIMARY(ci)) {
/* Already done in uvm_page_init(). */
goto attachrnd;
}
/* Add more reserve pages for this CPU. */
uvmexp.reserve_kernel += vm_page_reserve_kernel;
/* Configure this CPU's free lists. */
bucketcount = uvmexp.ncolors * VM_NFREELIST;
bucketarray = kmem_alloc(bucketcount * sizeof(struct pgflbucket),
KM_SLEEP);
ucpu = kmem_zalloc(sizeof(*ucpu), KM_SLEEP);
uvm.cpus[cpu_index(ci)] = ucpu;
ci->ci_data.cpu_uvm = ucpu;
for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
pgfl.pgfl_buckets = (bucketarray + (lcv * uvmexp.ncolors));
uvm_page_init_buckets(&pgfl);
ucpu->page_free[lcv].pgfl_buckets = pgfl.pgfl_buckets;
}
attachrnd:
/*
* Attach RNG source for this CPU's VM events
*/
rnd_attach_source(&uvm.cpus[cpu_index(ci)]->rs,
ci->ci_data.cpu_name, RND_TYPE_VM, 0);
}
/*
* uvm_pagealloc_pgfl: helper routine for uvm_pagealloc_strat
*/
static struct vm_page *
uvm_pagealloc_pgfl(struct uvm_cpu *ucpu, int flist, int try1, int try2,
int *trycolorp)
{
struct pgflist *freeq;
struct vm_page *pg;
int color, trycolor = *trycolorp;
struct pgfreelist *gpgfl, *pgfl;
KASSERT(mutex_owned(&uvm_fpageqlock));
color = trycolor;
pgfl = &ucpu->page_free[flist];
gpgfl = &uvm.page_free[flist];
do {
/* cpu, try1 */
if ((pg = LIST_FIRST((freeq =
&pgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
KASSERT(pg->pqflags & PQ_FREE);
KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
uvmexp.cpuhit++;
goto gotit;
}
/* global, try1 */
if ((pg = LIST_FIRST((freeq =
&gpgfl->pgfl_buckets[color].pgfl_queues[try1]))) != NULL) {
KASSERT(pg->pqflags & PQ_FREE);
KASSERT(try1 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
KASSERT(try1 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
VM_FREE_PAGE_TO_CPU(pg)->pages[try1]--;
uvmexp.cpumiss++;
goto gotit;
}
/* cpu, try2 */
if ((pg = LIST_FIRST((freeq =
&pgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
KASSERT(pg->pqflags & PQ_FREE);
KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
KASSERT(ucpu == VM_FREE_PAGE_TO_CPU(pg));
VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
uvmexp.cpuhit++;
goto gotit;
}
/* global, try2 */
if ((pg = LIST_FIRST((freeq =
&gpgfl->pgfl_buckets[color].pgfl_queues[try2]))) != NULL) {
KASSERT(pg->pqflags & PQ_FREE);
KASSERT(try2 == PGFL_ZEROS || !(pg->flags & PG_ZERO));
KASSERT(try2 == PGFL_UNKNOWN || (pg->flags & PG_ZERO));
KASSERT(ucpu != VM_FREE_PAGE_TO_CPU(pg));
VM_FREE_PAGE_TO_CPU(pg)->pages[try2]--;
uvmexp.cpumiss++;
goto gotit;
}
color = (color + 1) & uvmexp.colormask;
} while (color != trycolor);
return (NULL);
gotit:
LIST_REMOVE(pg, pageq.list); /* global list */
LIST_REMOVE(pg, listq.list); /* per-cpu list */
uvmexp.free--;
/* update zero'd page count */
if (pg->flags & PG_ZERO)
uvmexp.zeropages--;
if (color == trycolor)
uvmexp.colorhit++;
else {
uvmexp.colormiss++;
*trycolorp = color;
}
return (pg);
}
/*
* uvm_pagealloc_strat: allocate vm_page from a particular free list.
*
* => return null if no pages free
* => wake up pagedaemon if number of free pages drops below low water mark
* => if obj != NULL, obj must be locked (to put in obj's tree)
* => if anon != NULL, anon must be locked (to put in anon)
* => only one of obj or anon can be non-null
* => caller must activate/deactivate page if it is not wired.
* => free_list is ignored if strat == UVM_PGA_STRAT_NORMAL.
* => policy decision: it is more important to pull a page off of the
* appropriate priority free list than it is to get a zero'd or
* unknown contents page. This is because we live with the
* consequences of a bad free list decision for the entire
* lifetime of the page, e.g. if the page comes from memory that
* is slower to access.
*/
struct vm_page *
uvm_pagealloc_strat(struct uvm_object *obj, voff_t off, struct vm_anon *anon,
int flags, int strat, int free_list)
{
int lcv, try1, try2, zeroit = 0, color;
struct uvm_cpu *ucpu;
struct vm_page *pg;
lwp_t *l;
KASSERT(obj == NULL || anon == NULL);
KASSERT(anon == NULL || (flags & UVM_FLAG_COLORMATCH) || off == 0);
KASSERT(off == trunc_page(off));
KASSERT(obj == NULL || mutex_owned(obj->vmobjlock));
KASSERT(anon == NULL || anon->an_lock == NULL ||
mutex_owned(anon->an_lock));
mutex_spin_enter(&uvm_fpageqlock);
/*
* This implements a global round-robin page coloring
* algorithm.
*/
ucpu = curcpu()->ci_data.cpu_uvm;
if (flags & UVM_FLAG_COLORMATCH) {
color = atop(off) & uvmexp.colormask;
} else {
color = ucpu->page_free_nextcolor;
}
/*
* check to see if we need to generate some free pages waking
* the pagedaemon.
*/
uvm_kick_pdaemon();
/*
* fail if any of these conditions is true:
* [1] there really are no free pages, or
* [2] only kernel "reserved" pages remain and
* reserved pages have not been requested.
* [3] only pagedaemon "reserved" pages remain and
* the requestor isn't the pagedaemon.
* we make kernel reserve pages available if called by a
* kernel thread or a realtime thread.
*/
l = curlwp;
if (__predict_true(l != NULL) && lwp_eprio(l) >= PRI_KTHREAD) {
flags |= UVM_PGA_USERESERVE;
}
if ((uvmexp.free <= uvmexp.reserve_kernel &&
(flags & UVM_PGA_USERESERVE) == 0) ||
(uvmexp.free <= uvmexp.reserve_pagedaemon &&
curlwp != uvm.pagedaemon_lwp))
goto fail;
#if PGFL_NQUEUES != 2
#error uvm_pagealloc_strat needs to be updated
#endif
/*
* If we want a zero'd page, try the ZEROS queue first, otherwise
* we try the UNKNOWN queue first.
*/
if (flags & UVM_PGA_ZERO) {
try1 = PGFL_ZEROS;
try2 = PGFL_UNKNOWN;
} else {
try1 = PGFL_UNKNOWN;
try2 = PGFL_ZEROS;
}
again:
switch (strat) {
case UVM_PGA_STRAT_NORMAL:
/* Check freelists: descending priority (ascending id) order */
for (lcv = 0; lcv < VM_NFREELIST; lcv++) {
pg = uvm_pagealloc_pgfl(ucpu, lcv,
try1, try2, &color);
if (pg != NULL)
goto gotit;
}
/* No pages free! */
goto fail;
case UVM_PGA_STRAT_ONLY:
case UVM_PGA_STRAT_FALLBACK:
/* Attempt to allocate from the specified free list. */
KASSERT(free_list >= 0 && free_list < VM_NFREELIST);
pg = uvm_pagealloc_pgfl(ucpu, free_list,
try1, try2, &color);
if (pg != NULL)
goto gotit;
/* Fall back, if possible. */
if (strat == UVM_PGA_STRAT_FALLBACK) {
strat = UVM_PGA_STRAT_NORMAL;
goto again;
}
/* No pages free! */
goto fail;
default:
panic("uvm_pagealloc_strat: bad strat %d", strat);
/* NOTREACHED */
}
gotit:
/*
* We now know which color we actually allocated from; set
* the next color accordingly.
*/
ucpu->page_free_nextcolor = (color + 1) & uvmexp.colormask;
/*
* update allocation statistics and remember if we have to
* zero the page
*/
if (flags & UVM_PGA_ZERO) {
if (pg->flags & PG_ZERO) {
uvmexp.pga_zerohit++;
zeroit = 0;
} else {
uvmexp.pga_zeromiss++;
zeroit = 1;
}
if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
ucpu->page_idle_zero = vm_page_zero_enable;
}
}
KASSERT(pg->pqflags == PQ_FREE);
pg->offset = off;
pg->uobject = obj;
pg->uanon = anon;
pg->flags = PG_BUSY|PG_CLEAN|PG_FAKE;
if (anon) {
anon->an_page = pg;
pg->pqflags = PQ_ANON;
atomic_inc_uint(&uvmexp.anonpages);
} else {
if (obj) {
uvm_pageinsert(obj, pg);
}
pg->pqflags = 0;
}
mutex_spin_exit(&uvm_fpageqlock);
#if defined(UVM_PAGE_TRKOWN)
pg->owner_tag = NULL;
#endif
UVM_PAGE_OWN(pg, "new alloc");
if (flags & UVM_PGA_ZERO) {
/*
* A zero'd page is not clean. If we got a page not already
* zero'd, then we have to zero it ourselves.
*/
pg->flags &= ~PG_CLEAN;
if (zeroit)
pmap_zero_page(VM_PAGE_TO_PHYS(pg));
}
return(pg);
fail:
mutex_spin_exit(&uvm_fpageqlock);
return (NULL);
}
/*
* uvm_pagereplace: replace a page with another
*
* => object must be locked
*/
void
uvm_pagereplace(struct vm_page *oldpg, struct vm_page *newpg)
{
struct uvm_object *uobj = oldpg->uobject;
KASSERT((oldpg->flags & PG_TABLED) != 0);
KASSERT(uobj != NULL);
KASSERT((newpg->flags & PG_TABLED) == 0);
KASSERT(newpg->uobject == NULL);
KASSERT(mutex_owned(uobj->vmobjlock));
newpg->uobject = uobj;
newpg->offset = oldpg->offset;
uvm_pageremove_tree(uobj, oldpg);
uvm_pageinsert_tree(uobj, newpg);
uvm_pageinsert_list(uobj, newpg, oldpg);
uvm_pageremove_list(uobj, oldpg);
}
/*
* uvm_pagerealloc: reallocate a page from one object to another
*
* => both objects must be locked
*/
void
uvm_pagerealloc(struct vm_page *pg, struct uvm_object *newobj, voff_t newoff)
{
/*
* remove it from the old object
*/
if (pg->uobject) {
uvm_pageremove(pg->uobject, pg);
}
/*
* put it in the new object
*/
if (newobj) {
pg->uobject = newobj;
pg->offset = newoff;
uvm_pageinsert(newobj, pg);
}
}
#ifdef DEBUG
/*
* check if page is zero-filled
*
* - called with free page queue lock held.
*/
void
uvm_pagezerocheck(struct vm_page *pg)
{
int *p, *ep;
KASSERT(uvm_zerocheckkva != 0);
KASSERT(mutex_owned(&uvm_fpageqlock));
/*
* XXX assuming pmap_kenter_pa and pmap_kremove never call
* uvm page allocator.
*
* it might be better to have "CPU-local temporary map" pmap interface.
*/
pmap_kenter_pa(uvm_zerocheckkva, VM_PAGE_TO_PHYS(pg), VM_PROT_READ, 0);
p = (int *)uvm_zerocheckkva;
ep = (int *)((char *)p + PAGE_SIZE);
pmap_update(pmap_kernel());
while (p < ep) {
if (*p != 0)
panic("PG_ZERO page isn't zero-filled");
p++;
}
pmap_kremove(uvm_zerocheckkva, PAGE_SIZE);
/*
* pmap_update() is not necessary here because no one except us
* uses this VA.
*/
}
#endif /* DEBUG */
/*
* uvm_pagefree: free page
*
* => erase page's identity (i.e. remove from object)
* => put page on free list
* => caller must lock owning object (either anon or uvm_object)
* => caller must lock page queues
* => assumes all valid mappings of pg are gone
*/
void
uvm_pagefree(struct vm_page *pg)
{
struct pgflist *pgfl;
struct uvm_cpu *ucpu;
int index, color, queue;
bool iszero;
#ifdef DEBUG
if (pg->uobject == (void *)0xdeadbeef &&
pg->uanon == (void *)0xdeadbeef) {
panic("uvm_pagefree: freeing free page %p", pg);
}
#endif /* DEBUG */
KASSERT((pg->flags & PG_PAGEOUT) == 0);
KASSERT(!(pg->pqflags & PQ_FREE));
//KASSERT(mutex_owned(&uvm_pageqlock) || !uvmpdpol_pageisqueued_p(pg));
KASSERT(pg->uobject == NULL || mutex_owned(pg->uobject->vmobjlock));
KASSERT(pg->uobject != NULL || pg->uanon == NULL ||
mutex_owned(pg->uanon->an_lock));
/*
* if the page is loaned, resolve the loan instead of freeing.
*/
if (pg->loan_count) {
KASSERT(pg->wire_count == 0);
/*
* if the page is owned by an anon then we just want to
* drop anon ownership. the kernel will free the page when
* it is done with it. if the page is owned by an object,
* remove it from the object and mark it dirty for the benefit
* of possible anon owners.
*
* regardless of previous ownership, wakeup any waiters,
* unbusy the page, and we're done.
*/
if (pg->uobject != NULL) {
uvm_pageremove(pg->uobject, pg);
pg->flags &= ~PG_CLEAN;
} else if (pg->uanon != NULL) {
if ((pg->pqflags & PQ_ANON) == 0) {
pg->loan_count--;
} else {
pg->pqflags &= ~PQ_ANON;
atomic_dec_uint(&uvmexp.anonpages);
}
pg->uanon->an_page = NULL;
pg->uanon = NULL;
}
if (pg->flags & PG_WANTED) {
wakeup(pg);
}
pg->flags &= ~(PG_WANTED|PG_BUSY|PG_RELEASED|PG_PAGER1);
#ifdef UVM_PAGE_TRKOWN
pg->owner_tag = NULL;
#endif
if (pg->loan_count) {
KASSERT(pg->uobject == NULL);
if (pg->uanon == NULL) {
KASSERT(mutex_owned(&uvm_pageqlock));
uvm_pagedequeue(pg);
}
return;
}
}
/*
* remove page from its object or anon.
*/
if (pg->uobject != NULL) {
uvm_pageremove(pg->uobject, pg);
} else if (pg->uanon != NULL) {
pg->uanon->an_page = NULL;
atomic_dec_uint(&uvmexp.anonpages);
}
/*
* now remove the page from the queues.
*/
if (uvmpdpol_pageisqueued_p(pg)) {
KASSERT(mutex_owned(&uvm_pageqlock));
uvm_pagedequeue(pg);
}
/*
* if the page was wired, unwire it now.
*/
if (pg->wire_count) {
pg->wire_count = 0;
uvmexp.wired--;
}
/*
* and put on free queue
*/
iszero = (pg->flags & PG_ZERO);
index = uvm_page_lookup_freelist(pg);
color = VM_PGCOLOR_BUCKET(pg);
queue = (iszero ? PGFL_ZEROS : PGFL_UNKNOWN);
#ifdef DEBUG
pg->uobject = (void *)0xdeadbeef;
pg->uanon = (void *)0xdeadbeef;
#endif
mutex_spin_enter(&uvm_fpageqlock);
pg->pqflags = PQ_FREE;
#ifdef DEBUG
if (iszero)
uvm_pagezerocheck(pg);
#endif /* DEBUG */
/* global list */
pgfl = &uvm.page_free[index].pgfl_buckets[color].pgfl_queues[queue];
LIST_INSERT_HEAD(pgfl, pg, pageq.list);
uvmexp.free++;
if (iszero) {
uvmexp.zeropages++;
}
/* per-cpu list */
ucpu = curcpu()->ci_data.cpu_uvm;
pg->offset = (uintptr_t)ucpu;
pgfl = &ucpu->page_free[index].pgfl_buckets[color].pgfl_queues[queue];
LIST_INSERT_HEAD(pgfl, pg, listq.list);
ucpu->pages[queue]++;
if (ucpu->pages[PGFL_ZEROS] < ucpu->pages[PGFL_UNKNOWN]) {
ucpu->page_idle_zero = vm_page_zero_enable;
}
mutex_spin_exit(&uvm_fpageqlock);
}
/*
* uvm_page_unbusy: unbusy an array of pages.
*
* => pages must either all belong to the same object, or all belong to anons.
* => if pages are object-owned, object must be locked.
* => if pages are anon-owned, anons must be locked.
* => caller must lock page queues if pages may be released.
* => caller must make sure that anon-owned pages are not PG_RELEASED.
*/
void
uvm_page_unbusy(struct vm_page **pgs, int npgs)
{
struct vm_page *pg;
int i;
UVMHIST_FUNC("uvm_page_unbusy"); UVMHIST_CALLED(ubchist);
for (i = 0; i < npgs; i++) {
pg = pgs[i];
if (pg == NULL || pg == PGO_DONTCARE) {
continue;
}
KASSERT(uvm_page_locked_p(pg));
KASSERT(pg->flags & PG_BUSY);
KASSERT((pg->flags & PG_PAGEOUT) == 0);
if (pg->flags & PG_WANTED) {
wakeup(pg);
}
if (pg->flags & PG_RELEASED) {
UVMHIST_LOG(ubchist, "releasing pg %p", pg,0,0,0);
KASSERT(pg->uobject != NULL ||
(pg->uanon != NULL && pg->uanon->an_ref > 0));
pg->flags &= ~PG_RELEASED;
uvm_pagefree(pg);
} else {
UVMHIST_LOG(ubchist, "unbusying pg %p", pg,0,0,0);
KASSERT((pg->flags & PG_FAKE) == 0);
pg->flags &= ~(PG_WANTED|PG_BUSY);
UVM_PAGE_OWN(pg, NULL);
}
}
}
#if defined(UVM_PAGE_TRKOWN)
/*
* uvm_page_own: set or release page ownership
*
* => this is a debugging function that keeps track of who sets PG_BUSY
* and where they do it. it can be used to track down problems
* such a process setting "PG_BUSY" and never releasing it.
* => page's object [if any] must be locked
* => if "tag" is NULL then we are releasing page ownership
*/
void
uvm_page_own(struct vm_page *pg, const char *tag)
{
struct uvm_object *uobj;
struct vm_anon *anon;
KASSERT((pg->flags & (PG_PAGEOUT|PG_RELEASED)) == 0);
uobj = pg->uobject;
anon = pg->uanon;
KASSERT(uvm_page_locked_p(pg));
KASSERT((pg->flags & PG_WANTED) == 0);
/* gain ownership? */
if (tag) {
KASSERT((pg->flags & PG_BUSY) != 0);
if (pg->owner_tag) {
printf("uvm_page_own: page %p already owned "
"by proc %d [%s]\n", pg,
pg->owner, pg->owner_tag);
panic("uvm_page_own");
}
pg->owner = (curproc) ? curproc->p_pid : (pid_t) -1;
pg->lowner = (curlwp) ? curlwp->l_lid : (lwpid_t) -1;
pg->owner_tag = tag;
return;
}
/* drop ownership */
KASSERT((pg->flags & PG_BUSY) == 0);
if (pg->owner_tag == NULL) {
printf("uvm_page_own: dropping ownership of an non-owned "
"page (%p)\n", pg);
panic("uvm_page_own");
}
if (!uvmpdpol_pageisqueued_p(pg)) {
KASSERT((pg->uanon == NULL && pg->uobject == NULL) ||
pg->wire_count > 0);
} else {
KASSERT(pg->wire_count == 0);
}
pg->owner_tag = NULL;
}
#endif
/*
* uvm_pageidlezero: zero free pages while the system is idle.
*
* => try to complete one color bucket at a time, to reduce our impact
* on the CPU cache.
* => we loop until we either reach the target or there is a lwp ready
* to run, or MD code detects a reason to break early.
*/
void
uvm_pageidlezero(void)
{
struct vm_page *pg;
struct pgfreelist *pgfl, *gpgfl;
struct uvm_cpu *ucpu;
int free_list, firstbucket, nextbucket;
bool lcont = false;
ucpu = curcpu()->ci_data.cpu_uvm;
if (!ucpu->page_idle_zero ||
ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
ucpu->page_idle_zero = false;
return;
}
if (!mutex_tryenter(&uvm_fpageqlock)) {
/* Contention: let other CPUs to use the lock. */
return;
}
firstbucket = ucpu->page_free_nextcolor;
nextbucket = firstbucket;
do {
for (free_list = 0; free_list < VM_NFREELIST; free_list++) {
if (sched_curcpu_runnable_p()) {
goto quit;
}
pgfl = &ucpu->page_free[free_list];
gpgfl = &uvm.page_free[free_list];
while ((pg = LIST_FIRST(&pgfl->pgfl_buckets[
nextbucket].pgfl_queues[PGFL_UNKNOWN])) != NULL) {
if (lcont || sched_curcpu_runnable_p()) {
goto quit;
}
LIST_REMOVE(pg, pageq.list); /* global list */
LIST_REMOVE(pg, listq.list); /* per-cpu list */
ucpu->pages[PGFL_UNKNOWN]--;
uvmexp.free--;
KASSERT(pg->pqflags == PQ_FREE);
pg->pqflags = 0;
mutex_spin_exit(&uvm_fpageqlock);
#ifdef PMAP_PAGEIDLEZERO
if (!PMAP_PAGEIDLEZERO(VM_PAGE_TO_PHYS(pg))) {
/*
* The machine-dependent code detected
* some reason for us to abort zeroing
* pages, probably because there is a
* process now ready to run.
*/
mutex_spin_enter(&uvm_fpageqlock);
pg->pqflags = PQ_FREE;
LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
nextbucket].pgfl_queues[
PGFL_UNKNOWN], pg, pageq.list);
LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
nextbucket].pgfl_queues[
PGFL_UNKNOWN], pg, listq.list);
ucpu->pages[PGFL_UNKNOWN]++;
uvmexp.free++;
uvmexp.zeroaborts++;
goto quit;
}
#else
pmap_zero_page(VM_PAGE_TO_PHYS(pg));
#endif /* PMAP_PAGEIDLEZERO */
pg->flags |= PG_ZERO;
if (!mutex_tryenter(&uvm_fpageqlock)) {
lcont = true;
mutex_spin_enter(&uvm_fpageqlock);
} else {
lcont = false;
}
pg->pqflags = PQ_FREE;
LIST_INSERT_HEAD(&gpgfl->pgfl_buckets[
nextbucket].pgfl_queues[PGFL_ZEROS],
pg, pageq.list);
LIST_INSERT_HEAD(&pgfl->pgfl_buckets[
nextbucket].pgfl_queues[PGFL_ZEROS],
pg, listq.list);
ucpu->pages[PGFL_ZEROS]++;
uvmexp.free++;
uvmexp.zeropages++;
}
}
if (ucpu->pages[PGFL_UNKNOWN] < uvmexp.ncolors) {
break;
}
nextbucket = (nextbucket + 1) & uvmexp.colormask;
} while (nextbucket != firstbucket);
ucpu->page_idle_zero = false;
quit:
mutex_spin_exit(&uvm_fpageqlock);
}
/*
* uvm_pagelookup: look up a page
*
* => caller should lock object to keep someone from pulling the page
* out from under it
*/
struct vm_page *
uvm_pagelookup(struct uvm_object *obj, voff_t off)
{
struct vm_page *pg;
KASSERT(mutex_owned(obj->vmobjlock));
pg = rb_tree_find_node(&obj->rb_tree, &off);
KASSERT(pg == NULL || obj->uo_npages != 0);
KASSERT(pg == NULL || (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
(pg->flags & PG_BUSY) != 0);
return pg;
}
/*
* uvm_pagewire: wire the page, thus removing it from the daemon's grasp
*
* => caller must lock page queues
*/
void
uvm_pagewire(struct vm_page *pg)
{
KASSERT(mutex_owned(&uvm_pageqlock));
#if defined(READAHEAD_STATS)
if ((pg->pqflags & PQ_READAHEAD) != 0) {
uvm_ra_hit.ev_count++;
pg->pqflags &= ~PQ_READAHEAD;
}
#endif /* defined(READAHEAD_STATS) */
if (pg->wire_count == 0) {
uvm_pagedequeue(pg);
uvmexp.wired++;
}
pg->wire_count++;
}
/*
* uvm_pageunwire: unwire the page.
*
* => activate if wire count goes to zero.
* => caller must lock page queues
*/
void
uvm_pageunwire(struct vm_page *pg)
{
KASSERT(mutex_owned(&uvm_pageqlock));
pg->wire_count--;
if (pg->wire_count == 0) {
uvm_pageactivate(pg);
uvmexp.wired--;
}
}
/*
* uvm_pagedeactivate: deactivate page
*
* => caller must lock page queues
* => caller must check to make sure page is not wired
* => object that page belongs to must be locked (so we can adjust pg->flags)
* => caller must clear the reference on the page before calling
*/
void
uvm_pagedeactivate(struct vm_page *pg)
{
KASSERT(mutex_owned(&uvm_pageqlock));
KASSERT(uvm_page_locked_p(pg));
KASSERT(pg->wire_count != 0 || uvmpdpol_pageisqueued_p(pg));
uvmpdpol_pagedeactivate(pg);
}
/*
* uvm_pageactivate: activate page
*
* => caller must lock page queues
*/
void
uvm_pageactivate(struct vm_page *pg)
{
KASSERT(mutex_owned(&uvm_pageqlock));
KASSERT(uvm_page_locked_p(pg));
#if defined(READAHEAD_STATS)
if ((pg->pqflags & PQ_READAHEAD) != 0) {
uvm_ra_hit.ev_count++;
pg->pqflags &= ~PQ_READAHEAD;
}
#endif /* defined(READAHEAD_STATS) */
if (pg->wire_count != 0) {
return;
}
uvmpdpol_pageactivate(pg);
}
/*
* uvm_pagedequeue: remove a page from any paging queue
*/
void
uvm_pagedequeue(struct vm_page *pg)
{
if (uvmpdpol_pageisqueued_p(pg)) {
KASSERT(mutex_owned(&uvm_pageqlock));
}
uvmpdpol_pagedequeue(pg);
}
/*
* uvm_pageenqueue: add a page to a paging queue without activating.
* used where a page is not really demanded (yet). eg. read-ahead
*/
void
uvm_pageenqueue(struct vm_page *pg)
{
KASSERT(mutex_owned(&uvm_pageqlock));
if (pg->wire_count != 0) {
return;
}
uvmpdpol_pageenqueue(pg);
}
/*
* uvm_pagezero: zero fill a page
*
* => if page is part of an object then the object should be locked
* to protect pg->flags.
*/
void
uvm_pagezero(struct vm_page *pg)
{
pg->flags &= ~PG_CLEAN;
pmap_zero_page(VM_PAGE_TO_PHYS(pg));
}
/*
* uvm_pagecopy: copy a page
*
* => if page is part of an object then the object should be locked
* to protect pg->flags.
*/
void
uvm_pagecopy(struct vm_page *src, struct vm_page *dst)
{
dst->flags &= ~PG_CLEAN;
pmap_copy_page(VM_PAGE_TO_PHYS(src), VM_PAGE_TO_PHYS(dst));
}
/*
* uvm_pageismanaged: test it see that a page (specified by PA) is managed.
*/
bool
uvm_pageismanaged(paddr_t pa)
{
return (vm_physseg_find(atop(pa), NULL) != -1);
}
/*
* uvm_page_lookup_freelist: look up the free list for the specified page
*/
int
uvm_page_lookup_freelist(struct vm_page *pg)
{
int lcv;
lcv = vm_physseg_find(atop(VM_PAGE_TO_PHYS(pg)), NULL);
KASSERT(lcv != -1);
return (VM_PHYSMEM_PTR(lcv)->free_list);
}
/*
* uvm_page_locked_p: return true if object associated with page is
* locked. this is a weak check for runtime assertions only.
*/
bool
uvm_page_locked_p(struct vm_page *pg)
{
if (pg->uobject != NULL) {
return mutex_owned(pg->uobject->vmobjlock);
}
if (pg->uanon != NULL) {
return mutex_owned(pg->uanon->an_lock);
}
return true;
}
#if defined(DDB) || defined(DEBUGPRINT)
/*
* uvm_page_printit: actually print the page
*/
static const char page_flagbits[] = UVM_PGFLAGBITS;
static const char page_pqflagbits[] = UVM_PQFLAGBITS;
void
uvm_page_printit(struct vm_page *pg, bool full,
void (*pr)(const char *, ...))
{
struct vm_page *tpg;
struct uvm_object *uobj;
struct pgflist *pgl;
char pgbuf[128];
char pqbuf[128];
(*pr)("PAGE %p:\n", pg);
snprintb(pgbuf, sizeof(pgbuf), page_flagbits, pg->flags);
snprintb(pqbuf, sizeof(pqbuf), page_pqflagbits, pg->pqflags);
(*pr)(" flags=%s, pqflags=%s, wire_count=%d, pa=0x%lx\n",
pgbuf, pqbuf, pg->wire_count, (long)VM_PAGE_TO_PHYS(pg));
(*pr)(" uobject=%p, uanon=%p, offset=0x%llx loan_count=%d\n",
pg->uobject, pg->uanon, (long long)pg->offset, pg->loan_count);
#if defined(UVM_PAGE_TRKOWN)
if (pg->flags & PG_BUSY)
(*pr)(" owning process = %d, tag=%s\n",
pg->owner, pg->owner_tag);
else
(*pr)(" page not busy, no owner\n");
#else
(*pr)(" [page ownership tracking disabled]\n");
#endif
if (!full)
return;
/* cross-verify object/anon */
if ((pg->pqflags & PQ_FREE) == 0) {
if (pg->pqflags & PQ_ANON) {
if (pg->uanon == NULL || pg->uanon->an_page != pg)
(*pr)(" >>> ANON DOES NOT POINT HERE <<< (%p)\n",
(pg->uanon) ? pg->uanon->an_page : NULL);
else
(*pr)(" anon backpointer is OK\n");
} else {
uobj = pg->uobject;
if (uobj) {
(*pr)(" checking object list\n");
TAILQ_FOREACH(tpg, &uobj->memq, listq.queue) {
if (tpg == pg) {
break;
}
}
if (tpg)
(*pr)(" page found on object list\n");
else
(*pr)(" >>> PAGE NOT FOUND ON OBJECT LIST! <<<\n");
}
}
}
/* cross-verify page queue */
if (pg->pqflags & PQ_FREE) {
int fl = uvm_page_lookup_freelist(pg);
int color = VM_PGCOLOR_BUCKET(pg);
pgl = &uvm.page_free[fl].pgfl_buckets[color].pgfl_queues[
((pg)->flags & PG_ZERO) ? PGFL_ZEROS : PGFL_UNKNOWN];
} else {
pgl = NULL;
}
if (pgl) {
(*pr)(" checking pageq list\n");
LIST_FOREACH(tpg, pgl, pageq.list) {
if (tpg == pg) {
break;
}
}
if (tpg)
(*pr)(" page found on pageq list\n");
else
(*pr)(" >>> PAGE NOT FOUND ON PAGEQ LIST! <<<\n");
}
}
/*
* uvm_pages_printthem - print a summary of all managed pages
*/
void
uvm_page_printall(void (*pr)(const char *, ...))
{
unsigned i;
struct vm_page *pg;
(*pr)("%18s %4s %4s %18s %18s"
#ifdef UVM_PAGE_TRKOWN
" OWNER"
#endif
"\n", "PAGE", "FLAG", "PQ", "UOBJECT", "UANON");
for (i = 0; i < vm_nphysmem; i++) {
for (pg = VM_PHYSMEM_PTR(i)->pgs; pg < VM_PHYSMEM_PTR(i)->lastpg; pg++) {
(*pr)("%18p %04x %04x %18p %18p",
pg, pg->flags, pg->pqflags, pg->uobject,
pg->uanon);
#ifdef UVM_PAGE_TRKOWN
if (pg->flags & PG_BUSY)
(*pr)(" %d [%s]", pg->owner, pg->owner_tag);
#endif
(*pr)("\n");
}
}
}
#endif /* DDB || DEBUGPRINT */