1740 lines
37 KiB
C
1740 lines
37 KiB
C
/* $NetBSD: bpfjit.c,v 1.5 2013/11/15 13:56:21 rmind Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2011-2012 Alexander Nasonov.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#ifdef _KERNEL
|
|
__KERNEL_RCSID(0, "$NetBSD: bpfjit.c,v 1.5 2013/11/15 13:56:21 rmind Exp $");
|
|
#else
|
|
__RCSID("$NetBSD: bpfjit.c,v 1.5 2013/11/15 13:56:21 rmind Exp $");
|
|
#endif
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/queue.h>
|
|
|
|
#ifndef _KERNEL
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
#define BPFJIT_ALLOC(sz) malloc(sz)
|
|
#define BPFJIT_FREE(p, sz) free(p)
|
|
#define BPFJIT_ASSERT(c) assert(c)
|
|
#else
|
|
#include <sys/kmem.h>
|
|
#define BPFJIT_ALLOC(sz) kmem_alloc(sz, KM_SLEEP)
|
|
#define BPFJIT_FREE(p, sz) kmem_free(p, sz)
|
|
#define BPFJIT_ASSERT(c) KASSERT(c)
|
|
#endif
|
|
|
|
#ifndef _KERNEL
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#else
|
|
#include <sys/atomic.h>
|
|
#include <sys/module.h>
|
|
#endif
|
|
|
|
#define __BPF_PRIVATE
|
|
#include <net/bpf.h>
|
|
#include <net/bpfjit.h>
|
|
#include <sljitLir.h>
|
|
|
|
#define BPFJIT_A SLJIT_TEMPORARY_REG1
|
|
#define BPFJIT_X SLJIT_TEMPORARY_EREG1
|
|
#define BPFJIT_TMP1 SLJIT_TEMPORARY_REG2
|
|
#define BPFJIT_TMP2 SLJIT_TEMPORARY_REG3
|
|
#define BPFJIT_BUF SLJIT_SAVED_REG1
|
|
#define BPFJIT_WIRELEN SLJIT_SAVED_REG2
|
|
#define BPFJIT_BUFLEN SLJIT_SAVED_REG3
|
|
#define BPFJIT_KERN_TMP SLJIT_TEMPORARY_EREG2
|
|
|
|
/*
|
|
* Flags for bpfjit_optimization_hints().
|
|
*/
|
|
#define BPFJIT_INIT_X 0x10000
|
|
#define BPFJIT_INIT_A 0x20000
|
|
|
|
/*
|
|
* Node of bj_jumps list.
|
|
*/
|
|
struct bpfjit_jump {
|
|
struct sljit_jump *bj_jump;
|
|
SLIST_ENTRY(bpfjit_jump) bj_entries;
|
|
uint32_t bj_safe_length;
|
|
};
|
|
|
|
/*
|
|
* Data for BPF_JMP instruction.
|
|
*/
|
|
struct bpfjit_jump_data {
|
|
/*
|
|
* These entries make up bj_jumps list:
|
|
* bj_jtf[0] - when coming from jt path,
|
|
* bj_jtf[1] - when coming from jf path.
|
|
*/
|
|
struct bpfjit_jump bj_jtf[2];
|
|
};
|
|
|
|
/*
|
|
* Data for "read from packet" instructions.
|
|
* See also read_pkt_insn() function below.
|
|
*/
|
|
struct bpfjit_read_pkt_data {
|
|
/*
|
|
* If positive, emit "if (buflen < bj_check_length) return 0".
|
|
* We assume that buflen is never equal to UINT32_MAX (otherwise,
|
|
* we need a special bool variable to emit unconditional "return 0").
|
|
*/
|
|
uint32_t bj_check_length;
|
|
};
|
|
|
|
/*
|
|
* Additional (optimization-related) data for bpf_insn.
|
|
*/
|
|
struct bpfjit_insn_data {
|
|
/* List of jumps to this insn. */
|
|
SLIST_HEAD(, bpfjit_jump) bj_jumps;
|
|
|
|
union {
|
|
struct bpfjit_jump_data bj_jdata;
|
|
struct bpfjit_read_pkt_data bj_rdata;
|
|
} bj_aux;
|
|
|
|
bool bj_unreachable;
|
|
};
|
|
|
|
#ifdef _KERNEL
|
|
|
|
uint32_t m_xword(const struct mbuf *, uint32_t, int *);
|
|
uint32_t m_xhalf(const struct mbuf *, uint32_t, int *);
|
|
uint32_t m_xbyte(const struct mbuf *, uint32_t, int *);
|
|
|
|
MODULE(MODULE_CLASS_MISC, bpfjit, "sljit")
|
|
|
|
static int
|
|
bpfjit_modcmd(modcmd_t cmd, void *arg)
|
|
{
|
|
|
|
switch (cmd) {
|
|
case MODULE_CMD_INIT:
|
|
bpfjit_module_ops.bj_free_code = &bpfjit_free_code;
|
|
membar_producer();
|
|
bpfjit_module_ops.bj_generate_code = &bpfjit_generate_code;
|
|
membar_producer();
|
|
return 0;
|
|
|
|
case MODULE_CMD_FINI:
|
|
return EOPNOTSUPP;
|
|
|
|
default:
|
|
return ENOTTY;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static uint32_t
|
|
read_width(struct bpf_insn *pc)
|
|
{
|
|
|
|
switch (BPF_SIZE(pc->code)) {
|
|
case BPF_W:
|
|
return 4;
|
|
case BPF_H:
|
|
return 2;
|
|
case BPF_B:
|
|
return 1;
|
|
default:
|
|
BPFJIT_ASSERT(false);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get offset of M[k] on the stack.
|
|
*/
|
|
static size_t
|
|
mem_local_offset(uint32_t k, unsigned int minm)
|
|
{
|
|
size_t moff = (k - minm) * sizeof(uint32_t);
|
|
|
|
#ifdef _KERNEL
|
|
/*
|
|
* 4 bytes for the third argument of m_xword/m_xhalf/m_xbyte.
|
|
*/
|
|
return sizeof(uint32_t) + moff;
|
|
#else
|
|
return moff;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Generate code for BPF_LD+BPF_B+BPF_ABS A <- P[k:1].
|
|
*/
|
|
static int
|
|
emit_read8(struct sljit_compiler* compiler, uint32_t k)
|
|
{
|
|
|
|
return sljit_emit_op1(compiler,
|
|
SLJIT_MOV_UB,
|
|
BPFJIT_A, 0,
|
|
SLJIT_MEM1(BPFJIT_BUF), k);
|
|
}
|
|
|
|
/*
|
|
* Generate code for BPF_LD+BPF_H+BPF_ABS A <- P[k:2].
|
|
*/
|
|
static int
|
|
emit_read16(struct sljit_compiler* compiler, uint32_t k)
|
|
{
|
|
int status;
|
|
|
|
/* tmp1 = buf[k]; */
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV_UB,
|
|
BPFJIT_TMP1, 0,
|
|
SLJIT_MEM1(BPFJIT_BUF), k);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* A = buf[k+1]; */
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV_UB,
|
|
BPFJIT_A, 0,
|
|
SLJIT_MEM1(BPFJIT_BUF), k+1);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* tmp1 = tmp1 << 8; */
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_SHL,
|
|
BPFJIT_TMP1, 0,
|
|
BPFJIT_TMP1, 0,
|
|
SLJIT_IMM, 8);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* A = A + tmp1; */
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_ADD,
|
|
BPFJIT_A, 0,
|
|
BPFJIT_A, 0,
|
|
BPFJIT_TMP1, 0);
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Generate code for BPF_LD+BPF_W+BPF_ABS A <- P[k:4].
|
|
*/
|
|
static int
|
|
emit_read32(struct sljit_compiler* compiler, uint32_t k)
|
|
{
|
|
int status;
|
|
|
|
/* tmp1 = buf[k]; */
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV_UB,
|
|
BPFJIT_TMP1, 0,
|
|
SLJIT_MEM1(BPFJIT_BUF), k);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* tmp2 = buf[k+1]; */
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV_UB,
|
|
BPFJIT_TMP2, 0,
|
|
SLJIT_MEM1(BPFJIT_BUF), k+1);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* A = buf[k+3]; */
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV_UB,
|
|
BPFJIT_A, 0,
|
|
SLJIT_MEM1(BPFJIT_BUF), k+3);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* tmp1 = tmp1 << 24; */
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_SHL,
|
|
BPFJIT_TMP1, 0,
|
|
BPFJIT_TMP1, 0,
|
|
SLJIT_IMM, 24);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* A = A + tmp1; */
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_ADD,
|
|
BPFJIT_A, 0,
|
|
BPFJIT_A, 0,
|
|
BPFJIT_TMP1, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* tmp1 = buf[k+2]; */
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV_UB,
|
|
BPFJIT_TMP1, 0,
|
|
SLJIT_MEM1(BPFJIT_BUF), k+2);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* tmp2 = tmp2 << 16; */
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_SHL,
|
|
BPFJIT_TMP2, 0,
|
|
BPFJIT_TMP2, 0,
|
|
SLJIT_IMM, 16);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* A = A + tmp2; */
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_ADD,
|
|
BPFJIT_A, 0,
|
|
BPFJIT_A, 0,
|
|
BPFJIT_TMP2, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* tmp1 = tmp1 << 8; */
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_SHL,
|
|
BPFJIT_TMP1, 0,
|
|
BPFJIT_TMP1, 0,
|
|
SLJIT_IMM, 8);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* A = A + tmp1; */
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_ADD,
|
|
BPFJIT_A, 0,
|
|
BPFJIT_A, 0,
|
|
BPFJIT_TMP1, 0);
|
|
return status;
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
/*
|
|
* Generate m_xword/m_xhalf/m_xbyte call.
|
|
*
|
|
* pc is one of:
|
|
* BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
|
|
* BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
|
|
* BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
|
|
* BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
|
|
* BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
|
|
* BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
|
|
* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf)
|
|
*
|
|
* dst must be BPFJIT_A for BPF_LD instructions and BPFJIT_X
|
|
* or any of BPFJIT_TMP* registrers for BPF_MSH instruction.
|
|
*/
|
|
static int
|
|
emit_xcall(struct sljit_compiler* compiler, struct bpf_insn *pc,
|
|
int dst, sljit_w dstw, struct sljit_jump **ret0_jump,
|
|
uint32_t (*fn)(const struct mbuf *, uint32_t, int *))
|
|
{
|
|
#if BPFJIT_X != SLJIT_TEMPORARY_EREG1 || \
|
|
BPFJIT_X == SLJIT_RETURN_REG
|
|
#error "Not supported assignment of registers."
|
|
#endif
|
|
int status;
|
|
|
|
/*
|
|
* The third argument of fn is an address on stack.
|
|
*/
|
|
const int arg3_offset = 0;
|
|
|
|
if (BPF_CLASS(pc->code) == BPF_LDX) {
|
|
/* save A */
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
BPFJIT_KERN_TMP, 0,
|
|
BPFJIT_A, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Prepare registers for fn(buf, k, &err) call.
|
|
*/
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
SLJIT_TEMPORARY_REG1, 0,
|
|
BPFJIT_BUF, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
if (BPF_CLASS(pc->code) == BPF_LD && BPF_MODE(pc->code) == BPF_IND) {
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_ADD,
|
|
SLJIT_TEMPORARY_REG2, 0,
|
|
BPFJIT_X, 0,
|
|
SLJIT_IMM, (uint32_t)pc->k);
|
|
} else {
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
SLJIT_TEMPORARY_REG2, 0,
|
|
SLJIT_IMM, (uint32_t)pc->k);
|
|
}
|
|
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
status = sljit_get_local_base(compiler,
|
|
SLJIT_TEMPORARY_REG3, 0, arg3_offset);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* fn(buf, k, &err); */
|
|
status = sljit_emit_ijump(compiler,
|
|
SLJIT_CALL3,
|
|
SLJIT_IMM, SLJIT_FUNC_OFFSET(fn));
|
|
|
|
if (BPF_CLASS(pc->code) == BPF_LDX) {
|
|
|
|
/* move return value to dst */
|
|
BPFJIT_ASSERT(dst != SLJIT_RETURN_REG);
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
dst, dstw,
|
|
SLJIT_RETURN_REG, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* restore A */
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
BPFJIT_A, 0,
|
|
BPFJIT_KERN_TMP, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
} else if (dst != SLJIT_RETURN_REG) {
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
dst, dstw,
|
|
SLJIT_RETURN_REG, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
}
|
|
|
|
/* tmp3 = *err; */
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV_UI,
|
|
SLJIT_TEMPORARY_REG3, 0,
|
|
SLJIT_MEM1(SLJIT_LOCALS_REG), arg3_offset);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* if (tmp3 != 0) return 0; */
|
|
*ret0_jump = sljit_emit_cmp(compiler,
|
|
SLJIT_C_NOT_EQUAL,
|
|
SLJIT_TEMPORARY_REG3, 0,
|
|
SLJIT_IMM, 0);
|
|
if (*ret0_jump == NULL)
|
|
return SLJIT_ERR_ALLOC_FAILED;
|
|
|
|
return status;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Generate code for
|
|
* BPF_LD+BPF_W+BPF_ABS A <- P[k:4]
|
|
* BPF_LD+BPF_H+BPF_ABS A <- P[k:2]
|
|
* BPF_LD+BPF_B+BPF_ABS A <- P[k:1]
|
|
* BPF_LD+BPF_W+BPF_IND A <- P[X+k:4]
|
|
* BPF_LD+BPF_H+BPF_IND A <- P[X+k:2]
|
|
* BPF_LD+BPF_B+BPF_IND A <- P[X+k:1]
|
|
*/
|
|
static int
|
|
emit_pkt_read(struct sljit_compiler* compiler,
|
|
struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
|
|
struct sljit_jump **ret0, size_t *ret0_size)
|
|
{
|
|
int status;
|
|
uint32_t width;
|
|
struct sljit_jump *jump;
|
|
#ifdef _KERNEL
|
|
struct sljit_label *label;
|
|
struct sljit_jump *over_mchain_jump;
|
|
const bool check_zero_buflen = (to_mchain_jump != NULL);
|
|
#endif
|
|
const uint32_t k = pc->k;
|
|
|
|
#ifdef _KERNEL
|
|
if (to_mchain_jump == NULL) {
|
|
to_mchain_jump = sljit_emit_cmp(compiler,
|
|
SLJIT_C_EQUAL,
|
|
BPFJIT_BUFLEN, 0,
|
|
SLJIT_IMM, 0);
|
|
if (to_mchain_jump == NULL)
|
|
return SLJIT_ERR_ALLOC_FAILED;
|
|
}
|
|
#endif
|
|
|
|
width = read_width(pc);
|
|
|
|
if (BPF_MODE(pc->code) == BPF_IND) {
|
|
/* tmp1 = buflen - (pc->k + width); */
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_SUB,
|
|
BPFJIT_TMP1, 0,
|
|
BPFJIT_BUFLEN, 0,
|
|
SLJIT_IMM, k + width);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* buf += X; */
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_ADD,
|
|
BPFJIT_BUF, 0,
|
|
BPFJIT_BUF, 0,
|
|
BPFJIT_X, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* if (tmp1 < X) return 0; */
|
|
jump = sljit_emit_cmp(compiler,
|
|
SLJIT_C_LESS,
|
|
BPFJIT_TMP1, 0,
|
|
BPFJIT_X, 0);
|
|
if (jump == NULL)
|
|
return SLJIT_ERR_ALLOC_FAILED;
|
|
ret0[(*ret0_size)++] = jump;
|
|
}
|
|
|
|
switch (width) {
|
|
case 4:
|
|
status = emit_read32(compiler, k);
|
|
break;
|
|
case 2:
|
|
status = emit_read16(compiler, k);
|
|
break;
|
|
case 1:
|
|
status = emit_read8(compiler, k);
|
|
break;
|
|
}
|
|
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
if (BPF_MODE(pc->code) == BPF_IND) {
|
|
/* buf -= X; */
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_SUB,
|
|
BPFJIT_BUF, 0,
|
|
BPFJIT_BUF, 0,
|
|
BPFJIT_X, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
}
|
|
|
|
#ifdef _KERNEL
|
|
over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
|
|
if (over_mchain_jump == NULL)
|
|
return SLJIT_ERR_ALLOC_FAILED;
|
|
|
|
/* entry point to mchain handler */
|
|
label = sljit_emit_label(compiler);
|
|
if (label == NULL)
|
|
return SLJIT_ERR_ALLOC_FAILED;
|
|
sljit_set_label(to_mchain_jump, label);
|
|
|
|
if (check_zero_buflen) {
|
|
/* if (buflen != 0) return 0; */
|
|
jump = sljit_emit_cmp(compiler,
|
|
SLJIT_C_NOT_EQUAL,
|
|
BPFJIT_BUFLEN, 0,
|
|
SLJIT_IMM, 0);
|
|
if (jump == NULL)
|
|
return SLJIT_ERR_ALLOC_FAILED;
|
|
ret0[(*ret0_size)++] = jump;
|
|
}
|
|
|
|
switch (width) {
|
|
case 4:
|
|
status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xword);
|
|
break;
|
|
case 2:
|
|
status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xhalf);
|
|
break;
|
|
case 1:
|
|
status = emit_xcall(compiler, pc, BPFJIT_A, 0, &jump, &m_xbyte);
|
|
break;
|
|
}
|
|
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
ret0[(*ret0_size)++] = jump;
|
|
|
|
label = sljit_emit_label(compiler);
|
|
if (label == NULL)
|
|
return SLJIT_ERR_ALLOC_FAILED;
|
|
sljit_set_label(over_mchain_jump, label);
|
|
#endif
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Generate code for BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf).
|
|
*/
|
|
static int
|
|
emit_msh(struct sljit_compiler* compiler,
|
|
struct bpf_insn *pc, struct sljit_jump *to_mchain_jump,
|
|
struct sljit_jump **ret0, size_t *ret0_size)
|
|
{
|
|
int status;
|
|
#ifdef _KERNEL
|
|
struct sljit_label *label;
|
|
struct sljit_jump *jump, *over_mchain_jump;
|
|
const bool check_zero_buflen = (to_mchain_jump != NULL);
|
|
#endif
|
|
const uint32_t k = pc->k;
|
|
|
|
#ifdef _KERNEL
|
|
if (to_mchain_jump == NULL) {
|
|
to_mchain_jump = sljit_emit_cmp(compiler,
|
|
SLJIT_C_EQUAL,
|
|
BPFJIT_BUFLEN, 0,
|
|
SLJIT_IMM, 0);
|
|
if (to_mchain_jump == NULL)
|
|
return SLJIT_ERR_ALLOC_FAILED;
|
|
}
|
|
#endif
|
|
|
|
/* tmp1 = buf[k] */
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV_UB,
|
|
BPFJIT_TMP1, 0,
|
|
SLJIT_MEM1(BPFJIT_BUF), k);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* tmp1 &= 0xf */
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_AND,
|
|
BPFJIT_TMP1, 0,
|
|
BPFJIT_TMP1, 0,
|
|
SLJIT_IMM, 0xf);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* tmp1 = tmp1 << 2 */
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_SHL,
|
|
BPFJIT_X, 0,
|
|
BPFJIT_TMP1, 0,
|
|
SLJIT_IMM, 2);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
#ifdef _KERNEL
|
|
over_mchain_jump = sljit_emit_jump(compiler, SLJIT_JUMP);
|
|
if (over_mchain_jump == NULL)
|
|
return SLJIT_ERR_ALLOC_FAILED;
|
|
|
|
/* entry point to mchain handler */
|
|
label = sljit_emit_label(compiler);
|
|
if (label == NULL)
|
|
return SLJIT_ERR_ALLOC_FAILED;
|
|
sljit_set_label(to_mchain_jump, label);
|
|
|
|
if (check_zero_buflen) {
|
|
/* if (buflen != 0) return 0; */
|
|
jump = sljit_emit_cmp(compiler,
|
|
SLJIT_C_NOT_EQUAL,
|
|
BPFJIT_BUFLEN, 0,
|
|
SLJIT_IMM, 0);
|
|
if (jump == NULL)
|
|
return SLJIT_ERR_ALLOC_FAILED;
|
|
ret0[(*ret0_size)++] = jump;
|
|
}
|
|
|
|
status = emit_xcall(compiler, pc, BPFJIT_TMP1, 0, &jump, &m_xbyte);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
ret0[(*ret0_size)++] = jump;
|
|
|
|
/* tmp1 &= 0xf */
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_AND,
|
|
BPFJIT_TMP1, 0,
|
|
BPFJIT_TMP1, 0,
|
|
SLJIT_IMM, 0xf);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
/* tmp1 = tmp1 << 2 */
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_SHL,
|
|
BPFJIT_X, 0,
|
|
BPFJIT_TMP1, 0,
|
|
SLJIT_IMM, 2);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
|
|
label = sljit_emit_label(compiler);
|
|
if (label == NULL)
|
|
return SLJIT_ERR_ALLOC_FAILED;
|
|
sljit_set_label(over_mchain_jump, label);
|
|
#endif
|
|
|
|
return status;
|
|
}
|
|
|
|
static int
|
|
emit_pow2_division(struct sljit_compiler* compiler, uint32_t k)
|
|
{
|
|
int shift = 0;
|
|
int status = SLJIT_SUCCESS;
|
|
|
|
while (k > 1) {
|
|
k >>= 1;
|
|
shift++;
|
|
}
|
|
|
|
BPFJIT_ASSERT(k == 1 && shift < 32);
|
|
|
|
if (shift != 0) {
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_LSHR|SLJIT_INT_OP,
|
|
BPFJIT_A, 0,
|
|
BPFJIT_A, 0,
|
|
SLJIT_IMM, shift);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
#if !defined(BPFJIT_USE_UDIV)
|
|
static sljit_uw
|
|
divide(sljit_uw x, sljit_uw y)
|
|
{
|
|
|
|
return (uint32_t)x / (uint32_t)y;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Generate A = A / div.
|
|
* divt,divw are either SLJIT_IMM,pc->k or BPFJIT_X,0.
|
|
*/
|
|
static int
|
|
emit_division(struct sljit_compiler* compiler, int divt, sljit_w divw)
|
|
{
|
|
int status;
|
|
|
|
#if BPFJIT_X == SLJIT_TEMPORARY_REG1 || \
|
|
BPFJIT_X == SLJIT_RETURN_REG || \
|
|
BPFJIT_X == SLJIT_TEMPORARY_REG2 || \
|
|
BPFJIT_A == SLJIT_TEMPORARY_REG2
|
|
#error "Not supported assignment of registers."
|
|
#endif
|
|
|
|
#if BPFJIT_A != SLJIT_TEMPORARY_REG1
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
SLJIT_TEMPORARY_REG1, 0,
|
|
BPFJIT_A, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
#endif
|
|
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
SLJIT_TEMPORARY_REG2, 0,
|
|
divt, divw);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
|
|
#if defined(BPFJIT_USE_UDIV)
|
|
status = sljit_emit_op0(compiler, SLJIT_UDIV|SLJIT_INT_OP);
|
|
|
|
#if BPFJIT_A != SLJIT_TEMPORARY_REG1
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
BPFJIT_A, 0,
|
|
SLJIT_TEMPORARY_REG1, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
#endif
|
|
#else
|
|
status = sljit_emit_ijump(compiler,
|
|
SLJIT_CALL2,
|
|
SLJIT_IMM, SLJIT_FUNC_OFFSET(divide));
|
|
|
|
#if BPFJIT_A != SLJIT_RETURN_REG
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
BPFJIT_A, 0,
|
|
SLJIT_RETURN_REG, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
return status;
|
|
#endif
|
|
#endif
|
|
|
|
return status;
|
|
}
|
|
|
|
/*
|
|
* Count BPF_RET instructions.
|
|
*/
|
|
static size_t
|
|
count_returns(struct bpf_insn *insns, size_t insn_count)
|
|
{
|
|
size_t i;
|
|
size_t rv;
|
|
|
|
rv = 0;
|
|
for (i = 0; i < insn_count; i++) {
|
|
if (BPF_CLASS(insns[i].code) == BPF_RET)
|
|
rv++;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Return true if pc is a "read from packet" instruction.
|
|
* If length is not NULL and return value is true, *length will
|
|
* be set to a safe length required to read a packet.
|
|
*/
|
|
static bool
|
|
read_pkt_insn(struct bpf_insn *pc, uint32_t *length)
|
|
{
|
|
bool rv;
|
|
uint32_t width;
|
|
|
|
switch (BPF_CLASS(pc->code)) {
|
|
default:
|
|
rv = false;
|
|
break;
|
|
|
|
case BPF_LD:
|
|
rv = BPF_MODE(pc->code) == BPF_ABS ||
|
|
BPF_MODE(pc->code) == BPF_IND;
|
|
if (rv)
|
|
width = read_width(pc);
|
|
break;
|
|
|
|
case BPF_LDX:
|
|
rv = pc->code == (BPF_LDX|BPF_B|BPF_MSH);
|
|
width = 1;
|
|
break;
|
|
}
|
|
|
|
if (rv && length != NULL) {
|
|
*length = (pc->k > UINT32_MAX - width) ?
|
|
UINT32_MAX : pc->k + width;
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Set bj_check_length for all "read from packet" instructions
|
|
* in a linear block of instructions [from, to).
|
|
*/
|
|
static void
|
|
set_check_length(struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
|
|
size_t from, size_t to, uint32_t length)
|
|
{
|
|
|
|
for (; from < to; from++) {
|
|
if (read_pkt_insn(&insns[from], NULL)) {
|
|
insn_dat[from].bj_aux.bj_rdata.bj_check_length = length;
|
|
length = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The function divides instructions into blocks. Destination of a jump
|
|
* instruction starts a new block. BPF_RET and BPF_JMP instructions
|
|
* terminate a block. Blocks are linear, that is, there are no jumps out
|
|
* from the middle of a block and there are no jumps in to the middle of
|
|
* a block.
|
|
* If a block has one or more "read from packet" instructions,
|
|
* bj_check_length will be set to one value for the whole block and that
|
|
* value will be equal to the greatest value of safe lengths of "read from
|
|
* packet" instructions inside the block.
|
|
*/
|
|
static int
|
|
optimize(struct bpf_insn *insns,
|
|
struct bpfjit_insn_data *insn_dat, size_t insn_count)
|
|
{
|
|
size_t i;
|
|
size_t first_read;
|
|
bool unreachable;
|
|
uint32_t jt, jf;
|
|
uint32_t length, safe_length;
|
|
struct bpfjit_jump *jmp, *jtf;
|
|
|
|
for (i = 0; i < insn_count; i++)
|
|
SLIST_INIT(&insn_dat[i].bj_jumps);
|
|
|
|
safe_length = 0;
|
|
unreachable = false;
|
|
first_read = SIZE_MAX;
|
|
|
|
for (i = 0; i < insn_count; i++) {
|
|
|
|
if (!SLIST_EMPTY(&insn_dat[i].bj_jumps)) {
|
|
unreachable = false;
|
|
|
|
set_check_length(insns, insn_dat,
|
|
first_read, i, safe_length);
|
|
first_read = SIZE_MAX;
|
|
|
|
safe_length = UINT32_MAX;
|
|
SLIST_FOREACH(jmp, &insn_dat[i].bj_jumps, bj_entries) {
|
|
if (jmp->bj_safe_length < safe_length)
|
|
safe_length = jmp->bj_safe_length;
|
|
}
|
|
}
|
|
|
|
insn_dat[i].bj_unreachable = unreachable;
|
|
if (unreachable)
|
|
continue;
|
|
|
|
if (read_pkt_insn(&insns[i], &length)) {
|
|
if (first_read == SIZE_MAX)
|
|
first_read = i;
|
|
if (length > safe_length)
|
|
safe_length = length;
|
|
}
|
|
|
|
switch (BPF_CLASS(insns[i].code)) {
|
|
case BPF_RET:
|
|
unreachable = true;
|
|
continue;
|
|
|
|
case BPF_JMP:
|
|
if (insns[i].code == (BPF_JMP|BPF_JA)) {
|
|
jt = jf = insns[i].k;
|
|
} else {
|
|
jt = insns[i].jt;
|
|
jf = insns[i].jf;
|
|
}
|
|
|
|
if (jt >= insn_count - (i + 1) ||
|
|
jf >= insn_count - (i + 1)) {
|
|
return -1;
|
|
}
|
|
|
|
if (jt > 0 && jf > 0)
|
|
unreachable = true;
|
|
|
|
jtf = insn_dat[i].bj_aux.bj_jdata.bj_jtf;
|
|
|
|
jtf[0].bj_jump = NULL;
|
|
jtf[0].bj_safe_length = safe_length;
|
|
SLIST_INSERT_HEAD(&insn_dat[i + 1 + jt].bj_jumps,
|
|
&jtf[0], bj_entries);
|
|
|
|
if (jf != jt) {
|
|
jtf[1].bj_jump = NULL;
|
|
jtf[1].bj_safe_length = safe_length;
|
|
SLIST_INSERT_HEAD(&insn_dat[i + 1 + jf].bj_jumps,
|
|
&jtf[1], bj_entries);
|
|
}
|
|
|
|
continue;
|
|
}
|
|
}
|
|
|
|
set_check_length(insns, insn_dat, first_read, insn_count, safe_length);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Count out-of-bounds and division by zero jumps.
|
|
*
|
|
* insn_dat should be initialized by optimize().
|
|
*/
|
|
static size_t
|
|
get_ret0_size(struct bpf_insn *insns, struct bpfjit_insn_data *insn_dat,
|
|
size_t insn_count)
|
|
{
|
|
size_t rv = 0;
|
|
size_t i;
|
|
|
|
for (i = 0; i < insn_count; i++) {
|
|
|
|
if (read_pkt_insn(&insns[i], NULL)) {
|
|
if (insn_dat[i].bj_aux.bj_rdata.bj_check_length > 0)
|
|
rv++;
|
|
#ifdef _KERNEL
|
|
rv++;
|
|
#endif
|
|
}
|
|
|
|
if (insns[i].code == (BPF_LD|BPF_IND|BPF_B) ||
|
|
insns[i].code == (BPF_LD|BPF_IND|BPF_H) ||
|
|
insns[i].code == (BPF_LD|BPF_IND|BPF_W)) {
|
|
rv++;
|
|
}
|
|
|
|
if (insns[i].code == (BPF_ALU|BPF_DIV|BPF_X))
|
|
rv++;
|
|
|
|
if (insns[i].code == (BPF_ALU|BPF_DIV|BPF_K) &&
|
|
insns[i].k == 0) {
|
|
rv++;
|
|
}
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* Convert BPF_ALU operations except BPF_NEG and BPF_DIV to sljit operation.
|
|
*/
|
|
static int
|
|
bpf_alu_to_sljit_op(struct bpf_insn *pc)
|
|
{
|
|
|
|
/*
|
|
* Note: all supported 64bit arches have 32bit multiply
|
|
* instruction so SLJIT_INT_OP doesn't have any overhead.
|
|
*/
|
|
switch (BPF_OP(pc->code)) {
|
|
case BPF_ADD: return SLJIT_ADD;
|
|
case BPF_SUB: return SLJIT_SUB;
|
|
case BPF_MUL: return SLJIT_MUL|SLJIT_INT_OP;
|
|
case BPF_OR: return SLJIT_OR;
|
|
case BPF_AND: return SLJIT_AND;
|
|
case BPF_LSH: return SLJIT_SHL;
|
|
case BPF_RSH: return SLJIT_LSHR|SLJIT_INT_OP;
|
|
default:
|
|
BPFJIT_ASSERT(false);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Convert BPF_JMP operations except BPF_JA to sljit condition.
|
|
*/
|
|
static int
|
|
bpf_jmp_to_sljit_cond(struct bpf_insn *pc, bool negate)
|
|
{
|
|
/*
|
|
* Note: all supported 64bit arches have 32bit comparison
|
|
* instructions so SLJIT_INT_OP doesn't have any overhead.
|
|
*/
|
|
int rv = SLJIT_INT_OP;
|
|
|
|
switch (BPF_OP(pc->code)) {
|
|
case BPF_JGT:
|
|
rv |= negate ? SLJIT_C_LESS_EQUAL : SLJIT_C_GREATER;
|
|
break;
|
|
case BPF_JGE:
|
|
rv |= negate ? SLJIT_C_LESS : SLJIT_C_GREATER_EQUAL;
|
|
break;
|
|
case BPF_JEQ:
|
|
rv |= negate ? SLJIT_C_NOT_EQUAL : SLJIT_C_EQUAL;
|
|
break;
|
|
case BPF_JSET:
|
|
rv |= negate ? SLJIT_C_EQUAL : SLJIT_C_NOT_EQUAL;
|
|
break;
|
|
default:
|
|
BPFJIT_ASSERT(false);
|
|
}
|
|
|
|
return rv;
|
|
}
|
|
|
|
static unsigned int
|
|
bpfjit_optimization_hints(struct bpf_insn *insns, size_t insn_count)
|
|
{
|
|
unsigned int rv = BPFJIT_INIT_A;
|
|
struct bpf_insn *pc;
|
|
unsigned int minm, maxm;
|
|
|
|
BPFJIT_ASSERT(BPF_MEMWORDS - 1 <= 0xff);
|
|
|
|
maxm = 0;
|
|
minm = BPF_MEMWORDS - 1;
|
|
|
|
for (pc = insns; pc != insns + insn_count; pc++) {
|
|
switch (BPF_CLASS(pc->code)) {
|
|
case BPF_LD:
|
|
if (BPF_MODE(pc->code) == BPF_IND)
|
|
rv |= BPFJIT_INIT_X;
|
|
if (BPF_MODE(pc->code) == BPF_MEM &&
|
|
(uint32_t)pc->k < BPF_MEMWORDS) {
|
|
if (pc->k > maxm)
|
|
maxm = pc->k;
|
|
if (pc->k < minm)
|
|
minm = pc->k;
|
|
}
|
|
continue;
|
|
case BPF_LDX:
|
|
rv |= BPFJIT_INIT_X;
|
|
if (BPF_MODE(pc->code) == BPF_MEM &&
|
|
(uint32_t)pc->k < BPF_MEMWORDS) {
|
|
if (pc->k > maxm)
|
|
maxm = pc->k;
|
|
if (pc->k < minm)
|
|
minm = pc->k;
|
|
}
|
|
continue;
|
|
case BPF_ST:
|
|
if ((uint32_t)pc->k < BPF_MEMWORDS) {
|
|
if (pc->k > maxm)
|
|
maxm = pc->k;
|
|
if (pc->k < minm)
|
|
minm = pc->k;
|
|
}
|
|
continue;
|
|
case BPF_STX:
|
|
rv |= BPFJIT_INIT_X;
|
|
if ((uint32_t)pc->k < BPF_MEMWORDS) {
|
|
if (pc->k > maxm)
|
|
maxm = pc->k;
|
|
if (pc->k < minm)
|
|
minm = pc->k;
|
|
}
|
|
continue;
|
|
case BPF_ALU:
|
|
if (pc->code == (BPF_ALU|BPF_NEG))
|
|
continue;
|
|
if (BPF_SRC(pc->code) == BPF_X)
|
|
rv |= BPFJIT_INIT_X;
|
|
continue;
|
|
case BPF_JMP:
|
|
if (pc->code == (BPF_JMP|BPF_JA))
|
|
continue;
|
|
if (BPF_SRC(pc->code) == BPF_X)
|
|
rv |= BPFJIT_INIT_X;
|
|
continue;
|
|
case BPF_RET:
|
|
continue;
|
|
case BPF_MISC:
|
|
rv |= BPFJIT_INIT_X;
|
|
continue;
|
|
default:
|
|
BPFJIT_ASSERT(false);
|
|
}
|
|
}
|
|
|
|
return rv | (maxm << 8) | minm;
|
|
}
|
|
|
|
/*
|
|
* Convert BPF_K and BPF_X to sljit register.
|
|
*/
|
|
static int
|
|
kx_to_reg(struct bpf_insn *pc)
|
|
{
|
|
|
|
switch (BPF_SRC(pc->code)) {
|
|
case BPF_K: return SLJIT_IMM;
|
|
case BPF_X: return BPFJIT_X;
|
|
default:
|
|
BPFJIT_ASSERT(false);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static sljit_w
|
|
kx_to_reg_arg(struct bpf_insn *pc)
|
|
{
|
|
|
|
switch (BPF_SRC(pc->code)) {
|
|
case BPF_K: return (uint32_t)pc->k; /* SLJIT_IMM, pc->k, */
|
|
case BPF_X: return 0; /* BPFJIT_X, 0, */
|
|
default:
|
|
BPFJIT_ASSERT(false);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
bpfjit_func_t
|
|
bpfjit_generate_code(bpf_ctx_t *bc, struct bpf_insn *insns, size_t insn_count)
|
|
{
|
|
void *rv;
|
|
size_t i;
|
|
int status;
|
|
int branching, negate;
|
|
unsigned int rval, mode, src;
|
|
int ntmp;
|
|
unsigned int locals_size;
|
|
unsigned int minm, maxm; /* min/max k for M[k] */
|
|
size_t mem_locals_start; /* start of M[] array */
|
|
unsigned int opts;
|
|
struct bpf_insn *pc;
|
|
struct sljit_compiler* compiler;
|
|
|
|
/* a list of jumps to a normal return from a generated function */
|
|
struct sljit_jump **returns;
|
|
size_t returns_size, returns_maxsize;
|
|
|
|
/* a list of jumps to out-of-bound return from a generated function */
|
|
struct sljit_jump **ret0;
|
|
size_t ret0_size = 0, ret0_maxsize = 0;
|
|
|
|
struct bpfjit_insn_data *insn_dat;
|
|
|
|
/* for local use */
|
|
struct sljit_label *label;
|
|
struct sljit_jump *jump;
|
|
struct bpfjit_jump *bjump, *jtf;
|
|
|
|
struct sljit_jump *to_mchain_jump;
|
|
|
|
uint32_t jt, jf;
|
|
|
|
rv = NULL;
|
|
compiler = NULL;
|
|
insn_dat = NULL;
|
|
returns = NULL;
|
|
ret0 = NULL;
|
|
|
|
opts = bpfjit_optimization_hints(insns, insn_count);
|
|
minm = opts & 0xff;
|
|
maxm = (opts >> 8) & 0xff;
|
|
mem_locals_start = mem_local_offset(0, 0);
|
|
locals_size = (minm <= maxm) ?
|
|
mem_local_offset(maxm + 1, minm) : mem_locals_start;
|
|
|
|
ntmp = 4;
|
|
#ifdef _KERNEL
|
|
ntmp += 1; /* for BPFJIT_KERN_TMP */
|
|
#endif
|
|
|
|
returns_maxsize = count_returns(insns, insn_count);
|
|
if (returns_maxsize == 0)
|
|
goto fail;
|
|
|
|
insn_dat = BPFJIT_ALLOC(insn_count * sizeof(insn_dat[0]));
|
|
if (insn_dat == NULL)
|
|
goto fail;
|
|
|
|
if (optimize(insns, insn_dat, insn_count) < 0)
|
|
goto fail;
|
|
|
|
ret0_size = 0;
|
|
ret0_maxsize = get_ret0_size(insns, insn_dat, insn_count);
|
|
if (ret0_maxsize > 0) {
|
|
ret0 = BPFJIT_ALLOC(ret0_maxsize * sizeof(ret0[0]));
|
|
if (ret0 == NULL)
|
|
goto fail;
|
|
}
|
|
|
|
returns_size = 0;
|
|
returns = BPFJIT_ALLOC(returns_maxsize * sizeof(returns[0]));
|
|
if (returns == NULL)
|
|
goto fail;
|
|
|
|
compiler = sljit_create_compiler();
|
|
if (compiler == NULL)
|
|
goto fail;
|
|
|
|
#if !defined(_KERNEL) && defined(SLJIT_VERBOSE) && SLJIT_VERBOSE
|
|
sljit_compiler_verbose(compiler, stderr);
|
|
#endif
|
|
|
|
status = sljit_emit_enter(compiler, 3, ntmp, 3, locals_size);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
for (i = mem_locals_start; i < locals_size; i+= sizeof(uint32_t)) {
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV_UI,
|
|
SLJIT_MEM1(SLJIT_LOCALS_REG), i,
|
|
SLJIT_IMM, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
}
|
|
|
|
if (opts & BPFJIT_INIT_A) {
|
|
/* A = 0; */
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
BPFJIT_A, 0,
|
|
SLJIT_IMM, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
}
|
|
|
|
if (opts & BPFJIT_INIT_X) {
|
|
/* X = 0; */
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
BPFJIT_X, 0,
|
|
SLJIT_IMM, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
}
|
|
|
|
for (i = 0; i < insn_count; i++) {
|
|
if (insn_dat[i].bj_unreachable)
|
|
continue;
|
|
|
|
to_mchain_jump = NULL;
|
|
|
|
/*
|
|
* Resolve jumps to the current insn.
|
|
*/
|
|
label = NULL;
|
|
SLIST_FOREACH(bjump, &insn_dat[i].bj_jumps, bj_entries) {
|
|
if (bjump->bj_jump != NULL) {
|
|
if (label == NULL)
|
|
label = sljit_emit_label(compiler);
|
|
if (label == NULL)
|
|
goto fail;
|
|
sljit_set_label(bjump->bj_jump, label);
|
|
}
|
|
}
|
|
|
|
if (read_pkt_insn(&insns[i], NULL) &&
|
|
insn_dat[i].bj_aux.bj_rdata.bj_check_length > 0) {
|
|
/* if (buflen < bj_check_length) return 0; */
|
|
jump = sljit_emit_cmp(compiler,
|
|
SLJIT_C_LESS,
|
|
BPFJIT_BUFLEN, 0,
|
|
SLJIT_IMM,
|
|
insn_dat[i].bj_aux.bj_rdata.bj_check_length);
|
|
if (jump == NULL)
|
|
goto fail;
|
|
#ifdef _KERNEL
|
|
to_mchain_jump = jump;
|
|
#else
|
|
ret0[ret0_size++] = jump;
|
|
#endif
|
|
}
|
|
|
|
pc = &insns[i];
|
|
switch (BPF_CLASS(pc->code)) {
|
|
|
|
default:
|
|
goto fail;
|
|
|
|
case BPF_LD:
|
|
/* BPF_LD+BPF_IMM A <- k */
|
|
if (pc->code == (BPF_LD|BPF_IMM)) {
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
BPFJIT_A, 0,
|
|
SLJIT_IMM, (uint32_t)pc->k);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
continue;
|
|
}
|
|
|
|
/* BPF_LD+BPF_MEM A <- M[k] */
|
|
if (pc->code == (BPF_LD|BPF_MEM)) {
|
|
if (pc->k < minm || pc->k > maxm)
|
|
goto fail;
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV_UI,
|
|
BPFJIT_A, 0,
|
|
SLJIT_MEM1(SLJIT_LOCALS_REG),
|
|
mem_local_offset(pc->k, minm));
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
continue;
|
|
}
|
|
|
|
/* BPF_LD+BPF_W+BPF_LEN A <- len */
|
|
if (pc->code == (BPF_LD|BPF_W|BPF_LEN)) {
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
BPFJIT_A, 0,
|
|
BPFJIT_WIRELEN, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
continue;
|
|
}
|
|
|
|
mode = BPF_MODE(pc->code);
|
|
if (mode != BPF_ABS && mode != BPF_IND)
|
|
goto fail;
|
|
|
|
status = emit_pkt_read(compiler, pc,
|
|
to_mchain_jump, ret0, &ret0_size);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
continue;
|
|
|
|
case BPF_LDX:
|
|
mode = BPF_MODE(pc->code);
|
|
|
|
/* BPF_LDX+BPF_W+BPF_IMM X <- k */
|
|
if (mode == BPF_IMM) {
|
|
if (BPF_SIZE(pc->code) != BPF_W)
|
|
goto fail;
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
BPFJIT_X, 0,
|
|
SLJIT_IMM, (uint32_t)pc->k);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
continue;
|
|
}
|
|
|
|
/* BPF_LDX+BPF_W+BPF_LEN X <- len */
|
|
if (mode == BPF_LEN) {
|
|
if (BPF_SIZE(pc->code) != BPF_W)
|
|
goto fail;
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
BPFJIT_X, 0,
|
|
BPFJIT_WIRELEN, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
continue;
|
|
}
|
|
|
|
/* BPF_LDX+BPF_W+BPF_MEM X <- M[k] */
|
|
if (mode == BPF_MEM) {
|
|
if (BPF_SIZE(pc->code) != BPF_W)
|
|
goto fail;
|
|
if (pc->k < minm || pc->k > maxm)
|
|
goto fail;
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV_UI,
|
|
BPFJIT_X, 0,
|
|
SLJIT_MEM1(SLJIT_LOCALS_REG),
|
|
mem_local_offset(pc->k, minm));
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
continue;
|
|
}
|
|
|
|
/* BPF_LDX+BPF_B+BPF_MSH X <- 4*(P[k:1]&0xf) */
|
|
if (mode != BPF_MSH || BPF_SIZE(pc->code) != BPF_B)
|
|
goto fail;
|
|
|
|
status = emit_msh(compiler, pc,
|
|
to_mchain_jump, ret0, &ret0_size);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
continue;
|
|
|
|
case BPF_ST:
|
|
if (pc->code != BPF_ST || pc->k < minm || pc->k > maxm)
|
|
goto fail;
|
|
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV_UI,
|
|
SLJIT_MEM1(SLJIT_LOCALS_REG),
|
|
mem_local_offset(pc->k, minm),
|
|
BPFJIT_A, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
continue;
|
|
|
|
case BPF_STX:
|
|
if (pc->code != BPF_STX || pc->k < minm || pc->k > maxm)
|
|
goto fail;
|
|
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV_UI,
|
|
SLJIT_MEM1(SLJIT_LOCALS_REG),
|
|
mem_local_offset(pc->k, minm),
|
|
BPFJIT_X, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
continue;
|
|
|
|
case BPF_ALU:
|
|
|
|
if (pc->code == (BPF_ALU|BPF_NEG)) {
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_NEG,
|
|
BPFJIT_A, 0,
|
|
BPFJIT_A, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (BPF_OP(pc->code) != BPF_DIV) {
|
|
status = sljit_emit_op2(compiler,
|
|
bpf_alu_to_sljit_op(pc),
|
|
BPFJIT_A, 0,
|
|
BPFJIT_A, 0,
|
|
kx_to_reg(pc), kx_to_reg_arg(pc));
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
continue;
|
|
}
|
|
|
|
/* BPF_DIV */
|
|
|
|
src = BPF_SRC(pc->code);
|
|
if (src != BPF_X && src != BPF_K)
|
|
goto fail;
|
|
|
|
/* division by zero? */
|
|
if (src == BPF_X) {
|
|
jump = sljit_emit_cmp(compiler,
|
|
SLJIT_C_EQUAL|SLJIT_INT_OP,
|
|
BPFJIT_X, 0,
|
|
SLJIT_IMM, 0);
|
|
if (jump == NULL)
|
|
goto fail;
|
|
ret0[ret0_size++] = jump;
|
|
} else if (pc->k == 0) {
|
|
jump = sljit_emit_jump(compiler, SLJIT_JUMP);
|
|
if (jump == NULL)
|
|
goto fail;
|
|
ret0[ret0_size++] = jump;
|
|
}
|
|
|
|
if (src == BPF_X) {
|
|
status = emit_division(compiler, BPFJIT_X, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
} else if (pc->k != 0) {
|
|
if (pc->k & (pc->k - 1)) {
|
|
status = emit_division(compiler,
|
|
SLJIT_IMM, (uint32_t)pc->k);
|
|
} else {
|
|
status = emit_pow2_division(compiler,
|
|
(uint32_t)pc->k);
|
|
}
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
}
|
|
|
|
continue;
|
|
|
|
case BPF_JMP:
|
|
|
|
if (pc->code == (BPF_JMP|BPF_JA)) {
|
|
jt = jf = pc->k;
|
|
} else {
|
|
jt = pc->jt;
|
|
jf = pc->jf;
|
|
}
|
|
|
|
negate = (jt == 0) ? 1 : 0;
|
|
branching = (jt == jf) ? 0 : 1;
|
|
jtf = insn_dat[i].bj_aux.bj_jdata.bj_jtf;
|
|
|
|
if (branching) {
|
|
if (BPF_OP(pc->code) != BPF_JSET) {
|
|
jump = sljit_emit_cmp(compiler,
|
|
bpf_jmp_to_sljit_cond(pc, negate),
|
|
BPFJIT_A, 0,
|
|
kx_to_reg(pc), kx_to_reg_arg(pc));
|
|
} else {
|
|
status = sljit_emit_op2(compiler,
|
|
SLJIT_AND,
|
|
BPFJIT_TMP1, 0,
|
|
BPFJIT_A, 0,
|
|
kx_to_reg(pc), kx_to_reg_arg(pc));
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
jump = sljit_emit_cmp(compiler,
|
|
bpf_jmp_to_sljit_cond(pc, negate),
|
|
BPFJIT_TMP1, 0,
|
|
SLJIT_IMM, 0);
|
|
}
|
|
|
|
if (jump == NULL)
|
|
goto fail;
|
|
|
|
BPFJIT_ASSERT(jtf[negate].bj_jump == NULL);
|
|
jtf[negate].bj_jump = jump;
|
|
}
|
|
|
|
if (!branching || (jt != 0 && jf != 0)) {
|
|
jump = sljit_emit_jump(compiler, SLJIT_JUMP);
|
|
if (jump == NULL)
|
|
goto fail;
|
|
|
|
BPFJIT_ASSERT(jtf[branching].bj_jump == NULL);
|
|
jtf[branching].bj_jump = jump;
|
|
}
|
|
|
|
continue;
|
|
|
|
case BPF_RET:
|
|
|
|
rval = BPF_RVAL(pc->code);
|
|
if (rval == BPF_X)
|
|
goto fail;
|
|
|
|
/* BPF_RET+BPF_K accept k bytes */
|
|
if (rval == BPF_K) {
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
BPFJIT_A, 0,
|
|
SLJIT_IMM, (uint32_t)pc->k);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
}
|
|
|
|
/* BPF_RET+BPF_A accept A bytes */
|
|
if (rval == BPF_A) {
|
|
#if BPFJIT_A != SLJIT_RETURN_REG
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
SLJIT_RETURN_REG, 0,
|
|
BPFJIT_A, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Save a jump to a normal return. If the program
|
|
* ends with BPF_RET, no jump is needed because
|
|
* the normal return is generated right after the
|
|
* last instruction.
|
|
*/
|
|
if (i != insn_count - 1) {
|
|
jump = sljit_emit_jump(compiler, SLJIT_JUMP);
|
|
if (jump == NULL)
|
|
goto fail;
|
|
returns[returns_size++] = jump;
|
|
}
|
|
|
|
continue;
|
|
|
|
case BPF_MISC:
|
|
|
|
if (pc->code == (BPF_MISC|BPF_TAX)) {
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV_UI,
|
|
BPFJIT_X, 0,
|
|
BPFJIT_A, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
continue;
|
|
}
|
|
|
|
if (pc->code == (BPF_MISC|BPF_TXA)) {
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
BPFJIT_A, 0,
|
|
BPFJIT_X, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
continue;
|
|
}
|
|
|
|
goto fail;
|
|
} /* switch */
|
|
} /* main loop */
|
|
|
|
BPFJIT_ASSERT(ret0_size == ret0_maxsize);
|
|
BPFJIT_ASSERT(returns_size <= returns_maxsize);
|
|
|
|
if (returns_size > 0) {
|
|
label = sljit_emit_label(compiler);
|
|
if (label == NULL)
|
|
goto fail;
|
|
for (i = 0; i < returns_size; i++)
|
|
sljit_set_label(returns[i], label);
|
|
}
|
|
|
|
status = sljit_emit_return(compiler,
|
|
SLJIT_MOV_UI,
|
|
BPFJIT_A, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
if (ret0_size > 0) {
|
|
label = sljit_emit_label(compiler);
|
|
if (label == NULL)
|
|
goto fail;
|
|
|
|
for (i = 0; i < ret0_size; i++)
|
|
sljit_set_label(ret0[i], label);
|
|
|
|
status = sljit_emit_op1(compiler,
|
|
SLJIT_MOV,
|
|
SLJIT_RETURN_REG, 0,
|
|
SLJIT_IMM, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
|
|
status = sljit_emit_return(compiler,
|
|
SLJIT_MOV_UI,
|
|
SLJIT_RETURN_REG, 0);
|
|
if (status != SLJIT_SUCCESS)
|
|
goto fail;
|
|
}
|
|
|
|
rv = sljit_generate_code(compiler);
|
|
|
|
fail:
|
|
if (compiler != NULL)
|
|
sljit_free_compiler(compiler);
|
|
|
|
if (insn_dat != NULL)
|
|
BPFJIT_FREE(insn_dat, insn_count * sizeof(insn_dat[0]));
|
|
|
|
if (returns != NULL)
|
|
BPFJIT_FREE(returns, returns_maxsize * sizeof(returns[0]));
|
|
|
|
if (ret0 != NULL)
|
|
BPFJIT_FREE(ret0, ret0_maxsize * sizeof(ret0[0]));
|
|
|
|
return (bpfjit_func_t)rv;
|
|
}
|
|
|
|
void
|
|
bpfjit_free_code(bpfjit_func_t code)
|
|
{
|
|
sljit_free_code((void *)code);
|
|
}
|