NetBSD/external/bsd/dhcpcd/dist/if-bsd.c

1784 lines
42 KiB
C

#include <sys/cdefs.h>
__RCSID("$NetBSD: if-bsd.c,v 1.28 2016/04/10 21:00:53 roy Exp $");
/*
* dhcpcd - DHCP client daemon
* Copyright (c) 2006-2016 Roy Marples <roy@marples.name>
* All rights reserved
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/ioctl.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/utsname.h>
#include "config.h"
#include <arpa/inet.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/route.h>
#include <netinet/if_ether.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet6/in6_var.h>
#include <netinet6/nd6.h>
#ifdef __DragonFly__
# include <netproto/802_11/ieee80211_ioctl.h>
#elif __APPLE__
/* FIXME: Add apple includes so we can work out SSID */
#else
# include <net80211/ieee80211.h>
# include <net80211/ieee80211_ioctl.h>
#endif
#include <errno.h>
#include <fcntl.h>
#include <fnmatch.h>
#include <paths.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#if defined(OpenBSD) && OpenBSD >= 201411
/* OpenBSD dropped the global setting from sysctl but left the #define
* which causes a EPERM error when trying to use it.
* I think both the error and keeping the define are wrong, so we #undef it. */
#undef IPV6CTL_ACCEPT_RTADV
#endif
#include "common.h"
#include "dhcp.h"
#include "if.h"
#include "if-options.h"
#include "ipv4.h"
#include "ipv4ll.h"
#include "ipv6.h"
#include "ipv6nd.h"
#include "bpf-filter.h"
#ifndef RT_ROUNDUP
#define RT_ROUNDUP(a) \
((a) > 0 ? (1 + (((a) - 1) | (sizeof(long) - 1))) : sizeof(long))
#define RT_ADVANCE(x, n) (x += RT_ROUNDUP((n)->sa_len))
#endif
#define COPYOUT(sin, sa) do { \
if ((sa) && ((sa)->sa_family == AF_INET || (sa)->sa_family == 255)) \
(sin) = ((struct sockaddr_in *)(void *)(sa))->sin_addr; \
} while (0)
#define COPYOUT6(sin, sa) do { \
if ((sa) && ((sa)->sa_family == AF_INET6 || (sa)->sa_family == 255)) \
(sin) = ((struct sockaddr_in6 *)(void *)(sa))->sin6_addr; \
} while (0)
#ifndef CLLADDR
# define CLLADDR(s) ((const char *)((s)->sdl_data + (s)->sdl_nlen))
#endif
struct priv {
int pf_inet6_fd;
};
int
if_init(__unused struct interface *iface)
{
/* BSD promotes secondary address by default */
return 0;
}
int
if_conf(__unused struct interface *iface)
{
/* No extra checks needed on BSD */
return 0;
}
int
if_opensockets_os(struct dhcpcd_ctx *ctx)
{
struct priv *priv;
if ((priv = malloc(sizeof(*priv))) == NULL)
return -1;
ctx->priv = priv;
#ifdef INET6
priv->pf_inet6_fd = xsocket(PF_INET6, SOCK_DGRAM, 0, SOCK_CLOEXEC);
/* Don't return an error so we at least work on kernels witout INET6
* even though we expect INET6 support.
* We will fail noisily elsewhere anyway. */
#else
priv->pf_inet6_fd = -1;
#endif
ctx->link_fd = xsocket(PF_ROUTE, SOCK_RAW, 0,
SOCK_CLOEXEC | SOCK_NONBLOCK);
return ctx->link_fd == -1 ? -1 : 0;
}
void
if_closesockets_os(struct dhcpcd_ctx *ctx)
{
struct priv *priv;
priv = (struct priv *)ctx->priv;
if (priv->pf_inet6_fd != -1)
close(priv->pf_inet6_fd);
}
#if defined(INET) || defined(INET6)
static void
if_linkaddr(struct sockaddr_dl *sdl, const struct interface *ifp)
{
memset(sdl, 0, sizeof(*sdl));
sdl->sdl_family = AF_LINK;
sdl->sdl_len = sizeof(*sdl);
sdl->sdl_nlen = sdl->sdl_alen = sdl->sdl_slen = 0;
sdl->sdl_index = (unsigned short)ifp->index;
}
#endif
static int
if_getssid1(int s, const char *ifname, uint8_t *ssid)
{
int retval = -1;
#if defined(SIOCG80211NWID)
struct ifreq ifr;
struct ieee80211_nwid nwid;
#elif defined(IEEE80211_IOC_SSID)
struct ieee80211req ireq;
char nwid[IEEE80211_NWID_LEN];
#endif
#if defined(SIOCG80211NWID) /* NetBSD */
memset(&ifr, 0, sizeof(ifr));
strlcpy(ifr.ifr_name, ifname, sizeof(ifr.ifr_name));
memset(&nwid, 0, sizeof(nwid));
ifr.ifr_data = (void *)&nwid;
if (ioctl(s, SIOCG80211NWID, &ifr) == 0) {
if (ssid == NULL)
retval = nwid.i_len;
else if (nwid.i_len > IF_SSIDLEN)
errno = ENOBUFS;
else {
retval = nwid.i_len;
memcpy(ssid, nwid.i_nwid, nwid.i_len);
}
}
#elif defined(IEEE80211_IOC_SSID) /* FreeBSD */
memset(&ireq, 0, sizeof(ireq));
strlcpy(ireq.i_name, ifname, sizeof(ireq.i_name));
ireq.i_type = IEEE80211_IOC_SSID;
ireq.i_val = -1;
memset(nwid, 0, sizeof(nwid));
ireq.i_data = &nwid;
if (ioctl(s, SIOCG80211, &ireq) == 0) {
if (ssid == NULL)
retval = ireq.i_len;
else if (ireq.i_len > IF_SSIDLEN)
errno = ENOBUFS;
else {
retval = ireq.i_len;
memcpy(ssid, nwid, ireq.i_len);
}
}
#else
errno = ENOSYS;
#endif
return retval;
}
int
if_getssid(struct interface *ifp)
{
int r;
r = if_getssid1(ifp->ctx->pf_inet_fd, ifp->name, ifp->ssid);
if (r != -1)
ifp->ssid_len = (unsigned int)r;
else
ifp->ssid_len = 0;
ifp->ssid[ifp->ssid_len] = '\0';
return r;
}
/*
* FreeBSD allows for Virtual Access Points
* We need to check if the interface is a Virtual Interface Master
* and if so, don't use it.
* This check is made by virtue of being a IEEE80211 device but
* returning the SSID gives an error.
*/
int
if_vimaster(const struct dhcpcd_ctx *ctx, const char *ifname)
{
int r;
struct ifmediareq ifmr;
memset(&ifmr, 0, sizeof(ifmr));
strlcpy(ifmr.ifm_name, ifname, sizeof(ifmr.ifm_name));
r = ioctl(ctx->pf_inet_fd, SIOCGIFMEDIA, &ifmr);
if (r == -1)
return -1;
if (ifmr.ifm_status & IFM_AVALID &&
IFM_TYPE(ifmr.ifm_active) == IFM_IEEE80211)
{
if (if_getssid1(ctx->pf_inet_fd, ifname, NULL) == -1)
return 1;
}
return 0;
}
static void
get_addrs(int type, char *cp, struct sockaddr **sa)
{
int i;
for (i = 0; i < RTAX_MAX; i++) {
if (type & (1 << i)) {
sa[i] = (struct sockaddr *)cp;
RT_ADVANCE(cp, sa[i]);
} else
sa[i] = NULL;
}
}
#if defined(INET) || defined(INET6)
static struct interface *
if_findsdl(struct dhcpcd_ctx *ctx, struct sockaddr_dl *sdl)
{
if (sdl->sdl_index)
return if_findindex(ctx->ifaces, sdl->sdl_index);
if (sdl->sdl_nlen) {
char ifname[IF_NAMESIZE];
memcpy(ifname, sdl->sdl_data, sdl->sdl_nlen);
ifname[sdl->sdl_nlen] = '\0';
return if_find(ctx->ifaces, ifname);
}
if (sdl->sdl_alen) {
struct interface *ifp;
TAILQ_FOREACH(ifp, ctx->ifaces, next) {
if (ifp->hwlen == sdl->sdl_alen &&
memcmp(ifp->hwaddr,
sdl->sdl_data, sdl->sdl_alen) == 0)
return ifp;
}
}
return NULL;
}
#endif
#ifdef INET
const char *if_pfname = "Berkley Packet Filter";
int
if_openrawsocket(struct interface *ifp, uint16_t protocol)
{
struct ipv4_state *state;
int fd = -1;
struct ifreq ifr;
int ibuf_len = 0;
size_t buf_len;
struct bpf_version pv;
struct bpf_program pf;
#ifdef BIOCIMMEDIATE
int flags;
#endif
#ifndef O_CLOEXEC
int fd_opts;
#endif
#ifdef _PATH_BPF
fd = open(_PATH_BPF, O_RDWR | O_NONBLOCK
#ifdef O_CLOEXEC
| O_CLOEXEC
#endif
);
#else
char device[32];
int n = 0;
do {
snprintf(device, sizeof(device), "/dev/bpf%d", n++);
fd = open(device, O_RDWR | O_NONBLOCK
#ifdef O_CLOEXEC
| O_CLOEXEC
#endif
);
} while (fd == -1 && errno == EBUSY);
#endif
if (fd == -1)
return -1;
#ifndef O_CLOEXEC
if ((fd_opts = fcntl(fd, F_GETFD)) == -1 ||
fcntl(fd, F_SETFD, fd_opts | FD_CLOEXEC) == -1) {
close(fd);
return -1;
}
#endif
state = IPV4_STATE(ifp);
memset(&pv, 0, sizeof(pv));
if (ioctl(fd, BIOCVERSION, &pv) == -1)
goto eexit;
if (pv.bv_major != BPF_MAJOR_VERSION ||
pv.bv_minor < BPF_MINOR_VERSION) {
logger(ifp->ctx, LOG_ERR, "BPF version mismatch - recompile");
goto eexit;
}
memset(&ifr, 0, sizeof(ifr));
strlcpy(ifr.ifr_name, ifp->name, sizeof(ifr.ifr_name));
if (ioctl(fd, BIOCSETIF, &ifr) == -1)
goto eexit;
/* Get the required BPF buffer length from the kernel. */
if (ioctl(fd, BIOCGBLEN, &ibuf_len) == -1)
goto eexit;
buf_len = (size_t)ibuf_len;
if (state->buffer_size != buf_len) {
free(state->buffer);
state->buffer = malloc(buf_len);
if (state->buffer == NULL)
goto eexit;
state->buffer_size = buf_len;
state->buffer_len = state->buffer_pos = 0;
}
#ifdef BIOCIMMEDIATE
flags = 1;
if (ioctl(fd, BIOCIMMEDIATE, &flags) == -1)
goto eexit;
#endif
/* Install the DHCP filter */
memset(&pf, 0, sizeof(pf));
if (protocol == ETHERTYPE_ARP) {
pf.bf_insns = UNCONST(arp_bpf_filter);
pf.bf_len = arp_bpf_filter_len;
} else {
pf.bf_insns = UNCONST(dhcp_bpf_filter);
pf.bf_len = dhcp_bpf_filter_len;
}
if (ioctl(fd, BIOCSETF, &pf) == -1)
goto eexit;
return fd;
eexit:
free(state->buffer);
state->buffer = NULL;
close(fd);
return -1;
}
ssize_t
if_sendrawpacket(const struct interface *ifp, uint16_t protocol,
const void *data, size_t len)
{
struct iovec iov[2];
struct ether_header hw;
int fd;
memset(&hw, 0, ETHER_HDR_LEN);
memset(&hw.ether_dhost, 0xff, ETHER_ADDR_LEN);
hw.ether_type = htons(protocol);
iov[0].iov_base = &hw;
iov[0].iov_len = ETHER_HDR_LEN;
iov[1].iov_base = UNCONST(data);
iov[1].iov_len = len;
fd = ipv4_protocol_fd(ifp, protocol);
return writev(fd, iov, 2);
}
/* BPF requires that we read the entire buffer.
* So we pass the buffer in the API so we can loop on >1 packet. */
ssize_t
if_readrawpacket(struct interface *ifp, uint16_t protocol,
void *data, size_t len, int *flags)
{
int fd;
struct bpf_hdr packet;
ssize_t bytes;
const unsigned char *payload;
struct ipv4_state *state;
state = IPV4_STATE(ifp);
fd = ipv4_protocol_fd(ifp, protocol);
*flags = 0;
for (;;) {
if (state->buffer_len == 0) {
bytes = read(fd, state->buffer, state->buffer_size);
if (bytes == -1 || bytes == 0)
return bytes;
state->buffer_len = (size_t)bytes;
state->buffer_pos = 0;
}
bytes = -1;
memcpy(&packet, state->buffer + state->buffer_pos,
sizeof(packet));
if (packet.bh_caplen != packet.bh_datalen)
goto next; /* Incomplete packet, drop. */
if (state->buffer_pos + packet.bh_caplen + packet.bh_hdrlen >
state->buffer_len)
goto next; /* Packet beyond buffer, drop. */
payload = state->buffer + state->buffer_pos +
packet.bh_hdrlen + ETHER_HDR_LEN;
bytes = (ssize_t)packet.bh_caplen - ETHER_HDR_LEN;
if ((size_t)bytes > len)
bytes = (ssize_t)len;
memcpy(data, payload, (size_t)bytes);
next:
state->buffer_pos += BPF_WORDALIGN(packet.bh_hdrlen +
packet.bh_caplen);
if (state->buffer_pos >= state->buffer_len) {
state->buffer_len = state->buffer_pos = 0;
*flags |= RAW_EOF;
}
if (bytes != -1)
return bytes;
}
}
int
if_address(const struct interface *ifp, const struct in_addr *address,
const struct in_addr *netmask, const struct in_addr *broadcast,
int action)
{
int r;
struct in_aliasreq ifra;
memset(&ifra, 0, sizeof(ifra));
strlcpy(ifra.ifra_name, ifp->name, sizeof(ifra.ifra_name));
#define ADDADDR(var, addr) do { \
(var)->sin_family = AF_INET; \
(var)->sin_len = sizeof(*(var)); \
(var)->sin_addr = *(addr); \
} while (/*CONSTCOND*/0)
ADDADDR(&ifra.ifra_addr, address);
ADDADDR(&ifra.ifra_mask, netmask);
if (action >= 0 && broadcast)
ADDADDR(&ifra.ifra_broadaddr, broadcast);
#undef ADDADDR
r = ioctl(ifp->ctx->pf_inet_fd,
action < 0 ? SIOCDIFADDR : SIOCAIFADDR, &ifra);
return r;
}
static int
if_copyrt(struct dhcpcd_ctx *ctx, struct rt *rt, struct rt_msghdr *rtm)
{
char *cp;
struct sockaddr *sa, *rti_info[RTAX_MAX];
struct sockaddr_dl *sdl;
struct sockaddr_in *sin;
struct ipv4_addr *ia;
cp = (void *)(rtm + 1);
sa = (void *)cp;
if (sa->sa_family != AF_INET)
return -1;
if (~rtm->rtm_addrs & (RTA_DST | RTA_GATEWAY))
return -1;
#ifdef RTF_CLONED
if (rtm->rtm_flags & RTF_CLONED)
return -1;
#endif
#ifdef RTF_LOCAL
if (rtm->rtm_flags & RTF_LOCAL)
return -1;
#endif
#ifdef RTF_BROADCAST
if (rtm->rtm_flags & RTF_BROADCAST)
return -1;
#endif
get_addrs(rtm->rtm_addrs, cp, rti_info);
memset(rt, 0, sizeof(*rt));
rt->flags = (unsigned int)rtm->rtm_flags;
COPYOUT(rt->dest, rti_info[RTAX_DST]);
if (rtm->rtm_addrs & RTA_NETMASK)
COPYOUT(rt->net, rti_info[RTAX_NETMASK]);
else
rt->net.s_addr = INADDR_BROADCAST;
COPYOUT(rt->gate, rti_info[RTAX_GATEWAY]);
COPYOUT(rt->src, rti_info[RTAX_IFA]);
rt->mtu = (unsigned int)rtm->rtm_rmx.rmx_mtu;
if (rtm->rtm_index)
rt->iface = if_findindex(ctx->ifaces, rtm->rtm_index);
else if (rtm->rtm_addrs & RTA_IFP) {
sdl = (void *)rti_info[RTAX_IFP];
rt->iface = if_findsdl(ctx, sdl);
} else if (rtm->rtm_addrs & RTA_GATEWAY) {
sa = rti_info[RTAX_GATEWAY];
switch (sa->sa_family) {
case AF_LINK:
sdl = (void *)sa;
rt->iface = if_findsdl(ctx, sdl);
break;
case AF_INET:
sin = (void *)sa;
if ((ia = ipv4_findmaskaddr(ctx, &sin->sin_addr)))
rt->iface = ia->iface;
break;
default:
errno = EAFNOSUPPORT;
logger(ctx, LOG_ERR, "%s: %m", __func__);
return -1;
}
}
/* If we don't have an interface and it's a host route, it maybe
* to a local ip via the loopback interface. */
if (rt->iface == NULL &&
!(~rtm->rtm_flags & (RTF_HOST | RTF_GATEWAY)))
{
if ((ia = ipv4_findaddr(ctx, &rt->dest)))
rt->iface = ia->iface;
}
if (rt->iface == NULL) {
errno = ESRCH;
return -1;
}
return 0;
}
int
if_route(unsigned char cmd, const struct rt *rt)
{
union sockunion {
struct sockaddr sa;
struct sockaddr_in sin;
struct sockaddr_dl sdl;
} su;
struct rtm
{
struct rt_msghdr hdr;
char buffer[sizeof(su) * RTAX_MAX];
} rtm;
char *bp = rtm.buffer;
size_t l;
struct in_addr src_addr;
if ((cmd == RTM_ADD || cmd == RTM_DELETE || cmd == RTM_CHANGE) &&
rt->iface->ctx->options & DHCPCD_DAEMONISE &&
!(rt->iface->ctx->options & DHCPCD_DAEMONISED))
rt->iface->ctx->options |= DHCPCD_RTM_PPID;
#define ADDSU { \
l = RT_ROUNDUP(su.sa.sa_len); \
memcpy(bp, &su, l); \
bp += l; \
}
#define ADDADDR(addr) { \
memset(&su, 0, sizeof(su)); \
su.sin.sin_family = AF_INET; \
su.sin.sin_len = sizeof(su.sin); \
(&su.sin)->sin_addr = *(addr); \
ADDSU; \
}
memset(&rtm, 0, sizeof(rtm));
rtm.hdr.rtm_version = RTM_VERSION;
rtm.hdr.rtm_type = cmd;
rtm.hdr.rtm_addrs = RTA_DST;
rtm.hdr.rtm_flags = RTF_UP;
rtm.hdr.rtm_pid = getpid();
rtm.hdr.rtm_seq = ++rt->iface->ctx->seq;
#ifdef RTF_PINNED
if (cmd != RTM_ADD)
rtm.hdr.rtm_flags |= RTF_PINNED;
#endif
if (cmd == RTM_ADD || cmd == RTM_CHANGE) {
int subnet;
rtm.hdr.rtm_addrs |= RTA_GATEWAY | RTA_IFA | RTA_IFP;
/* Subnet routes are clonning or connected if supported.
* All other routes are static. */
subnet = ipv4_srcaddr(rt, &src_addr);
if (subnet == 1) {
#ifdef RTF_CLONING
rtm.hdr.rtm_flags |= RTF_CLONING;
#endif
#ifdef RTF_CONNECTED
rtm.hdr.rtm_flags |= RTF_CONNECTED;
#endif
#ifdef RTP_CONNECTED
rtm.hdr.rtm_priority = RTP_CONNECTED;
#endif
} else
rtm.hdr.rtm_flags |= RTF_STATIC;
if (subnet == -1) /* unikely */
rtm.hdr.rtm_addrs &= ~RTA_IFA;
}
if (rt->net.s_addr == htonl(INADDR_BROADCAST) &&
rt->gate.s_addr == htonl(INADDR_ANY))
{
#ifdef RTF_CLONING
/* We add a cloning network route for a single host.
* Traffic to the host will generate a cloned route and the
* hardware address will resolve correctly.
* It might be more correct to use RTF_HOST instead of
* RTF_CLONING, and that does work, but some OS generate
* an arp warning diagnostic which we don't want to do. */
rtm.hdr.rtm_flags |= RTF_CLONING;
rtm.hdr.rtm_addrs |= RTA_NETMASK;
#else
rtm.hdr.rtm_flags |= RTF_HOST;
#endif
} else if (rt->gate.s_addr == htonl(INADDR_LOOPBACK) &&
rt->net.s_addr == htonl(INADDR_BROADCAST))
{
rtm.hdr.rtm_flags |= RTF_HOST | RTF_GATEWAY;
/* Going via lo0 so remove the interface flags */
if (cmd == RTM_ADD)
rtm.hdr.rtm_addrs &= ~(RTA_IFA | RTA_IFP);
} else {
rtm.hdr.rtm_addrs |= RTA_NETMASK;
if (rtm.hdr.rtm_flags & RTF_STATIC)
rtm.hdr.rtm_flags |= RTF_GATEWAY;
if (rt->net.s_addr == htonl(INADDR_BROADCAST))
rtm.hdr.rtm_flags |= RTF_HOST;
}
if ((cmd == RTM_ADD || cmd == RTM_CHANGE) &&
!(rtm.hdr.rtm_flags & RTF_GATEWAY))
rtm.hdr.rtm_addrs |= RTA_IFP;
ADDADDR(&rt->dest);
if (rtm.hdr.rtm_addrs & RTA_GATEWAY) {
if ((rtm.hdr.rtm_flags & RTF_HOST &&
rt->gate.s_addr == htonl(INADDR_ANY)) ||
#ifdef RTF_CLONING
rtm.hdr.rtm_flags & RTF_CLONING ||
#endif
#ifdef RTF_CONNECTED
rtm.hdr.rtm_flags & RTF_CONNECTED ||
#endif
!(rtm.hdr.rtm_flags & RTF_STATIC))
{
if_linkaddr(&su.sdl, rt->iface);
ADDSU;
} else
ADDADDR(&rt->gate);
}
if (rtm.hdr.rtm_addrs & RTA_NETMASK)
ADDADDR(&rt->net);
if ((cmd == RTM_ADD || cmd == RTM_CHANGE) &&
(rtm.hdr.rtm_addrs & (RTA_IFP | RTA_IFA)))
{
rtm.hdr.rtm_index = (unsigned short)rt->iface->index;
if (rtm.hdr.rtm_addrs & RTA_IFP) {
if_linkaddr(&su.sdl, rt->iface);
ADDSU;
}
if (rtm.hdr.rtm_addrs & RTA_IFA)
ADDADDR(&src_addr);
if (rt->mtu) {
rtm.hdr.rtm_inits |= RTV_MTU;
rtm.hdr.rtm_rmx.rmx_mtu = rt->mtu;
}
}
#undef ADDADDR
#undef ADDSU
rtm.hdr.rtm_msglen = (unsigned short)(bp - (char *)&rtm);
if (write(rt->iface->ctx->link_fd, &rtm, rtm.hdr.rtm_msglen) == -1)
return -1;
rt->iface->ctx->sseq = rt->iface->ctx->seq;
return 0;
}
int
if_initrt(struct interface *ifp)
{
struct rt_msghdr *rtm;
int mib[6];
size_t needed;
char *buf, *p, *end;
struct rt rt;
ipv4_freerts(ifp->ctx->ipv4_kroutes);
mib[0] = CTL_NET;
mib[1] = PF_ROUTE;
mib[2] = 0;
mib[3] = AF_INET;
mib[4] = NET_RT_DUMP;
mib[5] = 0;
if (sysctl(mib, 6, NULL, &needed, NULL, 0) == -1)
return -1;
if (needed == 0)
return 0;
if ((buf = malloc(needed)) == NULL)
return -1;
if (sysctl(mib, 6, buf, &needed, NULL, 0) == -1)
return -1;
end = buf + needed;
for (p = buf; p < end; p += rtm->rtm_msglen) {
rtm = (void *)p;
if (if_copyrt(ifp->ctx, &rt, rtm) == 0)
ipv4_handlert(ifp->ctx, RTM_ADD, &rt, 1);
}
free(buf);
return 0;
}
#ifdef SIOCGIFAFLAG_IN
int
if_addrflags(const struct in_addr *addr, const struct interface *ifp)
{
struct ifreq ifr;
struct sockaddr_in *sin;
memset(&ifr, 0, sizeof(ifr));
strlcpy(ifr.ifr_name, ifp->name, sizeof(ifr.ifr_name));
sin = (void *)&ifr.ifr_addr;
sin->sin_family = AF_INET;
sin->sin_addr = *addr;
if (ioctl(ifp->ctx->pf_inet_fd, SIOCGIFAFLAG_IN, &ifr) == -1)
return -1;
return ifr.ifr_addrflags;
}
#else
int
if_addrflags(__unused const struct in_addr *addr,
__unused const struct interface *ifp)
{
errno = ENOTSUP;
return 0;
}
#endif
#endif /* INET */
#ifdef INET6
static void
ifa_scope(struct sockaddr_in6 *sin, unsigned int ifindex)
{
#ifdef __KAME__
/* KAME based systems want to store the scope inside the sin6_addr
* for link local addreses */
if (IN6_IS_ADDR_LINKLOCAL(&sin->sin6_addr)) {
uint16_t scope = htons((uint16_t)ifindex);
memcpy(&sin->sin6_addr.s6_addr[2], &scope,
sizeof(scope));
}
sin->sin6_scope_id = 0;
#else
if (IN6_IS_ADDR_LINKLOCAL(&sin->sin6_addr))
sin->sin6_scope_id = ifindex;
else
sin->sin6_scope_id = 0;
#endif
}
#ifdef __KAME__
#define DESCOPE(ia6) do { \
if (IN6_IS_ADDR_LINKLOCAL((ia6))) \
(ia6)->s6_addr[2] = (ia6)->s6_addr[3] = '\0'; \
} while (/*CONSTCOND */0)
#else
#define DESCOPE(ia6)
#endif
int
if_address6(const struct ipv6_addr *ia, int action)
{
struct in6_aliasreq ifa;
struct in6_addr mask;
struct priv *priv;
memset(&ifa, 0, sizeof(ifa));
strlcpy(ifa.ifra_name, ia->iface->name, sizeof(ifa.ifra_name));
/*
* We should not set IN6_IFF_TENTATIVE as the kernel should be
* able to work out if it's a new address or not.
*
* We should set IN6_IFF_AUTOCONF, but the kernel won't let us.
* This is probably a safety measure, but still it's not entirely right
* either.
*/
#if 0
if (ia->autoconf)
ifa.ifra_flags |= IN6_IFF_AUTOCONF;
#endif
#ifdef IPV6_MANGETEMPADDR
if (ia->flags & IPV6_AF_TEMPORARY)
ifa.ifra_flags |= IN6_IFF_TEMPORARY;
#endif
#define ADDADDR(v, addr) { \
(v)->sin6_family = AF_INET6; \
(v)->sin6_len = sizeof(*v); \
(v)->sin6_addr = *(addr); \
}
ADDADDR(&ifa.ifra_addr, &ia->addr);
ifa_scope(&ifa.ifra_addr, ia->iface->index);
ipv6_mask(&mask, ia->prefix_len);
ADDADDR(&ifa.ifra_prefixmask, &mask);
ifa.ifra_lifetime.ia6t_vltime = ia->prefix_vltime;
ifa.ifra_lifetime.ia6t_pltime = ia->prefix_pltime;
#undef ADDADDR
priv = (struct priv *)ia->iface->ctx->priv;
return ioctl(priv->pf_inet6_fd,
action < 0 ? SIOCDIFADDR_IN6 : SIOCAIFADDR_IN6, &ifa);
}
static int
if_copyrt6(struct dhcpcd_ctx *ctx, struct rt6 *rt, struct rt_msghdr *rtm)
{
char *cp;
struct sockaddr *sa, *rti_info[RTAX_MAX];
struct sockaddr_dl *sdl;
struct sockaddr_in6 *sin;
struct ipv6_addr *ia;
cp = (void *)(rtm + 1);
sa = (void *)cp;
if (sa->sa_family != AF_INET6)
return -1;
if (~rtm->rtm_addrs & (RTA_DST | RTA_GATEWAY))
return -1;
#ifdef RTF_CLONED
if (rtm->rtm_flags & (RTF_CLONED | RTF_HOST))
return -1;
#else
if (rtm->rtm_flags & RTF_HOST)
return -1;
#endif
#ifdef RTF_LOCAL
if (rtm->rtm_flags & RTF_LOCAL)
return -1;
#endif
get_addrs(rtm->rtm_addrs, cp, rti_info);
memset(rt, 0, sizeof(*rt));
rt->flags = (unsigned int)rtm->rtm_flags;
COPYOUT6(rt->dest, rti_info[RTAX_DST]);
DESCOPE(&rt->dest);
if (rtm->rtm_addrs & RTA_NETMASK) {
/*
* We need to zero out the struct beyond sin6_len and
* ensure it's valid.
* I have no idea what the invalid data is for, could be
* a kernel bug or actually used for something.
* Either way it needs to be zeroed out.
*/
struct sockaddr_in6 *sin6;
size_t e, i, final = 0, illegal = 0;
const unsigned char *p;
sin6 = (void *)rti_info[RTAX_NETMASK];
rt->net = sin6->sin6_addr;
e = sin6->sin6_len - offsetof(struct sockaddr_in6, sin6_addr);
if (e > sizeof(struct in6_addr))
e = sizeof(struct in6_addr);
for (p = (const unsigned char *)&sin6->sin6_addr, i = 0;
i < e;
p++)
{
if (final && *p) {
illegal = 1;
rt->net.s6_addr[i++] = 0x00;
continue;
}
switch (*p & 0xff) {
case 0xff:
break;
case 0xfe:
case 0xfc:
case 0xf8:
case 0xf0:
case 0xe0:
case 0xc0:
case 0x80:
final = 1;
break;
default:
final = 1;
illegal = 1;
break;
}
if (!illegal)
rt->net.s6_addr[i++] &= *p;
else
rt->net.s6_addr[i++] = 0x00;
}
while (i < sizeof(rt->net.s6_addr))
rt->net.s6_addr[i++] = 0x00;
} else
ipv6_mask(&rt->net, 128);
COPYOUT6(rt->gate, rti_info[RTAX_GATEWAY]);
DESCOPE(&rt->gate);
rt->mtu = (unsigned int)rtm->rtm_rmx.rmx_mtu;
if (rtm->rtm_index)
rt->iface = if_findindex(ctx->ifaces, rtm->rtm_index);
else if (rtm->rtm_addrs & RTA_IFP) {
sdl = (void *)rti_info[RTAX_IFP];
rt->iface = if_findsdl(ctx, sdl);
} else if (rtm->rtm_addrs & RTA_GATEWAY) {
sa = rti_info[RTAX_GATEWAY];
switch (sa->sa_family) {
case AF_LINK:
sdl = (void *)sa;
rt->iface = if_findsdl(ctx, sdl);
break;
case AF_INET6:
sin = (void *)sa;
if ((ia = ipv6_findmaskaddr(ctx, &sin->sin6_addr)))
rt->iface = ia->iface;
break;
default:
errno = EAFNOSUPPORT;
logger(ctx, LOG_ERR, "%s: %m", __func__);
return -1;
}
}
/* If we don't have an interface and it's a host route, it maybe
* to a local ip via the loopback interface. */
if (rt->iface == NULL &&
!(~rtm->rtm_flags & (RTF_HOST | RTF_GATEWAY)))
{
if ((ia = ipv6_findaddr(ctx, &rt->dest, 0)))
rt->iface = ia->iface;
}
if (rt->iface == NULL) {
errno = ESRCH;
return -1;
}
return 0;
}
int
if_route6(unsigned char cmd, const struct rt6 *rt)
{
union sockunion {
struct sockaddr sa;
struct sockaddr_in6 sin;
struct sockaddr_dl sdl;
} su;
struct rtm
{
struct rt_msghdr hdr;
char buffer[sizeof(su) * RTAX_MAX];
} rtm;
char *bp = rtm.buffer;
size_t l;
if ((cmd == RTM_ADD || cmd == RTM_DELETE || cmd == RTM_CHANGE) &&
rt->iface->ctx->options & DHCPCD_DAEMONISE &&
!(rt->iface->ctx->options & DHCPCD_DAEMONISED))
rt->iface->ctx->options |= DHCPCD_RTM_PPID;
#define ADDSU { \
l = RT_ROUNDUP(su.sa.sa_len); \
memcpy(bp, &su, l); \
bp += l; \
}
#define ADDADDRS(addr, scope) { \
memset(&su, 0, sizeof(su)); \
su.sin.sin6_family = AF_INET6; \
su.sin.sin6_len = sizeof(su.sin); \
(&su.sin)->sin6_addr = *addr; \
if (scope) \
ifa_scope(&su.sin, scope); \
ADDSU; \
}
#define ADDADDR(addr) ADDADDRS(addr, 0)
memset(&rtm, 0, sizeof(rtm));
rtm.hdr.rtm_version = RTM_VERSION;
rtm.hdr.rtm_type = cmd;
rtm.hdr.rtm_flags = RTF_UP | (int)rt->flags;
rtm.hdr.rtm_pid = getpid();
rtm.hdr.rtm_seq = ++rt->iface->ctx->seq;
#ifdef RTF_PINNED
if (rtm.hdr.rtm_type != RTM_ADD)
rtm.hdr.rtm_flags |= RTF_PINNED;
#endif
rtm.hdr.rtm_addrs = RTA_DST | RTA_NETMASK;
/* None interface subnet routes are static. */
if (IN6_IS_ADDR_UNSPECIFIED(&rt->gate)) {
#ifdef RTF_CLONING
rtm.hdr.rtm_flags |= RTF_CLONING;
#endif
#ifdef RTF_CONNECTED
rtm.hdr.rtm_flags |= RTF_CONNECTED;
#endif
#ifdef RTP_CONNECTED
rtm.hdr.rtm_priority = RTP_CONNECTED;
#endif
} else
rtm.hdr.rtm_flags |= RTF_GATEWAY | RTF_STATIC;
if (cmd == RTM_ADD || cmd == RTM_CHANGE) {
rtm.hdr.rtm_addrs |= RTA_GATEWAY;
if (!(rtm.hdr.rtm_flags & RTF_REJECT))
rtm.hdr.rtm_addrs |= RTA_IFP | RTA_IFA;
}
ADDADDR(&rt->dest);
if (rtm.hdr.rtm_addrs & RTA_GATEWAY) {
if (IN6_IS_ADDR_UNSPECIFIED(&rt->gate)) {
if_linkaddr(&su.sdl, rt->iface);
ADDSU;
} else {
ADDADDRS(&rt->gate, rt->iface->index);
}
}
if (rtm.hdr.rtm_addrs & RTA_NETMASK)
ADDADDR(&rt->net);
if (rtm.hdr.rtm_addrs & (RTA_IFP | RTA_IFA)) {
rtm.hdr.rtm_index = (unsigned short)rt->iface->index;
if (rtm.hdr.rtm_addrs & RTA_IFP) {
if_linkaddr(&su.sdl, rt->iface);
ADDSU;
}
if (rtm.hdr.rtm_addrs & RTA_IFA) {
const struct ipv6_addr *lla;
lla = ipv6_linklocal(UNCONST(rt->iface));
if (lla == NULL) /* unlikely */
return -1;
ADDADDRS(&lla->addr, rt->iface->index);
}
if (rt->mtu) {
rtm.hdr.rtm_inits |= RTV_MTU;
rtm.hdr.rtm_rmx.rmx_mtu = rt->mtu;
}
}
#undef ADDADDR
#undef ADDSU
rtm.hdr.rtm_msglen = (unsigned short)(bp - (char *)&rtm);
if (write(rt->iface->ctx->link_fd, &rtm, rtm.hdr.rtm_msglen) == -1)
return -1;
rt->iface->ctx->sseq = rt->iface->ctx->seq;
return 0;
}
int
if_initrt6(struct interface *ifp)
{
struct rt_msghdr *rtm;
int mib[6];
size_t needed;
char *buf, *p, *end;
struct rt6 rt;
ipv6_freerts(&ifp->ctx->ipv6->kroutes);
mib[0] = CTL_NET;
mib[1] = PF_ROUTE;
mib[2] = 0;
mib[3] = AF_INET6;
mib[4] = NET_RT_DUMP;
mib[5] = 0;
if (sysctl(mib, 6, NULL, &needed, NULL, 0) == -1)
return -1;
if (needed == 0)
return 0;
if ((buf = malloc(needed)) == NULL)
return -1;
if (sysctl(mib, 6, buf, &needed, NULL, 0) == -1)
return -1;
end = buf + needed;
for (p = buf; p < end; p += rtm->rtm_msglen) {
rtm = (void *)p;
if (if_copyrt6(ifp->ctx, &rt, rtm) == 0)
ipv6_handlert(ifp->ctx, RTM_ADD, &rt);
}
free(buf);
return 0;
}
int
if_addrflags6(const struct in6_addr *addr, const struct interface *ifp)
{
int flags;
struct in6_ifreq ifr6;
struct priv *priv;
memset(&ifr6, 0, sizeof(ifr6));
strlcpy(ifr6.ifr_name, ifp->name, sizeof(ifr6.ifr_name));
ifr6.ifr_addr.sin6_family = AF_INET6;
ifr6.ifr_addr.sin6_addr = *addr;
ifa_scope(&ifr6.ifr_addr, ifp->index);
priv = (struct priv *)ifp->ctx->priv;
if (ioctl(priv->pf_inet6_fd, SIOCGIFAFLAG_IN6, &ifr6) != -1)
flags = ifr6.ifr_ifru.ifru_flags6;
else
flags = -1;
return flags;
}
int
if_getlifetime6(struct ipv6_addr *ia)
{
struct in6_ifreq ifr6;
time_t t;
struct in6_addrlifetime *lifetime;
struct priv *priv;
memset(&ifr6, 0, sizeof(ifr6));
strlcpy(ifr6.ifr_name, ia->iface->name, sizeof(ifr6.ifr_name));
ifr6.ifr_addr.sin6_family = AF_INET6;
ifr6.ifr_addr.sin6_addr = ia->addr;
ifa_scope(&ifr6.ifr_addr, ia->iface->index);
priv = (struct priv *)ia->iface->ctx->priv;
if (ioctl(priv->pf_inet6_fd, SIOCGIFALIFETIME_IN6, &ifr6) == -1)
return -1;
t = time(NULL);
lifetime = &ifr6.ifr_ifru.ifru_lifetime;
if (lifetime->ia6t_preferred)
ia->prefix_pltime = (uint32_t)(lifetime->ia6t_preferred -
MIN(t, lifetime->ia6t_preferred));
else
ia->prefix_pltime = ND6_INFINITE_LIFETIME;
if (lifetime->ia6t_expire) {
ia->prefix_vltime = (uint32_t)(lifetime->ia6t_expire -
MIN(t, lifetime->ia6t_expire));
/* Calculate the created time */
clock_gettime(CLOCK_MONOTONIC, &ia->created);
ia->created.tv_sec -= lifetime->ia6t_vltime - ia->prefix_vltime;
} else
ia->prefix_vltime = ND6_INFINITE_LIFETIME;
return 0;
}
#endif
int
if_managelink(struct dhcpcd_ctx *ctx)
{
/* route and ifwatchd like a msg buf size of 2048 */
char msg[2048], *p, *e, *cp;
ssize_t bytes;
struct rt_msghdr *rtm;
struct if_announcemsghdr *ifan;
struct if_msghdr *ifm;
struct ifa_msghdr *ifam;
struct sockaddr *sa, *rti_info[RTAX_MAX];
int len;
struct sockaddr_dl sdl;
struct interface *ifp;
#ifdef INET
struct rt rt;
#endif
#ifdef INET6
struct rt6 rt6;
struct in6_addr ia6, net6;
struct sockaddr_in6 *sin6;
#endif
#if (defined(INET) && defined(IN_IFF_TENTATIVE)) || defined(INET6)
int ifa_flags;
#endif
if ((bytes = read(ctx->link_fd, msg, sizeof(msg))) == -1)
return -1;
e = msg + bytes;
for (p = msg; p < e; p += rtm->rtm_msglen) {
rtm = (void *)p;
if (rtm->rtm_type == RTM_MISS)
continue;
/* Ignore messages generated by us */
if (rtm->rtm_pid == getpid()) {
ctx->options &= ~DHCPCD_RTM_PPID;
continue;
}
/* Ignore messages sent by the parent process after forking */
if ((ctx->options & (DHCPCD_RTM_PPID | DHCPCD_DAEMONISED)) ==
(DHCPCD_RTM_PPID | DHCPCD_DAEMONISED) &&
rtm->rtm_pid == ctx->ppid)
{
/* If this is the last successful message sent clear
* the check flag as it's possible another process could
* re-use the same pid and also manipulate the kernel
* routing table. */
if (rtm->rtm_seq == ctx->pseq)
ctx->options &= ~DHCPCD_RTM_PPID;
continue;
}
switch(rtm->rtm_type) {
#ifdef RTM_IFANNOUNCE
case RTM_IFANNOUNCE:
ifan = (void *)p;
switch(ifan->ifan_what) {
case IFAN_ARRIVAL:
dhcpcd_handleinterface(ctx, 1,
ifan->ifan_name);
break;
case IFAN_DEPARTURE:
dhcpcd_handleinterface(ctx, -1,
ifan->ifan_name);
break;
}
break;
#endif
case RTM_IFINFO:
ifm = (void *)p;
ifp = if_findindex(ctx->ifaces, ifm->ifm_index);
if (ifp == NULL)
break;
switch (ifm->ifm_data.ifi_link_state) {
case LINK_STATE_DOWN:
len = LINK_DOWN;
break;
case LINK_STATE_UP:
len = LINK_UP;
break;
default:
/* handle_carrier will re-load
* the interface flags and check for
* IFF_RUNNING as some drivers that
* don't handle link state also don't
* set IFF_RUNNING when this routing
* message is generated.
* As such, it is a race ...*/
len = LINK_UNKNOWN;
break;
}
dhcpcd_handlecarrier(ctx, len,
(unsigned int)ifm->ifm_flags, ifp->name);
break;
case RTM_ADD:
case RTM_CHANGE:
case RTM_DELETE:
cp = (void *)(rtm + 1);
sa = (void *)cp;
switch (sa->sa_family) {
#ifdef INET
case AF_INET:
if (if_copyrt(ctx, &rt, rtm) == 0)
ipv4_handlert(ctx, rtm->rtm_type,&rt,0);
break;
#endif
#ifdef INET6
case AF_INET6:
if (~rtm->rtm_addrs & (RTA_DST | RTA_GATEWAY))
break;
/*
* BSD caches host routes in the
* routing table.
* As such, we should be notified of
* reachability by its existance
* with a hardware address
*/
if (rtm->rtm_flags & (RTF_HOST)) {
get_addrs(rtm->rtm_addrs, cp, rti_info);
COPYOUT6(ia6, rti_info[RTAX_DST]);
DESCOPE(&ia6);
if (rti_info[RTAX_GATEWAY]->sa_family
== AF_LINK)
memcpy(&sdl,
rti_info[RTAX_GATEWAY],
sizeof(sdl));
else
sdl.sdl_alen = 0;
ipv6nd_neighbour(ctx, &ia6,
rtm->rtm_type != RTM_DELETE &&
sdl.sdl_alen ?
IPV6ND_REACHABLE : 0);
break;
}
if (if_copyrt6(ctx, &rt6, rtm) == 0)
ipv6_handlert(ctx, rtm->rtm_type, &rt6);
break;
#endif
}
break;
#ifdef RTM_CHGADDR
case RTM_CHGADDR: /* FALLTHROUGH */
#endif
case RTM_DELADDR: /* FALLTHROUGH */
case RTM_NEWADDR:
ifam = (void *)p;
ifp = if_findindex(ctx->ifaces, ifam->ifam_index);
if (ifp == NULL)
break;
cp = (void *)(ifam + 1);
get_addrs(ifam->ifam_addrs, cp, rti_info);
if (rti_info[RTAX_IFA] == NULL)
break;
switch (rti_info[RTAX_IFA]->sa_family) {
case AF_LINK:
#ifdef RTM_CHGADDR
if (rtm->rtm_type != RTM_CHGADDR)
break;
#else
if (rtm->rtm_type != RTM_NEWADDR)
break;
#endif
memcpy(&sdl, rti_info[RTAX_IFA],
rti_info[RTAX_IFA]->sa_len);
dhcpcd_handlehwaddr(ctx, ifp->name,
(const unsigned char*)CLLADDR(&sdl),
sdl.sdl_alen);
break;
#ifdef INET
case AF_INET:
case 255: /* FIXME: Why 255? */
COPYOUT(rt.dest, rti_info[RTAX_IFA]);
COPYOUT(rt.net, rti_info[RTAX_NETMASK]);
COPYOUT(rt.gate, rti_info[RTAX_BRD]);
if (rtm->rtm_type == RTM_NEWADDR) {
ifa_flags = if_addrflags(&rt.dest, ifp);
if (ifa_flags == -1)
break;
} else
ifa_flags = 0;
ipv4_handleifa(ctx, rtm->rtm_type,
NULL, ifp->name,
&rt.dest, &rt.net, &rt.gate, ifa_flags);
break;
#endif
#ifdef INET6
case AF_INET6:
sin6 = (void *)rti_info[RTAX_IFA];
ia6 = sin6->sin6_addr;
DESCOPE(&ia6);
sin6 = (void *)rti_info[RTAX_NETMASK];
net6 = sin6->sin6_addr;
DESCOPE(&net6);
if (rtm->rtm_type == RTM_NEWADDR) {
ifa_flags = if_addrflags6(&ia6, ifp);
if (ifa_flags == -1)
break;
} else
ifa_flags = 0;
ipv6_handleifa(ctx, rtm->rtm_type, NULL,
ifp->name, &ia6, ipv6_prefixlen(&net6),
ifa_flags);
break;
#endif
}
break;
}
}
return 0;
}
#ifndef SYS_NMLN /* OSX */
# define SYS_NMLN 256
#endif
#ifndef HW_MACHINE_ARCH
# ifdef HW_MODEL /* OpenBSD */
# define HW_MACHINE_ARCH HW_MODEL
# endif
#endif
int
if_machinearch(char *str, size_t len)
{
int mib[2] = { CTL_HW, HW_MACHINE_ARCH };
char march[SYS_NMLN];
size_t marchlen = sizeof(march);
if (sysctl(mib, sizeof(mib) / sizeof(mib[0]),
march, &marchlen, NULL, 0) != 0)
return -1;
return snprintf(str, len, ":%s", march);
}
#ifdef INET6
#ifdef IPV6CTL_ACCEPT_RTADV
#define get_inet6_sysctl(code) inet6_sysctl(code, 0, 0)
#define set_inet6_sysctl(code, val) inet6_sysctl(code, val, 1)
static int
inet6_sysctl(int code, int val, int action)
{
int mib[] = { CTL_NET, PF_INET6, IPPROTO_IPV6, 0 };
size_t size;
mib[3] = code;
size = sizeof(val);
if (action) {
if (sysctl(mib, sizeof(mib)/sizeof(mib[0]),
NULL, 0, &val, size) == -1)
return -1;
return 0;
}
if (sysctl(mib, sizeof(mib)/sizeof(mib[0]), &val, &size, NULL, 0) == -1)
return -1;
return val;
}
#endif
#ifdef IPV6_MANAGETEMPADDR
#ifndef IPV6CTL_TEMPVLTIME
#define get_inet6_sysctlbyname(code) inet6_sysctlbyname(code, 0, 0)
#define set_inet6_sysctlbyname(code, val) inet6_sysctlbyname(code, val, 1)
static int
inet6_sysctlbyname(const char *name, int val, int action)
{
size_t size;
size = sizeof(val);
if (action) {
if (sysctlbyname(name, NULL, 0, &val, size) == -1)
return -1;
return 0;
}
if (sysctlbyname(name, &val, &size, NULL, 0) == -1)
return -1;
return val;
}
#endif
int
ip6_use_tempaddr(__unused const char *ifname)
{
int val;
#ifdef IPV6CTL_USETEMPADDR
val = get_inet6_sysctl(IPV6CTL_USETEMPADDR);
#else
val = get_inet6_sysctlbyname("net.inet6.ip6.use_tempaddr");
#endif
return val == -1 ? 0 : val;
}
int
ip6_temp_preferred_lifetime(__unused const char *ifname)
{
int val;
#ifdef IPV6CTL_TEMPPLTIME
val = get_inet6_sysctl(IPV6CTL_TEMPPLTIME);
#else
val = get_inet6_sysctlbyname("net.inet6.ip6.temppltime");
#endif
return val < 0 ? TEMP_PREFERRED_LIFETIME : val;
}
int
ip6_temp_valid_lifetime(__unused const char *ifname)
{
int val;
#ifdef IPV6CTL_TEMPVLTIME
val = get_inet6_sysctl(IPV6CTL_TEMPVLTIME);
#else
val = get_inet6_sysctlbyname("net.inet6.ip6.tempvltime");
#endif
return val < 0 ? TEMP_VALID_LIFETIME : val;
}
#endif
#define del_if_nd6_flag(s, ifname, flag) if_nd6_flag((s), (ifp), (flag), -1)
#define get_if_nd6_flag(s, ifname, flag) if_nd6_flag((s), (ifp), (flag), 0)
#define set_if_nd6_flag(s, ifname, flag) if_nd6_flag((s), (ifp), (flag), 1)
static int
if_nd6_flag(int s, const struct interface *ifp, unsigned int flag, int set)
{
struct in6_ndireq nd;
unsigned int oflags;
memset(&nd, 0, sizeof(nd));
strlcpy(nd.ifname, ifp->name, sizeof(nd.ifname));
if (ioctl(s, SIOCGIFINFO_IN6, &nd) == -1)
return -1;
if (set == 0)
return nd.ndi.flags & flag ? 1 : 0;
oflags = nd.ndi.flags;
if (set == -1)
nd.ndi.flags &= ~flag;
else
nd.ndi.flags |= flag;
if (oflags == nd.ndi.flags)
return 0;
return ioctl(s, SIOCSIFINFO_FLAGS, &nd);
}
static int
if_raflush(int s)
{
char dummy[IFNAMSIZ + 8];
strlcpy(dummy, "lo0", sizeof(dummy));
if (ioctl(s, SIOCSRTRFLUSH_IN6, (void *)&dummy) == -1 ||
ioctl(s, SIOCSPFXFLUSH_IN6, (void *)&dummy) == -1)
return -1;
return 0;
}
#ifdef SIOCIFAFATTACH
static int
af_attach(int s, const struct interface *ifp, int af)
{
struct if_afreq ifar;
strlcpy(ifar.ifar_name, ifp->name, sizeof(ifar.ifar_name));
ifar.ifar_af = af;
return ioctl(s, SIOCIFAFATTACH, (void *)&ifar);
}
#endif
#ifdef SIOCGIFXFLAGS
static int
set_ifxflags(int s, const struct interface *ifp, int own)
{
struct ifreq ifr;
int flags;
#ifndef IFXF_NOINET6
/* No point in removing the no inet6 flag if it doesn't
* exist and we're not owning inet6. */
if (! own)
return 0;
#endif
strlcpy(ifr.ifr_name, ifp->name, sizeof(ifr.ifr_name));
if (ioctl(s, SIOCGIFXFLAGS, (void *)&ifr) == -1)
return -1;
flags = ifr.ifr_flags;
#ifdef IFXF_NOINET6
flags &= ~IFXF_NOINET6;
#endif
if (own)
flags &= ~IFXF_AUTOCONF6;
if (ifr.ifr_flags == flags)
return 0;
ifr.ifr_flags = flags;
return ioctl(s, SIOCSIFXFLAGS, (void *)&ifr);
}
#endif
static int
_if_checkipv6(int s, struct dhcpcd_ctx *ctx,
const struct interface *ifp, int own)
{
int ra;
if (ifp) {
#ifdef ND6_IFF_OVERRIDE_RTADV
int override;
#endif
#ifdef ND6_IFF_AUTO_LINKLOCAL
if (own) {
int all;
all = get_if_nd6_flag(s, ifp, ND6_IFF_AUTO_LINKLOCAL);
if (all == -1)
logger(ifp->ctx, LOG_ERR,
"%s: get_if_nd6_flag: "
"ND6_IFF_AUTO_LINKLOCAL: %m",
ifp->name);
else if (all != 0) {
logger(ifp->ctx, LOG_DEBUG,
"%s: disabling Kernel IPv6 "
"auto link-local support",
ifp->name);
if (del_if_nd6_flag(s, ifp,
ND6_IFF_AUTO_LINKLOCAL) == -1)
{
logger(ifp->ctx, LOG_ERR,
"%s: del_if_nd6_flag: "
"ND6_IFF_AUTO_LINKLOCAL: %m",
ifp->name);
return -1;
}
}
}
#endif
#ifdef ND6_IFF_PERFORMNUD
if (set_if_nd6_flag(s, ifp, ND6_IFF_PERFORMNUD) == -1) {
logger(ifp->ctx, LOG_ERR,
"%s: set_if_nd6_flag: ND6_IFF_PERFORMNUD: %m",
ifp->name);
return -1;
}
#endif
#ifdef ND6_IFF_OVERRIDE_RTADV
override = get_if_nd6_flag(s, ifp, ND6_IFF_OVERRIDE_RTADV);
if (override == -1)
logger(ifp->ctx, LOG_ERR,
"%s: get_if_nd6_flag: ND6_IFF_OVERRIDE_RTADV: %m",
ifp->name);
else if (override == 0 && own) {
if (set_if_nd6_flag(s, ifp, ND6_IFF_OVERRIDE_RTADV)
== -1)
logger(ifp->ctx, LOG_ERR,
"%s: set_if_nd6_flag: "
"ND6_IFF_OVERRIDE_RTADV: %m",
ifp->name);
else
override = 1;
}
#endif
#ifdef ND6_IFF_ACCEPT_RTADV
ra = get_if_nd6_flag(s, ifp, ND6_IFF_ACCEPT_RTADV);
if (ra == -1)
logger(ifp->ctx, LOG_ERR,
"%s: get_if_nd6_flag: ND6_IFF_ACCEPT_RTADV: %m",
ifp->name);
else if (ra != 0 && own) {
logger(ifp->ctx, LOG_DEBUG,
"%s: disabling Kernel IPv6 RA support",
ifp->name);
if (del_if_nd6_flag(s, ifp, ND6_IFF_ACCEPT_RTADV)
== -1)
logger(ifp->ctx, LOG_ERR,
"%s: del_if_nd6_flag: "
"ND6_IFF_ACCEPT_RTADV: %m",
ifp->name);
else
ra = 0;
} else if (ra == 0 && !own)
logger(ifp->ctx, LOG_WARNING,
"%s: IPv6 kernel autoconf disabled", ifp->name);
#endif
/* Enabling IPv6 by whatever means must be the
* last action undertaken to ensure kernel RS and
* LLADDR auto configuration are disabled where applicable. */
#ifdef SIOCIFAFATTACH
if (af_attach(s, ifp, AF_INET6) == -1) {
logger(ifp->ctx, LOG_ERR,
"%s: af_attach: %m", ifp->name);
return 1;
}
#endif
#ifdef SIOCGIFXFLAGS
if (set_ifxflags(s, ifp, own) == -1) {
logger(ifp->ctx, LOG_ERR,
"%s: set_ifxflags: %m", ifp->name);
return -1;
}
#endif
#ifdef ND6_IFF_IFDISABLED
if (del_if_nd6_flag(s, ifp, ND6_IFF_IFDISABLED) == -1) {
logger(ifp->ctx, LOG_ERR,
"%s: del_if_nd6_flag: ND6_IFF_IFDISABLED: %m",
ifp->name);
return -1;
}
#endif
#ifdef ND6_IFF_ACCEPT_RTADV
#ifdef ND6_IFF_OVERRIDE_RTADV
if (override == 0 && ra)
return ctx->ra_global;
#endif
return ra;
#else
return ctx->ra_global;
#endif
}
#ifdef IPV6CTL_ACCEPT_RTADV
ra = get_inet6_sysctl(IPV6CTL_ACCEPT_RTADV);
if (ra == -1)
/* The sysctl probably doesn't exist, but this isn't an
* error as such so just log it and continue */
logger(ctx, errno == ENOENT ? LOG_DEBUG : LOG_WARNING,
"IPV6CTL_ACCEPT_RTADV: %m");
else if (ra != 0 && own) {
logger(ctx, LOG_DEBUG, "disabling Kernel IPv6 RA support");
if (set_inet6_sysctl(IPV6CTL_ACCEPT_RTADV, 0) == -1) {
logger(ctx, LOG_ERR, "IPV6CTL_ACCEPT_RTADV: %m");
return ra;
}
ra = 0;
#else
ra = 0;
if (own) {
#endif
/* Flush the kernel knowledge of advertised routers
* and prefixes so the kernel does not expire prefixes
* and default routes we are trying to own. */
if (if_raflush(s) == -1)
logger(ctx, LOG_WARNING, "if_raflush: %m");
}
ctx->ra_global = ra;
return ra;
}
int
if_checkipv6(struct dhcpcd_ctx *ctx, const struct interface *ifp, int own)
{
struct priv *priv;
priv = (struct priv *)ctx->priv;
return _if_checkipv6(priv->pf_inet6_fd, ctx, ifp, own);
}
#endif