NetBSD/sys/dev/pci/if_vr.c

1657 lines
42 KiB
C

/* $NetBSD: if_vr.c,v 1.51 2001/07/23 17:26:50 thorpej Exp $ */
/*-
* Copyright (c) 1998, 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1997, 1998
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: if_vr.c,v 1.7 1999/01/10 18:51:49 wpaul Exp $
*/
/*
* VIA Rhine fast ethernet PCI NIC driver
*
* Supports various network adapters based on the VIA Rhine
* and Rhine II PCI controllers, including the D-Link DFE530TX.
* Datasheets are available at http://www.via.com.tw.
*
* Written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The VIA Rhine controllers are similar in some respects to the
* the DEC tulip chips, except less complicated. The controller
* uses an MII bus and an external physical layer interface. The
* receiver has a one entry perfect filter and a 64-bit hash table
* multicast filter. Transmit and receive descriptors are similar
* to the tulip.
*
* The Rhine has a serious flaw in its transmit DMA mechanism:
* transmit buffers must be longword aligned. Unfortunately,
* the kernel doesn't guarantee that mbufs will be filled in starting
* at longword boundaries, so we have to do a buffer copy before
* transmission.
*
* Apparently, the receive DMA mechanism also has the same flaw. This
* means that on systems with struct alignment requirements, incoming
* frames must be copied to a new buffer which shifts the data forward
* 2 bytes so that the payload is aligned on a 4-byte boundary.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <uvm/uvm_extern.h> /* for PAGE_SIZE */
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include "bpfilter.h"
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <machine/bus.h>
#include <machine/intr.h>
#include <machine/endian.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_vrreg.h>
#define VR_USEIOSPACE
/*
* Various supported device vendors/types and their names.
*/
static struct vr_type {
pci_vendor_id_t vr_vid;
pci_product_id_t vr_did;
const char *vr_name;
} vr_devs[] = {
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT3043,
"VIA VT3043 (Rhine) 10/100" },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT6102,
"VIA VT6102 (Rhine II) 10/100" },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_VT86C100A,
"VIA VT86C100A (Rhine-II) 10/100" },
{ 0, 0, NULL }
};
/*
* Transmit descriptor list size.
*/
#define VR_NTXDESC 64
#define VR_NTXDESC_MASK (VR_NTXDESC - 1)
#define VR_NEXTTX(x) (((x) + 1) & VR_NTXDESC_MASK)
/*
* Receive descriptor list size.
*/
#define VR_NRXDESC 64
#define VR_NRXDESC_MASK (VR_NRXDESC - 1)
#define VR_NEXTRX(x) (((x) + 1) & VR_NRXDESC_MASK)
/*
* Control data structres that are DMA'd to the Rhine chip. We allocate
* them in a single clump that maps to a single DMA segment to make several
* things easier.
*
* Note that since we always copy outgoing packets to aligned transmit
* buffers, we can reduce the transmit descriptors to one per packet.
*/
struct vr_control_data {
struct vr_desc vr_txdescs[VR_NTXDESC];
struct vr_desc vr_rxdescs[VR_NRXDESC];
};
#define VR_CDOFF(x) offsetof(struct vr_control_data, x)
#define VR_CDTXOFF(x) VR_CDOFF(vr_txdescs[(x)])
#define VR_CDRXOFF(x) VR_CDOFF(vr_rxdescs[(x)])
/*
* Software state of transmit and receive descriptors.
*/
struct vr_descsoft {
struct mbuf *ds_mbuf; /* head of mbuf chain */
bus_dmamap_t ds_dmamap; /* our DMA map */
};
struct vr_softc {
struct device vr_dev; /* generic device glue */
void *vr_ih; /* interrupt cookie */
void *vr_ats; /* shutdown hook */
bus_space_tag_t vr_bst; /* bus space tag */
bus_space_handle_t vr_bsh; /* bus space handle */
bus_dma_tag_t vr_dmat; /* bus DMA tag */
pci_chipset_tag_t vr_pc; /* PCI chipset info */
struct ethercom vr_ec; /* Ethernet common info */
u_int8_t vr_enaddr[ETHER_ADDR_LEN];
struct mii_data vr_mii; /* MII/media info */
struct callout vr_tick_ch; /* tick callout */
bus_dmamap_t vr_cddmamap; /* control data DMA map */
#define vr_cddma vr_cddmamap->dm_segs[0].ds_addr
/*
* Software state for transmit and receive descriptors.
*/
struct vr_descsoft vr_txsoft[VR_NTXDESC];
struct vr_descsoft vr_rxsoft[VR_NRXDESC];
/*
* Control data structures.
*/
struct vr_control_data *vr_control_data;
int vr_txpending; /* number of TX requests pending */
int vr_txdirty; /* first dirty TX descriptor */
int vr_txlast; /* last used TX descriptor */
int vr_rxptr; /* next ready RX descriptor */
};
#define VR_CDTXADDR(sc, x) ((sc)->vr_cddma + VR_CDTXOFF((x)))
#define VR_CDRXADDR(sc, x) ((sc)->vr_cddma + VR_CDRXOFF((x)))
#define VR_CDTX(sc, x) (&(sc)->vr_control_data->vr_txdescs[(x)])
#define VR_CDRX(sc, x) (&(sc)->vr_control_data->vr_rxdescs[(x)])
#define VR_DSTX(sc, x) (&(sc)->vr_txsoft[(x)])
#define VR_DSRX(sc, x) (&(sc)->vr_rxsoft[(x)])
#define VR_CDTXSYNC(sc, x, ops) \
bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
VR_CDTXOFF((x)), sizeof(struct vr_desc), (ops))
#define VR_CDRXSYNC(sc, x, ops) \
bus_dmamap_sync((sc)->vr_dmat, (sc)->vr_cddmamap, \
VR_CDRXOFF((x)), sizeof(struct vr_desc), (ops))
/*
* Note we rely on MCLBYTES being a power of two below.
*/
#define VR_INIT_RXDESC(sc, i) \
do { \
struct vr_desc *__d = VR_CDRX((sc), (i)); \
struct vr_descsoft *__ds = VR_DSRX((sc), (i)); \
\
__d->vr_next = htole32(VR_CDRXADDR((sc), VR_NEXTRX((i)))); \
__d->vr_status = htole32(VR_RXSTAT_FIRSTFRAG | \
VR_RXSTAT_LASTFRAG | VR_RXSTAT_OWN); \
__d->vr_data = htole32(__ds->ds_dmamap->dm_segs[0].ds_addr); \
__d->vr_ctl = htole32(VR_RXCTL_CHAIN | VR_RXCTL_RX_INTR | \
((MCLBYTES - 1) & VR_RXCTL_BUFLEN)); \
VR_CDRXSYNC((sc), (i), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
} while (0)
/*
* register space access macros
*/
#define CSR_WRITE_4(sc, reg, val) \
bus_space_write_4(sc->vr_bst, sc->vr_bsh, reg, val)
#define CSR_WRITE_2(sc, reg, val) \
bus_space_write_2(sc->vr_bst, sc->vr_bsh, reg, val)
#define CSR_WRITE_1(sc, reg, val) \
bus_space_write_1(sc->vr_bst, sc->vr_bsh, reg, val)
#define CSR_READ_4(sc, reg) \
bus_space_read_4(sc->vr_bst, sc->vr_bsh, reg)
#define CSR_READ_2(sc, reg) \
bus_space_read_2(sc->vr_bst, sc->vr_bsh, reg)
#define CSR_READ_1(sc, reg) \
bus_space_read_1(sc->vr_bst, sc->vr_bsh, reg)
#define VR_TIMEOUT 1000
static int vr_add_rxbuf __P((struct vr_softc *, int));
static void vr_rxeof __P((struct vr_softc *));
static void vr_rxeoc __P((struct vr_softc *));
static void vr_txeof __P((struct vr_softc *));
static int vr_intr __P((void *));
static void vr_start __P((struct ifnet *));
static int vr_ioctl __P((struct ifnet *, u_long, caddr_t));
static int vr_init __P((struct ifnet *));
static void vr_stop __P((struct ifnet *, int));
static void vr_rxdrain __P((struct vr_softc *));
static void vr_watchdog __P((struct ifnet *));
static void vr_tick __P((void *));
static int vr_ifmedia_upd __P((struct ifnet *));
static void vr_ifmedia_sts __P((struct ifnet *, struct ifmediareq *));
static int vr_mii_readreg __P((struct device *, int, int));
static void vr_mii_writereg __P((struct device *, int, int, int));
static void vr_mii_statchg __P((struct device *));
static void vr_setmulti __P((struct vr_softc *));
static void vr_reset __P((struct vr_softc *));
int vr_copy_small = 0;
#define VR_SETBIT(sc, reg, x) \
CSR_WRITE_1(sc, reg, \
CSR_READ_1(sc, reg) | x)
#define VR_CLRBIT(sc, reg, x) \
CSR_WRITE_1(sc, reg, \
CSR_READ_1(sc, reg) & ~x)
#define VR_SETBIT16(sc, reg, x) \
CSR_WRITE_2(sc, reg, \
CSR_READ_2(sc, reg) | x)
#define VR_CLRBIT16(sc, reg, x) \
CSR_WRITE_2(sc, reg, \
CSR_READ_2(sc, reg) & ~x)
#define VR_SETBIT32(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) | x)
#define VR_CLRBIT32(sc, reg, x) \
CSR_WRITE_4(sc, reg, \
CSR_READ_4(sc, reg) & ~x)
/*
* MII bit-bang glue.
*/
u_int32_t vr_mii_bitbang_read __P((struct device *));
void vr_mii_bitbang_write __P((struct device *, u_int32_t));
const struct mii_bitbang_ops vr_mii_bitbang_ops = {
vr_mii_bitbang_read,
vr_mii_bitbang_write,
{
VR_MIICMD_DATAOUT, /* MII_BIT_MDO */
VR_MIICMD_DATAIN, /* MII_BIT_MDI */
VR_MIICMD_CLK, /* MII_BIT_MDC */
VR_MIICMD_DIR, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
u_int32_t
vr_mii_bitbang_read(self)
struct device *self;
{
struct vr_softc *sc = (void *) self;
return (CSR_READ_1(sc, VR_MIICMD));
}
void
vr_mii_bitbang_write(self, val)
struct device *self;
u_int32_t val;
{
struct vr_softc *sc = (void *) self;
CSR_WRITE_1(sc, VR_MIICMD, (val & 0xff) | VR_MIICMD_DIRECTPGM);
}
/*
* Read an PHY register through the MII.
*/
static int
vr_mii_readreg(self, phy, reg)
struct device *self;
int phy, reg;
{
struct vr_softc *sc = (void *) self;
CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
return (mii_bitbang_readreg(self, &vr_mii_bitbang_ops, phy, reg));
}
/*
* Write to a PHY register through the MII.
*/
static void
vr_mii_writereg(self, phy, reg, val)
struct device *self;
int phy, reg, val;
{
struct vr_softc *sc = (void *) self;
CSR_WRITE_1(sc, VR_MIICMD, VR_MIICMD_DIRECTPGM);
mii_bitbang_writereg(self, &vr_mii_bitbang_ops, phy, reg, val);
}
static void
vr_mii_statchg(self)
struct device *self;
{
struct vr_softc *sc = (struct vr_softc *)self;
/*
* In order to fiddle with the 'full-duplex' bit in the netconfig
* register, we first have to put the transmit and/or receive logic
* in the idle state.
*/
VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_TX_ON|VR_CMD_RX_ON));
if (sc->vr_mii.mii_media_active & IFM_FDX)
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
else
VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_FULLDUPLEX);
if (sc->vr_ec.ec_if.if_flags & IFF_RUNNING)
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_RX_ON);
}
#define vr_calchash(addr) \
(ether_crc32_be((addr), ETHER_ADDR_LEN) >> 26)
/*
* Program the 64-bit multicast hash filter.
*/
static void
vr_setmulti(sc)
struct vr_softc *sc;
{
struct ifnet *ifp;
int h = 0;
u_int32_t hashes[2] = { 0, 0 };
struct ether_multistep step;
struct ether_multi *enm;
int mcnt = 0;
u_int8_t rxfilt;
ifp = &sc->vr_ec.ec_if;
rxfilt = CSR_READ_1(sc, VR_RXCFG);
if (ifp->if_flags & IFF_PROMISC) {
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
rxfilt |= VR_RXCFG_RX_MULTI;
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
CSR_WRITE_4(sc, VR_MAR0, 0xFFFFFFFF);
CSR_WRITE_4(sc, VR_MAR1, 0xFFFFFFFF);
return;
}
/* first, zot all the existing hash bits */
CSR_WRITE_4(sc, VR_MAR0, 0);
CSR_WRITE_4(sc, VR_MAR1, 0);
/* now program new ones */
ETHER_FIRST_MULTI(step, &sc->vr_ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0)
goto allmulti;
h = vr_calchash(enm->enm_addrlo);
if (h < 32)
hashes[0] |= (1 << h);
else
hashes[1] |= (1 << (h - 32));
ETHER_NEXT_MULTI(step, enm);
mcnt++;
}
ifp->if_flags &= ~IFF_ALLMULTI;
if (mcnt)
rxfilt |= VR_RXCFG_RX_MULTI;
else
rxfilt &= ~VR_RXCFG_RX_MULTI;
CSR_WRITE_4(sc, VR_MAR0, hashes[0]);
CSR_WRITE_4(sc, VR_MAR1, hashes[1]);
CSR_WRITE_1(sc, VR_RXCFG, rxfilt);
}
static void
vr_reset(sc)
struct vr_softc *sc;
{
int i;
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RESET);
for (i = 0; i < VR_TIMEOUT; i++) {
DELAY(10);
if (!(CSR_READ_2(sc, VR_COMMAND) & VR_CMD_RESET))
break;
}
if (i == VR_TIMEOUT)
printf("%s: reset never completed!\n",
sc->vr_dev.dv_xname);
/* Wait a little while for the chip to get its brains in order. */
DELAY(1000);
}
/*
* Initialize an RX descriptor and attach an MBUF cluster.
* Note: the length fields are only 11 bits wide, which means the
* largest size we can specify is 2047. This is important because
* MCLBYTES is 2048, so we have to subtract one otherwise we'll
* overflow the field and make a mess.
*/
static int
vr_add_rxbuf(sc, i)
struct vr_softc *sc;
int i;
{
struct vr_descsoft *ds = VR_DSRX(sc, i);
struct mbuf *m_new;
int error;
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
if (m_new == NULL)
return (ENOBUFS);
MCLGET(m_new, M_DONTWAIT);
if ((m_new->m_flags & M_EXT) == 0) {
m_freem(m_new);
return (ENOBUFS);
}
if (ds->ds_mbuf != NULL)
bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
ds->ds_mbuf = m_new;
error = bus_dmamap_load(sc->vr_dmat, ds->ds_dmamap,
m_new->m_ext.ext_buf, m_new->m_ext.ext_size, NULL,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (error) {
printf("%s: unable to load rx DMA map %d, error = %d\n",
sc->vr_dev.dv_xname, i, error);
panic("vr_add_rxbuf"); /* XXX */
}
bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
VR_INIT_RXDESC(sc, i);
return (0);
}
/*
* A frame has been uploaded: pass the resulting mbuf chain up to
* the higher level protocols.
*/
static void
vr_rxeof(sc)
struct vr_softc *sc;
{
struct mbuf *m;
struct ifnet *ifp;
struct vr_desc *d;
struct vr_descsoft *ds;
int i, total_len;
u_int32_t rxstat;
ifp = &sc->vr_ec.ec_if;
for (i = sc->vr_rxptr;; i = VR_NEXTRX(i)) {
d = VR_CDRX(sc, i);
ds = VR_DSRX(sc, i);
VR_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
rxstat = le32toh(d->vr_status);
if (rxstat & VR_RXSTAT_OWN) {
/*
* We have processed all of the receive buffers.
*/
break;
}
/*
* If an error occurs, update stats, clear the
* status word and leave the mbuf cluster in place:
* it should simply get re-used next time this descriptor
* comes up in the ring.
*/
if (rxstat & VR_RXSTAT_RXERR) {
const char *errstr;
ifp->if_ierrors++;
switch (rxstat & 0x000000FF) {
case VR_RXSTAT_CRCERR:
errstr = "crc error";
break;
case VR_RXSTAT_FRAMEALIGNERR:
errstr = "frame alignment error";
break;
case VR_RXSTAT_FIFOOFLOW:
errstr = "FIFO overflow";
break;
case VR_RXSTAT_GIANT:
errstr = "received giant packet";
break;
case VR_RXSTAT_RUNT:
errstr = "received runt packet";
break;
case VR_RXSTAT_BUSERR:
errstr = "system bus error";
break;
case VR_RXSTAT_BUFFERR:
errstr = "rx buffer error";
break;
default:
errstr = "unknown rx error";
break;
}
printf("%s: receive error: %s\n", sc->vr_dev.dv_xname,
errstr);
VR_INIT_RXDESC(sc, i);
continue;
}
bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
/* No errors; receive the packet. */
total_len = VR_RXBYTES(le32toh(d->vr_status));
#ifdef __NO_STRICT_ALIGNMENT
/*
* If the packet is small enough to fit in a
* single header mbuf, allocate one and copy
* the data into it. This greatly reduces
* memory consumption when we receive lots
* of small packets.
*
* Otherwise, we add a new buffer to the receive
* chain. If this fails, we drop the packet and
* recycle the old buffer.
*/
if (vr_copy_small != 0 && total_len <= MHLEN) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
goto dropit;
memcpy(mtod(m, caddr_t),
mtod(ds->ds_mbuf, caddr_t), total_len);
VR_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
} else {
m = ds->ds_mbuf;
if (vr_add_rxbuf(sc, i) == ENOBUFS) {
dropit:
ifp->if_ierrors++;
VR_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->vr_dmat,
ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize,
BUS_DMASYNC_PREREAD);
continue;
}
}
#else
/*
* The Rhine's packet buffers must be 4-byte aligned.
* But this means that the data after the Ethernet header
* is misaligned. We must allocate a new buffer and
* copy the data, shifted forward 2 bytes.
*/
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
dropit:
ifp->if_ierrors++;
VR_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
continue;
}
if (total_len > (MHLEN - 2)) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
goto dropit;
}
}
m->m_data += 2;
/*
* Note that we use clusters for incoming frames, so the
* buffer is virtually contiguous.
*/
memcpy(mtod(m, caddr_t), mtod(ds->ds_mbuf, caddr_t),
total_len);
/* Allow the receive descriptor to continue using its mbuf. */
VR_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
#endif /* __NO_STRICT_ALIGNMENT */
/*
* The Rhine chip includes the FCS with every
* received packet.
*/
m->m_flags |= M_HASFCS;
ifp->if_ipackets++;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
#if NBPFILTER > 0
/*
* Handle BPF listeners. Let the BPF user see the packet, but
* don't pass it up to the ether_input() layer unless it's
* a broadcast packet, multicast packet, matches our ethernet
* address or the interface is in promiscuous mode.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
/* Pass it on. */
(*ifp->if_input)(ifp, m);
}
/* Update the receive pointer. */
sc->vr_rxptr = i;
}
void
vr_rxeoc(sc)
struct vr_softc *sc;
{
vr_rxeof(sc);
VR_CLRBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_ON);
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_RX_GO);
}
/*
* A frame was downloaded to the chip. It's safe for us to clean up
* the list buffers.
*/
static void
vr_txeof(sc)
struct vr_softc *sc;
{
struct ifnet *ifp = &sc->vr_ec.ec_if;
struct vr_desc *d;
struct vr_descsoft *ds;
u_int32_t txstat;
int i;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Go through our tx list and free mbufs for those
* frames that have been transmitted.
*/
for (i = sc->vr_txdirty; sc->vr_txpending != 0;
i = VR_NEXTTX(i), sc->vr_txpending--) {
d = VR_CDTX(sc, i);
ds = VR_DSTX(sc, i);
VR_CDTXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
txstat = le32toh(d->vr_status);
if (txstat & VR_TXSTAT_OWN)
break;
bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap,
0, ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
m_freem(ds->ds_mbuf);
ds->ds_mbuf = NULL;
if (txstat & VR_TXSTAT_ERRSUM) {
ifp->if_oerrors++;
if (txstat & VR_TXSTAT_DEFER)
ifp->if_collisions++;
if (txstat & VR_TXSTAT_LATECOLL)
ifp->if_collisions++;
}
ifp->if_collisions += (txstat & VR_TXSTAT_COLLCNT) >> 3;
ifp->if_opackets++;
}
/* Update the dirty transmit buffer pointer. */
sc->vr_txdirty = i;
/*
* Cancel the watchdog timer if there are no pending
* transmissions.
*/
if (sc->vr_txpending == 0)
ifp->if_timer = 0;
}
static int
vr_intr(arg)
void *arg;
{
struct vr_softc *sc;
struct ifnet *ifp;
u_int16_t status;
int handled = 0, dotx = 0;
sc = arg;
ifp = &sc->vr_ec.ec_if;
/* Suppress unwanted interrupts. */
if ((ifp->if_flags & IFF_UP) == 0) {
vr_stop(ifp, 1);
return (0);
}
/* Disable interrupts. */
CSR_WRITE_2(sc, VR_IMR, 0x0000);
for (;;) {
status = CSR_READ_2(sc, VR_ISR);
if (status)
CSR_WRITE_2(sc, VR_ISR, status);
if ((status & VR_INTRS) == 0)
break;
handled = 1;
if (status & VR_ISR_RX_OK)
vr_rxeof(sc);
if (status &
(VR_ISR_RX_ERR | VR_ISR_RX_NOBUF | VR_ISR_RX_OFLOW |
VR_ISR_RX_DROPPED))
vr_rxeoc(sc);
if (status & VR_ISR_TX_OK) {
dotx = 1;
vr_txeof(sc);
}
if (status & (VR_ISR_TX_UNDERRUN | VR_ISR_TX_ABRT)) {
if (status & VR_ISR_TX_UNDERRUN)
printf("%s: transmit underrun\n",
sc->vr_dev.dv_xname);
if (status & VR_ISR_TX_ABRT)
printf("%s: transmit aborted\n",
sc->vr_dev.dv_xname);
ifp->if_oerrors++;
dotx = 1;
vr_txeof(sc);
if (sc->vr_txpending) {
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON);
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_GO);
}
}
if (status & VR_ISR_BUSERR) {
printf("%s: PCI bus error\n", sc->vr_dev.dv_xname);
/* vr_init() calls vr_start() */
dotx = 0;
(void) vr_init(ifp);
}
}
/* Re-enable interrupts. */
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
if (dotx)
vr_start(ifp);
return (handled);
}
/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit lists. We also save a
* copy of the pointers since the transmit list fragment pointers are
* physical addresses.
*/
static void
vr_start(ifp)
struct ifnet *ifp;
{
struct vr_softc *sc = ifp->if_softc;
struct mbuf *m0, *m;
struct vr_desc *d;
struct vr_descsoft *ds;
int error, firsttx, nexttx, opending;
/*
* Remember the previous txpending and the first transmit
* descriptor we use.
*/
opending = sc->vr_txpending;
firsttx = VR_NEXTTX(sc->vr_txlast);
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
while (sc->vr_txpending < VR_NTXDESC) {
/*
* Grab a packet off the queue.
*/
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
m = NULL;
/*
* Get the next available transmit descriptor.
*/
nexttx = VR_NEXTTX(sc->vr_txlast);
d = VR_CDTX(sc, nexttx);
ds = VR_DSTX(sc, nexttx);
/*
* Load the DMA map. If this fails, the packet didn't
* fit in one DMA segment, and we need to copy. Note,
* the packet must also be aligned.
*/
if ((mtod(m0, bus_addr_t) & 3) != 0 ||
bus_dmamap_load_mbuf(sc->vr_dmat, ds->ds_dmamap, m0,
BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
printf("%s: unable to allocate Tx mbuf\n",
sc->vr_dev.dv_xname);
break;
}
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
printf("%s: unable to allocate Tx "
"cluster\n", sc->vr_dev.dv_xname);
m_freem(m);
break;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
error = bus_dmamap_load_mbuf(sc->vr_dmat,
ds->ds_dmamap, m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
if (error) {
printf("%s: unable to load Tx buffer, "
"error = %d\n", sc->vr_dev.dv_xname, error);
break;
}
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m != NULL) {
m_freem(m0);
m0 = m;
}
/* Sync the DMA map. */
bus_dmamap_sync(sc->vr_dmat, ds->ds_dmamap, 0,
ds->ds_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
/*
* Store a pointer to the packet so we can free it later.
*/
ds->ds_mbuf = m0;
#if NBPFILTER > 0
/*
* If there's a BPF listener, bounce a copy of this frame
* to him.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif
/*
* Fill in the transmit descriptor. The Rhine
* doesn't auto-pad, so we have to do this ourselves.
*/
d->vr_data = htole32(ds->ds_dmamap->dm_segs[0].ds_addr);
d->vr_ctl = htole32(m0->m_pkthdr.len < VR_MIN_FRAMELEN ?
VR_MIN_FRAMELEN : m0->m_pkthdr.len);
d->vr_ctl |=
htole32(VR_TXCTL_TLINK|VR_TXCTL_FIRSTFRAG|
VR_TXCTL_LASTFRAG);
/*
* If this is the first descriptor we're enqueuing,
* don't give it to the Rhine yet. That could cause
* a race condition. We'll do it below.
*/
if (nexttx == firsttx)
d->vr_status = 0;
else
d->vr_status = htole32(VR_TXSTAT_OWN);
VR_CDTXSYNC(sc, nexttx,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Advance the tx pointer. */
sc->vr_txpending++;
sc->vr_txlast = nexttx;
}
if (sc->vr_txpending == VR_NTXDESC) {
/* No more slots left; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (sc->vr_txpending != opending) {
/*
* We enqueued packets. If the transmitter was idle,
* reset the txdirty pointer.
*/
if (opending == 0)
sc->vr_txdirty = firsttx;
/*
* Cause a transmit interrupt to happen on the
* last packet we enqueued.
*/
VR_CDTX(sc, sc->vr_txlast)->vr_ctl |= htole32(VR_TXCTL_FINT);
VR_CDTXSYNC(sc, sc->vr_txlast,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* The entire packet chain is set up. Give the
* first descriptor to the Rhine now.
*/
VR_CDTX(sc, firsttx)->vr_status = htole32(VR_TXSTAT_OWN);
VR_CDTXSYNC(sc, firsttx,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Start the transmitter. */
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_TX_ON|VR_CMD_TX_GO);
/* Set the watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
}
}
/*
* Initialize the interface. Must be called at splnet.
*/
static int
vr_init(ifp)
struct ifnet *ifp;
{
struct vr_softc *sc = ifp->if_softc;
struct vr_desc *d;
struct vr_descsoft *ds;
int i, error = 0;
/* Cancel pending I/O. */
vr_stop(ifp, 0);
/* Reset the Rhine to a known state. */
vr_reset(sc);
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_THRESH);
VR_SETBIT(sc, VR_RXCFG, VR_RXTHRESH_STORENFWD);
VR_CLRBIT(sc, VR_TXCFG, VR_TXCFG_TX_THRESH);
VR_SETBIT(sc, VR_TXCFG, VR_TXTHRESH_STORENFWD);
/*
* Initialize the transmit desciptor ring. txlast is initialized
* to the end of the list so that it will wrap around to the first
* descriptor when the first packet is transmitted.
*/
for (i = 0; i < VR_NTXDESC; i++) {
d = VR_CDTX(sc, i);
memset(d, 0, sizeof(struct vr_desc));
d->vr_next = htole32(VR_CDTXADDR(sc, VR_NEXTTX(i)));
VR_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
sc->vr_txpending = 0;
sc->vr_txdirty = 0;
sc->vr_txlast = VR_NTXDESC - 1;
/*
* Initialize the receive descriptor ring.
*/
for (i = 0; i < VR_NRXDESC; i++) {
ds = VR_DSRX(sc, i);
if (ds->ds_mbuf == NULL) {
if ((error = vr_add_rxbuf(sc, i)) != 0) {
printf("%s: unable to allocate or map rx "
"buffer %d, error = %d\n",
sc->vr_dev.dv_xname, i, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
vr_rxdrain(sc);
goto out;
}
} else
VR_INIT_RXDESC(sc, i);
}
sc->vr_rxptr = 0;
/* If we want promiscuous mode, set the allframes bit. */
if (ifp->if_flags & IFF_PROMISC)
VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
else
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_PROMISC);
/* Set capture broadcast bit to capture broadcast frames. */
if (ifp->if_flags & IFF_BROADCAST)
VR_SETBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
else
VR_CLRBIT(sc, VR_RXCFG, VR_RXCFG_RX_BROAD);
/* Program the multicast filter, if necessary. */
vr_setmulti(sc);
/* Give the transmit and receive rings to the Rhine. */
CSR_WRITE_4(sc, VR_RXADDR, VR_CDRXADDR(sc, sc->vr_rxptr));
CSR_WRITE_4(sc, VR_TXADDR, VR_CDTXADDR(sc, VR_NEXTTX(sc->vr_txlast)));
/* Set current media. */
mii_mediachg(&sc->vr_mii);
/* Enable receiver and transmitter. */
CSR_WRITE_2(sc, VR_COMMAND, VR_CMD_TX_NOPOLL|VR_CMD_START|
VR_CMD_TX_ON|VR_CMD_RX_ON|
VR_CMD_RX_GO);
/* Enable interrupts. */
CSR_WRITE_2(sc, VR_ISR, 0xFFFF);
CSR_WRITE_2(sc, VR_IMR, VR_INTRS);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/* Start one second timer. */
callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
/* Attempt to start output on the interface. */
vr_start(ifp);
out:
if (error)
printf("%s: interface not running\n", sc->vr_dev.dv_xname);
return (error);
}
/*
* Set media options.
*/
static int
vr_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct vr_softc *sc = ifp->if_softc;
if (ifp->if_flags & IFF_UP)
mii_mediachg(&sc->vr_mii);
return (0);
}
/*
* Report current media status.
*/
static void
vr_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct vr_softc *sc = ifp->if_softc;
mii_pollstat(&sc->vr_mii);
ifmr->ifm_status = sc->vr_mii.mii_media_status;
ifmr->ifm_active = sc->vr_mii.mii_media_active;
}
static int
vr_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct vr_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (command) {
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->vr_mii.mii_media, command);
break;
default:
error = ether_ioctl(ifp, command, data);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
vr_setmulti(sc);
error = 0;
}
break;
}
splx(s);
return (error);
}
static void
vr_watchdog(ifp)
struct ifnet *ifp;
{
struct vr_softc *sc = ifp->if_softc;
printf("%s: device timeout\n", sc->vr_dev.dv_xname);
ifp->if_oerrors++;
(void) vr_init(ifp);
}
/*
* One second timer, used to tick MII.
*/
static void
vr_tick(arg)
void *arg;
{
struct vr_softc *sc = arg;
int s;
s = splnet();
mii_tick(&sc->vr_mii);
splx(s);
callout_reset(&sc->vr_tick_ch, hz, vr_tick, sc);
}
/*
* Drain the receive queue.
*/
static void
vr_rxdrain(sc)
struct vr_softc *sc;
{
struct vr_descsoft *ds;
int i;
for (i = 0; i < VR_NRXDESC; i++) {
ds = VR_DSRX(sc, i);
if (ds->ds_mbuf != NULL) {
bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
m_freem(ds->ds_mbuf);
ds->ds_mbuf = NULL;
}
}
}
/*
* Stop the adapter and free any mbufs allocated to the
* transmit lists.
*/
static void
vr_stop(ifp, disable)
struct ifnet *ifp;
int disable;
{
struct vr_softc *sc = ifp->if_softc;
struct vr_descsoft *ds;
int i;
/* Cancel one second timer. */
callout_stop(&sc->vr_tick_ch);
/* Down the MII. */
mii_down(&sc->vr_mii);
ifp = &sc->vr_ec.ec_if;
ifp->if_timer = 0;
VR_SETBIT16(sc, VR_COMMAND, VR_CMD_STOP);
VR_CLRBIT16(sc, VR_COMMAND, (VR_CMD_RX_ON|VR_CMD_TX_ON));
CSR_WRITE_2(sc, VR_IMR, 0x0000);
CSR_WRITE_4(sc, VR_TXADDR, 0x00000000);
CSR_WRITE_4(sc, VR_RXADDR, 0x00000000);
/*
* Release any queued transmit buffers.
*/
for (i = 0; i < VR_NTXDESC; i++) {
ds = VR_DSTX(sc, i);
if (ds->ds_mbuf != NULL) {
bus_dmamap_unload(sc->vr_dmat, ds->ds_dmamap);
m_freem(ds->ds_mbuf);
ds->ds_mbuf = NULL;
}
}
if (disable)
vr_rxdrain(sc);
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}
static struct vr_type *vr_lookup __P((struct pci_attach_args *));
static int vr_probe __P((struct device *, struct cfdata *, void *));
static void vr_attach __P((struct device *, struct device *, void *));
static void vr_shutdown __P((void *));
struct cfattach vr_ca = {
sizeof (struct vr_softc), vr_probe, vr_attach
};
static struct vr_type *
vr_lookup(pa)
struct pci_attach_args *pa;
{
struct vr_type *vrt;
for (vrt = vr_devs; vrt->vr_name != NULL; vrt++) {
if (PCI_VENDOR(pa->pa_id) == vrt->vr_vid &&
PCI_PRODUCT(pa->pa_id) == vrt->vr_did)
return (vrt);
}
return (NULL);
}
static int
vr_probe(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
if (vr_lookup(pa) != NULL)
return (1);
return (0);
}
/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static void
vr_shutdown(arg)
void *arg;
{
struct vr_softc *sc = (struct vr_softc *)arg;
vr_stop(&sc->vr_ec.ec_if, 1);
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static void
vr_attach(parent, self, aux)
struct device *parent;
struct device *self;
void *aux;
{
struct vr_softc *sc = (struct vr_softc *) self;
struct pci_attach_args *pa = (struct pci_attach_args *) aux;
bus_dma_segment_t seg;
struct vr_type *vrt;
u_int32_t command;
struct ifnet *ifp;
u_char eaddr[ETHER_ADDR_LEN];
int i, rseg, error;
#define PCI_CONF_WRITE(r, v) pci_conf_write(pa->pa_pc, pa->pa_tag, (r), (v))
#define PCI_CONF_READ(r) pci_conf_read(pa->pa_pc, pa->pa_tag, (r))
callout_init(&sc->vr_tick_ch);
vrt = vr_lookup(pa);
if (vrt == NULL) {
printf("\n");
panic("vr_attach: impossible");
}
printf(": %s Ethernet\n", vrt->vr_name);
/*
* Handle power management nonsense.
*/
command = PCI_CONF_READ(VR_PCI_CAPID) & 0x000000FF;
if (command == 0x01) {
command = PCI_CONF_READ(VR_PCI_PWRMGMTCTRL);
if (command & VR_PSTATE_MASK) {
u_int32_t iobase, membase, irq;
/* Save important PCI config data. */
iobase = PCI_CONF_READ(VR_PCI_LOIO);
membase = PCI_CONF_READ(VR_PCI_LOMEM);
irq = PCI_CONF_READ(VR_PCI_INTLINE);
/* Reset the power state. */
printf("%s: chip is in D%d power mode "
"-- setting to D0\n",
sc->vr_dev.dv_xname, command & VR_PSTATE_MASK);
command &= 0xFFFFFFFC;
PCI_CONF_WRITE(VR_PCI_PWRMGMTCTRL, command);
/* Restore PCI config data. */
PCI_CONF_WRITE(VR_PCI_LOIO, iobase);
PCI_CONF_WRITE(VR_PCI_LOMEM, membase);
PCI_CONF_WRITE(VR_PCI_INTLINE, irq);
}
}
/* Make sure bus mastering is enabled. */
command = PCI_CONF_READ(PCI_COMMAND_STATUS_REG);
command |= PCI_COMMAND_MASTER_ENABLE;
PCI_CONF_WRITE(PCI_COMMAND_STATUS_REG, command);
/*
* Map control/status registers.
*/
{
bus_space_tag_t iot, memt;
bus_space_handle_t ioh, memh;
int ioh_valid, memh_valid;
pci_intr_handle_t intrhandle;
const char *intrstr;
ioh_valid = (pci_mapreg_map(pa, VR_PCI_LOIO,
PCI_MAPREG_TYPE_IO, 0,
&iot, &ioh, NULL, NULL) == 0);
memh_valid = (pci_mapreg_map(pa, VR_PCI_LOMEM,
PCI_MAPREG_TYPE_MEM |
PCI_MAPREG_MEM_TYPE_32BIT,
0, &memt, &memh, NULL, NULL) == 0);
#if defined(VR_USEIOSPACE)
if (ioh_valid) {
sc->vr_bst = iot;
sc->vr_bsh = ioh;
} else if (memh_valid) {
sc->vr_bst = memt;
sc->vr_bsh = memh;
}
#else
if (memh_valid) {
sc->vr_bst = memt;
sc->vr_bsh = memh;
} else if (ioh_valid) {
sc->vr_bst = iot;
sc->vr_bsh = ioh;
}
#endif
else {
printf(": unable to map device registers\n");
return;
}
/* Allocate interrupt */
if (pci_intr_map(pa, &intrhandle)) {
printf("%s: couldn't map interrupt\n",
sc->vr_dev.dv_xname);
return;
}
intrstr = pci_intr_string(pa->pa_pc, intrhandle);
sc->vr_ih = pci_intr_establish(pa->pa_pc, intrhandle, IPL_NET,
vr_intr, sc);
if (sc->vr_ih == NULL) {
printf("%s: couldn't establish interrupt",
sc->vr_dev.dv_xname);
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
}
printf("%s: interrupting at %s\n",
sc->vr_dev.dv_xname, intrstr);
}
/* Reset the adapter. */
vr_reset(sc);
/*
* Get station address. The way the Rhine chips work,
* you're not allowed to directly access the EEPROM once
* they've been programmed a special way. Consequently,
* we need to read the node address from the PAR0 and PAR1
* registers.
*/
VR_SETBIT(sc, VR_EECSR, VR_EECSR_LOAD);
DELAY(200);
for (i = 0; i < ETHER_ADDR_LEN; i++)
eaddr[i] = CSR_READ_1(sc, VR_PAR0 + i);
/*
* A Rhine chip was detected. Inform the world.
*/
printf("%s: Ethernet address: %s\n",
sc->vr_dev.dv_xname, ether_sprintf(eaddr));
memcpy(sc->vr_enaddr, eaddr, ETHER_ADDR_LEN);
sc->vr_dmat = pa->pa_dmat;
/*
* Allocate the control data structures, and create and load
* the DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->vr_dmat,
sizeof(struct vr_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
0)) != 0) {
printf("%s: unable to allocate control data, error = %d\n",
sc->vr_dev.dv_xname, error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->vr_dmat, &seg, rseg,
sizeof(struct vr_control_data), (caddr_t *)&sc->vr_control_data,
BUS_DMA_COHERENT)) != 0) {
printf("%s: unable to map control data, error = %d\n",
sc->vr_dev.dv_xname, error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->vr_dmat,
sizeof(struct vr_control_data), 1,
sizeof(struct vr_control_data), 0, 0,
&sc->vr_cddmamap)) != 0) {
printf("%s: unable to create control data DMA map, "
"error = %d\n", sc->vr_dev.dv_xname, error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->vr_dmat, sc->vr_cddmamap,
sc->vr_control_data, sizeof(struct vr_control_data), NULL,
0)) != 0) {
printf("%s: unable to load control data DMA map, error = %d\n",
sc->vr_dev.dv_xname, error);
goto fail_3;
}
/*
* Create the transmit buffer DMA maps.
*/
for (i = 0; i < VR_NTXDESC; i++) {
if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES,
1, MCLBYTES, 0, 0,
&VR_DSTX(sc, i)->ds_dmamap)) != 0) {
printf("%s: unable to create tx DMA map %d, "
"error = %d\n", sc->vr_dev.dv_xname, i, error);
goto fail_4;
}
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < VR_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->vr_dmat, MCLBYTES, 1,
MCLBYTES, 0, 0,
&VR_DSRX(sc, i)->ds_dmamap)) != 0) {
printf("%s: unable to create rx DMA map %d, "
"error = %d\n", sc->vr_dev.dv_xname, i, error);
goto fail_5;
}
VR_DSRX(sc, i)->ds_mbuf = NULL;
}
ifp = &sc->vr_ec.ec_if;
ifp->if_softc = sc;
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = vr_ioctl;
ifp->if_start = vr_start;
ifp->if_watchdog = vr_watchdog;
ifp->if_init = vr_init;
ifp->if_stop = vr_stop;
IFQ_SET_READY(&ifp->if_snd);
strcpy(ifp->if_xname, sc->vr_dev.dv_xname);
/*
* Initialize MII/media info.
*/
sc->vr_mii.mii_ifp = ifp;
sc->vr_mii.mii_readreg = vr_mii_readreg;
sc->vr_mii.mii_writereg = vr_mii_writereg;
sc->vr_mii.mii_statchg = vr_mii_statchg;
ifmedia_init(&sc->vr_mii.mii_media, 0, vr_ifmedia_upd, vr_ifmedia_sts);
mii_attach(&sc->vr_dev, &sc->vr_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, 0);
if (LIST_FIRST(&sc->vr_mii.mii_phys) == NULL) {
ifmedia_add(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->vr_mii.mii_media, IFM_ETHER|IFM_AUTO);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ether_ifattach(ifp, sc->vr_enaddr);
sc->vr_ats = shutdownhook_establish(vr_shutdown, sc);
if (sc->vr_ats == NULL)
printf("%s: warning: couldn't establish shutdown hook\n",
sc->vr_dev.dv_xname);
return;
fail_5:
for (i = 0; i < VR_NRXDESC; i++) {
if (sc->vr_rxsoft[i].ds_dmamap != NULL)
bus_dmamap_destroy(sc->vr_dmat,
sc->vr_rxsoft[i].ds_dmamap);
}
fail_4:
for (i = 0; i < VR_NTXDESC; i++) {
if (sc->vr_txsoft[i].ds_dmamap != NULL)
bus_dmamap_destroy(sc->vr_dmat,
sc->vr_txsoft[i].ds_dmamap);
}
bus_dmamap_unload(sc->vr_dmat, sc->vr_cddmamap);
fail_3:
bus_dmamap_destroy(sc->vr_dmat, sc->vr_cddmamap);
fail_2:
bus_dmamem_unmap(sc->vr_dmat, (caddr_t)sc->vr_control_data,
sizeof(struct vr_control_data));
fail_1:
bus_dmamem_free(sc->vr_dmat, &seg, rseg);
fail_0:
return;
}