5012 lines
141 KiB
C
5012 lines
141 KiB
C
/* $NetBSD: if_bge.c,v 1.198 2011/06/09 12:04:29 cegger Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2001 Wind River Systems
|
|
* Copyright (c) 1997, 1998, 1999, 2001
|
|
* Bill Paul <wpaul@windriver.com>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
|
|
*/
|
|
|
|
/*
|
|
* Broadcom BCM570x family gigabit ethernet driver for NetBSD.
|
|
*
|
|
* NetBSD version by:
|
|
*
|
|
* Frank van der Linden <fvdl@wasabisystems.com>
|
|
* Jason Thorpe <thorpej@wasabisystems.com>
|
|
* Jonathan Stone <jonathan@dsg.stanford.edu>
|
|
*
|
|
* Originally written for FreeBSD by Bill Paul <wpaul@windriver.com>
|
|
* Senior Engineer, Wind River Systems
|
|
*/
|
|
|
|
/*
|
|
* The Broadcom BCM5700 is based on technology originally developed by
|
|
* Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
|
|
* MAC chips. The BCM5700, sometimes refered to as the Tigon III, has
|
|
* two on-board MIPS R4000 CPUs and can have as much as 16MB of external
|
|
* SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
|
|
* frames, highly configurable RX filtering, and 16 RX and TX queues
|
|
* (which, along with RX filter rules, can be used for QOS applications).
|
|
* Other features, such as TCP segmentation, may be available as part
|
|
* of value-added firmware updates. Unlike the Tigon I and Tigon II,
|
|
* firmware images can be stored in hardware and need not be compiled
|
|
* into the driver.
|
|
*
|
|
* The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
|
|
* function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
|
|
*
|
|
* The BCM5701 is a single-chip solution incorporating both the BCM5700
|
|
* MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
|
|
* does not support external SSRAM.
|
|
*
|
|
* Broadcom also produces a variation of the BCM5700 under the "Altima"
|
|
* brand name, which is functionally similar but lacks PCI-X support.
|
|
*
|
|
* Without external SSRAM, you can only have at most 4 TX rings,
|
|
* and the use of the mini RX ring is disabled. This seems to imply
|
|
* that these features are simply not available on the BCM5701. As a
|
|
* result, this driver does not implement any support for the mini RX
|
|
* ring.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.198 2011/06/09 12:04:29 cegger Exp $");
|
|
|
|
#include "vlan.h"
|
|
#include "rnd.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/device.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#if NRND > 0
|
|
#include <sys/rnd.h>
|
|
#endif
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#endif
|
|
|
|
/* Headers for TCP Segmentation Offload (TSO) */
|
|
#include <netinet/in_systm.h> /* n_time for <netinet/ip.h>... */
|
|
#include <netinet/in.h> /* ip_{src,dst}, for <netinet/ip.h> */
|
|
#include <netinet/ip.h> /* for struct ip */
|
|
#include <netinet/tcp.h> /* for struct tcphdr */
|
|
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
#include <dev/mii/miidevs.h>
|
|
#include <dev/mii/brgphyreg.h>
|
|
|
|
#include <dev/pci/if_bgereg.h>
|
|
#include <dev/pci/if_bgevar.h>
|
|
|
|
#include <prop/proplib.h>
|
|
|
|
#define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */
|
|
|
|
|
|
/*
|
|
* Tunable thresholds for rx-side bge interrupt mitigation.
|
|
*/
|
|
|
|
/*
|
|
* The pairs of values below were obtained from empirical measurement
|
|
* on bcm5700 rev B2; they ar designed to give roughly 1 receive
|
|
* interrupt for every N packets received, where N is, approximately,
|
|
* the second value (rx_max_bds) in each pair. The values are chosen
|
|
* such that moving from one pair to the succeeding pair was observed
|
|
* to roughly halve interrupt rate under sustained input packet load.
|
|
* The values were empirically chosen to avoid overflowing internal
|
|
* limits on the bcm5700: increasing rx_ticks much beyond 600
|
|
* results in internal wrapping and higher interrupt rates.
|
|
* The limit of 46 frames was chosen to match NFS workloads.
|
|
*
|
|
* These values also work well on bcm5701, bcm5704C, and (less
|
|
* tested) bcm5703. On other chipsets, (including the Altima chip
|
|
* family), the larger values may overflow internal chip limits,
|
|
* leading to increasing interrupt rates rather than lower interrupt
|
|
* rates.
|
|
*
|
|
* Applications using heavy interrupt mitigation (interrupting every
|
|
* 32 or 46 frames) in both directions may need to increase the TCP
|
|
* windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
|
|
* full link bandwidth, due to ACKs and window updates lingering
|
|
* in the RX queue during the 30-to-40-frame interrupt-mitigation window.
|
|
*/
|
|
static const struct bge_load_rx_thresh {
|
|
int rx_ticks;
|
|
int rx_max_bds; }
|
|
bge_rx_threshes[] = {
|
|
{ 32, 2 },
|
|
{ 50, 4 },
|
|
{ 100, 8 },
|
|
{ 192, 16 },
|
|
{ 416, 32 },
|
|
{ 598, 46 }
|
|
};
|
|
#define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))
|
|
|
|
/* XXX patchable; should be sysctl'able */
|
|
static int bge_auto_thresh = 1;
|
|
static int bge_rx_thresh_lvl;
|
|
|
|
static int bge_rxthresh_nodenum;
|
|
|
|
typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);
|
|
|
|
static int bge_probe(device_t, cfdata_t, void *);
|
|
static void bge_attach(device_t, device_t, void *);
|
|
static void bge_release_resources(struct bge_softc *);
|
|
|
|
static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
|
|
static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
|
|
static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
|
|
static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
|
|
static int bge_get_eaddr(struct bge_softc *, uint8_t[]);
|
|
|
|
static void bge_txeof(struct bge_softc *);
|
|
static void bge_rxeof(struct bge_softc *);
|
|
|
|
static void bge_asf_driver_up (struct bge_softc *);
|
|
static void bge_tick(void *);
|
|
static void bge_stats_update(struct bge_softc *);
|
|
static void bge_stats_update_regs(struct bge_softc *);
|
|
static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);
|
|
|
|
static int bge_intr(void *);
|
|
static void bge_start(struct ifnet *);
|
|
static int bge_ifflags_cb(struct ethercom *);
|
|
static int bge_ioctl(struct ifnet *, u_long, void *);
|
|
static int bge_init(struct ifnet *);
|
|
static void bge_stop(struct ifnet *, int);
|
|
static void bge_watchdog(struct ifnet *);
|
|
static int bge_ifmedia_upd(struct ifnet *);
|
|
static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
|
|
|
|
static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
|
|
static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);
|
|
|
|
static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
|
|
static int bge_read_eeprom(struct bge_softc *, void *, int, int);
|
|
static void bge_setmulti(struct bge_softc *);
|
|
|
|
static void bge_handle_events(struct bge_softc *);
|
|
static int bge_alloc_jumbo_mem(struct bge_softc *);
|
|
#if 0 /* XXX */
|
|
static void bge_free_jumbo_mem(struct bge_softc *);
|
|
#endif
|
|
static void *bge_jalloc(struct bge_softc *);
|
|
static void bge_jfree(struct mbuf *, void *, size_t, void *);
|
|
static int bge_newbuf_std(struct bge_softc *, int, struct mbuf *,
|
|
bus_dmamap_t);
|
|
static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
|
|
static int bge_init_rx_ring_std(struct bge_softc *);
|
|
static void bge_free_rx_ring_std(struct bge_softc *);
|
|
static int bge_init_rx_ring_jumbo(struct bge_softc *);
|
|
static void bge_free_rx_ring_jumbo(struct bge_softc *);
|
|
static void bge_free_tx_ring(struct bge_softc *);
|
|
static int bge_init_tx_ring(struct bge_softc *);
|
|
|
|
static int bge_chipinit(struct bge_softc *);
|
|
static int bge_blockinit(struct bge_softc *);
|
|
static int bge_setpowerstate(struct bge_softc *, int);
|
|
static uint32_t bge_readmem_ind(struct bge_softc *, int);
|
|
static void bge_writemem_ind(struct bge_softc *, int, int);
|
|
static void bge_writembx(struct bge_softc *, int, int);
|
|
static void bge_writemem_direct(struct bge_softc *, int, int);
|
|
static void bge_writereg_ind(struct bge_softc *, int, int);
|
|
static void bge_set_max_readrq(struct bge_softc *);
|
|
|
|
static int bge_miibus_readreg(device_t, int, int);
|
|
static void bge_miibus_writereg(device_t, int, int, int);
|
|
static void bge_miibus_statchg(device_t);
|
|
|
|
#define BGE_RESET_START 1
|
|
#define BGE_RESET_STOP 2
|
|
static void bge_sig_post_reset(struct bge_softc *, int);
|
|
static void bge_sig_legacy(struct bge_softc *, int);
|
|
static void bge_sig_pre_reset(struct bge_softc *, int);
|
|
static void bge_stop_fw(struct bge_softc *);
|
|
static int bge_reset(struct bge_softc *);
|
|
static void bge_link_upd(struct bge_softc *);
|
|
static void sysctl_bge_init(struct bge_softc *);
|
|
static int sysctl_bge_verify(SYSCTLFN_PROTO);
|
|
|
|
#ifdef BGE_DEBUG
|
|
#define DPRINTF(x) if (bgedebug) printf x
|
|
#define DPRINTFN(n,x) if (bgedebug >= (n)) printf x
|
|
#define BGE_TSO_PRINTF(x) do { if (bge_tso_debug) printf x ;} while (0)
|
|
int bgedebug = 0;
|
|
int bge_tso_debug = 0;
|
|
void bge_debug_info(struct bge_softc *);
|
|
#else
|
|
#define DPRINTF(x)
|
|
#define DPRINTFN(n,x)
|
|
#define BGE_TSO_PRINTF(x)
|
|
#endif
|
|
|
|
#ifdef BGE_EVENT_COUNTERS
|
|
#define BGE_EVCNT_INCR(ev) (ev).ev_count++
|
|
#define BGE_EVCNT_ADD(ev, val) (ev).ev_count += (val)
|
|
#define BGE_EVCNT_UPD(ev, val) (ev).ev_count = (val)
|
|
#else
|
|
#define BGE_EVCNT_INCR(ev) /* nothing */
|
|
#define BGE_EVCNT_ADD(ev, val) /* nothing */
|
|
#define BGE_EVCNT_UPD(ev, val) /* nothing */
|
|
#endif
|
|
|
|
static const struct bge_product {
|
|
pci_vendor_id_t bp_vendor;
|
|
pci_product_id_t bp_product;
|
|
const char *bp_name;
|
|
} bge_products[] = {
|
|
/*
|
|
* The BCM5700 documentation seems to indicate that the hardware
|
|
* still has the Alteon vendor ID burned into it, though it
|
|
* should always be overridden by the value in the EEPROM. We'll
|
|
* check for it anyway.
|
|
*/
|
|
{ PCI_VENDOR_ALTEON,
|
|
PCI_PRODUCT_ALTEON_BCM5700,
|
|
"Broadcom BCM5700 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_ALTEON,
|
|
PCI_PRODUCT_ALTEON_BCM5701,
|
|
"Broadcom BCM5701 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_ALTIMA,
|
|
PCI_PRODUCT_ALTIMA_AC1000,
|
|
"Altima AC1000 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_ALTIMA,
|
|
PCI_PRODUCT_ALTIMA_AC1001,
|
|
"Altima AC1001 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_ALTIMA,
|
|
PCI_PRODUCT_ALTIMA_AC9100,
|
|
"Altima AC9100 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5700,
|
|
"Broadcom BCM5700 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5701,
|
|
"Broadcom BCM5701 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5702,
|
|
"Broadcom BCM5702 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5702X,
|
|
"Broadcom BCM5702X Gigabit Ethernet" },
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5703,
|
|
"Broadcom BCM5703 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5703X,
|
|
"Broadcom BCM5703X Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5703_ALT,
|
|
"Broadcom BCM5703 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5704C,
|
|
"Broadcom BCM5704C Dual Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5704S,
|
|
"Broadcom BCM5704S Dual Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5705,
|
|
"Broadcom BCM5705 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5705F,
|
|
"Broadcom BCM5705F Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5705K,
|
|
"Broadcom BCM5705K Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5705M,
|
|
"Broadcom BCM5705M Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5705M_ALT,
|
|
"Broadcom BCM5705M Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5714,
|
|
"Broadcom BCM5714 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5714S,
|
|
"Broadcom BCM5714S Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5715,
|
|
"Broadcom BCM5715 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5715S,
|
|
"Broadcom BCM5715S Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5717,
|
|
"Broadcom BCM5717 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5718,
|
|
"Broadcom BCM5718 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5720,
|
|
"Broadcom BCM5720 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5721,
|
|
"Broadcom BCM5721 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5722,
|
|
"Broadcom BCM5722 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5723,
|
|
"Broadcom BCM5723 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5724,
|
|
"Broadcom BCM5724 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5750,
|
|
"Broadcom BCM5750 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5750M,
|
|
"Broadcom BCM5750M Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5751,
|
|
"Broadcom BCM5751 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5751F,
|
|
"Broadcom BCM5751F Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5751M,
|
|
"Broadcom BCM5751M Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5752,
|
|
"Broadcom BCM5752 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5752M,
|
|
"Broadcom BCM5752M Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5753,
|
|
"Broadcom BCM5753 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5753F,
|
|
"Broadcom BCM5753F Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5753M,
|
|
"Broadcom BCM5753M Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5754,
|
|
"Broadcom BCM5754 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5754M,
|
|
"Broadcom BCM5754M Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5755,
|
|
"Broadcom BCM5755 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5755M,
|
|
"Broadcom BCM5755M Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5756,
|
|
"Broadcom BCM5756 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5761,
|
|
"Broadcom BCM5761 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5761E,
|
|
"Broadcom BCM5761E Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5761S,
|
|
"Broadcom BCM5761S Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5761SE,
|
|
"Broadcom BCM5761SE Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5764,
|
|
"Broadcom BCM5764 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5780,
|
|
"Broadcom BCM5780 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5780S,
|
|
"Broadcom BCM5780S Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5781,
|
|
"Broadcom BCM5781 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5782,
|
|
"Broadcom BCM5782 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5784M,
|
|
"BCM5784M NetLink 1000baseT Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5786,
|
|
"Broadcom BCM5786 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5787,
|
|
"Broadcom BCM5787 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5787M,
|
|
"Broadcom BCM5787M Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5788,
|
|
"Broadcom BCM5788 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5789,
|
|
"Broadcom BCM5789 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5901,
|
|
"Broadcom BCM5901 Fast Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5901A2,
|
|
"Broadcom BCM5901A2 Fast Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5903M,
|
|
"Broadcom BCM5903M Fast Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5906,
|
|
"Broadcom BCM5906 Fast Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM5906M,
|
|
"Broadcom BCM5906M Fast Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM57760,
|
|
"Broadcom BCM57760 Fast Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM57761,
|
|
"Broadcom BCM57761 Fast Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM57765,
|
|
"Broadcom BCM57765 Fast Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM57780,
|
|
"Broadcom BCM57780 Fast Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM57781,
|
|
"Broadcom BCM57781 Fast Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM57785,
|
|
"Broadcom BCM57785 Fast Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM57788,
|
|
"Broadcom BCM57788 Fast Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM57790,
|
|
"Broadcom BCM57790 Fast Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM57791,
|
|
"Broadcom BCM57791 Fast Ethernet",
|
|
},
|
|
{ PCI_VENDOR_BROADCOM,
|
|
PCI_PRODUCT_BROADCOM_BCM57795,
|
|
"Broadcom BCM57795 Fast Ethernet",
|
|
},
|
|
{ PCI_VENDOR_SCHNEIDERKOCH,
|
|
PCI_PRODUCT_SCHNEIDERKOCH_SK_9DX1,
|
|
"SysKonnect SK-9Dx1 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_3COM,
|
|
PCI_PRODUCT_3COM_3C996,
|
|
"3Com 3c996 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_FUJITSU4,
|
|
PCI_PRODUCT_FUJITSU4_PW008GE4,
|
|
"Fujitsu PW008GE4 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_FUJITSU4,
|
|
PCI_PRODUCT_FUJITSU4_PW008GE5,
|
|
"Fujitsu PW008GE5 Gigabit Ethernet",
|
|
},
|
|
{ PCI_VENDOR_FUJITSU4,
|
|
PCI_PRODUCT_FUJITSU4_PP250_450_LAN,
|
|
"Fujitsu Primepower 250/450 Gigabit Ethernet",
|
|
},
|
|
{ 0,
|
|
0,
|
|
NULL },
|
|
};
|
|
|
|
/*
|
|
* XXX: how to handle variants based on 5750 and derivatives:
|
|
* 5750 5751, 5721, possibly 5714, 5752, and 5708?, which
|
|
* in general behave like a 5705, except with additional quirks.
|
|
* This driver's current handling of the 5721 is wrong;
|
|
* how we map ASIC revision to "quirks" needs more thought.
|
|
* (defined here until the thought is done).
|
|
*/
|
|
#define BGE_IS_5700_FAMILY(sc) ((sc)->bge_flags & BGE_5700_FAMILY)
|
|
#define BGE_IS_5714_FAMILY(sc) ((sc)->bge_flags & BGE_5714_FAMILY)
|
|
#define BGE_IS_5705_PLUS(sc) ((sc)->bge_flags & BGE_5705_PLUS)
|
|
#define BGE_IS_5750_OR_BEYOND(sc) ((sc)->bge_flags & BGE_5750_PLUS)
|
|
#define BGE_IS_5755_PLUS(sc) ((sc)->bge_flags & BGE_5755_PLUS)
|
|
#define BGE_IS_JUMBO_CAPABLE(sc) ((sc)->bge_flags & BGE_JUMBO_CAPABLE)
|
|
|
|
static const struct bge_revision {
|
|
uint32_t br_chipid;
|
|
const char *br_name;
|
|
} bge_revisions[] = {
|
|
{ BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
|
|
{ BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
|
|
{ BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
|
|
{ BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
|
|
{ BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
|
|
{ BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
|
|
/* This is treated like a BCM5700 Bx */
|
|
{ BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
|
|
{ BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
|
|
{ BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
|
|
{ BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
|
|
{ BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
|
|
{ BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
|
|
{ BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
|
|
{ BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
|
|
{ BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
|
|
{ BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
|
|
{ BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
|
|
{ BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
|
|
{ BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
|
|
{ BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
|
|
{ BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
|
|
{ BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
|
|
{ BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
|
|
{ BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
|
|
{ BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
|
|
{ BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
|
|
{ BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
|
|
{ BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
|
|
{ BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
|
|
{ BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
|
|
{ BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
|
|
{ BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
|
|
{ BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
|
|
{ BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
|
|
{ BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
|
|
{ BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
|
|
{ BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
|
|
{ BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
|
|
{ BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
|
|
{ BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
|
|
{ BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
|
|
{ BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
|
|
{ BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
|
|
{ BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
|
|
{ BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
|
|
{ BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
|
|
{ BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
|
|
{ BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
|
|
{ BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
|
|
{ BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
|
|
{ BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
|
|
/* 5754 and 5787 share the same ASIC ID */
|
|
{ BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
|
|
{ BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
|
|
{ BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
|
|
{ BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
|
|
{ BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
|
|
{ BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
|
|
{ BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },
|
|
|
|
{ 0, NULL }
|
|
};
|
|
|
|
/*
|
|
* Some defaults for major revisions, so that newer steppings
|
|
* that we don't know about have a shot at working.
|
|
*/
|
|
static const struct bge_revision bge_majorrevs[] = {
|
|
{ BGE_ASICREV_BCM5700, "unknown BCM5700" },
|
|
{ BGE_ASICREV_BCM5701, "unknown BCM5701" },
|
|
{ BGE_ASICREV_BCM5703, "unknown BCM5703" },
|
|
{ BGE_ASICREV_BCM5704, "unknown BCM5704" },
|
|
{ BGE_ASICREV_BCM5705, "unknown BCM5705" },
|
|
{ BGE_ASICREV_BCM5750, "unknown BCM5750" },
|
|
{ BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
|
|
{ BGE_ASICREV_BCM5752, "unknown BCM5752" },
|
|
{ BGE_ASICREV_BCM5780, "unknown BCM5780" },
|
|
{ BGE_ASICREV_BCM5714, "unknown BCM5714" },
|
|
{ BGE_ASICREV_BCM5755, "unknown BCM5755" },
|
|
{ BGE_ASICREV_BCM5761, "unknown BCM5761" },
|
|
{ BGE_ASICREV_BCM5784, "unknown BCM5784" },
|
|
{ BGE_ASICREV_BCM5785, "unknown BCM5785" },
|
|
/* 5754 and 5787 share the same ASIC ID */
|
|
{ BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
|
|
{ BGE_ASICREV_BCM5906, "unknown BCM5906" },
|
|
{ BGE_ASICREV_BCM57780, "unknown BCM57780" },
|
|
{ BGE_ASICREV_BCM5717, "unknown BCM5717" },
|
|
{ BGE_ASICREV_BCM57765, "unknown BCM57765" },
|
|
|
|
{ 0, NULL }
|
|
};
|
|
|
|
static int bge_allow_asf = 1;
|
|
|
|
CFATTACH_DECL_NEW(bge, sizeof(struct bge_softc),
|
|
bge_probe, bge_attach, NULL, NULL);
|
|
|
|
static uint32_t
|
|
bge_readmem_ind(struct bge_softc *sc, int off)
|
|
{
|
|
pcireg_t val;
|
|
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
|
|
val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
|
|
return val;
|
|
}
|
|
|
|
static void
|
|
bge_writemem_ind(struct bge_softc *sc, int off, int val)
|
|
{
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
|
|
}
|
|
|
|
/*
|
|
* PCI Express only
|
|
*/
|
|
static void
|
|
bge_set_max_readrq(struct bge_softc *sc)
|
|
{
|
|
pcireg_t val;
|
|
|
|
val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
|
|
+ PCI_PCIE_DCSR);
|
|
if ((val & PCI_PCIE_DCSR_MAX_READ_REQ) !=
|
|
BGE_PCIE_DEVCTL_MAX_READRQ_4096) {
|
|
aprint_verbose_dev(sc->bge_dev,
|
|
"adjust device control 0x%04x ", val);
|
|
val &= ~PCI_PCIE_DCSR_MAX_READ_REQ;
|
|
val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
|
|
+ PCI_PCIE_DCSR, val);
|
|
aprint_verbose("-> 0x%04x\n", val);
|
|
}
|
|
}
|
|
|
|
#ifdef notdef
|
|
static uint32_t
|
|
bge_readreg_ind(struct bge_softc *sc, int off)
|
|
{
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
|
|
return (pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA));
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
bge_writereg_ind(struct bge_softc *sc, int off, int val)
|
|
{
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
|
|
}
|
|
|
|
static void
|
|
bge_writemem_direct(struct bge_softc *sc, int off, int val)
|
|
{
|
|
CSR_WRITE_4(sc, off, val);
|
|
}
|
|
|
|
static void
|
|
bge_writembx(struct bge_softc *sc, int off, int val)
|
|
{
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
|
|
off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;
|
|
|
|
CSR_WRITE_4(sc, off, val);
|
|
}
|
|
|
|
static uint8_t
|
|
bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
|
|
{
|
|
uint32_t access, byte = 0;
|
|
int i;
|
|
|
|
/* Lock. */
|
|
CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
|
|
for (i = 0; i < 8000; i++) {
|
|
if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
|
|
break;
|
|
DELAY(20);
|
|
}
|
|
if (i == 8000)
|
|
return 1;
|
|
|
|
/* Enable access. */
|
|
access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
|
|
CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);
|
|
|
|
CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
|
|
CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
|
|
for (i = 0; i < BGE_TIMEOUT * 10; i++) {
|
|
DELAY(10);
|
|
if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
|
|
DELAY(10);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT * 10) {
|
|
aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Get result. */
|
|
byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);
|
|
|
|
*dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;
|
|
|
|
/* Disable access. */
|
|
CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);
|
|
|
|
/* Unlock. */
|
|
CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);
|
|
CSR_READ_4(sc, BGE_NVRAM_SWARB);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read a sequence of bytes from NVRAM.
|
|
*/
|
|
static int
|
|
bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
|
|
{
|
|
int err = 0, i;
|
|
uint8_t byte = 0;
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
|
|
return 1;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
err = bge_nvram_getbyte(sc, off + i, &byte);
|
|
if (err)
|
|
break;
|
|
*(dest + i) = byte;
|
|
}
|
|
|
|
return (err ? 1 : 0);
|
|
}
|
|
|
|
/*
|
|
* Read a byte of data stored in the EEPROM at address 'addr.' The
|
|
* BCM570x supports both the traditional bitbang interface and an
|
|
* auto access interface for reading the EEPROM. We use the auto
|
|
* access method.
|
|
*/
|
|
static uint8_t
|
|
bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
|
|
{
|
|
int i;
|
|
uint32_t byte = 0;
|
|
|
|
/*
|
|
* Enable use of auto EEPROM access so we can avoid
|
|
* having to use the bitbang method.
|
|
*/
|
|
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);
|
|
|
|
/* Reset the EEPROM, load the clock period. */
|
|
CSR_WRITE_4(sc, BGE_EE_ADDR,
|
|
BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
|
|
DELAY(20);
|
|
|
|
/* Issue the read EEPROM command. */
|
|
CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);
|
|
|
|
/* Wait for completion */
|
|
for (i = 0; i < BGE_TIMEOUT * 10; i++) {
|
|
DELAY(10);
|
|
if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
|
|
break;
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT * 10) {
|
|
aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
|
|
return 1;
|
|
}
|
|
|
|
/* Get result. */
|
|
byte = CSR_READ_4(sc, BGE_EE_DATA);
|
|
|
|
*dest = (byte >> ((addr % 4) * 8)) & 0xFF;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read a sequence of bytes from the EEPROM.
|
|
*/
|
|
static int
|
|
bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
|
|
{
|
|
int err = 0, i;
|
|
uint8_t byte = 0;
|
|
char *dest = destv;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
err = bge_eeprom_getbyte(sc, off + i, &byte);
|
|
if (err)
|
|
break;
|
|
*(dest + i) = byte;
|
|
}
|
|
|
|
return (err ? 1 : 0);
|
|
}
|
|
|
|
static int
|
|
bge_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct bge_softc *sc = device_private(dev);
|
|
uint32_t val;
|
|
uint32_t autopoll;
|
|
int i;
|
|
|
|
/*
|
|
* Broadcom's own driver always assumes the internal
|
|
* PHY is at GMII address 1. On some chips, the PHY responds
|
|
* to accesses at all addresses, which could cause us to
|
|
* bogusly attach the PHY 32 times at probe type. Always
|
|
* restricting the lookup to address 1 is simpler than
|
|
* trying to figure out which chips revisions should be
|
|
* special-cased.
|
|
*/
|
|
if (phy != 1)
|
|
return 0;
|
|
|
|
/* Reading with autopolling on may trigger PCI errors */
|
|
autopoll = CSR_READ_4(sc, BGE_MI_MODE);
|
|
if (autopoll & BGE_MIMODE_AUTOPOLL) {
|
|
BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
|
|
BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
|
|
DELAY(40);
|
|
}
|
|
|
|
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
|
|
BGE_MIPHY(phy) | BGE_MIREG(reg));
|
|
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
val = CSR_READ_4(sc, BGE_MI_COMM);
|
|
if (!(val & BGE_MICOMM_BUSY))
|
|
break;
|
|
delay(10);
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT) {
|
|
aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
|
|
val = 0;
|
|
goto done;
|
|
}
|
|
|
|
val = CSR_READ_4(sc, BGE_MI_COMM);
|
|
|
|
done:
|
|
if (autopoll & BGE_MIMODE_AUTOPOLL) {
|
|
BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
|
|
BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
|
|
DELAY(40);
|
|
}
|
|
|
|
if (val & BGE_MICOMM_READFAIL)
|
|
return 0;
|
|
|
|
return (val & 0xFFFF);
|
|
}
|
|
|
|
static void
|
|
bge_miibus_writereg(device_t dev, int phy, int reg, int val)
|
|
{
|
|
struct bge_softc *sc = device_private(dev);
|
|
uint32_t autopoll;
|
|
int i;
|
|
|
|
if (phy!=1) {
|
|
return;
|
|
}
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
|
|
(reg == BRGPHY_MII_1000CTL || reg == BRGPHY_MII_AUXCTL)) {
|
|
return;
|
|
}
|
|
|
|
/* Reading with autopolling on may trigger PCI errors */
|
|
autopoll = CSR_READ_4(sc, BGE_MI_MODE);
|
|
if (autopoll & BGE_MIMODE_AUTOPOLL) {
|
|
delay(40);
|
|
BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
|
|
BGE_CLRBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
|
|
delay(10); /* 40 usec is supposed to be adequate */
|
|
}
|
|
|
|
CSR_WRITE_4(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
|
|
BGE_MIPHY(phy) | BGE_MIREG(reg) | val);
|
|
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
delay(10);
|
|
if (!(CSR_READ_4(sc, BGE_MI_COMM) & BGE_MICOMM_BUSY)) {
|
|
delay(5);
|
|
CSR_READ_4(sc, BGE_MI_COMM);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (autopoll & BGE_MIMODE_AUTOPOLL) {
|
|
BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
|
|
BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
|
|
delay(40);
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT)
|
|
aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
|
|
}
|
|
|
|
static void
|
|
bge_miibus_statchg(device_t dev)
|
|
{
|
|
struct bge_softc *sc = device_private(dev);
|
|
struct mii_data *mii = &sc->bge_mii;
|
|
|
|
/*
|
|
* Get flow control negotiation result.
|
|
*/
|
|
if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
|
|
(mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags) {
|
|
sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
|
|
mii->mii_media_active &= ~IFM_ETH_FMASK;
|
|
}
|
|
|
|
BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_PORTMODE);
|
|
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
|
|
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
|
|
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_GMII);
|
|
else
|
|
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_PORTMODE_MII);
|
|
|
|
if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX)
|
|
BGE_CLRBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
|
|
else
|
|
BGE_SETBIT(sc, BGE_MAC_MODE, BGE_MACMODE_HALF_DUPLEX);
|
|
|
|
/*
|
|
* 802.3x flow control
|
|
*/
|
|
if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
|
|
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
|
|
else
|
|
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_FLOWCTL_ENABLE);
|
|
|
|
if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
|
|
BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
|
|
else
|
|
BGE_CLRBIT(sc, BGE_TX_MODE, BGE_TXMODE_FLOWCTL_ENABLE);
|
|
}
|
|
|
|
/*
|
|
* Update rx threshold levels to values in a particular slot
|
|
* of the interrupt-mitigation table bge_rx_threshes.
|
|
*/
|
|
static void
|
|
bge_set_thresh(struct ifnet *ifp, int lvl)
|
|
{
|
|
struct bge_softc *sc = ifp->if_softc;
|
|
int s;
|
|
|
|
/* For now, just save the new Rx-intr thresholds and record
|
|
* that a threshold update is pending. Updating the hardware
|
|
* registers here (even at splhigh()) is observed to
|
|
* occasionaly cause glitches where Rx-interrupts are not
|
|
* honoured for up to 10 seconds. jonathan@NetBSD.org, 2003-04-05
|
|
*/
|
|
s = splnet();
|
|
sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
|
|
sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
|
|
sc->bge_pending_rxintr_change = 1;
|
|
splx(s);
|
|
|
|
return;
|
|
}
|
|
|
|
|
|
/*
|
|
* Update Rx thresholds of all bge devices
|
|
*/
|
|
static void
|
|
bge_update_all_threshes(int lvl)
|
|
{
|
|
struct ifnet *ifp;
|
|
const char * const namebuf = "bge";
|
|
int namelen;
|
|
|
|
if (lvl < 0)
|
|
lvl = 0;
|
|
else if (lvl >= NBGE_RX_THRESH)
|
|
lvl = NBGE_RX_THRESH - 1;
|
|
|
|
namelen = strlen(namebuf);
|
|
/*
|
|
* Now search all the interfaces for this name/number
|
|
*/
|
|
IFNET_FOREACH(ifp) {
|
|
if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
|
|
continue;
|
|
/* We got a match: update if doing auto-threshold-tuning */
|
|
if (bge_auto_thresh)
|
|
bge_set_thresh(ifp, lvl);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle events that have triggered interrupts.
|
|
*/
|
|
static void
|
|
bge_handle_events(struct bge_softc *sc)
|
|
{
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Memory management for jumbo frames.
|
|
*/
|
|
|
|
static int
|
|
bge_alloc_jumbo_mem(struct bge_softc *sc)
|
|
{
|
|
char *ptr, *kva;
|
|
bus_dma_segment_t seg;
|
|
int i, rseg, state, error;
|
|
struct bge_jpool_entry *entry;
|
|
|
|
state = error = 0;
|
|
|
|
/* Grab a big chunk o' storage. */
|
|
if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
|
|
&seg, 1, &rseg, BUS_DMA_NOWAIT)) {
|
|
aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
|
|
return ENOBUFS;
|
|
}
|
|
|
|
state = 1;
|
|
if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg, BGE_JMEM, (void **)&kva,
|
|
BUS_DMA_NOWAIT)) {
|
|
aprint_error_dev(sc->bge_dev,
|
|
"can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
|
|
state = 2;
|
|
if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
|
|
BUS_DMA_NOWAIT, &sc->bge_cdata.bge_rx_jumbo_map)) {
|
|
aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
|
|
state = 3;
|
|
if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
|
|
kva, BGE_JMEM, NULL, BUS_DMA_NOWAIT)) {
|
|
aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
|
|
state = 4;
|
|
sc->bge_cdata.bge_jumbo_buf = (void *)kva;
|
|
DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));
|
|
|
|
SLIST_INIT(&sc->bge_jfree_listhead);
|
|
SLIST_INIT(&sc->bge_jinuse_listhead);
|
|
|
|
/*
|
|
* Now divide it up into 9K pieces and save the addresses
|
|
* in an array.
|
|
*/
|
|
ptr = sc->bge_cdata.bge_jumbo_buf;
|
|
for (i = 0; i < BGE_JSLOTS; i++) {
|
|
sc->bge_cdata.bge_jslots[i] = ptr;
|
|
ptr += BGE_JLEN;
|
|
entry = malloc(sizeof(struct bge_jpool_entry),
|
|
M_DEVBUF, M_NOWAIT);
|
|
if (entry == NULL) {
|
|
aprint_error_dev(sc->bge_dev,
|
|
"no memory for jumbo buffer queue!\n");
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
entry->slot = i;
|
|
SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
|
|
entry, jpool_entries);
|
|
}
|
|
out:
|
|
if (error != 0) {
|
|
switch (state) {
|
|
case 4:
|
|
bus_dmamap_unload(sc->bge_dmatag,
|
|
sc->bge_cdata.bge_rx_jumbo_map);
|
|
case 3:
|
|
bus_dmamap_destroy(sc->bge_dmatag,
|
|
sc->bge_cdata.bge_rx_jumbo_map);
|
|
case 2:
|
|
bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
|
|
case 1:
|
|
bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Allocate a jumbo buffer.
|
|
*/
|
|
static void *
|
|
bge_jalloc(struct bge_softc *sc)
|
|
{
|
|
struct bge_jpool_entry *entry;
|
|
|
|
entry = SLIST_FIRST(&sc->bge_jfree_listhead);
|
|
|
|
if (entry == NULL) {
|
|
aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
|
|
return NULL;
|
|
}
|
|
|
|
SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
|
|
SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
|
|
return (sc->bge_cdata.bge_jslots[entry->slot]);
|
|
}
|
|
|
|
/*
|
|
* Release a jumbo buffer.
|
|
*/
|
|
static void
|
|
bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
|
|
{
|
|
struct bge_jpool_entry *entry;
|
|
struct bge_softc *sc;
|
|
int i, s;
|
|
|
|
/* Extract the softc struct pointer. */
|
|
sc = (struct bge_softc *)arg;
|
|
|
|
if (sc == NULL)
|
|
panic("bge_jfree: can't find softc pointer!");
|
|
|
|
/* calculate the slot this buffer belongs to */
|
|
|
|
i = ((char *)buf
|
|
- (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;
|
|
|
|
if ((i < 0) || (i >= BGE_JSLOTS))
|
|
panic("bge_jfree: asked to free buffer that we don't manage!");
|
|
|
|
s = splvm();
|
|
entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
|
|
if (entry == NULL)
|
|
panic("bge_jfree: buffer not in use!");
|
|
entry->slot = i;
|
|
SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
|
|
SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
|
|
|
|
if (__predict_true(m != NULL))
|
|
pool_cache_put(mb_cache, m);
|
|
splx(s);
|
|
}
|
|
|
|
|
|
/*
|
|
* Initialize a standard receive ring descriptor.
|
|
*/
|
|
static int
|
|
bge_newbuf_std(struct bge_softc *sc, int i, struct mbuf *m,
|
|
bus_dmamap_t dmamap)
|
|
{
|
|
struct mbuf *m_new = NULL;
|
|
struct bge_rx_bd *r;
|
|
int error;
|
|
|
|
if (dmamap == NULL) {
|
|
error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
|
|
MCLBYTES, 0, BUS_DMA_NOWAIT, &dmamap);
|
|
if (error != 0)
|
|
return error;
|
|
}
|
|
|
|
sc->bge_cdata.bge_rx_std_map[i] = dmamap;
|
|
|
|
if (m == NULL) {
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL)
|
|
return ENOBUFS;
|
|
|
|
MCLGET(m_new, M_DONTWAIT);
|
|
if (!(m_new->m_flags & M_EXT)) {
|
|
m_freem(m_new);
|
|
return ENOBUFS;
|
|
}
|
|
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
|
|
|
|
} else {
|
|
m_new = m;
|
|
m_new->m_len = m_new->m_pkthdr.len = MCLBYTES;
|
|
m_new->m_data = m_new->m_ext.ext_buf;
|
|
}
|
|
if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
|
|
m_adj(m_new, ETHER_ALIGN);
|
|
if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_new,
|
|
BUS_DMA_READ|BUS_DMA_NOWAIT))
|
|
return ENOBUFS;
|
|
bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD);
|
|
|
|
sc->bge_cdata.bge_rx_std_chain[i] = m_new;
|
|
r = &sc->bge_rdata->bge_rx_std_ring[i];
|
|
BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
|
|
r->bge_flags = BGE_RXBDFLAG_END;
|
|
r->bge_len = m_new->m_len;
|
|
r->bge_idx = i;
|
|
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
offsetof(struct bge_ring_data, bge_rx_std_ring) +
|
|
i * sizeof (struct bge_rx_bd),
|
|
sizeof (struct bge_rx_bd),
|
|
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize a jumbo receive ring descriptor. This allocates
|
|
* a jumbo buffer from the pool managed internally by the driver.
|
|
*/
|
|
static int
|
|
bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
|
|
{
|
|
struct mbuf *m_new = NULL;
|
|
struct bge_rx_bd *r;
|
|
void *buf = NULL;
|
|
|
|
if (m == NULL) {
|
|
|
|
/* Allocate the mbuf. */
|
|
MGETHDR(m_new, M_DONTWAIT, MT_DATA);
|
|
if (m_new == NULL)
|
|
return ENOBUFS;
|
|
|
|
/* Allocate the jumbo buffer */
|
|
buf = bge_jalloc(sc);
|
|
if (buf == NULL) {
|
|
m_freem(m_new);
|
|
aprint_error_dev(sc->bge_dev,
|
|
"jumbo allocation failed -- packet dropped!\n");
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/* Attach the buffer to the mbuf. */
|
|
m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
|
|
MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
|
|
bge_jfree, sc);
|
|
m_new->m_flags |= M_EXT_RW;
|
|
} else {
|
|
m_new = m;
|
|
buf = m_new->m_data = m_new->m_ext.ext_buf;
|
|
m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
|
|
}
|
|
if (!(sc->bge_flags & BGE_RX_ALIGNBUG))
|
|
m_adj(m_new, ETHER_ALIGN);
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
|
|
mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf, BGE_JLEN,
|
|
BUS_DMASYNC_PREREAD);
|
|
/* Set up the descriptor. */
|
|
r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
|
|
sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
|
|
BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
|
|
r->bge_flags = BGE_RXBDFLAG_END|BGE_RXBDFLAG_JUMBO_RING;
|
|
r->bge_len = m_new->m_len;
|
|
r->bge_idx = i;
|
|
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
|
|
i * sizeof (struct bge_rx_bd),
|
|
sizeof (struct bge_rx_bd),
|
|
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The standard receive ring has 512 entries in it. At 2K per mbuf cluster,
|
|
* that's 1MB or memory, which is a lot. For now, we fill only the first
|
|
* 256 ring entries and hope that our CPU is fast enough to keep up with
|
|
* the NIC.
|
|
*/
|
|
static int
|
|
bge_init_rx_ring_std(struct bge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
if (sc->bge_flags & BGE_RXRING_VALID)
|
|
return 0;
|
|
|
|
for (i = 0; i < BGE_SSLOTS; i++) {
|
|
if (bge_newbuf_std(sc, i, NULL, 0) == ENOBUFS)
|
|
return ENOBUFS;
|
|
}
|
|
|
|
sc->bge_std = i - 1;
|
|
bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
|
|
|
|
sc->bge_flags |= BGE_RXRING_VALID;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bge_free_rx_ring_std(struct bge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
if (!(sc->bge_flags & BGE_RXRING_VALID))
|
|
return;
|
|
|
|
for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_rx_std_chain[i] != NULL) {
|
|
m_freem(sc->bge_cdata.bge_rx_std_chain[i]);
|
|
sc->bge_cdata.bge_rx_std_chain[i] = NULL;
|
|
bus_dmamap_destroy(sc->bge_dmatag,
|
|
sc->bge_cdata.bge_rx_std_map[i]);
|
|
}
|
|
memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
|
|
sizeof(struct bge_rx_bd));
|
|
}
|
|
|
|
sc->bge_flags &= ~BGE_RXRING_VALID;
|
|
}
|
|
|
|
static int
|
|
bge_init_rx_ring_jumbo(struct bge_softc *sc)
|
|
{
|
|
int i;
|
|
volatile struct bge_rcb *rcb;
|
|
|
|
if (sc->bge_flags & BGE_JUMBO_RXRING_VALID)
|
|
return 0;
|
|
|
|
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
|
|
if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
|
|
return ENOBUFS;
|
|
};
|
|
|
|
sc->bge_jumbo = i - 1;
|
|
sc->bge_flags |= BGE_JUMBO_RXRING_VALID;
|
|
|
|
rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
|
|
rcb->bge_maxlen_flags = 0;
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
|
|
|
|
bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bge_free_rx_ring_jumbo(struct bge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
if (!(sc->bge_flags & BGE_JUMBO_RXRING_VALID))
|
|
return;
|
|
|
|
for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_rx_jumbo_chain[i] != NULL) {
|
|
m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
|
|
sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
|
|
}
|
|
memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
|
|
sizeof(struct bge_rx_bd));
|
|
}
|
|
|
|
sc->bge_flags &= ~BGE_JUMBO_RXRING_VALID;
|
|
}
|
|
|
|
static void
|
|
bge_free_tx_ring(struct bge_softc *sc)
|
|
{
|
|
int i, freed;
|
|
struct txdmamap_pool_entry *dma;
|
|
|
|
if (!(sc->bge_flags & BGE_TXRING_VALID))
|
|
return;
|
|
|
|
freed = 0;
|
|
|
|
for (i = 0; i < BGE_TX_RING_CNT; i++) {
|
|
if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
|
|
freed++;
|
|
m_freem(sc->bge_cdata.bge_tx_chain[i]);
|
|
sc->bge_cdata.bge_tx_chain[i] = NULL;
|
|
SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
|
|
link);
|
|
sc->txdma[i] = 0;
|
|
}
|
|
memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
|
|
sizeof(struct bge_tx_bd));
|
|
}
|
|
|
|
while ((dma = SLIST_FIRST(&sc->txdma_list))) {
|
|
SLIST_REMOVE_HEAD(&sc->txdma_list, link);
|
|
bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
|
|
free(dma, M_DEVBUF);
|
|
}
|
|
|
|
sc->bge_flags &= ~BGE_TXRING_VALID;
|
|
}
|
|
|
|
static int
|
|
bge_init_tx_ring(struct bge_softc *sc)
|
|
{
|
|
int i;
|
|
bus_dmamap_t dmamap;
|
|
struct txdmamap_pool_entry *dma;
|
|
|
|
if (sc->bge_flags & BGE_TXRING_VALID)
|
|
return 0;
|
|
|
|
sc->bge_txcnt = 0;
|
|
sc->bge_tx_saved_considx = 0;
|
|
|
|
/* Initialize transmit producer index for host-memory send ring. */
|
|
sc->bge_tx_prodidx = 0;
|
|
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
|
|
/* 5700 b2 errata */
|
|
if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
|
|
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
|
|
|
|
/* NIC-memory send ring not used; initialize to zero. */
|
|
bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
|
|
/* 5700 b2 errata */
|
|
if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
|
|
bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
|
|
|
|
SLIST_INIT(&sc->txdma_list);
|
|
for (i = 0; i < BGE_RSLOTS; i++) {
|
|
if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
|
|
BGE_NTXSEG, ETHER_MAX_LEN_JUMBO, 0, BUS_DMA_NOWAIT,
|
|
&dmamap))
|
|
return ENOBUFS;
|
|
if (dmamap == NULL)
|
|
panic("dmamap NULL in bge_init_tx_ring");
|
|
dma = malloc(sizeof(*dma), M_DEVBUF, M_NOWAIT);
|
|
if (dma == NULL) {
|
|
aprint_error_dev(sc->bge_dev,
|
|
"can't alloc txdmamap_pool_entry\n");
|
|
bus_dmamap_destroy(sc->bge_dmatag, dmamap);
|
|
return ENOMEM;
|
|
}
|
|
dma->dmamap = dmamap;
|
|
SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
|
|
}
|
|
|
|
sc->bge_flags |= BGE_TXRING_VALID;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bge_setmulti(struct bge_softc *sc)
|
|
{
|
|
struct ethercom *ac = &sc->ethercom;
|
|
struct ifnet *ifp = &ac->ec_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
uint32_t hashes[4] = { 0, 0, 0, 0 };
|
|
uint32_t h;
|
|
int i;
|
|
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
goto allmulti;
|
|
|
|
/* Now program new ones. */
|
|
ETHER_FIRST_MULTI(step, ac, enm);
|
|
while (enm != NULL) {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
|
|
/*
|
|
* We must listen to a range of multicast addresses.
|
|
* For now, just accept all multicasts, rather than
|
|
* trying to set only those filter bits needed to match
|
|
* the range. (At this time, the only use of address
|
|
* ranges is for IP multicast routing, for which the
|
|
* range is big enough to require all bits set.)
|
|
*/
|
|
goto allmulti;
|
|
}
|
|
|
|
h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
|
|
|
|
/* Just want the 7 least-significant bits. */
|
|
h &= 0x7f;
|
|
|
|
hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
goto setit;
|
|
|
|
allmulti:
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;
|
|
|
|
setit:
|
|
for (i = 0; i < 4; i++)
|
|
CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
|
|
}
|
|
|
|
static void
|
|
bge_sig_pre_reset(struct bge_softc *sc, int type)
|
|
{
|
|
/*
|
|
* Some chips don't like this so only do this if ASF is enabled
|
|
*/
|
|
if (sc->bge_asf_mode)
|
|
bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
|
|
|
|
if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
|
|
switch (type) {
|
|
case BGE_RESET_START:
|
|
bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
|
|
break;
|
|
case BGE_RESET_STOP:
|
|
bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
bge_sig_post_reset(struct bge_softc *sc, int type)
|
|
{
|
|
|
|
if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
|
|
switch (type) {
|
|
case BGE_RESET_START:
|
|
bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000001);
|
|
/* START DONE */
|
|
break;
|
|
case BGE_RESET_STOP:
|
|
bge_writemem_ind(sc, BGE_SDI_STATUS, 0x80000002);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
bge_sig_legacy(struct bge_softc *sc, int type)
|
|
{
|
|
|
|
if (sc->bge_asf_mode) {
|
|
switch (type) {
|
|
case BGE_RESET_START:
|
|
bge_writemem_ind(sc, BGE_SDI_STATUS, 0x1); /* START */
|
|
break;
|
|
case BGE_RESET_STOP:
|
|
bge_writemem_ind(sc, BGE_SDI_STATUS, 0x2); /* UNLOAD */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
bge_stop_fw(struct bge_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
if (sc->bge_asf_mode) {
|
|
bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW, BGE_FW_PAUSE);
|
|
CSR_WRITE_4(sc, BGE_CPU_EVENT,
|
|
CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
|
|
|
|
for (i = 0; i < 100; i++) {
|
|
if (!(CSR_READ_4(sc, BGE_CPU_EVENT) & (1 << 14)))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
bge_poll_fw(struct bge_softc *sc)
|
|
{
|
|
uint32_t val;
|
|
int i;
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
val = CSR_READ_4(sc, BGE_VCPU_STATUS);
|
|
if (val & BGE_VCPU_STATUS_INIT_DONE)
|
|
break;
|
|
DELAY(100);
|
|
}
|
|
if (i >= BGE_TIMEOUT) {
|
|
aprint_error_dev(sc->bge_dev, "reset timed out\n");
|
|
return -1;
|
|
}
|
|
} else if ((sc->bge_flags & BGE_NO_EEPROM) == 0) {
|
|
/*
|
|
* Poll the value location we just wrote until
|
|
* we see the 1's complement of the magic number.
|
|
* This indicates that the firmware initialization
|
|
* is complete.
|
|
* XXX 1000ms for Flash and 10000ms for SEEPROM.
|
|
*/
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
val = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM);
|
|
if (val == ~BGE_MAGIC_NUMBER)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
|
|
if (i >= BGE_TIMEOUT) {
|
|
aprint_error_dev(sc->bge_dev,
|
|
"firmware handshake timed out, val = %x\n", val);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Do endian, PCI and DMA initialization. Also check the on-board ROM
|
|
* self-test results.
|
|
*/
|
|
static int
|
|
bge_chipinit(struct bge_softc *sc)
|
|
{
|
|
int i;
|
|
uint32_t dma_rw_ctl;
|
|
|
|
/* Set endianness before we access any non-PCI registers. */
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
|
|
BGE_INIT);
|
|
|
|
/* Set power state to D0. */
|
|
bge_setpowerstate(sc, 0);
|
|
|
|
/* Clear the MAC control register */
|
|
CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
|
|
|
|
/*
|
|
* Clear the MAC statistics block in the NIC's
|
|
* internal memory.
|
|
*/
|
|
for (i = BGE_STATS_BLOCK;
|
|
i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
|
|
BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
|
|
|
|
for (i = BGE_STATUS_BLOCK;
|
|
i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
|
|
BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);
|
|
|
|
/* Set up the PCI DMA control register. */
|
|
dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
|
|
if (sc->bge_flags & BGE_PCIE) {
|
|
/* Read watermark not used, 128 bytes for write. */
|
|
DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
|
|
device_xname(sc->bge_dev)));
|
|
dma_rw_ctl |= (0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
|
|
} else if (sc->bge_flags & BGE_PCIX) {
|
|
DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
|
|
device_xname(sc->bge_dev)));
|
|
/* PCI-X bus */
|
|
if (BGE_IS_5714_FAMILY(sc)) {
|
|
/* 256 bytes for read and write. */
|
|
dma_rw_ctl |= (0x02 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
|
|
(0x02 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
|
|
dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
|
|
else
|
|
dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
|
|
} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
|
|
/* 1536 bytes for read, 384 bytes for write. */
|
|
dma_rw_ctl |=
|
|
(0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
|
|
(0x3 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
|
|
} else {
|
|
/* 384 bytes for read and write. */
|
|
dma_rw_ctl |= (0x03 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
|
|
(0x03 << BGE_PCIDMARWCTL_WR_WAT_SHIFT) |
|
|
(0x0F);
|
|
}
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
|
|
uint32_t tmp;
|
|
|
|
/* Set ONEDMA_ATONCE for hardware workaround. */
|
|
tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
|
|
if (tmp == 6 || tmp == 7)
|
|
dma_rw_ctl |=
|
|
BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
|
|
|
|
/* Set PCI-X DMA write workaround. */
|
|
dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
|
|
}
|
|
} else {
|
|
/* Conventional PCI bus: 256 bytes for read and write. */
|
|
DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
|
|
device_xname(sc->bge_dev)));
|
|
dma_rw_ctl |= (0x7 << BGE_PCIDMARWCTL_RD_WAT_SHIFT) |
|
|
(0x7 << BGE_PCIDMARWCTL_WR_WAT_SHIFT);
|
|
if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
|
|
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
|
|
dma_rw_ctl |= 0x0F;
|
|
}
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
|
|
dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
|
|
BGE_PCIDMARWCTL_ASRT_ALL_BE;
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
|
|
dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;
|
|
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
|
|
dma_rw_ctl);
|
|
|
|
/*
|
|
* Set up general mode register.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS |
|
|
BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
|
|
BGE_MODECTL_TX_NO_PHDR_CSUM);
|
|
|
|
/*
|
|
* BCM5701 B5 have a bug causing data corruption when using
|
|
* 64-bit DMA reads, which can be terminated early and then
|
|
* completed later as 32-bit accesses, in combination with
|
|
* certain bridges.
|
|
*/
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
|
|
sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
|
|
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_FORCE_PCI32);
|
|
|
|
/*
|
|
* Tell the firmware the driver is running
|
|
*/
|
|
if (sc->bge_asf_mode & ASF_STACKUP)
|
|
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
|
|
|
|
/*
|
|
* Disable memory write invalidate. Apparently it is not supported
|
|
* properly by these devices.
|
|
*/
|
|
PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
|
|
PCI_COMMAND_INVALIDATE_ENABLE);
|
|
|
|
#ifdef __brokenalpha__
|
|
/*
|
|
* Must insure that we do not cross an 8K (bytes) boundary
|
|
* for DMA reads. Our highest limit is 1K bytes. This is a
|
|
* restriction on some ALPHA platforms with early revision
|
|
* 21174 PCI chipsets, such as the AlphaPC 164lx
|
|
*/
|
|
PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
|
|
#endif
|
|
|
|
/* Set the timer prescaler (always 66MHz) */
|
|
CSR_WRITE_4(sc, BGE_MISC_CFG, 65 << 1/*BGE_32BITTIME_66MHZ*/);
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
|
|
DELAY(40); /* XXX */
|
|
|
|
/* Put PHY into ready state */
|
|
BGE_CLRBIT(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
|
|
CSR_READ_4(sc, BGE_MISC_CFG); /* Flush */
|
|
DELAY(40);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bge_blockinit(struct bge_softc *sc)
|
|
{
|
|
volatile struct bge_rcb *rcb;
|
|
bus_size_t rcb_addr;
|
|
int i;
|
|
struct ifnet *ifp = &sc->ethercom.ec_if;
|
|
bge_hostaddr taddr;
|
|
uint32_t val;
|
|
|
|
/*
|
|
* Initialize the memory window pointer register so that
|
|
* we can access the first 32K of internal NIC RAM. This will
|
|
* allow us to set up the TX send ring RCBs and the RX return
|
|
* ring RCBs, plus other things which live in NIC memory.
|
|
*/
|
|
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
|
|
|
|
/* Step 33: Configure mbuf memory pool */
|
|
if (BGE_IS_5700_FAMILY(sc)) {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR,
|
|
BGE_BUFFPOOL_1);
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
|
|
else
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);
|
|
|
|
/* Configure DMA resource pool */
|
|
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
|
|
BGE_DMA_DESCRIPTORS);
|
|
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
|
|
}
|
|
|
|
/* Step 35: Configure mbuf pool watermarks */
|
|
#ifdef ORIG_WPAUL_VALUES
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 24);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 24);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 48);
|
|
#else
|
|
|
|
/* new broadcom docs strongly recommend these: */
|
|
if (!BGE_IS_5705_PLUS(sc)) {
|
|
if (ifp->if_mtu > ETHER_MAX_LEN) {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
|
|
} else {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 304);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 152);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 380);
|
|
}
|
|
} else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
|
|
} else {
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
|
|
CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
|
|
}
|
|
#endif
|
|
|
|
/* Step 36: Configure DMA resource watermarks */
|
|
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
|
|
CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);
|
|
|
|
/* Step 38: Enable buffer manager */
|
|
CSR_WRITE_4(sc, BGE_BMAN_MODE,
|
|
BGE_BMANMODE_ENABLE | BGE_BMANMODE_LOMBUF_ATTN);
|
|
|
|
/* Step 39: Poll for buffer manager start indication */
|
|
for (i = 0; i < BGE_TIMEOUT * 2; i++) {
|
|
if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT * 2) {
|
|
aprint_error_dev(sc->bge_dev,
|
|
"buffer manager failed to start\n");
|
|
return ENXIO;
|
|
}
|
|
|
|
/* Step 40: Enable flow-through queues */
|
|
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
|
|
|
|
/* Wait until queue initialization is complete */
|
|
for (i = 0; i < BGE_TIMEOUT * 2; i++) {
|
|
if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT * 2) {
|
|
aprint_error_dev(sc->bge_dev,
|
|
"flow-through queue init failed\n");
|
|
return ENXIO;
|
|
}
|
|
|
|
/* Step 41: Initialize the standard RX ring control block */
|
|
rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
|
|
BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
|
|
if (BGE_IS_5705_PLUS(sc))
|
|
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
|
|
else
|
|
rcb->bge_maxlen_flags =
|
|
BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
|
|
rcb->bge_nicaddr = BGE_STD_RX_RINGS;
|
|
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
|
|
CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
|
|
CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
|
|
CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);
|
|
|
|
/*
|
|
* Step 42: Initialize the jumbo RX ring control block
|
|
* We set the 'ring disabled' bit in the flags
|
|
* field until we're actually ready to start
|
|
* using this ring (i.e. once we set the MTU
|
|
* high enough to require it).
|
|
*/
|
|
if (BGE_IS_JUMBO_CAPABLE(sc)) {
|
|
rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
|
|
BGE_HOSTADDR(rcb->bge_hostaddr,
|
|
BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
|
|
rcb->bge_maxlen_flags =
|
|
BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN,
|
|
BGE_RCB_FLAG_RING_DISABLED);
|
|
rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
|
|
rcb->bge_hostaddr.bge_addr_hi);
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
|
|
rcb->bge_hostaddr.bge_addr_lo);
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
|
|
rcb->bge_maxlen_flags);
|
|
CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
|
|
|
|
/* Set up dummy disabled mini ring RCB */
|
|
rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
|
|
rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
|
|
BGE_RCB_FLAG_RING_DISABLED);
|
|
CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
|
|
rcb->bge_maxlen_flags);
|
|
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
offsetof(struct bge_ring_data, bge_info),
|
|
sizeof (struct bge_gib),
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
/*
|
|
* Set the BD ring replenish thresholds. The recommended
|
|
* values are 1/8th the number of descriptors allocated to
|
|
* each ring.
|
|
*/
|
|
i = BGE_STD_RX_RING_CNT / 8;
|
|
|
|
/*
|
|
* Use a value of 8 for the following chips to workaround HW errata.
|
|
* Some of these chips have been added based on empirical
|
|
* evidence (they don't work unless this is done).
|
|
*/
|
|
if (BGE_IS_5705_PLUS(sc))
|
|
i = 8;
|
|
|
|
CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, i);
|
|
CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, BGE_JUMBO_RX_RING_CNT / 8);
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765) {
|
|
CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
|
|
CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
|
|
}
|
|
|
|
/*
|
|
* Disable all unused send rings by setting the 'ring disabled'
|
|
* bit in the flags field of all the TX send ring control blocks.
|
|
* These are located in NIC memory.
|
|
*/
|
|
rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
|
|
for (i = 0; i < BGE_TX_RINGS_EXTSSRAM_MAX; i++) {
|
|
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
|
|
BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
|
|
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
|
|
rcb_addr += sizeof(struct bge_rcb);
|
|
}
|
|
|
|
/* Configure TX RCB 0 (we use only the first ring) */
|
|
rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
|
|
BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
|
|
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
|
|
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
|
|
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
|
|
BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
|
|
if (BGE_IS_5700_FAMILY(sc))
|
|
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
|
|
BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));
|
|
|
|
/* Disable all unused RX return rings */
|
|
rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
|
|
for (i = 0; i < BGE_RX_RINGS_MAX; i++) {
|
|
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
|
|
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
|
|
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
|
|
BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
|
|
BGE_RCB_FLAG_RING_DISABLED));
|
|
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
|
|
bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
|
|
(i * (sizeof(uint64_t))), 0);
|
|
rcb_addr += sizeof(struct bge_rcb);
|
|
}
|
|
|
|
/* Initialize RX ring indexes */
|
|
bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);
|
|
bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
|
|
bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);
|
|
|
|
/*
|
|
* Set up RX return ring 0
|
|
* Note that the NIC address for RX return rings is 0x00000000.
|
|
* The return rings live entirely within the host, so the
|
|
* nicaddr field in the RCB isn't used.
|
|
*/
|
|
rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
|
|
BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
|
|
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
|
|
RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
|
|
RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
|
|
RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
|
|
BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));
|
|
|
|
/* Set random backoff seed for TX */
|
|
CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
|
|
CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
|
|
CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
|
|
CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5] +
|
|
BGE_TX_BACKOFF_SEED_MASK);
|
|
|
|
/* Set inter-packet gap */
|
|
CSR_WRITE_4(sc, BGE_TX_LENGTHS, 0x2620);
|
|
|
|
/*
|
|
* Specify which ring to use for packets that don't match
|
|
* any RX rules.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);
|
|
|
|
/*
|
|
* Configure number of RX lists. One interrupt distribution
|
|
* list, sixteen active lists, one bad frames class.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);
|
|
|
|
/* Inialize RX list placement stats mask. */
|
|
CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);
|
|
CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);
|
|
|
|
/* Disable host coalescing until we get it set up */
|
|
CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);
|
|
|
|
/* Poll to make sure it's shut down. */
|
|
for (i = 0; i < BGE_TIMEOUT * 2; i++) {
|
|
if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
|
|
if (i == BGE_TIMEOUT * 2) {
|
|
aprint_error_dev(sc->bge_dev,
|
|
"host coalescing engine failed to idle\n");
|
|
return ENXIO;
|
|
}
|
|
|
|
/* Set up host coalescing defaults */
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, sc->bge_rx_coal_ticks);
|
|
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, sc->bge_tx_coal_ticks);
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, sc->bge_rx_max_coal_bds);
|
|
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, sc->bge_tx_max_coal_bds);
|
|
if (BGE_IS_5700_FAMILY(sc)) {
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
|
|
CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
|
|
}
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
|
|
CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);
|
|
|
|
/* Set up address of statistics block */
|
|
if (BGE_IS_5700_FAMILY(sc)) {
|
|
BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
|
|
CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
|
|
CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
|
|
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
|
|
CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
|
|
}
|
|
|
|
/* Set up address of status block */
|
|
BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
|
|
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
|
|
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
|
|
CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
|
|
sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
|
|
sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;
|
|
|
|
/* Turn on host coalescing state machine */
|
|
CSR_WRITE_4(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
|
|
|
|
/* Turn on RX BD completion state machine and enable attentions */
|
|
CSR_WRITE_4(sc, BGE_RBDC_MODE,
|
|
BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);
|
|
|
|
/* Turn on RX list placement state machine */
|
|
CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
|
|
|
|
/* Turn on RX list selector state machine. */
|
|
if (BGE_IS_5700_FAMILY(sc))
|
|
CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
|
|
|
|
val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
|
|
BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
|
|
BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
|
|
BGE_MACMODE_FRMHDR_DMA_ENB;
|
|
|
|
if (sc->bge_flags & BGE_PHY_FIBER_TBI)
|
|
val |= BGE_PORTMODE_TBI;
|
|
else if (sc->bge_flags & BGE_PHY_FIBER_MII)
|
|
val |= BGE_PORTMODE_GMII;
|
|
else
|
|
val |= BGE_PORTMODE_MII;
|
|
|
|
/* Turn on DMA, clear stats */
|
|
CSR_WRITE_4(sc, BGE_MAC_MODE, val);
|
|
|
|
/* Set misc. local control, enable interrupts on attentions */
|
|
sc->bge_local_ctrl_reg = BGE_MLC_INTR_ONATTN | BGE_MLC_AUTO_EEPROM;
|
|
|
|
#ifdef notdef
|
|
/* Assert GPIO pins for PHY reset */
|
|
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUT0|
|
|
BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUT2);
|
|
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_MISCIO_OUTEN0|
|
|
BGE_MLC_MISCIO_OUTEN1|BGE_MLC_MISCIO_OUTEN2);
|
|
#endif
|
|
|
|
#if defined(not_quite_yet)
|
|
/* Linux driver enables enable gpio pin #1 on 5700s */
|
|
if (sc->bge_chipid == BGE_CHIPID_BCM5700) {
|
|
sc->bge_local_ctrl_reg |=
|
|
(BGE_MLC_MISCIO_OUT1|BGE_MLC_MISCIO_OUTEN1);
|
|
}
|
|
#endif
|
|
CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
|
|
|
|
/* Turn on DMA completion state machine */
|
|
if (BGE_IS_5700_FAMILY(sc))
|
|
CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
|
|
|
|
/* Turn on write DMA state machine */
|
|
{
|
|
uint32_t bge_wdma_mode =
|
|
BGE_WDMAMODE_ENABLE|BGE_WDMAMODE_ALL_ATTNS;
|
|
|
|
/* Enable host coalescing bug fix; see Linux tg3.c */
|
|
if (BGE_IS_5755_PLUS(sc))
|
|
bge_wdma_mode |= BGE_WDMAMODE_STATUS_TAG_FIX;
|
|
|
|
CSR_WRITE_4(sc, BGE_WDMA_MODE, bge_wdma_mode);
|
|
}
|
|
|
|
/* Turn on read DMA state machine */
|
|
{
|
|
uint32_t dma_read_modebits;
|
|
|
|
dma_read_modebits =
|
|
BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
|
|
dma_read_modebits |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
|
|
BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
|
|
BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;
|
|
|
|
if (sc->bge_flags & BGE_PCIE)
|
|
dma_read_modebits |= BGE_RDMA_MODE_FIFO_LONG_BURST;
|
|
if (sc->bge_flags & BGE_TSO)
|
|
dma_read_modebits |= BGE_RDMAMODE_TSO4_ENABLE;
|
|
CSR_WRITE_4(sc, BGE_RDMA_MODE, dma_read_modebits);
|
|
delay(40);
|
|
}
|
|
|
|
/* Turn on RX data completion state machine */
|
|
CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
|
|
|
|
/* Turn on RX BD initiator state machine */
|
|
CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
|
|
|
|
/* Turn on RX data and RX BD initiator state machine */
|
|
CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);
|
|
|
|
/* Turn on Mbuf cluster free state machine */
|
|
if (BGE_IS_5700_FAMILY(sc))
|
|
CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
|
|
|
|
/* Turn on send BD completion state machine */
|
|
CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
|
|
|
|
/* Turn on send data completion state machine */
|
|
val = BGE_SDCMODE_ENABLE;
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
|
|
val |= BGE_SDCMODE_CDELAY;
|
|
CSR_WRITE_4(sc, BGE_SDC_MODE, val);
|
|
|
|
/* Turn on send data initiator state machine */
|
|
if (sc->bge_flags & BGE_TSO) {
|
|
/* XXX: magic value from Linux driver */
|
|
CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE | 0x08);
|
|
} else
|
|
CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
|
|
|
|
/* Turn on send BD initiator state machine */
|
|
CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
|
|
|
|
/* Turn on send BD selector state machine */
|
|
CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
|
|
|
|
CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
|
|
CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
|
|
BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);
|
|
|
|
/* ack/clear link change events */
|
|
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
|
|
BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
|
|
BGE_MACSTAT_LINK_CHANGED);
|
|
CSR_WRITE_4(sc, BGE_MI_STS, 0);
|
|
|
|
/* Enable PHY auto polling (for MII/GMII only) */
|
|
if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
|
|
CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
|
|
} else {
|
|
BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
|
|
BGE_SETBIT(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL | (10 << 16));
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
|
|
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
|
|
BGE_EVTENB_MI_INTERRUPT);
|
|
}
|
|
|
|
/*
|
|
* Clear any pending link state attention.
|
|
* Otherwise some link state change events may be lost until attention
|
|
* is cleared by bge_intr() -> bge_link_upd() sequence.
|
|
* It's not necessary on newer BCM chips - perhaps enabling link
|
|
* state change attentions implies clearing pending attention.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
|
|
BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
|
|
BGE_MACSTAT_LINK_CHANGED);
|
|
|
|
/* Enable link state change attentions. */
|
|
BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct bge_revision *
|
|
bge_lookup_rev(uint32_t chipid)
|
|
{
|
|
const struct bge_revision *br;
|
|
|
|
for (br = bge_revisions; br->br_name != NULL; br++) {
|
|
if (br->br_chipid == chipid)
|
|
return br;
|
|
}
|
|
|
|
for (br = bge_majorrevs; br->br_name != NULL; br++) {
|
|
if (br->br_chipid == BGE_ASICREV(chipid))
|
|
return br;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static const struct bge_product *
|
|
bge_lookup(const struct pci_attach_args *pa)
|
|
{
|
|
const struct bge_product *bp;
|
|
|
|
for (bp = bge_products; bp->bp_name != NULL; bp++) {
|
|
if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
|
|
PCI_PRODUCT(pa->pa_id) == bp->bp_product)
|
|
return bp;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int
|
|
bge_setpowerstate(struct bge_softc *sc, int powerlevel)
|
|
{
|
|
#ifdef NOTYET
|
|
uint32_t pm_ctl = 0;
|
|
|
|
/* XXX FIXME: make sure indirect accesses enabled? */
|
|
pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_MISC_CTL, 4);
|
|
pm_ctl |= BGE_PCIMISCCTL_INDIRECT_ACCESS;
|
|
pci_write_config(sc->bge_dev, BGE_PCI_MISC_CTL, pm_ctl, 4);
|
|
|
|
/* clear the PME_assert bit and power state bits, enable PME */
|
|
pm_ctl = pci_conf_read(sc->bge_dev, BGE_PCI_PWRMGMT_CMD, 2);
|
|
pm_ctl &= ~PCIM_PSTAT_DMASK;
|
|
pm_ctl |= (1 << 8);
|
|
|
|
if (powerlevel == 0) {
|
|
pm_ctl |= PCIM_PSTAT_D0;
|
|
pci_write_config(sc->bge_dev, BGE_PCI_PWRMGMT_CMD,
|
|
pm_ctl, 2);
|
|
DELAY(10000);
|
|
CSR_WRITE_4(sc, BGE_MISC_LOCAL_CTL, sc->bge_local_ctrl_reg);
|
|
DELAY(10000);
|
|
|
|
#ifdef NOTYET
|
|
/* XXX FIXME: write 0x02 to phy aux_Ctrl reg */
|
|
bge_miibus_writereg(sc->bge_dev, 1, 0x18, 0x02);
|
|
#endif
|
|
DELAY(40); DELAY(40); DELAY(40);
|
|
DELAY(10000); /* above not quite adequate on 5700 */
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Entering ACPI power states D1-D3 is achieved by wiggling
|
|
* GMII gpio pins. Example code assumes all hardware vendors
|
|
* followed Broadcom's sample pcb layout. Until we verify that
|
|
* for all supported OEM cards, states D1-D3 are unsupported.
|
|
*/
|
|
aprint_error_dev(sc->bge_dev,
|
|
"power state %d unimplemented; check GPIO pins\n",
|
|
powerlevel);
|
|
#endif
|
|
return EOPNOTSUPP;
|
|
}
|
|
|
|
|
|
/*
|
|
* Probe for a Broadcom chip. Check the PCI vendor and device IDs
|
|
* against our list and return its name if we find a match. Note
|
|
* that since the Broadcom controller contains VPD support, we
|
|
* can get the device name string from the controller itself instead
|
|
* of the compiled-in string. This is a little slow, but it guarantees
|
|
* we'll always announce the right product name.
|
|
*/
|
|
static int
|
|
bge_probe(device_t parent, cfdata_t match, void *aux)
|
|
{
|
|
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
|
|
|
|
if (bge_lookup(pa) != NULL)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bge_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct bge_softc *sc = device_private(self);
|
|
struct pci_attach_args *pa = aux;
|
|
prop_dictionary_t dict;
|
|
const struct bge_product *bp;
|
|
const struct bge_revision *br;
|
|
pci_chipset_tag_t pc;
|
|
pci_intr_handle_t ih;
|
|
const char *intrstr = NULL;
|
|
bus_dma_segment_t seg;
|
|
int rseg;
|
|
uint32_t hwcfg = 0;
|
|
uint32_t command;
|
|
struct ifnet *ifp;
|
|
uint32_t misccfg;
|
|
void * kva;
|
|
u_char eaddr[ETHER_ADDR_LEN];
|
|
pcireg_t memtype, subid;
|
|
bus_addr_t memaddr;
|
|
bus_size_t memsize;
|
|
uint32_t pm_ctl;
|
|
bool no_seeprom;
|
|
|
|
bp = bge_lookup(pa);
|
|
KASSERT(bp != NULL);
|
|
|
|
sc->sc_pc = pa->pa_pc;
|
|
sc->sc_pcitag = pa->pa_tag;
|
|
sc->bge_dev = self;
|
|
|
|
pc = sc->sc_pc;
|
|
subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);
|
|
|
|
aprint_naive(": Ethernet controller\n");
|
|
aprint_normal(": %s\n", bp->bp_name);
|
|
|
|
/*
|
|
* Map control/status registers.
|
|
*/
|
|
DPRINTFN(5, ("Map control/status regs\n"));
|
|
command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
|
|
command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
|
|
pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
|
|
command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
|
|
|
|
if (!(command & PCI_COMMAND_MEM_ENABLE)) {
|
|
aprint_error_dev(sc->bge_dev,
|
|
"failed to enable memory mapping!\n");
|
|
return;
|
|
}
|
|
|
|
DPRINTFN(5, ("pci_mem_find\n"));
|
|
memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
|
|
switch (memtype) {
|
|
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
|
|
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
|
|
if (pci_mapreg_map(pa, BGE_PCI_BAR0,
|
|
memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
|
|
&memaddr, &memsize) == 0)
|
|
break;
|
|
default:
|
|
aprint_error_dev(sc->bge_dev, "can't find mem space\n");
|
|
return;
|
|
}
|
|
|
|
DPRINTFN(5, ("pci_intr_map\n"));
|
|
if (pci_intr_map(pa, &ih)) {
|
|
aprint_error_dev(sc->bge_dev, "couldn't map interrupt\n");
|
|
return;
|
|
}
|
|
|
|
DPRINTFN(5, ("pci_intr_string\n"));
|
|
intrstr = pci_intr_string(pc, ih);
|
|
|
|
DPRINTFN(5, ("pci_intr_establish\n"));
|
|
sc->bge_intrhand = pci_intr_establish(pc, ih, IPL_NET, bge_intr, sc);
|
|
|
|
if (sc->bge_intrhand == NULL) {
|
|
aprint_error_dev(sc->bge_dev,
|
|
"couldn't establish interrupt%s%s\n",
|
|
intrstr ? " at " : "", intrstr ? intrstr : "");
|
|
return;
|
|
}
|
|
aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);
|
|
|
|
/*
|
|
* Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
|
|
* can clobber the chip's PCI config-space power control registers,
|
|
* leaving the card in D3 powersave state.
|
|
* We do not have memory-mapped registers in this state,
|
|
* so force device into D0 state before starting initialization.
|
|
*/
|
|
pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
|
|
pm_ctl &= ~(PCI_PWR_D0|PCI_PWR_D1|PCI_PWR_D2|PCI_PWR_D3);
|
|
pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
|
|
pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
|
|
DELAY(1000); /* 27 usec is allegedly sufficent */
|
|
|
|
/*
|
|
* Save ASIC rev.
|
|
*/
|
|
sc->bge_chipid =
|
|
pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
|
|
>> BGE_PCIMISCCTL_ASICREV_SHIFT;
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_USE_PRODID_REG) {
|
|
if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5717 ||
|
|
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5718 ||
|
|
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5724)
|
|
sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
|
|
BGE_PCI_GEN2_PRODID_ASICREV);
|
|
else if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57761 ||
|
|
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57765 ||
|
|
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57781 ||
|
|
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57785 ||
|
|
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
|
|
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795)
|
|
sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
|
|
BGE_PCI_GEN15_PRODID_ASICREV);
|
|
else
|
|
sc->bge_chipid = pci_conf_read(pc, pa->pa_tag,
|
|
BGE_PCI_PRODID_ASICREV);
|
|
}
|
|
|
|
if ((pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
|
|
&sc->bge_pciecap, NULL) != 0)
|
|
|| (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)) {
|
|
/* PCIe */
|
|
sc->bge_flags |= BGE_PCIE;
|
|
bge_set_max_readrq(sc);
|
|
} else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
|
|
BGE_PCISTATE_PCI_BUSMODE) == 0) {
|
|
/* PCI-X */
|
|
sc->bge_flags |= BGE_PCIX;
|
|
if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
|
|
&sc->bge_pcixcap, NULL) == 0)
|
|
aprint_error_dev(sc->bge_dev,
|
|
"unable to find PCIX capability\n");
|
|
}
|
|
|
|
/* chipid */
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
|
|
sc->bge_flags |= BGE_5700_FAMILY;
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714_A0 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5714)
|
|
sc->bge_flags |= BGE_5714_FAMILY;
|
|
|
|
/* Intentionally exclude BGE_ASICREV_BCM5906 */
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57765 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
|
|
sc->bge_flags |= BGE_5755_PLUS;
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 ||
|
|
BGE_IS_5755_PLUS(sc) ||
|
|
BGE_IS_5714_FAMILY(sc))
|
|
sc->bge_flags |= BGE_5750_PLUS;
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 ||
|
|
BGE_IS_5750_OR_BEYOND(sc))
|
|
sc->bge_flags |= BGE_5705_PLUS;
|
|
|
|
/*
|
|
* When using the BCM5701 in PCI-X mode, data corruption has
|
|
* been observed in the first few bytes of some received packets.
|
|
* Aligning the packet buffer in memory eliminates the corruption.
|
|
* Unfortunately, this misaligns the packet payloads. On platforms
|
|
* which do not support unaligned accesses, we will realign the
|
|
* payloads by copying the received packets.
|
|
*/
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
|
|
sc->bge_flags & BGE_PCIX)
|
|
sc->bge_flags |= BGE_RX_ALIGNBUG;
|
|
|
|
if (BGE_IS_5700_FAMILY(sc))
|
|
sc->bge_flags |= BGE_JUMBO_CAPABLE;
|
|
|
|
if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
|
|
PCI_VENDOR(subid) == PCI_VENDOR_DELL)
|
|
sc->bge_flags |= BGE_NO_3LED;
|
|
|
|
misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
|
|
misccfg &= BGE_MISCCFG_BOARD_ID_MASK;
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
|
|
(misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
|
|
misccfg == BGE_MISCCFG_BOARD_ID_5788M))
|
|
sc->bge_flags |= BGE_IS_5788;
|
|
|
|
/*
|
|
* Some controllers seem to require a special firmware to use
|
|
* TSO. But the firmware is not available to FreeBSD and Linux
|
|
* claims that the TSO performed by the firmware is slower than
|
|
* hardware based TSO. Moreover the firmware based TSO has one
|
|
* known bug which can't handle TSO if ethernet header + IP/TCP
|
|
* header is greater than 80 bytes. The workaround for the TSO
|
|
* bug exist but it seems it's too expensive than not using
|
|
* TSO at all. Some hardwares also have the TSO bug so limit
|
|
* the TSO to the controllers that are not affected TSO issues
|
|
* (e.g. 5755 or higher).
|
|
*/
|
|
if (BGE_IS_5755_PLUS(sc)) {
|
|
/*
|
|
* BCM5754 and BCM5787 shares the same ASIC id so
|
|
* explicit device id check is required.
|
|
*/
|
|
if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
|
|
(PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
|
|
sc->bge_flags |= BGE_TSO;
|
|
}
|
|
|
|
if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
|
|
(misccfg == 0x4000 || misccfg == 0x8000)) ||
|
|
(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
|
|
PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
|
|
(PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
|
|
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
|
|
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
|
|
(PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
|
|
(PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
|
|
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
|
|
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
|
|
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
|
|
sc->bge_flags |= BGE_10_100_ONLY;
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
|
|
(BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
|
|
(sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
|
|
sc->bge_chipid != BGE_CHIPID_BCM5705_A1)) ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
|
|
sc->bge_flags |= BGE_NO_ETH_WIRE_SPEED;
|
|
|
|
if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
|
|
sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
|
|
sc->bge_flags |= BGE_PHY_CRC_BUG;
|
|
if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
|
|
BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
|
|
sc->bge_flags |= BGE_PHY_ADC_BUG;
|
|
if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
|
|
sc->bge_flags |= BGE_PHY_5704_A0_BUG;
|
|
|
|
if (BGE_IS_5705_PLUS(sc) &&
|
|
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
|
|
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
|
|
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
|
|
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765 &&
|
|
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780) {
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
|
|
if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
|
|
PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
|
|
sc->bge_flags |= BGE_PHY_JITTER_BUG;
|
|
if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
|
|
sc->bge_flags |= BGE_PHY_ADJUST_TRIM;
|
|
} else if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
|
|
sc->bge_flags |= BGE_PHY_BER_BUG;
|
|
}
|
|
|
|
/*
|
|
* SEEPROM check.
|
|
* First check if firmware knows we do not have SEEPROM.
|
|
*/
|
|
if (prop_dictionary_get_bool(device_properties(self),
|
|
"without-seeprom", &no_seeprom) && no_seeprom)
|
|
sc->bge_flags |= BGE_NO_EEPROM;
|
|
|
|
/* Now check the 'ROM failed' bit on the RX CPU */
|
|
else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
|
|
sc->bge_flags |= BGE_NO_EEPROM;
|
|
|
|
/* Try to reset the chip. */
|
|
DPRINTFN(5, ("bge_reset\n"));
|
|
bge_reset(sc);
|
|
|
|
sc->bge_asf_mode = 0;
|
|
if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG)
|
|
== BGE_MAGIC_NUMBER)) {
|
|
if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG)
|
|
& BGE_HWCFG_ASF) {
|
|
sc->bge_asf_mode |= ASF_ENABLE;
|
|
sc->bge_asf_mode |= ASF_STACKUP;
|
|
if (BGE_IS_5750_OR_BEYOND(sc)) {
|
|
sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Try to reset the chip again the nice way. */
|
|
bge_stop_fw(sc);
|
|
bge_sig_pre_reset(sc, BGE_RESET_STOP);
|
|
if (bge_reset(sc))
|
|
aprint_error_dev(sc->bge_dev, "chip reset failed\n");
|
|
|
|
bge_sig_legacy(sc, BGE_RESET_STOP);
|
|
bge_sig_post_reset(sc, BGE_RESET_STOP);
|
|
|
|
if (bge_chipinit(sc)) {
|
|
aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
|
|
bge_release_resources(sc);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Get station address from the EEPROM
|
|
*/
|
|
if (bge_get_eaddr(sc, eaddr)) {
|
|
aprint_error_dev(sc->bge_dev,
|
|
"failed to read station address\n");
|
|
bge_release_resources(sc);
|
|
return;
|
|
}
|
|
|
|
br = bge_lookup_rev(sc->bge_chipid);
|
|
|
|
if (br == NULL) {
|
|
aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
|
|
sc->bge_chipid);
|
|
} else {
|
|
aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
|
|
br->br_name, sc->bge_chipid);
|
|
}
|
|
aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));
|
|
|
|
/* Allocate the general information block and ring buffers. */
|
|
if (pci_dma64_available(pa))
|
|
sc->bge_dmatag = pa->pa_dmat64;
|
|
else
|
|
sc->bge_dmatag = pa->pa_dmat;
|
|
DPRINTFN(5, ("bus_dmamem_alloc\n"));
|
|
if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
|
|
PAGE_SIZE, 0, &seg, 1, &rseg, BUS_DMA_NOWAIT)) {
|
|
aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
|
|
return;
|
|
}
|
|
DPRINTFN(5, ("bus_dmamem_map\n"));
|
|
if (bus_dmamem_map(sc->bge_dmatag, &seg, rseg,
|
|
sizeof(struct bge_ring_data), &kva,
|
|
BUS_DMA_NOWAIT)) {
|
|
aprint_error_dev(sc->bge_dev,
|
|
"can't map DMA buffers (%zu bytes)\n",
|
|
sizeof(struct bge_ring_data));
|
|
bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
|
|
return;
|
|
}
|
|
DPRINTFN(5, ("bus_dmamem_create\n"));
|
|
if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
|
|
sizeof(struct bge_ring_data), 0,
|
|
BUS_DMA_NOWAIT, &sc->bge_ring_map)) {
|
|
aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
|
|
bus_dmamem_unmap(sc->bge_dmatag, kva,
|
|
sizeof(struct bge_ring_data));
|
|
bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
|
|
return;
|
|
}
|
|
DPRINTFN(5, ("bus_dmamem_load\n"));
|
|
if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
|
|
sizeof(struct bge_ring_data), NULL,
|
|
BUS_DMA_NOWAIT)) {
|
|
bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
|
|
bus_dmamem_unmap(sc->bge_dmatag, kva,
|
|
sizeof(struct bge_ring_data));
|
|
bus_dmamem_free(sc->bge_dmatag, &seg, rseg);
|
|
return;
|
|
}
|
|
|
|
DPRINTFN(5, ("bzero\n"));
|
|
sc->bge_rdata = (struct bge_ring_data *)kva;
|
|
|
|
memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));
|
|
|
|
/* Try to allocate memory for jumbo buffers. */
|
|
if (BGE_IS_JUMBO_CAPABLE(sc)) {
|
|
if (bge_alloc_jumbo_mem(sc)) {
|
|
aprint_error_dev(sc->bge_dev,
|
|
"jumbo buffer allocation failed\n");
|
|
} else
|
|
sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
|
|
}
|
|
|
|
/* Set default tuneable values. */
|
|
sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
|
|
sc->bge_rx_coal_ticks = 150;
|
|
sc->bge_rx_max_coal_bds = 64;
|
|
#ifdef ORIG_WPAUL_VALUES
|
|
sc->bge_tx_coal_ticks = 150;
|
|
sc->bge_tx_max_coal_bds = 128;
|
|
#else
|
|
sc->bge_tx_coal_ticks = 300;
|
|
sc->bge_tx_max_coal_bds = 400;
|
|
#endif
|
|
if (BGE_IS_5705_PLUS(sc)) {
|
|
sc->bge_tx_coal_ticks = (12 * 5);
|
|
sc->bge_tx_max_coal_bds = (12 * 5);
|
|
aprint_verbose_dev(sc->bge_dev,
|
|
"setting short Tx thresholds\n");
|
|
}
|
|
|
|
if (BGE_IS_5705_PLUS(sc))
|
|
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
|
|
else
|
|
sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
|
|
|
|
/* Set up ifnet structure */
|
|
ifp = &sc->ethercom.ec_if;
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = bge_ioctl;
|
|
ifp->if_stop = bge_stop;
|
|
ifp->if_start = bge_start;
|
|
ifp->if_init = bge_init;
|
|
ifp->if_watchdog = bge_watchdog;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, max(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
DPRINTFN(5, ("strcpy if_xname\n"));
|
|
strcpy(ifp->if_xname, device_xname(sc->bge_dev));
|
|
|
|
if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
|
|
sc->ethercom.ec_if.if_capabilities |=
|
|
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
|
|
#if 1 /* XXX TCP/UDP checksum offload breaks with pf(4) */
|
|
sc->ethercom.ec_if.if_capabilities |=
|
|
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
|
|
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
|
|
#endif
|
|
sc->ethercom.ec_capabilities |=
|
|
ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
|
|
|
|
if (sc->bge_flags & BGE_TSO)
|
|
sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;
|
|
|
|
/*
|
|
* Do MII setup.
|
|
*/
|
|
DPRINTFN(5, ("mii setup\n"));
|
|
sc->bge_mii.mii_ifp = ifp;
|
|
sc->bge_mii.mii_readreg = bge_miibus_readreg;
|
|
sc->bge_mii.mii_writereg = bge_miibus_writereg;
|
|
sc->bge_mii.mii_statchg = bge_miibus_statchg;
|
|
|
|
/*
|
|
* Figure out what sort of media we have by checking the
|
|
* hardware config word in the first 32k of NIC internal memory,
|
|
* or fall back to the config word in the EEPROM. Note: on some BCM5700
|
|
* cards, this value appears to be unset. If that's the
|
|
* case, we have to rely on identifying the NIC by its PCI
|
|
* subsystem ID, as we do below for the SysKonnect SK-9D41.
|
|
*/
|
|
if (bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_SIG) == BGE_MAGIC_NUMBER) {
|
|
hwcfg = bge_readmem_ind(sc, BGE_SOFTWARE_GENCOMM_NICCFG);
|
|
} else if (!(sc->bge_flags & BGE_NO_EEPROM)) {
|
|
bge_read_eeprom(sc, (void *)&hwcfg,
|
|
BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
|
|
hwcfg = be32toh(hwcfg);
|
|
}
|
|
/* The SysKonnect SK-9D41 is a 1000baseSX card. */
|
|
if (PCI_PRODUCT(pa->pa_id) == SK_SUBSYSID_9D41 ||
|
|
(hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
|
|
if (BGE_IS_5714_FAMILY(sc))
|
|
sc->bge_flags |= BGE_PHY_FIBER_MII;
|
|
else
|
|
sc->bge_flags |= BGE_PHY_FIBER_TBI;
|
|
}
|
|
|
|
/* set phyflags and chipid before mii_attach() */
|
|
dict = device_properties(self);
|
|
prop_dictionary_set_uint32(dict, "phyflags", sc->bge_flags);
|
|
prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);
|
|
|
|
if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
|
|
ifmedia_init(&sc->bge_ifmedia, IFM_IMASK, bge_ifmedia_upd,
|
|
bge_ifmedia_sts);
|
|
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER |IFM_1000_SX, 0, NULL);
|
|
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_1000_SX|IFM_FDX,
|
|
0, NULL);
|
|
ifmedia_add(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO, 0, NULL);
|
|
ifmedia_set(&sc->bge_ifmedia, IFM_ETHER | IFM_AUTO);
|
|
/* Pretend the user requested this setting */
|
|
sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
|
|
} else {
|
|
/*
|
|
* Do transceiver setup and tell the firmware the
|
|
* driver is down so we can try to get access the
|
|
* probe if ASF is running. Retry a couple of times
|
|
* if we get a conflict with the ASF firmware accessing
|
|
* the PHY.
|
|
*/
|
|
BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
|
|
bge_asf_driver_up(sc);
|
|
|
|
ifmedia_init(&sc->bge_mii.mii_media, 0, bge_ifmedia_upd,
|
|
bge_ifmedia_sts);
|
|
mii_attach(sc->bge_dev, &sc->bge_mii, 0xffffffff,
|
|
MII_PHY_ANY, MII_OFFSET_ANY,
|
|
MIIF_FORCEANEG|MIIF_DOPAUSE);
|
|
|
|
if (LIST_EMPTY(&sc->bge_mii.mii_phys)) {
|
|
aprint_error_dev(sc->bge_dev, "no PHY found!\n");
|
|
ifmedia_add(&sc->bge_mii.mii_media,
|
|
IFM_ETHER|IFM_MANUAL, 0, NULL);
|
|
ifmedia_set(&sc->bge_mii.mii_media,
|
|
IFM_ETHER|IFM_MANUAL);
|
|
} else
|
|
ifmedia_set(&sc->bge_mii.mii_media,
|
|
IFM_ETHER|IFM_AUTO);
|
|
|
|
/*
|
|
* Now tell the firmware we are going up after probing the PHY
|
|
*/
|
|
if (sc->bge_asf_mode & ASF_STACKUP)
|
|
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
|
|
}
|
|
|
|
/*
|
|
* Call MI attach routine.
|
|
*/
|
|
DPRINTFN(5, ("if_attach\n"));
|
|
if_attach(ifp);
|
|
DPRINTFN(5, ("ether_ifattach\n"));
|
|
ether_ifattach(ifp, eaddr);
|
|
ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);
|
|
#if NRND > 0
|
|
rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
|
|
RND_TYPE_NET, 0);
|
|
#endif
|
|
#ifdef BGE_EVENT_COUNTERS
|
|
/*
|
|
* Attach event counters.
|
|
*/
|
|
evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
|
|
NULL, device_xname(sc->bge_dev), "intr");
|
|
evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
|
|
NULL, device_xname(sc->bge_dev), "tx_xoff");
|
|
evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
|
|
NULL, device_xname(sc->bge_dev), "tx_xon");
|
|
evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
|
|
NULL, device_xname(sc->bge_dev), "rx_xoff");
|
|
evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
|
|
NULL, device_xname(sc->bge_dev), "rx_xon");
|
|
evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
|
|
NULL, device_xname(sc->bge_dev), "rx_macctl");
|
|
evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
|
|
NULL, device_xname(sc->bge_dev), "xoffentered");
|
|
#endif /* BGE_EVENT_COUNTERS */
|
|
DPRINTFN(5, ("callout_init\n"));
|
|
callout_init(&sc->bge_timeout, 0);
|
|
|
|
if (pmf_device_register(self, NULL, NULL))
|
|
pmf_class_network_register(self, ifp);
|
|
else
|
|
aprint_error_dev(self, "couldn't establish power handler\n");
|
|
|
|
sysctl_bge_init(sc);
|
|
|
|
#ifdef BGE_DEBUG
|
|
bge_debug_info(sc);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
bge_release_resources(struct bge_softc *sc)
|
|
{
|
|
if (sc->bge_vpd_prodname != NULL)
|
|
free(sc->bge_vpd_prodname, M_DEVBUF);
|
|
|
|
if (sc->bge_vpd_readonly != NULL)
|
|
free(sc->bge_vpd_readonly, M_DEVBUF);
|
|
}
|
|
|
|
static int
|
|
bge_reset(struct bge_softc *sc)
|
|
{
|
|
uint32_t cachesize, command, pcistate, marbmode;
|
|
#if 0
|
|
uint32_t new_pcistate;
|
|
#endif
|
|
pcireg_t devctl, reg;
|
|
int i, val;
|
|
void (*write_op)(struct bge_softc *, int, int);
|
|
|
|
if (BGE_IS_5750_OR_BEYOND(sc) && !BGE_IS_5714_FAMILY(sc)
|
|
&& (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
|
|
if (sc->bge_flags & BGE_PCIE)
|
|
write_op = bge_writemem_direct;
|
|
else
|
|
write_op = bge_writemem_ind;
|
|
} else
|
|
write_op = bge_writereg_ind;
|
|
|
|
/* Save some important PCI state. */
|
|
cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
|
|
command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
|
|
pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE);
|
|
|
|
/* Step 5a: Enable memory arbiter. */
|
|
marbmode = 0;
|
|
if (BGE_IS_5714_FAMILY(sc))
|
|
marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
|
|
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
|
|
|
|
/* Step 5b-5d: */
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
|
|
BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
|
|
BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
|
|
|
|
/* XXX ???: Disable fastboot on controllers that support it. */
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
|
|
BGE_IS_5755_PLUS(sc))
|
|
CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);
|
|
|
|
/*
|
|
* Step 6: Write the magic number to SRAM at offset 0xB50.
|
|
* When firmware finishes its initialization it will
|
|
* write ~BGE_MAGIC_NUMBER to the same location.
|
|
*/
|
|
bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM, BGE_MAGIC_NUMBER);
|
|
|
|
/* Step 7: */
|
|
val = BGE_MISCCFG_RESET_CORE_CLOCKS | (65<<1);
|
|
/*
|
|
* XXX: from FreeBSD/Linux; no documentation
|
|
*/
|
|
if (sc->bge_flags & BGE_PCIE) {
|
|
if (CSR_READ_4(sc, BGE_PCIE_CTL1) == 0x60)
|
|
/* PCI Express 1.0 system */
|
|
CSR_WRITE_4(sc, BGE_PCIE_CTL1, 0x20);
|
|
if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
|
|
/*
|
|
* Prevent PCI Express link training
|
|
* during global reset.
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
|
|
val |= (1<<29);
|
|
}
|
|
}
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
|
|
i = CSR_READ_4(sc, BGE_VCPU_STATUS);
|
|
CSR_WRITE_4(sc, BGE_VCPU_STATUS,
|
|
i | BGE_VCPU_STATUS_DRV_RESET);
|
|
i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
|
|
CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
|
|
i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
|
|
}
|
|
|
|
/*
|
|
* Set GPHY Power Down Override to leave GPHY
|
|
* powered up in D0 uninitialized.
|
|
*/
|
|
if (BGE_IS_5705_PLUS(sc))
|
|
val |= BGE_MISCCFG_KEEP_GPHY_POWER;
|
|
|
|
/* XXX 5721, 5751 and 5752 */
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750)
|
|
val |= BGE_MISCCFG_GRC_RESET_DISABLE;
|
|
|
|
/* Issue global reset */
|
|
write_op(sc, BGE_MISC_CFG, val);
|
|
|
|
/* Step 8: wait for complete */
|
|
if (sc->bge_flags & BGE_PCIE)
|
|
delay(100*1000); /* too big */
|
|
else
|
|
delay(100);
|
|
|
|
/* From Linux: dummy read to flush PCI posted writes */
|
|
reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);
|
|
|
|
/* Step 9-10: Reset some of the PCI state that got zapped by reset */
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
|
|
BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
|
|
BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW
|
|
| BGE_PCIMISCCTL_CLOCKCTL_RW);
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);
|
|
write_op(sc, BGE_MISC_CFG, (65 << 1));
|
|
|
|
/* Step 11: disable PCI-X Relaxed Ordering. */
|
|
if (sc->bge_flags & BGE_PCIX) {
|
|
reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
|
|
+ PCI_PCIX_CMD);
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
|
|
+ PCI_PCIX_CMD, reg & ~PCI_PCIX_CMD_RELAXED_ORDER);
|
|
}
|
|
|
|
if (sc->bge_flags & BGE_PCIE) {
|
|
if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
|
|
DELAY(500000);
|
|
/* XXX: Magic Numbers */
|
|
reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
|
|
BGE_PCI_UNKNOWN0);
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag,
|
|
BGE_PCI_UNKNOWN0,
|
|
reg | (1 << 15));
|
|
}
|
|
devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
|
|
sc->bge_pciecap + PCI_PCIE_DCSR);
|
|
/* Clear enable no snoop and disable relaxed ordering. */
|
|
devctl &= ~(0x0010 | PCI_PCIE_DCSR_ENA_NO_SNOOP);
|
|
/* Set PCIE max payload size to 128. */
|
|
devctl &= ~(0x00e0);
|
|
/* Clear device status register. Write 1b to clear */
|
|
devctl |= PCI_PCIE_DCSR_URD | PCI_PCIE_DCSR_FED
|
|
| PCI_PCIE_DCSR_NFED | PCI_PCIE_DCSR_CED;
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag,
|
|
sc->bge_pciecap + PCI_PCIE_DCSR, devctl);
|
|
}
|
|
|
|
/* Step 12: Enable memory arbiter. */
|
|
marbmode = 0;
|
|
if (BGE_IS_5714_FAMILY(sc))
|
|
marbmode = CSR_READ_4(sc, BGE_MARB_MODE);
|
|
CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | marbmode);
|
|
|
|
/* Step 17: Poll until the firmware initialization is complete */
|
|
bge_poll_fw(sc);
|
|
|
|
/* XXX 5721, 5751 and 5752 */
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
|
|
/* Step 19: */
|
|
BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
|
|
/* Step 20: */
|
|
BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
|
|
}
|
|
|
|
/*
|
|
* Step 18: wirte mac mode
|
|
* XXX Write 0x0c for 5703S and 5704S
|
|
*/
|
|
CSR_WRITE_4(sc, BGE_MAC_MODE, 0);
|
|
|
|
|
|
/* Step 21: 5822 B0 errata */
|
|
if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
|
|
pcireg_t msidata;
|
|
|
|
msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
|
|
BGE_PCI_MSI_DATA);
|
|
msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
|
|
msidata);
|
|
}
|
|
|
|
/* Step 23: restore cache line size */
|
|
pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
|
|
|
|
#if 0
|
|
/*
|
|
* XXX Wait for the value of the PCISTATE register to
|
|
* return to its original pre-reset state. This is a
|
|
* fairly good indicator of reset completion. If we don't
|
|
* wait for the reset to fully complete, trying to read
|
|
* from the device's non-PCI registers may yield garbage
|
|
* results.
|
|
*/
|
|
for (i = 0; i < BGE_TIMEOUT; i++) {
|
|
new_pcistate = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
|
|
BGE_PCI_PCISTATE);
|
|
if ((new_pcistate & ~BGE_PCISTATE_RESERVED) ==
|
|
(pcistate & ~BGE_PCISTATE_RESERVED))
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if ((new_pcistate & ~BGE_PCISTATE_RESERVED) !=
|
|
(pcistate & ~BGE_PCISTATE_RESERVED)) {
|
|
aprint_error_dev(sc->bge_dev, "pcistate failed to revert\n");
|
|
}
|
|
#endif
|
|
|
|
/* Step 28: Fix up byte swapping */
|
|
CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);
|
|
|
|
/* Tell the ASF firmware we are up */
|
|
if (sc->bge_asf_mode & ASF_STACKUP)
|
|
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
|
|
|
|
/*
|
|
* The 5704 in TBI mode apparently needs some special
|
|
* adjustment to insure the SERDES drive level is set
|
|
* to 1.2V.
|
|
*/
|
|
if (sc->bge_flags & BGE_PHY_FIBER_TBI &&
|
|
BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
|
|
uint32_t serdescfg;
|
|
|
|
serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
|
|
serdescfg = (serdescfg & ~0xFFF) | 0x880;
|
|
CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
|
|
}
|
|
|
|
if (sc->bge_flags & BGE_PCIE &&
|
|
sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
|
|
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
|
|
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
|
|
BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57765) {
|
|
uint32_t v;
|
|
|
|
/* Enable PCI Express bug fix */
|
|
v = CSR_READ_4(sc, 0x7c00);
|
|
CSR_WRITE_4(sc, 0x7c00, v | (1<<25));
|
|
}
|
|
DELAY(10000);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Frame reception handling. This is called if there's a frame
|
|
* on the receive return list.
|
|
*
|
|
* Note: we have to be able to handle two possibilities here:
|
|
* 1) the frame is from the jumbo receive ring
|
|
* 2) the frame is from the standard receive ring
|
|
*/
|
|
|
|
static void
|
|
bge_rxeof(struct bge_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
uint16_t rx_prod, rx_cons;
|
|
int stdcnt = 0, jumbocnt = 0;
|
|
bus_dmamap_t dmamap;
|
|
bus_addr_t offset, toff;
|
|
bus_size_t tlen;
|
|
int tosync;
|
|
|
|
rx_cons = sc->bge_rx_saved_considx;
|
|
rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;
|
|
|
|
/* Nothing to do */
|
|
if (rx_cons == rx_prod)
|
|
return;
|
|
|
|
ifp = &sc->ethercom.ec_if;
|
|
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
offsetof(struct bge_ring_data, bge_status_block),
|
|
sizeof (struct bge_status_block),
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
|
|
tosync = rx_prod - rx_cons;
|
|
|
|
#if NRND > 0
|
|
if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
|
|
rnd_add_uint32(&sc->rnd_source, tosync);
|
|
#endif
|
|
|
|
toff = offset + (rx_cons * sizeof (struct bge_rx_bd));
|
|
|
|
if (tosync < 0) {
|
|
tlen = (sc->bge_return_ring_cnt - rx_cons) *
|
|
sizeof (struct bge_rx_bd);
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
toff, tlen, BUS_DMASYNC_POSTREAD);
|
|
tosync = -tosync;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
offset, tosync * sizeof (struct bge_rx_bd),
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
while (rx_cons != rx_prod) {
|
|
struct bge_rx_bd *cur_rx;
|
|
uint32_t rxidx;
|
|
struct mbuf *m = NULL;
|
|
|
|
cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];
|
|
|
|
rxidx = cur_rx->bge_idx;
|
|
BGE_INC(rx_cons, sc->bge_return_ring_cnt);
|
|
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
|
|
BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
|
|
m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
|
|
sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
|
|
jumbocnt++;
|
|
bus_dmamap_sync(sc->bge_dmatag,
|
|
sc->bge_cdata.bge_rx_jumbo_map,
|
|
mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
|
|
BGE_JLEN, BUS_DMASYNC_POSTREAD);
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
|
|
ifp->if_ierrors++;
|
|
bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
|
|
continue;
|
|
}
|
|
if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
|
|
NULL)== ENOBUFS) {
|
|
ifp->if_ierrors++;
|
|
bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
|
|
continue;
|
|
}
|
|
} else {
|
|
BGE_INC(sc->bge_std, BGE_STD_RX_RING_CNT);
|
|
m = sc->bge_cdata.bge_rx_std_chain[rxidx];
|
|
|
|
sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;
|
|
stdcnt++;
|
|
dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
|
|
sc->bge_cdata.bge_rx_std_map[rxidx] = 0;
|
|
if (dmamap == NULL) {
|
|
ifp->if_ierrors++;
|
|
bge_newbuf_std(sc, sc->bge_std, m, dmamap);
|
|
continue;
|
|
}
|
|
bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
|
|
dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->bge_dmatag, dmamap);
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
|
|
ifp->if_ierrors++;
|
|
bge_newbuf_std(sc, sc->bge_std, m, dmamap);
|
|
continue;
|
|
}
|
|
if (bge_newbuf_std(sc, sc->bge_std,
|
|
NULL, dmamap) == ENOBUFS) {
|
|
ifp->if_ierrors++;
|
|
bge_newbuf_std(sc, sc->bge_std, m, dmamap);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
ifp->if_ipackets++;
|
|
#ifndef __NO_STRICT_ALIGNMENT
|
|
/*
|
|
* XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
|
|
* the Rx buffer has the layer-2 header unaligned.
|
|
* If our CPU requires alignment, re-align by copying.
|
|
*/
|
|
if (sc->bge_flags & BGE_RX_ALIGNBUG) {
|
|
memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
|
|
cur_rx->bge_len);
|
|
m->m_data += ETHER_ALIGN;
|
|
}
|
|
#endif
|
|
|
|
m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
|
|
m->m_pkthdr.rcvif = ifp;
|
|
|
|
/*
|
|
* Handle BPF listeners. Let the BPF user see the packet.
|
|
*/
|
|
bpf_mtap(ifp, m);
|
|
|
|
m->m_pkthdr.csum_flags = M_CSUM_IPv4;
|
|
|
|
if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
|
|
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
|
|
/*
|
|
* Rx transport checksum-offload may also
|
|
* have bugs with packets which, when transmitted,
|
|
* were `runts' requiring padding.
|
|
*/
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
|
|
(/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
|
|
m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
|
|
m->m_pkthdr.csum_data =
|
|
cur_rx->bge_tcp_udp_csum;
|
|
m->m_pkthdr.csum_flags |=
|
|
(M_CSUM_TCPv4|M_CSUM_UDPv4|
|
|
M_CSUM_DATA);
|
|
}
|
|
|
|
/*
|
|
* If we received a packet with a vlan tag, pass it
|
|
* to vlan_input() instead of ether_input().
|
|
*/
|
|
if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG) {
|
|
VLAN_INPUT_TAG(ifp, m, cur_rx->bge_vlan_tag, continue);
|
|
}
|
|
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
|
|
sc->bge_rx_saved_considx = rx_cons;
|
|
bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
|
|
if (stdcnt)
|
|
bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
|
|
if (jumbocnt)
|
|
bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
|
|
}
|
|
|
|
static void
|
|
bge_txeof(struct bge_softc *sc)
|
|
{
|
|
struct bge_tx_bd *cur_tx = NULL;
|
|
struct ifnet *ifp;
|
|
struct txdmamap_pool_entry *dma;
|
|
bus_addr_t offset, toff;
|
|
bus_size_t tlen;
|
|
int tosync;
|
|
struct mbuf *m;
|
|
|
|
ifp = &sc->ethercom.ec_if;
|
|
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
offsetof(struct bge_ring_data, bge_status_block),
|
|
sizeof (struct bge_status_block),
|
|
BUS_DMASYNC_POSTREAD);
|
|
|
|
offset = offsetof(struct bge_ring_data, bge_tx_ring);
|
|
tosync = sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx -
|
|
sc->bge_tx_saved_considx;
|
|
|
|
#if NRND > 0
|
|
if (tosync != 0 && RND_ENABLED(&sc->rnd_source))
|
|
rnd_add_uint32(&sc->rnd_source, tosync);
|
|
#endif
|
|
|
|
toff = offset + (sc->bge_tx_saved_considx * sizeof (struct bge_tx_bd));
|
|
|
|
if (tosync < 0) {
|
|
tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
|
|
sizeof (struct bge_tx_bd);
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
toff, tlen, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
tosync = -tosync;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
|
|
offset, tosync * sizeof (struct bge_tx_bd),
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
/*
|
|
* Go through our tx ring and free mbufs for those
|
|
* frames that have been sent.
|
|
*/
|
|
while (sc->bge_tx_saved_considx !=
|
|
sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx) {
|
|
uint32_t idx = 0;
|
|
|
|
idx = sc->bge_tx_saved_considx;
|
|
cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
|
|
if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
|
|
ifp->if_opackets++;
|
|
m = sc->bge_cdata.bge_tx_chain[idx];
|
|
if (m != NULL) {
|
|
sc->bge_cdata.bge_tx_chain[idx] = NULL;
|
|
dma = sc->txdma[idx];
|
|
bus_dmamap_sync(sc->bge_dmatag, dma->dmamap, 0,
|
|
dma->dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
|
|
SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
|
|
sc->txdma[idx] = NULL;
|
|
|
|
m_freem(m);
|
|
}
|
|
sc->bge_txcnt--;
|
|
BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
if (cur_tx != NULL)
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
}
|
|
|
|
static int
|
|
bge_intr(void *xsc)
|
|
{
|
|
struct bge_softc *sc;
|
|
struct ifnet *ifp;
|
|
uint32_t statusword;
|
|
|
|
sc = xsc;
|
|
ifp = &sc->ethercom.ec_if;
|
|
|
|
/* It is possible for the interrupt to arrive before
|
|
* the status block is updated prior to the interrupt.
|
|
* Reading the PCI State register will confirm whether the
|
|
* interrupt is ours and will flush the status block.
|
|
*/
|
|
|
|
/* read status word from status block */
|
|
statusword = sc->bge_rdata->bge_status_block.bge_status;
|
|
|
|
if ((statusword & BGE_STATFLAG_UPDATED) ||
|
|
(!(CSR_READ_4(sc, BGE_PCI_PCISTATE) & BGE_PCISTATE_INTR_NOT_ACTIVE))) {
|
|
/* Ack interrupt and stop others from occuring. */
|
|
bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
|
|
|
|
BGE_EVCNT_INCR(sc->bge_ev_intr);
|
|
|
|
/* clear status word */
|
|
sc->bge_rdata->bge_status_block.bge_status = 0;
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
|
|
statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
|
|
BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
|
|
bge_link_upd(sc);
|
|
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
/* Check RX return ring producer/consumer */
|
|
bge_rxeof(sc);
|
|
|
|
/* Check TX ring producer/consumer */
|
|
bge_txeof(sc);
|
|
}
|
|
|
|
if (sc->bge_pending_rxintr_change) {
|
|
uint32_t rx_ticks = sc->bge_rx_coal_ticks;
|
|
uint32_t rx_bds = sc->bge_rx_max_coal_bds;
|
|
uint32_t junk;
|
|
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
|
|
DELAY(10);
|
|
junk = CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);
|
|
|
|
CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
|
|
DELAY(10);
|
|
junk = CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);
|
|
|
|
sc->bge_pending_rxintr_change = 0;
|
|
}
|
|
bge_handle_events(sc);
|
|
|
|
/* Re-enable interrupts. */
|
|
bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
|
|
|
|
if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
|
|
bge_start(ifp);
|
|
|
|
return 1;
|
|
} else
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
bge_asf_driver_up(struct bge_softc *sc)
|
|
{
|
|
if (sc->bge_asf_mode & ASF_STACKUP) {
|
|
/* Send ASF heartbeat aprox. every 2s */
|
|
if (sc->bge_asf_count)
|
|
sc->bge_asf_count --;
|
|
else {
|
|
sc->bge_asf_count = 2;
|
|
bge_writemem_ind(sc, BGE_SOFTWARE_GENCOMM_FW,
|
|
BGE_FW_DRV_ALIVE);
|
|
bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_LEN, 4);
|
|
bge_writemem_ind(sc, BGE_SOFTWARE_GENNCOMM_FW_DATA, 3);
|
|
CSR_WRITE_4(sc, BGE_CPU_EVENT,
|
|
CSR_READ_4(sc, BGE_CPU_EVENT) | (1 << 14));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
bge_tick(void *xsc)
|
|
{
|
|
struct bge_softc *sc = xsc;
|
|
struct mii_data *mii = &sc->bge_mii;
|
|
int s;
|
|
|
|
s = splnet();
|
|
|
|
if (BGE_IS_5705_PLUS(sc))
|
|
bge_stats_update_regs(sc);
|
|
else
|
|
bge_stats_update(sc);
|
|
|
|
if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
|
|
/*
|
|
* Since in TBI mode auto-polling can't be used we should poll
|
|
* link status manually. Here we register pending link event
|
|
* and trigger interrupt.
|
|
*/
|
|
BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
|
|
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
|
|
} else {
|
|
/*
|
|
* Do not touch PHY if we have link up. This could break
|
|
* IPMI/ASF mode or produce extra input errors.
|
|
* (extra input errors was reported for bcm5701 & bcm5704).
|
|
*/
|
|
if (!BGE_STS_BIT(sc, BGE_STS_LINK))
|
|
mii_tick(mii);
|
|
}
|
|
|
|
callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
static void
|
|
bge_stats_update_regs(struct bge_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->ethercom.ec_if;
|
|
|
|
ifp->if_collisions += CSR_READ_4(sc, BGE_MAC_STATS +
|
|
offsetof(struct bge_mac_stats_regs, etherStatsCollisions));
|
|
|
|
ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS);
|
|
ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS);
|
|
ifp->if_ierrors += CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS);
|
|
}
|
|
|
|
static void
|
|
bge_stats_update(struct bge_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->ethercom.ec_if;
|
|
bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;
|
|
|
|
#define READ_STAT(sc, stats, stat) \
|
|
CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))
|
|
|
|
ifp->if_collisions +=
|
|
(READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
|
|
READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
|
|
READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
|
|
READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo)) -
|
|
ifp->if_collisions;
|
|
|
|
BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
|
|
READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
|
|
BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
|
|
READ_STAT(sc, stats, outXonSent.bge_addr_lo));
|
|
BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
|
|
READ_STAT(sc, stats,
|
|
xoffPauseFramesReceived.bge_addr_lo));
|
|
BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
|
|
READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
|
|
BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
|
|
READ_STAT(sc, stats,
|
|
macControlFramesReceived.bge_addr_lo));
|
|
BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
|
|
READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));
|
|
|
|
#undef READ_STAT
|
|
|
|
#ifdef notdef
|
|
ifp->if_collisions +=
|
|
(sc->bge_rdata->bge_info.bge_stats.dot3StatsSingleCollisionFrames +
|
|
sc->bge_rdata->bge_info.bge_stats.dot3StatsMultipleCollisionFrames +
|
|
sc->bge_rdata->bge_info.bge_stats.dot3StatsExcessiveCollisions +
|
|
sc->bge_rdata->bge_info.bge_stats.dot3StatsLateCollisions) -
|
|
ifp->if_collisions;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
|
|
* The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
|
|
* but when such padded frames employ the bge IP/TCP checksum offload,
|
|
* the hardware checksum assist gives incorrect results (possibly
|
|
* from incorporating its own padding into the UDP/TCP checksum; who knows).
|
|
* If we pad such runts with zeros, the onboard checksum comes out correct.
|
|
*/
|
|
static inline int
|
|
bge_cksum_pad(struct mbuf *pkt)
|
|
{
|
|
struct mbuf *last = NULL;
|
|
int padlen;
|
|
|
|
padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;
|
|
|
|
/* if there's only the packet-header and we can pad there, use it. */
|
|
if (pkt->m_pkthdr.len == pkt->m_len &&
|
|
M_TRAILINGSPACE(pkt) >= padlen) {
|
|
last = pkt;
|
|
} else {
|
|
/*
|
|
* Walk packet chain to find last mbuf. We will either
|
|
* pad there, or append a new mbuf and pad it
|
|
* (thus perhaps avoiding the bcm5700 dma-min bug).
|
|
*/
|
|
for (last = pkt; last->m_next != NULL; last = last->m_next) {
|
|
continue; /* do nothing */
|
|
}
|
|
|
|
/* `last' now points to last in chain. */
|
|
if (M_TRAILINGSPACE(last) < padlen) {
|
|
/* Allocate new empty mbuf, pad it. Compact later. */
|
|
struct mbuf *n;
|
|
MGET(n, M_DONTWAIT, MT_DATA);
|
|
if (n == NULL)
|
|
return ENOBUFS;
|
|
n->m_len = 0;
|
|
last->m_next = n;
|
|
last = n;
|
|
}
|
|
}
|
|
|
|
KDASSERT(!M_READONLY(last));
|
|
KDASSERT(M_TRAILINGSPACE(last) >= padlen);
|
|
|
|
/* Now zero the pad area, to avoid the bge cksum-assist bug */
|
|
memset(mtod(last, char *) + last->m_len, 0, padlen);
|
|
last->m_len += padlen;
|
|
pkt->m_pkthdr.len += padlen;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
|
|
*/
|
|
static inline int
|
|
bge_compact_dma_runt(struct mbuf *pkt)
|
|
{
|
|
struct mbuf *m, *prev;
|
|
int totlen, prevlen;
|
|
|
|
prev = NULL;
|
|
totlen = 0;
|
|
prevlen = -1;
|
|
|
|
for (m = pkt; m != NULL; prev = m,m = m->m_next) {
|
|
int mlen = m->m_len;
|
|
int shortfall = 8 - mlen ;
|
|
|
|
totlen += mlen;
|
|
if (mlen == 0) {
|
|
continue;
|
|
}
|
|
if (mlen >= 8)
|
|
continue;
|
|
|
|
/* If we get here, mbuf data is too small for DMA engine.
|
|
* Try to fix by shuffling data to prev or next in chain.
|
|
* If that fails, do a compacting deep-copy of the whole chain.
|
|
*/
|
|
|
|
/* Internal frag. If fits in prev, copy it there. */
|
|
if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
|
|
memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
|
|
prev->m_len += mlen;
|
|
m->m_len = 0;
|
|
/* XXX stitch chain */
|
|
prev->m_next = m_free(m);
|
|
m = prev;
|
|
continue;
|
|
}
|
|
else if (m->m_next != NULL &&
|
|
M_TRAILINGSPACE(m) >= shortfall &&
|
|
m->m_next->m_len >= (8 + shortfall)) {
|
|
/* m is writable and have enough data in next, pull up. */
|
|
|
|
memcpy(m->m_data + m->m_len, m->m_next->m_data,
|
|
shortfall);
|
|
m->m_len += shortfall;
|
|
m->m_next->m_len -= shortfall;
|
|
m->m_next->m_data += shortfall;
|
|
}
|
|
else if (m->m_next == NULL || 1) {
|
|
/* Got a runt at the very end of the packet.
|
|
* borrow data from the tail of the preceding mbuf and
|
|
* update its length in-place. (The original data is still
|
|
* valid, so we can do this even if prev is not writable.)
|
|
*/
|
|
|
|
/* if we'd make prev a runt, just move all of its data. */
|
|
KASSERT(prev != NULL /*, ("runt but null PREV")*/);
|
|
KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);
|
|
|
|
if ((prev->m_len - shortfall) < 8)
|
|
shortfall = prev->m_len;
|
|
|
|
#ifdef notyet /* just do the safe slow thing for now */
|
|
if (!M_READONLY(m)) {
|
|
if (M_LEADINGSPACE(m) < shorfall) {
|
|
void *m_dat;
|
|
m_dat = (m->m_flags & M_PKTHDR) ?
|
|
m->m_pktdat : m->dat;
|
|
memmove(m_dat, mtod(m, void*), m->m_len);
|
|
m->m_data = m_dat;
|
|
}
|
|
} else
|
|
#endif /* just do the safe slow thing */
|
|
{
|
|
struct mbuf * n = NULL;
|
|
int newprevlen = prev->m_len - shortfall;
|
|
|
|
MGET(n, M_NOWAIT, MT_DATA);
|
|
if (n == NULL)
|
|
return ENOBUFS;
|
|
KASSERT(m->m_len + shortfall < MLEN
|
|
/*,
|
|
("runt %d +prev %d too big\n", m->m_len, shortfall)*/);
|
|
|
|
/* first copy the data we're stealing from prev */
|
|
memcpy(n->m_data, prev->m_data + newprevlen,
|
|
shortfall);
|
|
|
|
/* update prev->m_len accordingly */
|
|
prev->m_len -= shortfall;
|
|
|
|
/* copy data from runt m */
|
|
memcpy(n->m_data + shortfall, m->m_data,
|
|
m->m_len);
|
|
|
|
/* n holds what we stole from prev, plus m */
|
|
n->m_len = shortfall + m->m_len;
|
|
|
|
/* stitch n into chain and free m */
|
|
n->m_next = m->m_next;
|
|
prev->m_next = n;
|
|
/* KASSERT(m->m_next == NULL); */
|
|
m->m_next = NULL;
|
|
m_free(m);
|
|
m = n; /* for continuing loop */
|
|
}
|
|
}
|
|
prevlen = m->m_len;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
|
|
* pointers to descriptors.
|
|
*/
|
|
static int
|
|
bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
|
|
{
|
|
struct bge_tx_bd *f = NULL;
|
|
uint32_t frag, cur;
|
|
uint16_t csum_flags = 0;
|
|
uint16_t txbd_tso_flags = 0;
|
|
struct txdmamap_pool_entry *dma;
|
|
bus_dmamap_t dmamap;
|
|
int i = 0;
|
|
struct m_tag *mtag;
|
|
int use_tso, maxsegsize, error;
|
|
|
|
cur = frag = *txidx;
|
|
|
|
if (m_head->m_pkthdr.csum_flags) {
|
|
if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
|
|
csum_flags |= BGE_TXBDFLAG_IP_CSUM;
|
|
if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4))
|
|
csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
|
|
}
|
|
|
|
/*
|
|
* If we were asked to do an outboard checksum, and the NIC
|
|
* has the bug where it sometimes adds in the Ethernet padding,
|
|
* explicitly pad with zeros so the cksum will be correct either way.
|
|
* (For now, do this for all chip versions, until newer
|
|
* are confirmed to not require the workaround.)
|
|
*/
|
|
if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
|
|
#ifdef notyet
|
|
(sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
|
|
#endif
|
|
m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
|
|
goto check_dma_bug;
|
|
|
|
if (bge_cksum_pad(m_head) != 0)
|
|
return ENOBUFS;
|
|
|
|
check_dma_bug:
|
|
if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
|
|
goto doit;
|
|
|
|
/*
|
|
* bcm5700 Revision B silicon cannot handle DMA descriptors with
|
|
* less than eight bytes. If we encounter a teeny mbuf
|
|
* at the end of a chain, we can pad. Otherwise, copy.
|
|
*/
|
|
if (bge_compact_dma_runt(m_head) != 0)
|
|
return ENOBUFS;
|
|
|
|
doit:
|
|
dma = SLIST_FIRST(&sc->txdma_list);
|
|
if (dma == NULL)
|
|
return ENOBUFS;
|
|
dmamap = dma->dmamap;
|
|
|
|
/*
|
|
* Set up any necessary TSO state before we start packing...
|
|
*/
|
|
use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
|
|
if (!use_tso) {
|
|
maxsegsize = 0;
|
|
} else { /* TSO setup */
|
|
unsigned mss;
|
|
struct ether_header *eh;
|
|
unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
|
|
struct mbuf * m0 = m_head;
|
|
struct ip *ip;
|
|
struct tcphdr *th;
|
|
int iphl, hlen;
|
|
|
|
/*
|
|
* XXX It would be nice if the mbuf pkthdr had offset
|
|
* fields for the protocol headers.
|
|
*/
|
|
|
|
eh = mtod(m0, struct ether_header *);
|
|
switch (htons(eh->ether_type)) {
|
|
case ETHERTYPE_IP:
|
|
offset = ETHER_HDR_LEN;
|
|
break;
|
|
|
|
case ETHERTYPE_VLAN:
|
|
offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* Don't support this protocol or encapsulation.
|
|
*/
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/*
|
|
* TCP/IP headers are in the first mbuf; we can do
|
|
* this the easy way.
|
|
*/
|
|
iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
|
|
hlen = iphl + offset;
|
|
if (__predict_false(m0->m_len <
|
|
(hlen + sizeof(struct tcphdr)))) {
|
|
|
|
aprint_debug_dev(sc->bge_dev,
|
|
"TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
|
|
"not handled yet\n",
|
|
m0->m_len, hlen+ sizeof(struct tcphdr));
|
|
#ifdef NOTYET
|
|
/*
|
|
* XXX jonathan@NetBSD.org: untested.
|
|
* how to force this branch to be taken?
|
|
*/
|
|
BGE_EVCNT_INCR(&sc->sc_ev_txtsopain);
|
|
|
|
m_copydata(m0, offset, sizeof(ip), &ip);
|
|
m_copydata(m0, hlen, sizeof(th), &th);
|
|
|
|
ip.ip_len = 0;
|
|
|
|
m_copyback(m0, hlen + offsetof(struct ip, ip_len),
|
|
sizeof(ip.ip_len), &ip.ip_len);
|
|
|
|
th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
|
|
ip.ip_dst.s_addr, htons(IPPROTO_TCP));
|
|
|
|
m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
|
|
sizeof(th.th_sum), &th.th_sum);
|
|
|
|
hlen += th.th_off << 2;
|
|
iptcp_opt_words = hlen;
|
|
#else
|
|
/*
|
|
* if_wm "hard" case not yet supported, can we not
|
|
* mandate it out of existence?
|
|
*/
|
|
(void) ip; (void)th; (void) ip_tcp_hlen;
|
|
|
|
return ENOBUFS;
|
|
#endif
|
|
} else {
|
|
ip = (struct ip *) (mtod(m0, char *) + offset);
|
|
th = (struct tcphdr *) (mtod(m0, char *) + hlen);
|
|
ip_tcp_hlen = iphl + (th->th_off << 2);
|
|
|
|
/* Total IP/TCP options, in 32-bit words */
|
|
iptcp_opt_words = (ip_tcp_hlen
|
|
- sizeof(struct tcphdr)
|
|
- sizeof(struct ip)) >> 2;
|
|
}
|
|
if (BGE_IS_5750_OR_BEYOND(sc)) {
|
|
th->th_sum = 0;
|
|
csum_flags &= ~(BGE_TXBDFLAG_TCP_UDP_CSUM);
|
|
} else {
|
|
/*
|
|
* XXX jonathan@NetBSD.org: 5705 untested.
|
|
* Requires TSO firmware patch for 5701/5703/5704.
|
|
*/
|
|
th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
|
|
ip->ip_dst.s_addr, htons(IPPROTO_TCP));
|
|
}
|
|
|
|
mss = m_head->m_pkthdr.segsz;
|
|
txbd_tso_flags |=
|
|
BGE_TXBDFLAG_CPU_PRE_DMA |
|
|
BGE_TXBDFLAG_CPU_POST_DMA;
|
|
|
|
/*
|
|
* Our NIC TSO-assist assumes TSO has standard, optionless
|
|
* IPv4 and TCP headers, which total 40 bytes. By default,
|
|
* the NIC copies 40 bytes of IP/TCP header from the
|
|
* supplied header into the IP/TCP header portion of
|
|
* each post-TSO-segment. If the supplied packet has IP or
|
|
* TCP options, we need to tell the NIC to copy those extra
|
|
* bytes into each post-TSO header, in addition to the normal
|
|
* 40-byte IP/TCP header (and to leave space accordingly).
|
|
* Unfortunately, the driver encoding of option length
|
|
* varies across different ASIC families.
|
|
*/
|
|
tcp_seg_flags = 0;
|
|
if (iptcp_opt_words) {
|
|
if (BGE_IS_5705_PLUS(sc)) {
|
|
tcp_seg_flags =
|
|
iptcp_opt_words << 11;
|
|
} else {
|
|
txbd_tso_flags |=
|
|
iptcp_opt_words << 12;
|
|
}
|
|
}
|
|
maxsegsize = mss | tcp_seg_flags;
|
|
ip->ip_len = htons(mss + ip_tcp_hlen);
|
|
|
|
} /* TSO setup */
|
|
|
|
/*
|
|
* Start packing the mbufs in this chain into
|
|
* the fragment pointers. Stop when we run out
|
|
* of fragments or hit the end of the mbuf chain.
|
|
*/
|
|
error = bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m_head,
|
|
BUS_DMA_NOWAIT);
|
|
if (error)
|
|
return ENOBUFS;
|
|
/*
|
|
* Sanity check: avoid coming within 16 descriptors
|
|
* of the end of the ring.
|
|
*/
|
|
if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
|
|
BGE_TSO_PRINTF(("%s: "
|
|
" dmamap_load_mbuf too close to ring wrap\n",
|
|
device_xname(sc->bge_dev)));
|
|
goto fail_unload;
|
|
}
|
|
|
|
mtag = sc->ethercom.ec_nvlans ?
|
|
m_tag_find(m_head, PACKET_TAG_VLAN, NULL) : NULL;
|
|
|
|
|
|
/* Iterate over dmap-map fragments. */
|
|
for (i = 0; i < dmamap->dm_nsegs; i++) {
|
|
f = &sc->bge_rdata->bge_tx_ring[frag];
|
|
if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
|
|
break;
|
|
|
|
BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
|
|
f->bge_len = dmamap->dm_segs[i].ds_len;
|
|
|
|
/*
|
|
* For 5751 and follow-ons, for TSO we must turn
|
|
* off checksum-assist flag in the tx-descr, and
|
|
* supply the ASIC-revision-specific encoding
|
|
* of TSO flags and segsize.
|
|
*/
|
|
if (use_tso) {
|
|
if (BGE_IS_5750_OR_BEYOND(sc) || i == 0) {
|
|
f->bge_rsvd = maxsegsize;
|
|
f->bge_flags = csum_flags | txbd_tso_flags;
|
|
} else {
|
|
f->bge_rsvd = 0;
|
|
f->bge_flags =
|
|
(csum_flags | txbd_tso_flags) & 0x0fff;
|
|
}
|
|
} else {
|
|
f->bge_rsvd = 0;
|
|
f->bge_flags = csum_flags;
|
|
}
|
|
|
|
if (mtag != NULL) {
|
|
f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
|
|
f->bge_vlan_tag = VLAN_TAG_VALUE(mtag);
|
|
} else {
|
|
f->bge_vlan_tag = 0;
|
|
}
|
|
cur = frag;
|
|
BGE_INC(frag, BGE_TX_RING_CNT);
|
|
}
|
|
|
|
if (i < dmamap->dm_nsegs) {
|
|
BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
|
|
device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
|
|
goto fail_unload;
|
|
}
|
|
|
|
bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
if (frag == sc->bge_tx_saved_considx) {
|
|
BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
|
|
device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));
|
|
|
|
goto fail_unload;
|
|
}
|
|
|
|
sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
|
|
sc->bge_cdata.bge_tx_chain[cur] = m_head;
|
|
SLIST_REMOVE_HEAD(&sc->txdma_list, link);
|
|
sc->txdma[cur] = dma;
|
|
sc->bge_txcnt += dmamap->dm_nsegs;
|
|
|
|
*txidx = frag;
|
|
|
|
return 0;
|
|
|
|
fail_unload:
|
|
bus_dmamap_unload(sc->bge_dmatag, dmamap);
|
|
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/*
|
|
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
|
|
* to the mbuf data regions directly in the transmit descriptors.
|
|
*/
|
|
static void
|
|
bge_start(struct ifnet *ifp)
|
|
{
|
|
struct bge_softc *sc;
|
|
struct mbuf *m_head = NULL;
|
|
uint32_t prodidx;
|
|
int pkts = 0;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
prodidx = sc->bge_tx_prodidx;
|
|
|
|
while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
|
|
IFQ_POLL(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
#if 0
|
|
/*
|
|
* XXX
|
|
* safety overkill. If this is a fragmented packet chain
|
|
* with delayed TCP/UDP checksums, then only encapsulate
|
|
* it if we have enough descriptors to handle the entire
|
|
* chain at once.
|
|
* (paranoia -- may not actually be needed)
|
|
*/
|
|
if (m_head->m_flags & M_FIRSTFRAG &&
|
|
m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
|
|
if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
|
|
M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, set the OACTIVE flag and wait
|
|
* for the NIC to drain the ring.
|
|
*/
|
|
if (bge_encap(sc, m_head, &prodidx)) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
|
|
/* now we are committed to transmit the packet */
|
|
IFQ_DEQUEUE(&ifp->if_snd, m_head);
|
|
pkts++;
|
|
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
bpf_mtap(ifp, m_head);
|
|
}
|
|
if (pkts == 0)
|
|
return;
|
|
|
|
/* Transmit */
|
|
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
|
|
/* 5700 b2 errata */
|
|
if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
|
|
bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
|
|
|
|
sc->bge_tx_prodidx = prodidx;
|
|
|
|
/*
|
|
* Set a timeout in case the chip goes out to lunch.
|
|
*/
|
|
ifp->if_timer = 5;
|
|
}
|
|
|
|
static int
|
|
bge_init(struct ifnet *ifp)
|
|
{
|
|
struct bge_softc *sc = ifp->if_softc;
|
|
const uint16_t *m;
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
|
|
ifp = &sc->ethercom.ec_if;
|
|
|
|
/* Cancel pending I/O and flush buffers. */
|
|
bge_stop(ifp, 0);
|
|
|
|
bge_stop_fw(sc);
|
|
bge_sig_pre_reset(sc, BGE_RESET_START);
|
|
bge_reset(sc);
|
|
bge_sig_legacy(sc, BGE_RESET_START);
|
|
bge_sig_post_reset(sc, BGE_RESET_START);
|
|
|
|
bge_chipinit(sc);
|
|
|
|
/*
|
|
* Init the various state machines, ring
|
|
* control blocks and firmware.
|
|
*/
|
|
error = bge_blockinit(sc);
|
|
if (error != 0) {
|
|
aprint_error_dev(sc->bge_dev, "initialization error %d\n",
|
|
error);
|
|
splx(s);
|
|
return error;
|
|
}
|
|
|
|
ifp = &sc->ethercom.ec_if;
|
|
|
|
/* Specify MTU. */
|
|
CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
|
|
ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);
|
|
|
|
/* Load our MAC address. */
|
|
m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
|
|
CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
|
|
CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI, (htons(m[1]) << 16) | htons(m[2]));
|
|
|
|
/* Enable or disable promiscuous mode as needed. */
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
|
|
else
|
|
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
|
|
|
|
/* Program multicast filter. */
|
|
bge_setmulti(sc);
|
|
|
|
/* Init RX ring. */
|
|
bge_init_rx_ring_std(sc);
|
|
|
|
/*
|
|
* Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
|
|
* memory to insure that the chip has in fact read the first
|
|
* entry of the ring.
|
|
*/
|
|
if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
|
|
uint32_t v, i;
|
|
for (i = 0; i < 10; i++) {
|
|
DELAY(20);
|
|
v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
|
|
if (v == (MCLBYTES - ETHER_ALIGN))
|
|
break;
|
|
}
|
|
if (i == 10)
|
|
aprint_error_dev(sc->bge_dev,
|
|
"5705 A0 chip failed to load RX ring\n");
|
|
}
|
|
|
|
/* Init jumbo RX ring. */
|
|
if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
|
|
bge_init_rx_ring_jumbo(sc);
|
|
|
|
/* Init our RX return ring index */
|
|
sc->bge_rx_saved_considx = 0;
|
|
|
|
/* Init TX ring. */
|
|
bge_init_tx_ring(sc);
|
|
|
|
/* Turn on transmitter */
|
|
BGE_SETBIT(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);
|
|
|
|
/* Turn on receiver */
|
|
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
|
|
|
|
CSR_WRITE_4(sc, BGE_MAX_RX_FRAME_LOWAT, 2);
|
|
|
|
/* Tell firmware we're alive. */
|
|
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
|
|
|
|
/* Enable host interrupts. */
|
|
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
|
|
BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
|
|
bge_writembx(sc, BGE_MBX_IRQ0_LO, 0);
|
|
|
|
if ((error = bge_ifmedia_upd(ifp)) != 0)
|
|
goto out;
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
callout_reset(&sc->bge_timeout, hz, bge_tick, sc);
|
|
|
|
out:
|
|
sc->bge_if_flags = ifp->if_flags;
|
|
splx(s);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Set media options.
|
|
*/
|
|
static int
|
|
bge_ifmedia_upd(struct ifnet *ifp)
|
|
{
|
|
struct bge_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = &sc->bge_mii;
|
|
struct ifmedia *ifm = &sc->bge_ifmedia;
|
|
int rc;
|
|
|
|
/* If this is a 1000baseX NIC, enable the TBI port. */
|
|
if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
|
|
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
|
|
return EINVAL;
|
|
switch (IFM_SUBTYPE(ifm->ifm_media)) {
|
|
case IFM_AUTO:
|
|
/*
|
|
* The BCM5704 ASIC appears to have a special
|
|
* mechanism for programming the autoneg
|
|
* advertisement registers in TBI mode.
|
|
*/
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
|
|
uint32_t sgdig;
|
|
sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
|
|
if (sgdig & BGE_SGDIGSTS_DONE) {
|
|
CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
|
|
sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
|
|
sgdig |= BGE_SGDIGCFG_AUTO |
|
|
BGE_SGDIGCFG_PAUSE_CAP |
|
|
BGE_SGDIGCFG_ASYM_PAUSE;
|
|
CSR_WRITE_4(sc, BGE_SGDIG_CFG,
|
|
sgdig | BGE_SGDIGCFG_SEND);
|
|
DELAY(5);
|
|
CSR_WRITE_4(sc, BGE_SGDIG_CFG, sgdig);
|
|
}
|
|
}
|
|
break;
|
|
case IFM_1000_SX:
|
|
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX) {
|
|
BGE_CLRBIT(sc, BGE_MAC_MODE,
|
|
BGE_MACMODE_HALF_DUPLEX);
|
|
} else {
|
|
BGE_SETBIT(sc, BGE_MAC_MODE,
|
|
BGE_MACMODE_HALF_DUPLEX);
|
|
}
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
/* XXX 802.3x flow control for 1000BASE-SX */
|
|
return 0;
|
|
}
|
|
|
|
BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
|
|
if ((rc = mii_mediachg(mii)) == ENXIO)
|
|
return 0;
|
|
|
|
/*
|
|
* Force an interrupt so that we will call bge_link_upd
|
|
* if needed and clear any pending link state attention.
|
|
* Without this we are not getting any further interrupts
|
|
* for link state changes and thus will not UP the link and
|
|
* not be able to send in bge_start. The only way to get
|
|
* things working was to receive a packet and get a RX intr.
|
|
*/
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
|
|
sc->bge_flags & BGE_IS_5788)
|
|
BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
|
|
else
|
|
BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Report current media status.
|
|
*/
|
|
static void
|
|
bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct bge_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = &sc->bge_mii;
|
|
|
|
if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
|
|
ifmr->ifm_status = IFM_AVALID;
|
|
ifmr->ifm_active = IFM_ETHER;
|
|
if (CSR_READ_4(sc, BGE_MAC_STS) &
|
|
BGE_MACSTAT_TBI_PCS_SYNCHED)
|
|
ifmr->ifm_status |= IFM_ACTIVE;
|
|
ifmr->ifm_active |= IFM_1000_SX;
|
|
if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
|
|
ifmr->ifm_active |= IFM_HDX;
|
|
else
|
|
ifmr->ifm_active |= IFM_FDX;
|
|
return;
|
|
}
|
|
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
|
|
sc->bge_flowflags;
|
|
}
|
|
|
|
static int
|
|
bge_ifflags_cb(struct ethercom *ec)
|
|
{
|
|
struct ifnet *ifp = &ec->ec_if;
|
|
struct bge_softc *sc = ifp->if_softc;
|
|
int change = ifp->if_flags ^ sc->bge_if_flags;
|
|
|
|
if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
|
|
return ENETRESET;
|
|
else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) == 0)
|
|
return 0;
|
|
|
|
if ((ifp->if_flags & IFF_PROMISC) == 0)
|
|
BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
|
|
else
|
|
BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
|
|
|
|
bge_setmulti(sc);
|
|
|
|
sc->bge_if_flags = ifp->if_flags;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
bge_ioctl(struct ifnet *ifp, u_long command, void *data)
|
|
{
|
|
struct bge_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
int s, error = 0;
|
|
struct mii_data *mii;
|
|
|
|
s = splnet();
|
|
|
|
switch (command) {
|
|
case SIOCSIFMEDIA:
|
|
/* XXX Flow control is not supported for 1000BASE-SX */
|
|
if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
|
|
ifr->ifr_media &= ~IFM_ETH_FMASK;
|
|
sc->bge_flowflags = 0;
|
|
}
|
|
|
|
/* Flow control requires full-duplex mode. */
|
|
if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
|
|
(ifr->ifr_media & IFM_FDX) == 0) {
|
|
ifr->ifr_media &= ~IFM_ETH_FMASK;
|
|
}
|
|
if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
|
|
if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
|
|
/* We can do both TXPAUSE and RXPAUSE. */
|
|
ifr->ifr_media |=
|
|
IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
|
|
}
|
|
sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
|
|
}
|
|
/* FALLTHROUGH */
|
|
case SIOCGIFMEDIA:
|
|
if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
|
|
command);
|
|
} else {
|
|
mii = &sc->bge_mii;
|
|
error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
|
|
command);
|
|
}
|
|
break;
|
|
default:
|
|
if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
|
|
break;
|
|
|
|
error = 0;
|
|
|
|
if (command != SIOCADDMULTI && command != SIOCDELMULTI)
|
|
;
|
|
else if (ifp->if_flags & IFF_RUNNING)
|
|
bge_setmulti(sc);
|
|
break;
|
|
}
|
|
|
|
splx(s);
|
|
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
bge_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct bge_softc *sc;
|
|
|
|
sc = ifp->if_softc;
|
|
|
|
aprint_error_dev(sc->bge_dev, "watchdog timeout -- resetting\n");
|
|
|
|
ifp->if_flags &= ~IFF_RUNNING;
|
|
bge_init(ifp);
|
|
|
|
ifp->if_oerrors++;
|
|
}
|
|
|
|
static void
|
|
bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
|
|
{
|
|
int i;
|
|
|
|
BGE_CLRBIT(sc, reg, bit);
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
if ((CSR_READ_4(sc, reg) & bit) == 0)
|
|
return;
|
|
delay(100);
|
|
}
|
|
|
|
/*
|
|
* Doesn't print only when the register is BGE_SRS_MODE. It occurs
|
|
* on some environment (and once after boot?)
|
|
*/
|
|
if (reg != BGE_SRS_MODE)
|
|
aprint_error_dev(sc->bge_dev,
|
|
"block failed to stop: reg 0x%lx, bit 0x%08x\n",
|
|
(u_long)reg, bit);
|
|
}
|
|
|
|
/*
|
|
* Stop the adapter and free any mbufs allocated to the
|
|
* RX and TX lists.
|
|
*/
|
|
static void
|
|
bge_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct bge_softc *sc = ifp->if_softc;
|
|
|
|
callout_stop(&sc->bge_timeout);
|
|
|
|
/*
|
|
* Tell firmware we're shutting down.
|
|
*/
|
|
bge_stop_fw(sc);
|
|
bge_sig_pre_reset(sc, BGE_RESET_STOP);
|
|
|
|
/* Disable host interrupts. */
|
|
BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
|
|
bge_writembx(sc, BGE_MBX_IRQ0_LO, 1);
|
|
|
|
/*
|
|
* Disable all of the receiver blocks
|
|
*/
|
|
bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
|
|
if (BGE_IS_5700_FAMILY(sc))
|
|
bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);
|
|
|
|
/*
|
|
* Disable all of the transmit blocks
|
|
*/
|
|
bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
|
|
if (BGE_IS_5700_FAMILY(sc))
|
|
bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);
|
|
|
|
/*
|
|
* Shut down all of the memory managers and related
|
|
* state machines.
|
|
*/
|
|
bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
|
|
if (BGE_IS_5700_FAMILY(sc))
|
|
bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);
|
|
|
|
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);
|
|
|
|
if (BGE_IS_5700_FAMILY(sc)) {
|
|
bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
|
|
bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
|
|
}
|
|
|
|
bge_reset(sc);
|
|
bge_sig_legacy(sc, BGE_RESET_STOP);
|
|
bge_sig_post_reset(sc, BGE_RESET_STOP);
|
|
|
|
/*
|
|
* Keep the ASF firmware running if up.
|
|
*/
|
|
if (sc->bge_asf_mode & ASF_STACKUP)
|
|
BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
|
|
else
|
|
BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
|
|
|
|
/* Free the RX lists. */
|
|
bge_free_rx_ring_std(sc);
|
|
|
|
/* Free jumbo RX list. */
|
|
if (BGE_IS_JUMBO_CAPABLE(sc))
|
|
bge_free_rx_ring_jumbo(sc);
|
|
|
|
/* Free TX buffers. */
|
|
bge_free_tx_ring(sc);
|
|
|
|
/*
|
|
* Isolate/power down the PHY.
|
|
*/
|
|
if (!(sc->bge_flags & BGE_PHY_FIBER_TBI))
|
|
mii_down(&sc->bge_mii);
|
|
|
|
sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;
|
|
|
|
/* Clear MAC's link state (PHY may still have link UP). */
|
|
BGE_STS_CLRBIT(sc, BGE_STS_LINK);
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
}
|
|
|
|
static void
|
|
bge_link_upd(struct bge_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->ethercom.ec_if;
|
|
struct mii_data *mii = &sc->bge_mii;
|
|
uint32_t status;
|
|
int link;
|
|
|
|
/* Clear 'pending link event' flag */
|
|
BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);
|
|
|
|
/*
|
|
* Process link state changes.
|
|
* Grrr. The link status word in the status block does
|
|
* not work correctly on the BCM5700 rev AX and BX chips,
|
|
* according to all available information. Hence, we have
|
|
* to enable MII interrupts in order to properly obtain
|
|
* async link changes. Unfortunately, this also means that
|
|
* we have to read the MAC status register to detect link
|
|
* changes, thereby adding an additional register access to
|
|
* the interrupt handler.
|
|
*/
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
|
|
status = CSR_READ_4(sc, BGE_MAC_STS);
|
|
if (status & BGE_MACSTAT_MI_INTERRUPT) {
|
|
mii_pollstat(mii);
|
|
|
|
if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
|
|
mii->mii_media_status & IFM_ACTIVE &&
|
|
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
|
|
BGE_STS_SETBIT(sc, BGE_STS_LINK);
|
|
else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
|
|
(!(mii->mii_media_status & IFM_ACTIVE) ||
|
|
IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
|
|
BGE_STS_CLRBIT(sc, BGE_STS_LINK);
|
|
|
|
/* Clear the interrupt */
|
|
CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
|
|
BGE_EVTENB_MI_INTERRUPT);
|
|
bge_miibus_readreg(sc->bge_dev, 1, BRGPHY_MII_ISR);
|
|
bge_miibus_writereg(sc->bge_dev, 1, BRGPHY_MII_IMR,
|
|
BRGPHY_INTRS);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (sc->bge_flags & BGE_PHY_FIBER_TBI) {
|
|
status = CSR_READ_4(sc, BGE_MAC_STS);
|
|
if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
|
|
if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
|
|
BGE_STS_SETBIT(sc, BGE_STS_LINK);
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
|
|
BGE_CLRBIT(sc, BGE_MAC_MODE,
|
|
BGE_MACMODE_TBI_SEND_CFGS);
|
|
CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
|
|
if_link_state_change(ifp, LINK_STATE_UP);
|
|
}
|
|
} else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
|
|
BGE_STS_CLRBIT(sc, BGE_STS_LINK);
|
|
if_link_state_change(ifp, LINK_STATE_DOWN);
|
|
}
|
|
/*
|
|
* Discard link events for MII/GMII cards if MI auto-polling disabled.
|
|
* This should not happen since mii callouts are locked now, but
|
|
* we keep this check for debug.
|
|
*/
|
|
} else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
|
|
/*
|
|
* Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
|
|
* bit in status word always set. Workaround this bug by
|
|
* reading PHY link status directly.
|
|
*/
|
|
link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
|
|
BGE_STS_LINK : 0;
|
|
|
|
if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
|
|
mii_pollstat(mii);
|
|
|
|
if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
|
|
mii->mii_media_status & IFM_ACTIVE &&
|
|
IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
|
|
BGE_STS_SETBIT(sc, BGE_STS_LINK);
|
|
else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
|
|
(!(mii->mii_media_status & IFM_ACTIVE) ||
|
|
IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
|
|
BGE_STS_CLRBIT(sc, BGE_STS_LINK);
|
|
}
|
|
}
|
|
|
|
/* Clear the attention */
|
|
CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED|
|
|
BGE_MACSTAT_CFG_CHANGED|BGE_MACSTAT_MI_COMPLETE|
|
|
BGE_MACSTAT_LINK_CHANGED);
|
|
}
|
|
|
|
static int
|
|
sysctl_bge_verify(SYSCTLFN_ARGS)
|
|
{
|
|
int error, t;
|
|
struct sysctlnode node;
|
|
|
|
node = *rnode;
|
|
t = *(int*)rnode->sysctl_data;
|
|
node.sysctl_data = &t;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
|
|
#if 0
|
|
DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
|
|
node.sysctl_num, rnode->sysctl_num));
|
|
#endif
|
|
|
|
if (node.sysctl_num == bge_rxthresh_nodenum) {
|
|
if (t < 0 || t >= NBGE_RX_THRESH)
|
|
return EINVAL;
|
|
bge_update_all_threshes(t);
|
|
} else
|
|
return EINVAL;
|
|
|
|
*(int*)rnode->sysctl_data = t;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set up sysctl(3) MIB, hw.bge.*.
|
|
*/
|
|
static void
|
|
sysctl_bge_init(struct bge_softc *sc)
|
|
{
|
|
int rc, bge_root_num;
|
|
const struct sysctlnode *node;
|
|
|
|
if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
|
|
NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0) {
|
|
goto err;
|
|
}
|
|
|
|
if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
|
|
0, CTLTYPE_NODE, "bge",
|
|
SYSCTL_DESCR("BGE interface controls"),
|
|
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
|
|
goto err;
|
|
}
|
|
|
|
bge_root_num = node->sysctl_num;
|
|
|
|
/* BGE Rx interrupt mitigation level */
|
|
if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
|
|
CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "rx_lvl",
|
|
SYSCTL_DESCR("BGE receive interrupt mitigation level"),
|
|
sysctl_bge_verify, 0,
|
|
&bge_rx_thresh_lvl,
|
|
0, CTL_HW, bge_root_num, CTL_CREATE,
|
|
CTL_EOL)) != 0) {
|
|
goto err;
|
|
}
|
|
|
|
bge_rxthresh_nodenum = node->sysctl_num;
|
|
|
|
return;
|
|
|
|
err:
|
|
aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
|
|
}
|
|
|
|
#ifdef BGE_DEBUG
|
|
void
|
|
bge_debug_info(struct bge_softc *sc)
|
|
{
|
|
|
|
printf("Hardware Flags:\n");
|
|
if (BGE_IS_5755_PLUS(sc))
|
|
printf(" - 5755 Plus\n");
|
|
if (BGE_IS_5750_OR_BEYOND(sc))
|
|
printf(" - 5750 Plus\n");
|
|
if (BGE_IS_5705_PLUS(sc))
|
|
printf(" - 5705 Plus\n");
|
|
if (BGE_IS_5714_FAMILY(sc))
|
|
printf(" - 5714 Family\n");
|
|
if (BGE_IS_5700_FAMILY(sc))
|
|
printf(" - 5700 Family\n");
|
|
if (sc->bge_flags & BGE_IS_5788)
|
|
printf(" - 5788\n");
|
|
if (sc->bge_flags & BGE_JUMBO_CAPABLE)
|
|
printf(" - Supports Jumbo Frames\n");
|
|
if (sc->bge_flags & BGE_NO_EEPROM)
|
|
printf(" - No EEPROM\n");
|
|
if (sc->bge_flags & BGE_PCIX)
|
|
printf(" - PCI-X Bus\n");
|
|
if (sc->bge_flags & BGE_PCIE)
|
|
printf(" - PCI Express Bus\n");
|
|
if (sc->bge_flags & BGE_NO_3LED)
|
|
printf(" - No 3 LEDs\n");
|
|
if (sc->bge_flags & BGE_RX_ALIGNBUG)
|
|
printf(" - RX Alignment Bug\n");
|
|
if (sc->bge_flags & BGE_TSO)
|
|
printf(" - TSO\n");
|
|
}
|
|
#endif /* BGE_DEBUG */
|
|
|
|
static int
|
|
bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
|
|
{
|
|
prop_dictionary_t dict;
|
|
prop_data_t ea;
|
|
|
|
if ((sc->bge_flags & BGE_NO_EEPROM) == 0)
|
|
return 1;
|
|
|
|
dict = device_properties(sc->bge_dev);
|
|
ea = prop_dictionary_get(dict, "mac-address");
|
|
if (ea != NULL) {
|
|
KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
|
|
KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
|
|
memcpy(ether_addr, prop_data_data_nocopy(ea), ETHER_ADDR_LEN);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
|
|
{
|
|
uint32_t mac_addr;
|
|
|
|
mac_addr = bge_readmem_ind(sc, 0x0c14);
|
|
if ((mac_addr >> 16) == 0x484b) {
|
|
ether_addr[0] = (uint8_t)(mac_addr >> 8);
|
|
ether_addr[1] = (uint8_t)mac_addr;
|
|
mac_addr = bge_readmem_ind(sc, 0x0c18);
|
|
ether_addr[2] = (uint8_t)(mac_addr >> 24);
|
|
ether_addr[3] = (uint8_t)(mac_addr >> 16);
|
|
ether_addr[4] = (uint8_t)(mac_addr >> 8);
|
|
ether_addr[5] = (uint8_t)mac_addr;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
|
|
{
|
|
int mac_offset = BGE_EE_MAC_OFFSET;
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
|
|
mac_offset = BGE_EE_MAC_OFFSET_5906;
|
|
|
|
return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
|
|
ETHER_ADDR_LEN));
|
|
}
|
|
|
|
static int
|
|
bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
|
|
{
|
|
|
|
if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
|
|
return 1;
|
|
|
|
return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
|
|
ETHER_ADDR_LEN));
|
|
}
|
|
|
|
static int
|
|
bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
|
|
{
|
|
static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
|
|
/* NOTE: Order is critical */
|
|
bge_get_eaddr_fw,
|
|
bge_get_eaddr_mem,
|
|
bge_get_eaddr_nvram,
|
|
bge_get_eaddr_eeprom,
|
|
NULL
|
|
};
|
|
const bge_eaddr_fcn_t *func;
|
|
|
|
for (func = bge_eaddr_funcs; *func != NULL; ++func) {
|
|
if ((*func)(sc, eaddr) == 0)
|
|
break;
|
|
}
|
|
return (*func == NULL ? ENXIO : 0);
|
|
}
|