2028 lines
56 KiB
C
2028 lines
56 KiB
C
/* $NetBSD: if_ale.c,v 1.13 2011/01/22 08:13:47 cegger Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD: src/sys/dev/ale/if_ale.c,v 1.3 2008/12/03 09:01:12 yongari Exp $
|
|
*/
|
|
|
|
/* Driver for Atheros AR8121/AR8113/AR8114 PCIe Ethernet. */
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: if_ale.c,v 1.13 2011/01/22 08:13:47 cegger Exp $");
|
|
|
|
#include "vlan.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/types.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/device.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/socket.h>
|
|
|
|
#include <sys/bus.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_llc.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip.h>
|
|
#endif
|
|
|
|
#include <net/if_types.h>
|
|
#include <net/if_vlanvar.h>
|
|
|
|
#include <net/bpf.h>
|
|
|
|
#include <sys/rnd.h>
|
|
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#include <dev/pci/if_alereg.h>
|
|
|
|
static int ale_match(device_t, cfdata_t, void *);
|
|
static void ale_attach(device_t, device_t, void *);
|
|
static int ale_detach(device_t, int);
|
|
|
|
static int ale_miibus_readreg(device_t, int, int);
|
|
static void ale_miibus_writereg(device_t, int, int, int);
|
|
static void ale_miibus_statchg(device_t);
|
|
|
|
static int ale_init(struct ifnet *);
|
|
static void ale_start(struct ifnet *);
|
|
static int ale_ioctl(struct ifnet *, u_long, void *);
|
|
static void ale_watchdog(struct ifnet *);
|
|
static int ale_mediachange(struct ifnet *);
|
|
static void ale_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
|
|
static int ale_intr(void *);
|
|
static int ale_rxeof(struct ale_softc *sc);
|
|
static void ale_rx_update_page(struct ale_softc *, struct ale_rx_page **,
|
|
uint32_t, uint32_t *);
|
|
static void ale_rxcsum(struct ale_softc *, struct mbuf *, uint32_t);
|
|
static void ale_txeof(struct ale_softc *);
|
|
|
|
static int ale_dma_alloc(struct ale_softc *);
|
|
static void ale_dma_free(struct ale_softc *);
|
|
static int ale_encap(struct ale_softc *, struct mbuf **);
|
|
static void ale_init_rx_pages(struct ale_softc *);
|
|
static void ale_init_tx_ring(struct ale_softc *);
|
|
|
|
static void ale_stop(struct ifnet *, int);
|
|
static void ale_tick(void *);
|
|
static void ale_get_macaddr(struct ale_softc *);
|
|
static void ale_mac_config(struct ale_softc *);
|
|
static void ale_phy_reset(struct ale_softc *);
|
|
static void ale_reset(struct ale_softc *);
|
|
static void ale_rxfilter(struct ale_softc *);
|
|
static void ale_rxvlan(struct ale_softc *);
|
|
static void ale_stats_clear(struct ale_softc *);
|
|
static void ale_stats_update(struct ale_softc *);
|
|
static void ale_stop_mac(struct ale_softc *);
|
|
|
|
CFATTACH_DECL_NEW(ale, sizeof(struct ale_softc),
|
|
ale_match, ale_attach, ale_detach, NULL);
|
|
|
|
int aledebug = 0;
|
|
#define DPRINTF(x) do { if (aledebug) printf x; } while (0)
|
|
|
|
#define ETHER_ALIGN 2
|
|
#define ALE_CSUM_FEATURES (M_CSUM_TCPv4 | M_CSUM_UDPv4)
|
|
|
|
static int
|
|
ale_miibus_readreg(device_t dev, int phy, int reg)
|
|
{
|
|
struct ale_softc *sc = device_private(dev);
|
|
uint32_t v;
|
|
int i;
|
|
|
|
if (phy != sc->ale_phyaddr)
|
|
return 0;
|
|
|
|
if (sc->ale_flags & ALE_FLAG_FASTETHER) {
|
|
switch (reg) {
|
|
case MII_100T2CR:
|
|
case MII_100T2SR:
|
|
case MII_EXTSR:
|
|
return 0;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
|
|
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
|
|
for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
|
|
DELAY(5);
|
|
v = CSR_READ_4(sc, ALE_MDIO);
|
|
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == 0) {
|
|
printf("%s: phy read timeout: phy %d, reg %d\n",
|
|
device_xname(sc->sc_dev), phy, reg);
|
|
return 0;
|
|
}
|
|
|
|
return (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
|
|
}
|
|
|
|
static void
|
|
ale_miibus_writereg(device_t dev, int phy, int reg, int val)
|
|
{
|
|
struct ale_softc *sc = device_private(dev);
|
|
uint32_t v;
|
|
int i;
|
|
|
|
if (phy != sc->ale_phyaddr)
|
|
return;
|
|
|
|
if (sc->ale_flags & ALE_FLAG_FASTETHER) {
|
|
switch (reg) {
|
|
case MII_100T2CR:
|
|
case MII_100T2SR:
|
|
case MII_EXTSR:
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
CSR_WRITE_4(sc, ALE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
|
|
(val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
|
|
MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
|
|
for (i = ALE_PHY_TIMEOUT; i > 0; i--) {
|
|
DELAY(5);
|
|
v = CSR_READ_4(sc, ALE_MDIO);
|
|
if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == 0)
|
|
printf("%s: phy write timeout: phy %d, reg %d\n",
|
|
device_xname(sc->sc_dev), phy, reg);
|
|
}
|
|
|
|
static void
|
|
ale_miibus_statchg(device_t dev)
|
|
{
|
|
struct ale_softc *sc = device_private(dev);
|
|
struct ifnet *ifp = &sc->sc_ec.ec_if;
|
|
struct mii_data *mii;
|
|
uint32_t reg;
|
|
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0)
|
|
return;
|
|
|
|
mii = &sc->sc_miibus;
|
|
|
|
sc->ale_flags &= ~ALE_FLAG_LINK;
|
|
if ((mii->mii_media_status & (IFM_ACTIVE | IFM_AVALID)) ==
|
|
(IFM_ACTIVE | IFM_AVALID)) {
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_10_T:
|
|
case IFM_100_TX:
|
|
sc->ale_flags |= ALE_FLAG_LINK;
|
|
break;
|
|
|
|
case IFM_1000_T:
|
|
if ((sc->ale_flags & ALE_FLAG_FASTETHER) == 0)
|
|
sc->ale_flags |= ALE_FLAG_LINK;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Stop Rx/Tx MACs. */
|
|
ale_stop_mac(sc);
|
|
|
|
/* Program MACs with resolved speed/duplex/flow-control. */
|
|
if ((sc->ale_flags & ALE_FLAG_LINK) != 0) {
|
|
ale_mac_config(sc);
|
|
/* Reenable Tx/Rx MACs. */
|
|
reg = CSR_READ_4(sc, ALE_MAC_CFG);
|
|
reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
|
|
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
|
|
}
|
|
}
|
|
|
|
void
|
|
ale_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct ale_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = &sc->sc_miibus;
|
|
|
|
mii_pollstat(mii);
|
|
ifmr->ifm_status = mii->mii_media_status;
|
|
ifmr->ifm_active = mii->mii_media_active;
|
|
}
|
|
|
|
int
|
|
ale_mediachange(struct ifnet *ifp)
|
|
{
|
|
struct ale_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii = &sc->sc_miibus;
|
|
int error;
|
|
|
|
if (mii->mii_instance != 0) {
|
|
struct mii_softc *miisc;
|
|
|
|
LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
|
|
mii_phy_reset(miisc);
|
|
}
|
|
error = mii_mediachg(mii);
|
|
|
|
return error;
|
|
}
|
|
|
|
int
|
|
ale_match(device_t dev, cfdata_t match, void *aux)
|
|
{
|
|
struct pci_attach_args *pa = aux;
|
|
|
|
return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
|
|
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_L1E);
|
|
}
|
|
|
|
void
|
|
ale_get_macaddr(struct ale_softc *sc)
|
|
{
|
|
uint32_t ea[2], reg;
|
|
int i, vpdc;
|
|
|
|
reg = CSR_READ_4(sc, ALE_SPI_CTRL);
|
|
if ((reg & SPI_VPD_ENB) != 0) {
|
|
reg &= ~SPI_VPD_ENB;
|
|
CSR_WRITE_4(sc, ALE_SPI_CTRL, reg);
|
|
}
|
|
|
|
if (pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_VPD,
|
|
&vpdc, NULL)) {
|
|
/*
|
|
* PCI VPD capability found, let TWSI reload EEPROM.
|
|
* This will set ethernet address of controller.
|
|
*/
|
|
CSR_WRITE_4(sc, ALE_TWSI_CTRL, CSR_READ_4(sc, ALE_TWSI_CTRL) |
|
|
TWSI_CTRL_SW_LD_START);
|
|
for (i = 100; i > 0; i--) {
|
|
DELAY(1000);
|
|
reg = CSR_READ_4(sc, ALE_TWSI_CTRL);
|
|
if ((reg & TWSI_CTRL_SW_LD_START) == 0)
|
|
break;
|
|
}
|
|
if (i == 0)
|
|
printf("%s: reloading EEPROM timeout!\n",
|
|
device_xname(sc->sc_dev));
|
|
} else {
|
|
if (aledebug)
|
|
printf("%s: PCI VPD capability not found!\n",
|
|
device_xname(sc->sc_dev));
|
|
}
|
|
|
|
ea[0] = CSR_READ_4(sc, ALE_PAR0);
|
|
ea[1] = CSR_READ_4(sc, ALE_PAR1);
|
|
sc->ale_eaddr[0] = (ea[1] >> 8) & 0xFF;
|
|
sc->ale_eaddr[1] = (ea[1] >> 0) & 0xFF;
|
|
sc->ale_eaddr[2] = (ea[0] >> 24) & 0xFF;
|
|
sc->ale_eaddr[3] = (ea[0] >> 16) & 0xFF;
|
|
sc->ale_eaddr[4] = (ea[0] >> 8) & 0xFF;
|
|
sc->ale_eaddr[5] = (ea[0] >> 0) & 0xFF;
|
|
}
|
|
|
|
void
|
|
ale_phy_reset(struct ale_softc *sc)
|
|
{
|
|
/* Reset magic from Linux. */
|
|
CSR_WRITE_2(sc, ALE_GPHY_CTRL,
|
|
GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE | GPHY_CTRL_SEL_ANA_RESET |
|
|
GPHY_CTRL_PHY_PLL_ON);
|
|
DELAY(1000);
|
|
CSR_WRITE_2(sc, ALE_GPHY_CTRL,
|
|
GPHY_CTRL_EXT_RESET | GPHY_CTRL_HIB_EN | GPHY_CTRL_HIB_PULSE |
|
|
GPHY_CTRL_SEL_ANA_RESET | GPHY_CTRL_PHY_PLL_ON);
|
|
DELAY(1000);
|
|
|
|
#define ATPHY_DBG_ADDR 0x1D
|
|
#define ATPHY_DBG_DATA 0x1E
|
|
|
|
/* Enable hibernation mode. */
|
|
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
|
|
ATPHY_DBG_ADDR, 0x0B);
|
|
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
|
|
ATPHY_DBG_DATA, 0xBC00);
|
|
/* Set Class A/B for all modes. */
|
|
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
|
|
ATPHY_DBG_ADDR, 0x00);
|
|
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
|
|
ATPHY_DBG_DATA, 0x02EF);
|
|
/* Enable 10BT power saving. */
|
|
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
|
|
ATPHY_DBG_ADDR, 0x12);
|
|
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
|
|
ATPHY_DBG_DATA, 0x4C04);
|
|
/* Adjust 1000T power. */
|
|
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
|
|
ATPHY_DBG_ADDR, 0x04);
|
|
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
|
|
ATPHY_DBG_DATA, 0x8BBB);
|
|
/* 10BT center tap voltage. */
|
|
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
|
|
ATPHY_DBG_ADDR, 0x05);
|
|
ale_miibus_writereg(sc->sc_dev, sc->ale_phyaddr,
|
|
ATPHY_DBG_DATA, 0x2C46);
|
|
|
|
#undef ATPHY_DBG_ADDR
|
|
#undef ATPHY_DBG_DATA
|
|
DELAY(1000);
|
|
}
|
|
|
|
void
|
|
ale_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct ale_softc *sc = device_private(self);
|
|
struct pci_attach_args *pa = aux;
|
|
pci_chipset_tag_t pc = pa->pa_pc;
|
|
pci_intr_handle_t ih;
|
|
const char *intrstr;
|
|
struct ifnet *ifp;
|
|
pcireg_t memtype;
|
|
int mii_flags, error = 0;
|
|
uint32_t rxf_len, txf_len;
|
|
const char *chipname;
|
|
|
|
aprint_naive("\n");
|
|
aprint_normal(": Attansic/Atheros L1E Ethernet\n");
|
|
|
|
sc->sc_dev = self;
|
|
sc->sc_dmat = pa->pa_dmat;
|
|
sc->sc_pct = pa->pa_pc;
|
|
sc->sc_pcitag = pa->pa_tag;
|
|
|
|
/*
|
|
* Allocate IO memory
|
|
*/
|
|
memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, ALE_PCIR_BAR);
|
|
switch (memtype) {
|
|
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
|
|
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
|
|
case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
|
|
break;
|
|
default:
|
|
aprint_error_dev(self, "invalid base address register\n");
|
|
break;
|
|
}
|
|
|
|
if (pci_mapreg_map(pa, ALE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
|
|
&sc->sc_mem_bh, NULL, &sc->sc_mem_size)) {
|
|
aprint_error_dev(self, "could not map mem space\n");
|
|
return;
|
|
}
|
|
|
|
if (pci_intr_map(pa, &ih) != 0) {
|
|
aprint_error_dev(self, "could not map interrupt\n");
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* Allocate IRQ
|
|
*/
|
|
intrstr = pci_intr_string(sc->sc_pct, ih);
|
|
sc->sc_irq_handle = pci_intr_establish(pc, ih, IPL_NET, ale_intr, sc);
|
|
if (sc->sc_irq_handle == NULL) {
|
|
aprint_error_dev(self, "could not establish interrupt");
|
|
if (intrstr != NULL)
|
|
aprint_error(" at %s", intrstr);
|
|
aprint_error("\n");
|
|
goto fail;
|
|
}
|
|
|
|
/* Set PHY address. */
|
|
sc->ale_phyaddr = ALE_PHY_ADDR;
|
|
|
|
/* Reset PHY. */
|
|
ale_phy_reset(sc);
|
|
|
|
/* Reset the ethernet controller. */
|
|
ale_reset(sc);
|
|
|
|
/* Get PCI and chip id/revision. */
|
|
sc->ale_rev = PCI_REVISION(pa->pa_class);
|
|
if (sc->ale_rev >= 0xF0) {
|
|
/* L2E Rev. B. AR8114 */
|
|
sc->ale_flags |= ALE_FLAG_FASTETHER;
|
|
chipname = "AR8114 (L2E RevB)";
|
|
} else {
|
|
if ((CSR_READ_4(sc, ALE_PHY_STATUS) & PHY_STATUS_100M) != 0) {
|
|
/* L1E AR8121 */
|
|
sc->ale_flags |= ALE_FLAG_JUMBO;
|
|
chipname = "AR8121 (L1E)";
|
|
} else {
|
|
/* L2E Rev. A. AR8113 */
|
|
sc->ale_flags |= ALE_FLAG_FASTETHER;
|
|
chipname = "AR8113 (L2E RevA)";
|
|
}
|
|
}
|
|
aprint_normal_dev(self, "%s, %s\n", chipname, intrstr);
|
|
|
|
/*
|
|
* All known controllers seems to require 4 bytes alignment
|
|
* of Tx buffers to make Tx checksum offload with custom
|
|
* checksum generation method work.
|
|
*/
|
|
sc->ale_flags |= ALE_FLAG_TXCSUM_BUG;
|
|
|
|
/*
|
|
* All known controllers seems to have issues on Rx checksum
|
|
* offload for fragmented IP datagrams.
|
|
*/
|
|
sc->ale_flags |= ALE_FLAG_RXCSUM_BUG;
|
|
|
|
/*
|
|
* Don't use Tx CMB. It is known to cause RRS update failure
|
|
* under certain circumstances. Typical phenomenon of the
|
|
* issue would be unexpected sequence number encountered in
|
|
* Rx handler.
|
|
*/
|
|
sc->ale_flags |= ALE_FLAG_TXCMB_BUG;
|
|
sc->ale_chip_rev = CSR_READ_4(sc, ALE_MASTER_CFG) >>
|
|
MASTER_CHIP_REV_SHIFT;
|
|
aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->ale_rev);
|
|
aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->ale_chip_rev);
|
|
|
|
/*
|
|
* Uninitialized hardware returns an invalid chip id/revision
|
|
* as well as 0xFFFFFFFF for Tx/Rx fifo length.
|
|
*/
|
|
txf_len = CSR_READ_4(sc, ALE_SRAM_TX_FIFO_LEN);
|
|
rxf_len = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
|
|
if (sc->ale_chip_rev == 0xFFFF || txf_len == 0xFFFFFFFF ||
|
|
rxf_len == 0xFFFFFFF) {
|
|
aprint_error_dev(self, "chip revision : 0x%04x, %u Tx FIFO "
|
|
"%u Rx FIFO -- not initialized?\n",
|
|
sc->ale_chip_rev, txf_len, rxf_len);
|
|
goto fail;
|
|
}
|
|
|
|
if (aledebug) {
|
|
printf("%s: %u Tx FIFO, %u Rx FIFO\n", device_xname(sc->sc_dev),
|
|
txf_len, rxf_len);
|
|
}
|
|
|
|
/* Set max allowable DMA size. */
|
|
sc->ale_dma_rd_burst = DMA_CFG_RD_BURST_128;
|
|
sc->ale_dma_wr_burst = DMA_CFG_WR_BURST_128;
|
|
|
|
callout_init(&sc->sc_tick_ch, 0);
|
|
callout_setfunc(&sc->sc_tick_ch, ale_tick, sc);
|
|
|
|
error = ale_dma_alloc(sc);
|
|
if (error)
|
|
goto fail;
|
|
|
|
/* Load station address. */
|
|
ale_get_macaddr(sc);
|
|
|
|
aprint_normal_dev(self, "Ethernet address %s\n",
|
|
ether_sprintf(sc->ale_eaddr));
|
|
|
|
ifp = &sc->sc_ec.ec_if;
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_init = ale_init;
|
|
ifp->if_ioctl = ale_ioctl;
|
|
ifp->if_start = ale_start;
|
|
ifp->if_stop = ale_stop;
|
|
ifp->if_watchdog = ale_watchdog;
|
|
IFQ_SET_MAXLEN(&ifp->if_snd, ALE_TX_RING_CNT - 1);
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
|
|
|
|
sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;
|
|
|
|
#ifdef ALE_CHECKSUM
|
|
ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
|
|
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
|
|
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_TCPv4_Rx;
|
|
#endif
|
|
|
|
#if NVLAN > 0
|
|
sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
|
|
#endif
|
|
|
|
/* Set up MII bus. */
|
|
sc->sc_miibus.mii_ifp = ifp;
|
|
sc->sc_miibus.mii_readreg = ale_miibus_readreg;
|
|
sc->sc_miibus.mii_writereg = ale_miibus_writereg;
|
|
sc->sc_miibus.mii_statchg = ale_miibus_statchg;
|
|
|
|
sc->sc_ec.ec_mii = &sc->sc_miibus;
|
|
ifmedia_init(&sc->sc_miibus.mii_media, 0, ale_mediachange,
|
|
ale_mediastatus);
|
|
mii_flags = 0;
|
|
if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
|
|
mii_flags |= MIIF_DOPAUSE;
|
|
mii_attach(self, &sc->sc_miibus, 0xffffffff, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, mii_flags);
|
|
|
|
if (LIST_FIRST(&sc->sc_miibus.mii_phys) == NULL) {
|
|
aprint_error_dev(self, "no PHY found!\n");
|
|
ifmedia_add(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL,
|
|
0, NULL);
|
|
ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_MANUAL);
|
|
} else
|
|
ifmedia_set(&sc->sc_miibus.mii_media, IFM_ETHER | IFM_AUTO);
|
|
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, sc->ale_eaddr);
|
|
|
|
if (pmf_device_register(self, NULL, NULL))
|
|
pmf_class_network_register(self, ifp);
|
|
else
|
|
aprint_error_dev(self, "couldn't establish power handler\n");
|
|
|
|
return;
|
|
fail:
|
|
ale_dma_free(sc);
|
|
if (sc->sc_irq_handle != NULL) {
|
|
pci_intr_disestablish(pc, sc->sc_irq_handle);
|
|
sc->sc_irq_handle = NULL;
|
|
}
|
|
if (sc->sc_mem_size) {
|
|
bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
|
|
sc->sc_mem_size = 0;
|
|
}
|
|
}
|
|
|
|
static int
|
|
ale_detach(device_t self, int flags)
|
|
{
|
|
struct ale_softc *sc = device_private(self);
|
|
struct ifnet *ifp = &sc->sc_ec.ec_if;
|
|
int s;
|
|
|
|
pmf_device_deregister(self);
|
|
s = splnet();
|
|
ale_stop(ifp, 0);
|
|
splx(s);
|
|
|
|
mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);
|
|
|
|
/* Delete all remaining media. */
|
|
ifmedia_delete_instance(&sc->sc_miibus.mii_media, IFM_INST_ANY);
|
|
|
|
ether_ifdetach(ifp);
|
|
if_detach(ifp);
|
|
ale_dma_free(sc);
|
|
|
|
if (sc->sc_irq_handle != NULL) {
|
|
pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
|
|
sc->sc_irq_handle = NULL;
|
|
}
|
|
if (sc->sc_mem_size) {
|
|
bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
|
|
sc->sc_mem_size = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
ale_dma_alloc(struct ale_softc *sc)
|
|
{
|
|
struct ale_txdesc *txd;
|
|
int nsegs, error, guard_size, i;
|
|
|
|
if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0)
|
|
guard_size = ALE_JUMBO_FRAMELEN;
|
|
else
|
|
guard_size = ALE_MAX_FRAMELEN;
|
|
sc->ale_pagesize = roundup(guard_size + ALE_RX_PAGE_SZ,
|
|
ALE_RX_PAGE_ALIGN);
|
|
|
|
/*
|
|
* Create DMA stuffs for TX ring
|
|
*/
|
|
error = bus_dmamap_create(sc->sc_dmat, ALE_TX_RING_SZ, 1,
|
|
ALE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_ring_map);
|
|
if (error) {
|
|
sc->ale_cdata.ale_tx_ring_map = NULL;
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/* Allocate DMA'able memory for TX ring */
|
|
error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_RING_SZ,
|
|
0, 0, &sc->ale_cdata.ale_tx_ring_seg, 1,
|
|
&nsegs, BUS_DMA_WAITOK);
|
|
if (error) {
|
|
printf("%s: could not allocate DMA'able memory for Tx ring, "
|
|
"error = %i\n", device_xname(sc->sc_dev), error);
|
|
return error;
|
|
}
|
|
|
|
error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_ring_seg,
|
|
nsegs, ALE_TX_RING_SZ, (void **)&sc->ale_cdata.ale_tx_ring,
|
|
BUS_DMA_NOWAIT);
|
|
if (error)
|
|
return ENOBUFS;
|
|
|
|
memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
|
|
|
|
/* Load the DMA map for Tx ring. */
|
|
error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map,
|
|
sc->ale_cdata.ale_tx_ring, ALE_TX_RING_SZ, NULL, BUS_DMA_WAITOK);
|
|
if (error) {
|
|
printf("%s: could not load DMA'able memory for Tx ring.\n",
|
|
device_xname(sc->sc_dev));
|
|
bus_dmamem_free(sc->sc_dmat,
|
|
&sc->ale_cdata.ale_tx_ring_seg, 1);
|
|
return error;
|
|
}
|
|
sc->ale_cdata.ale_tx_ring_paddr =
|
|
sc->ale_cdata.ale_tx_ring_map->dm_segs[0].ds_addr;
|
|
|
|
for (i = 0; i < ALE_RX_PAGES; i++) {
|
|
/*
|
|
* Create DMA stuffs for RX pages
|
|
*/
|
|
error = bus_dmamap_create(sc->sc_dmat, sc->ale_pagesize, 1,
|
|
sc->ale_pagesize, 0, BUS_DMA_NOWAIT,
|
|
&sc->ale_cdata.ale_rx_page[i].page_map);
|
|
if (error) {
|
|
sc->ale_cdata.ale_rx_page[i].page_map = NULL;
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/* Allocate DMA'able memory for RX pages */
|
|
error = bus_dmamem_alloc(sc->sc_dmat, sc->ale_pagesize,
|
|
ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].page_seg,
|
|
1, &nsegs, BUS_DMA_WAITOK);
|
|
if (error) {
|
|
printf("%s: could not allocate DMA'able memory for "
|
|
"Rx ring.\n", device_xname(sc->sc_dev));
|
|
return error;
|
|
}
|
|
error = bus_dmamem_map(sc->sc_dmat,
|
|
&sc->ale_cdata.ale_rx_page[i].page_seg, nsegs,
|
|
sc->ale_pagesize,
|
|
(void **)&sc->ale_cdata.ale_rx_page[i].page_addr,
|
|
BUS_DMA_NOWAIT);
|
|
if (error)
|
|
return ENOBUFS;
|
|
|
|
memset(sc->ale_cdata.ale_rx_page[i].page_addr, 0,
|
|
sc->ale_pagesize);
|
|
|
|
/* Load the DMA map for Rx pages. */
|
|
error = bus_dmamap_load(sc->sc_dmat,
|
|
sc->ale_cdata.ale_rx_page[i].page_map,
|
|
sc->ale_cdata.ale_rx_page[i].page_addr,
|
|
sc->ale_pagesize, NULL, BUS_DMA_WAITOK);
|
|
if (error) {
|
|
printf("%s: could not load DMA'able memory for "
|
|
"Rx pages.\n", device_xname(sc->sc_dev));
|
|
bus_dmamem_free(sc->sc_dmat,
|
|
&sc->ale_cdata.ale_rx_page[i].page_seg, 1);
|
|
return error;
|
|
}
|
|
sc->ale_cdata.ale_rx_page[i].page_paddr =
|
|
sc->ale_cdata.ale_rx_page[i].page_map->dm_segs[0].ds_addr;
|
|
}
|
|
|
|
/*
|
|
* Create DMA stuffs for Tx CMB.
|
|
*/
|
|
error = bus_dmamap_create(sc->sc_dmat, ALE_TX_CMB_SZ, 1,
|
|
ALE_TX_CMB_SZ, 0, BUS_DMA_NOWAIT, &sc->ale_cdata.ale_tx_cmb_map);
|
|
if (error) {
|
|
sc->ale_cdata.ale_tx_cmb_map = NULL;
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/* Allocate DMA'able memory for Tx CMB. */
|
|
error = bus_dmamem_alloc(sc->sc_dmat, ALE_TX_CMB_SZ, ETHER_ALIGN, 0,
|
|
&sc->ale_cdata.ale_tx_cmb_seg, 1, &nsegs, BUS_DMA_WAITOK);
|
|
|
|
if (error) {
|
|
printf("%s: could not allocate DMA'able memory for Tx CMB.\n",
|
|
device_xname(sc->sc_dev));
|
|
return error;
|
|
}
|
|
|
|
error = bus_dmamem_map(sc->sc_dmat, &sc->ale_cdata.ale_tx_cmb_seg,
|
|
nsegs, ALE_TX_CMB_SZ, (void **)&sc->ale_cdata.ale_tx_cmb,
|
|
BUS_DMA_NOWAIT);
|
|
if (error)
|
|
return ENOBUFS;
|
|
|
|
memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
|
|
|
|
/* Load the DMA map for Tx CMB. */
|
|
error = bus_dmamap_load(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map,
|
|
sc->ale_cdata.ale_tx_cmb, ALE_TX_CMB_SZ, NULL, BUS_DMA_WAITOK);
|
|
if (error) {
|
|
printf("%s: could not load DMA'able memory for Tx CMB.\n",
|
|
device_xname(sc->sc_dev));
|
|
bus_dmamem_free(sc->sc_dmat,
|
|
&sc->ale_cdata.ale_tx_cmb_seg, 1);
|
|
return error;
|
|
}
|
|
|
|
sc->ale_cdata.ale_tx_cmb_paddr =
|
|
sc->ale_cdata.ale_tx_cmb_map->dm_segs[0].ds_addr;
|
|
|
|
for (i = 0; i < ALE_RX_PAGES; i++) {
|
|
/*
|
|
* Create DMA stuffs for Rx CMB.
|
|
*/
|
|
error = bus_dmamap_create(sc->sc_dmat, ALE_RX_CMB_SZ, 1,
|
|
ALE_RX_CMB_SZ, 0, BUS_DMA_NOWAIT,
|
|
&sc->ale_cdata.ale_rx_page[i].cmb_map);
|
|
if (error) {
|
|
sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
|
|
return ENOBUFS;
|
|
}
|
|
|
|
/* Allocate DMA'able memory for Rx CMB */
|
|
error = bus_dmamem_alloc(sc->sc_dmat, ALE_RX_CMB_SZ,
|
|
ETHER_ALIGN, 0, &sc->ale_cdata.ale_rx_page[i].cmb_seg, 1,
|
|
&nsegs, BUS_DMA_WAITOK);
|
|
if (error) {
|
|
printf("%s: could not allocate DMA'able memory for "
|
|
"Rx CMB\n", device_xname(sc->sc_dev));
|
|
return error;
|
|
}
|
|
error = bus_dmamem_map(sc->sc_dmat,
|
|
&sc->ale_cdata.ale_rx_page[i].cmb_seg, nsegs,
|
|
ALE_RX_CMB_SZ,
|
|
(void **)&sc->ale_cdata.ale_rx_page[i].cmb_addr,
|
|
BUS_DMA_NOWAIT);
|
|
if (error)
|
|
return ENOBUFS;
|
|
|
|
memset(sc->ale_cdata.ale_rx_page[i].cmb_addr, 0, ALE_RX_CMB_SZ);
|
|
|
|
/* Load the DMA map for Rx CMB */
|
|
error = bus_dmamap_load(sc->sc_dmat,
|
|
sc->ale_cdata.ale_rx_page[i].cmb_map,
|
|
sc->ale_cdata.ale_rx_page[i].cmb_addr,
|
|
ALE_RX_CMB_SZ, NULL, BUS_DMA_WAITOK);
|
|
if (error) {
|
|
printf("%s: could not load DMA'able memory for Rx CMB"
|
|
"\n", device_xname(sc->sc_dev));
|
|
bus_dmamem_free(sc->sc_dmat,
|
|
&sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
|
|
return error;
|
|
}
|
|
sc->ale_cdata.ale_rx_page[i].cmb_paddr =
|
|
sc->ale_cdata.ale_rx_page[i].cmb_map->dm_segs[0].ds_addr;
|
|
}
|
|
|
|
|
|
/* Create DMA maps for Tx buffers. */
|
|
for (i = 0; i < ALE_TX_RING_CNT; i++) {
|
|
txd = &sc->ale_cdata.ale_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
txd->tx_dmamap = NULL;
|
|
error = bus_dmamap_create(sc->sc_dmat, ALE_TSO_MAXSIZE,
|
|
ALE_MAXTXSEGS, ALE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
|
|
&txd->tx_dmamap);
|
|
if (error) {
|
|
txd->tx_dmamap = NULL;
|
|
printf("%s: could not create Tx dmamap.\n",
|
|
device_xname(sc->sc_dev));
|
|
return error;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ale_dma_free(struct ale_softc *sc)
|
|
{
|
|
struct ale_txdesc *txd;
|
|
int i;
|
|
|
|
/* Tx buffers. */
|
|
for (i = 0; i < ALE_TX_RING_CNT; i++) {
|
|
txd = &sc->ale_cdata.ale_txdesc[i];
|
|
if (txd->tx_dmamap != NULL) {
|
|
bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
|
|
txd->tx_dmamap = NULL;
|
|
}
|
|
}
|
|
|
|
/* Tx descriptor ring. */
|
|
if (sc->ale_cdata.ale_tx_ring_map != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map);
|
|
if (sc->ale_cdata.ale_tx_ring_map != NULL &&
|
|
sc->ale_cdata.ale_tx_ring != NULL)
|
|
bus_dmamem_free(sc->sc_dmat,
|
|
&sc->ale_cdata.ale_tx_ring_seg, 1);
|
|
sc->ale_cdata.ale_tx_ring = NULL;
|
|
sc->ale_cdata.ale_tx_ring_map = NULL;
|
|
|
|
/* Rx page block. */
|
|
for (i = 0; i < ALE_RX_PAGES; i++) {
|
|
if (sc->ale_cdata.ale_rx_page[i].page_map != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat,
|
|
sc->ale_cdata.ale_rx_page[i].page_map);
|
|
if (sc->ale_cdata.ale_rx_page[i].page_map != NULL &&
|
|
sc->ale_cdata.ale_rx_page[i].page_addr != NULL)
|
|
bus_dmamem_free(sc->sc_dmat,
|
|
&sc->ale_cdata.ale_rx_page[i].page_seg, 1);
|
|
sc->ale_cdata.ale_rx_page[i].page_addr = NULL;
|
|
sc->ale_cdata.ale_rx_page[i].page_map = NULL;
|
|
}
|
|
|
|
/* Rx CMB. */
|
|
for (i = 0; i < ALE_RX_PAGES; i++) {
|
|
if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat,
|
|
sc->ale_cdata.ale_rx_page[i].cmb_map);
|
|
if (sc->ale_cdata.ale_rx_page[i].cmb_map != NULL &&
|
|
sc->ale_cdata.ale_rx_page[i].cmb_addr != NULL)
|
|
bus_dmamem_free(sc->sc_dmat,
|
|
&sc->ale_cdata.ale_rx_page[i].cmb_seg, 1);
|
|
sc->ale_cdata.ale_rx_page[i].cmb_addr = NULL;
|
|
sc->ale_cdata.ale_rx_page[i].cmb_map = NULL;
|
|
}
|
|
|
|
/* Tx CMB. */
|
|
if (sc->ale_cdata.ale_tx_cmb_map != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map);
|
|
if (sc->ale_cdata.ale_tx_cmb_map != NULL &&
|
|
sc->ale_cdata.ale_tx_cmb != NULL)
|
|
bus_dmamem_free(sc->sc_dmat,
|
|
&sc->ale_cdata.ale_tx_cmb_seg, 1);
|
|
sc->ale_cdata.ale_tx_cmb = NULL;
|
|
sc->ale_cdata.ale_tx_cmb_map = NULL;
|
|
|
|
}
|
|
|
|
static int
|
|
ale_encap(struct ale_softc *sc, struct mbuf **m_head)
|
|
{
|
|
struct ale_txdesc *txd, *txd_last;
|
|
struct tx_desc *desc;
|
|
struct mbuf *m;
|
|
bus_dmamap_t map;
|
|
uint32_t cflags, poff, vtag;
|
|
int error, i, nsegs, prod;
|
|
#if NVLAN > 0
|
|
struct m_tag *mtag;
|
|
#endif
|
|
|
|
m = *m_head;
|
|
cflags = vtag = 0;
|
|
poff = 0;
|
|
|
|
prod = sc->ale_cdata.ale_tx_prod;
|
|
txd = &sc->ale_cdata.ale_txdesc[prod];
|
|
txd_last = txd;
|
|
map = txd->tx_dmamap;
|
|
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head, BUS_DMA_NOWAIT);
|
|
if (error == EFBIG) {
|
|
error = 0;
|
|
|
|
*m_head = m_pullup(*m_head, MHLEN);
|
|
if (*m_head == NULL) {
|
|
printf("%s: can't defrag TX mbuf\n",
|
|
device_xname(sc->sc_dev));
|
|
return ENOBUFS;
|
|
}
|
|
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, map, *m_head,
|
|
BUS_DMA_NOWAIT);
|
|
|
|
if (error != 0) {
|
|
printf("%s: could not load defragged TX mbuf\n",
|
|
device_xname(sc->sc_dev));
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return error;
|
|
}
|
|
} else if (error) {
|
|
printf("%s: could not load TX mbuf\n", device_xname(sc->sc_dev));
|
|
return error;
|
|
}
|
|
|
|
nsegs = map->dm_nsegs;
|
|
|
|
if (nsegs == 0) {
|
|
m_freem(*m_head);
|
|
*m_head = NULL;
|
|
return EIO;
|
|
}
|
|
|
|
/* Check descriptor overrun. */
|
|
if (sc->ale_cdata.ale_tx_cnt + nsegs >= ALE_TX_RING_CNT - 2) {
|
|
bus_dmamap_unload(sc->sc_dmat, map);
|
|
return ENOBUFS;
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
m = *m_head;
|
|
/* Configure Tx checksum offload. */
|
|
if ((m->m_pkthdr.csum_flags & ALE_CSUM_FEATURES) != 0) {
|
|
/*
|
|
* AR81xx supports Tx custom checksum offload feature
|
|
* that offloads single 16bit checksum computation.
|
|
* So you can choose one among IP, TCP and UDP.
|
|
* Normally driver sets checksum start/insertion
|
|
* position from the information of TCP/UDP frame as
|
|
* TCP/UDP checksum takes more time than that of IP.
|
|
* However it seems that custom checksum offload
|
|
* requires 4 bytes aligned Tx buffers due to hardware
|
|
* bug.
|
|
* AR81xx also supports explicit Tx checksum computation
|
|
* if it is told that the size of IP header and TCP
|
|
* header(for UDP, the header size does not matter
|
|
* because it's fixed length). However with this scheme
|
|
* TSO does not work so you have to choose one either
|
|
* TSO or explicit Tx checksum offload. I chosen TSO
|
|
* plus custom checksum offload with work-around which
|
|
* will cover most common usage for this consumer
|
|
* ethernet controller. The work-around takes a lot of
|
|
* CPU cycles if Tx buffer is not aligned on 4 bytes
|
|
* boundary, though.
|
|
*/
|
|
cflags |= ALE_TD_CXSUM;
|
|
/* Set checksum start offset. */
|
|
cflags |= (poff << ALE_TD_CSUM_PLOADOFFSET_SHIFT);
|
|
}
|
|
|
|
#if NVLAN > 0
|
|
/* Configure VLAN hardware tag insertion. */
|
|
if ((mtag = VLAN_OUTPUT_TAG(&sc->sc_ec, m))) {
|
|
vtag = ALE_TX_VLAN_TAG(htons(VLAN_TAG_VALUE(mtag)));
|
|
vtag = ((vtag << ALE_TD_VLAN_SHIFT) & ALE_TD_VLAN_MASK);
|
|
cflags |= ALE_TD_INSERT_VLAN_TAG;
|
|
}
|
|
#endif
|
|
|
|
desc = NULL;
|
|
for (i = 0; i < nsegs; i++) {
|
|
desc = &sc->ale_cdata.ale_tx_ring[prod];
|
|
desc->addr = htole64(map->dm_segs[i].ds_addr);
|
|
desc->len =
|
|
htole32(ALE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
|
|
desc->flags = htole32(cflags);
|
|
sc->ale_cdata.ale_tx_cnt++;
|
|
ALE_DESC_INC(prod, ALE_TX_RING_CNT);
|
|
}
|
|
/* Update producer index. */
|
|
sc->ale_cdata.ale_tx_prod = prod;
|
|
|
|
/* Finally set EOP on the last descriptor. */
|
|
prod = (prod + ALE_TX_RING_CNT - 1) % ALE_TX_RING_CNT;
|
|
desc = &sc->ale_cdata.ale_tx_ring[prod];
|
|
desc->flags |= htole32(ALE_TD_EOP);
|
|
|
|
/* Swap dmamap of the first and the last. */
|
|
txd = &sc->ale_cdata.ale_txdesc[prod];
|
|
map = txd_last->tx_dmamap;
|
|
txd_last->tx_dmamap = txd->tx_dmamap;
|
|
txd->tx_dmamap = map;
|
|
txd->tx_m = m;
|
|
|
|
/* Sync descriptors. */
|
|
bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
|
|
sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ale_start(struct ifnet *ifp)
|
|
{
|
|
struct ale_softc *sc = ifp->if_softc;
|
|
struct mbuf *m_head;
|
|
int enq;
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
/* Reclaim transmitted frames. */
|
|
if (sc->ale_cdata.ale_tx_cnt >= ALE_TX_DESC_HIWAT)
|
|
ale_txeof(sc);
|
|
|
|
enq = 0;
|
|
for (;;) {
|
|
IFQ_DEQUEUE(&ifp->if_snd, m_head);
|
|
if (m_head == NULL)
|
|
break;
|
|
|
|
/*
|
|
* Pack the data into the transmit ring. If we
|
|
* don't have room, set the OACTIVE flag and wait
|
|
* for the NIC to drain the ring.
|
|
*/
|
|
if (ale_encap(sc, &m_head)) {
|
|
if (m_head == NULL)
|
|
break;
|
|
IF_PREPEND(&ifp->if_snd, m_head);
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
break;
|
|
}
|
|
enq = 1;
|
|
|
|
/*
|
|
* If there's a BPF listener, bounce a copy of this frame
|
|
* to him.
|
|
*/
|
|
bpf_mtap(ifp, m_head);
|
|
}
|
|
|
|
if (enq) {
|
|
/* Kick. */
|
|
CSR_WRITE_4(sc, ALE_MBOX_TPD_PROD_IDX,
|
|
sc->ale_cdata.ale_tx_prod);
|
|
|
|
/* Set a timeout in case the chip goes out to lunch. */
|
|
ifp->if_timer = ALE_TX_TIMEOUT;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ale_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct ale_softc *sc = ifp->if_softc;
|
|
|
|
if ((sc->ale_flags & ALE_FLAG_LINK) == 0) {
|
|
printf("%s: watchdog timeout (missed link)\n",
|
|
device_xname(sc->sc_dev));
|
|
ifp->if_oerrors++;
|
|
ale_init(ifp);
|
|
return;
|
|
}
|
|
|
|
printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
|
|
ifp->if_oerrors++;
|
|
ale_init(ifp);
|
|
|
|
if (!IFQ_IS_EMPTY(&ifp->if_snd))
|
|
ale_start(ifp);
|
|
}
|
|
|
|
static int
|
|
ale_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct ale_softc *sc = ifp->if_softc;
|
|
int s, error;
|
|
|
|
s = splnet();
|
|
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
if (error == ENETRESET) {
|
|
if (ifp->if_flags & IFF_RUNNING)
|
|
ale_rxfilter(sc);
|
|
error = 0;
|
|
}
|
|
|
|
splx(s);
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
ale_mac_config(struct ale_softc *sc)
|
|
{
|
|
struct mii_data *mii;
|
|
uint32_t reg;
|
|
|
|
mii = &sc->sc_miibus;
|
|
reg = CSR_READ_4(sc, ALE_MAC_CFG);
|
|
reg &= ~(MAC_CFG_FULL_DUPLEX | MAC_CFG_TX_FC | MAC_CFG_RX_FC |
|
|
MAC_CFG_SPEED_MASK);
|
|
|
|
/* Reprogram MAC with resolved speed/duplex. */
|
|
switch (IFM_SUBTYPE(mii->mii_media_active)) {
|
|
case IFM_10_T:
|
|
case IFM_100_TX:
|
|
reg |= MAC_CFG_SPEED_10_100;
|
|
break;
|
|
case IFM_1000_T:
|
|
reg |= MAC_CFG_SPEED_1000;
|
|
break;
|
|
}
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
|
|
reg |= MAC_CFG_FULL_DUPLEX;
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
|
|
reg |= MAC_CFG_TX_FC;
|
|
if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
|
|
reg |= MAC_CFG_RX_FC;
|
|
}
|
|
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
|
|
}
|
|
|
|
static void
|
|
ale_stats_clear(struct ale_softc *sc)
|
|
{
|
|
struct smb sb;
|
|
uint32_t *reg;
|
|
int i;
|
|
|
|
for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
|
|
CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
|
|
i += sizeof(uint32_t);
|
|
}
|
|
/* Read Tx statistics. */
|
|
for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
|
|
CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
|
|
i += sizeof(uint32_t);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ale_stats_update(struct ale_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ec.ec_if;
|
|
struct ale_hw_stats *stat;
|
|
struct smb sb, *smb;
|
|
uint32_t *reg;
|
|
int i;
|
|
|
|
stat = &sc->ale_stats;
|
|
smb = &sb;
|
|
|
|
/* Read Rx statistics. */
|
|
for (reg = &sb.rx_frames, i = 0; reg <= &sb.rx_pkts_filtered; reg++) {
|
|
*reg = CSR_READ_4(sc, ALE_RX_MIB_BASE + i);
|
|
i += sizeof(uint32_t);
|
|
}
|
|
/* Read Tx statistics. */
|
|
for (reg = &sb.tx_frames, i = 0; reg <= &sb.tx_mcast_bytes; reg++) {
|
|
*reg = CSR_READ_4(sc, ALE_TX_MIB_BASE + i);
|
|
i += sizeof(uint32_t);
|
|
}
|
|
|
|
/* Rx stats. */
|
|
stat->rx_frames += smb->rx_frames;
|
|
stat->rx_bcast_frames += smb->rx_bcast_frames;
|
|
stat->rx_mcast_frames += smb->rx_mcast_frames;
|
|
stat->rx_pause_frames += smb->rx_pause_frames;
|
|
stat->rx_control_frames += smb->rx_control_frames;
|
|
stat->rx_crcerrs += smb->rx_crcerrs;
|
|
stat->rx_lenerrs += smb->rx_lenerrs;
|
|
stat->rx_bytes += smb->rx_bytes;
|
|
stat->rx_runts += smb->rx_runts;
|
|
stat->rx_fragments += smb->rx_fragments;
|
|
stat->rx_pkts_64 += smb->rx_pkts_64;
|
|
stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
|
|
stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
|
|
stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
|
|
stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
|
|
stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
|
|
stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
|
|
stat->rx_pkts_truncated += smb->rx_pkts_truncated;
|
|
stat->rx_fifo_oflows += smb->rx_fifo_oflows;
|
|
stat->rx_rrs_errs += smb->rx_rrs_errs;
|
|
stat->rx_alignerrs += smb->rx_alignerrs;
|
|
stat->rx_bcast_bytes += smb->rx_bcast_bytes;
|
|
stat->rx_mcast_bytes += smb->rx_mcast_bytes;
|
|
stat->rx_pkts_filtered += smb->rx_pkts_filtered;
|
|
|
|
/* Tx stats. */
|
|
stat->tx_frames += smb->tx_frames;
|
|
stat->tx_bcast_frames += smb->tx_bcast_frames;
|
|
stat->tx_mcast_frames += smb->tx_mcast_frames;
|
|
stat->tx_pause_frames += smb->tx_pause_frames;
|
|
stat->tx_excess_defer += smb->tx_excess_defer;
|
|
stat->tx_control_frames += smb->tx_control_frames;
|
|
stat->tx_deferred += smb->tx_deferred;
|
|
stat->tx_bytes += smb->tx_bytes;
|
|
stat->tx_pkts_64 += smb->tx_pkts_64;
|
|
stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
|
|
stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
|
|
stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
|
|
stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
|
|
stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
|
|
stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
|
|
stat->tx_single_colls += smb->tx_single_colls;
|
|
stat->tx_multi_colls += smb->tx_multi_colls;
|
|
stat->tx_late_colls += smb->tx_late_colls;
|
|
stat->tx_excess_colls += smb->tx_excess_colls;
|
|
stat->tx_abort += smb->tx_abort;
|
|
stat->tx_underrun += smb->tx_underrun;
|
|
stat->tx_desc_underrun += smb->tx_desc_underrun;
|
|
stat->tx_lenerrs += smb->tx_lenerrs;
|
|
stat->tx_pkts_truncated += smb->tx_pkts_truncated;
|
|
stat->tx_bcast_bytes += smb->tx_bcast_bytes;
|
|
stat->tx_mcast_bytes += smb->tx_mcast_bytes;
|
|
|
|
/* Update counters in ifnet. */
|
|
ifp->if_opackets += smb->tx_frames;
|
|
|
|
ifp->if_collisions += smb->tx_single_colls +
|
|
smb->tx_multi_colls * 2 + smb->tx_late_colls +
|
|
smb->tx_abort * HDPX_CFG_RETRY_DEFAULT;
|
|
|
|
/*
|
|
* XXX
|
|
* tx_pkts_truncated counter looks suspicious. It constantly
|
|
* increments with no sign of Tx errors. This may indicate
|
|
* the counter name is not correct one so I've removed the
|
|
* counter in output errors.
|
|
*/
|
|
ifp->if_oerrors += smb->tx_abort + smb->tx_late_colls +
|
|
smb->tx_underrun;
|
|
|
|
ifp->if_ipackets += smb->rx_frames;
|
|
|
|
ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
|
|
smb->rx_runts + smb->rx_pkts_truncated +
|
|
smb->rx_fifo_oflows + smb->rx_rrs_errs +
|
|
smb->rx_alignerrs;
|
|
}
|
|
|
|
static int
|
|
ale_intr(void *xsc)
|
|
{
|
|
struct ale_softc *sc = xsc;
|
|
struct ifnet *ifp = &sc->sc_ec.ec_if;
|
|
uint32_t status;
|
|
|
|
status = CSR_READ_4(sc, ALE_INTR_STATUS);
|
|
if ((status & ALE_INTRS) == 0)
|
|
return 0;
|
|
|
|
/* Acknowledge and disable interrupts. */
|
|
CSR_WRITE_4(sc, ALE_INTR_STATUS, status | INTR_DIS_INT);
|
|
|
|
if (ifp->if_flags & IFF_RUNNING) {
|
|
int error;
|
|
|
|
error = ale_rxeof(sc);
|
|
if (error) {
|
|
sc->ale_stats.reset_brk_seq++;
|
|
ale_init(ifp);
|
|
return 0;
|
|
}
|
|
|
|
if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
|
|
if (status & INTR_DMA_RD_TO_RST)
|
|
printf("%s: DMA read error! -- resetting\n",
|
|
device_xname(sc->sc_dev));
|
|
if (status & INTR_DMA_WR_TO_RST)
|
|
printf("%s: DMA write error! -- resetting\n",
|
|
device_xname(sc->sc_dev));
|
|
ale_init(ifp);
|
|
return 0;
|
|
}
|
|
|
|
ale_txeof(sc);
|
|
if (!IFQ_IS_EMPTY(&ifp->if_snd))
|
|
ale_start(ifp);
|
|
}
|
|
|
|
/* Re-enable interrupts. */
|
|
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0x7FFFFFFF);
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
ale_txeof(struct ale_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ec.ec_if;
|
|
struct ale_txdesc *txd;
|
|
uint32_t cons, prod;
|
|
int prog;
|
|
|
|
if (sc->ale_cdata.ale_tx_cnt == 0)
|
|
return;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
|
|
sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0) {
|
|
bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
|
|
sc->ale_cdata.ale_tx_cmb_map->dm_mapsize,
|
|
BUS_DMASYNC_POSTREAD);
|
|
prod = *sc->ale_cdata.ale_tx_cmb & TPD_CNT_MASK;
|
|
} else
|
|
prod = CSR_READ_2(sc, ALE_TPD_CONS_IDX);
|
|
cons = sc->ale_cdata.ale_tx_cons;
|
|
/*
|
|
* Go through our Tx list and free mbufs for those
|
|
* frames which have been transmitted.
|
|
*/
|
|
for (prog = 0; cons != prod; prog++,
|
|
ALE_DESC_INC(cons, ALE_TX_RING_CNT)) {
|
|
if (sc->ale_cdata.ale_tx_cnt <= 0)
|
|
break;
|
|
prog++;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
sc->ale_cdata.ale_tx_cnt--;
|
|
txd = &sc->ale_cdata.ale_txdesc[cons];
|
|
if (txd->tx_m != NULL) {
|
|
/* Reclaim transmitted mbufs. */
|
|
bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
}
|
|
}
|
|
|
|
if (prog > 0) {
|
|
sc->ale_cdata.ale_tx_cons = cons;
|
|
/*
|
|
* Unarm watchdog timer only when there is no pending
|
|
* Tx descriptors in queue.
|
|
*/
|
|
if (sc->ale_cdata.ale_tx_cnt == 0)
|
|
ifp->if_timer = 0;
|
|
}
|
|
}
|
|
|
|
static void
|
|
ale_rx_update_page(struct ale_softc *sc, struct ale_rx_page **page,
|
|
uint32_t length, uint32_t *prod)
|
|
{
|
|
struct ale_rx_page *rx_page;
|
|
|
|
rx_page = *page;
|
|
/* Update consumer position. */
|
|
rx_page->cons += roundup(length + sizeof(struct rx_rs),
|
|
ALE_RX_PAGE_ALIGN);
|
|
if (rx_page->cons >= ALE_RX_PAGE_SZ) {
|
|
/*
|
|
* End of Rx page reached, let hardware reuse
|
|
* this page.
|
|
*/
|
|
rx_page->cons = 0;
|
|
*rx_page->cmb_addr = 0;
|
|
bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
|
|
rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
CSR_WRITE_1(sc, ALE_RXF0_PAGE0 + sc->ale_cdata.ale_rx_curp,
|
|
RXF_VALID);
|
|
/* Switch to alternate Rx page. */
|
|
sc->ale_cdata.ale_rx_curp ^= 1;
|
|
rx_page = *page =
|
|
&sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
|
|
/* Page flipped, sync CMB and Rx page. */
|
|
bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
|
|
rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
|
|
rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
/* Sync completed, cache updated producer index. */
|
|
*prod = *rx_page->cmb_addr;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* It seems that AR81xx controller can compute partial checksum.
|
|
* The partial checksum value can be used to accelerate checksum
|
|
* computation for fragmented TCP/UDP packets. Upper network stack
|
|
* already takes advantage of the partial checksum value in IP
|
|
* reassembly stage. But I'm not sure the correctness of the
|
|
* partial hardware checksum assistance due to lack of data sheet.
|
|
* In addition, the Rx feature of controller that requires copying
|
|
* for every frames effectively nullifies one of most nice offload
|
|
* capability of controller.
|
|
*/
|
|
static void
|
|
ale_rxcsum(struct ale_softc *sc, struct mbuf *m, uint32_t status)
|
|
{
|
|
if (status & ALE_RD_IPCSUM_NOK)
|
|
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
|
|
|
|
if ((sc->ale_flags & ALE_FLAG_RXCSUM_BUG) == 0) {
|
|
if (((status & ALE_RD_IPV4_FRAG) == 0) &&
|
|
((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) &&
|
|
(status & ALE_RD_TCP_UDPCSUM_NOK))
|
|
{
|
|
m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
|
|
}
|
|
} else {
|
|
if ((status & (ALE_RD_TCP | ALE_RD_UDP)) != 0) {
|
|
if (status & ALE_RD_TCP_UDPCSUM_NOK) {
|
|
m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
|
|
}
|
|
}
|
|
}
|
|
/*
|
|
* Don't mark bad checksum for TCP/UDP frames
|
|
* as fragmented frames may always have set
|
|
* bad checksummed bit of frame status.
|
|
*/
|
|
}
|
|
|
|
/* Process received frames. */
|
|
static int
|
|
ale_rxeof(struct ale_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ec.ec_if;
|
|
struct ale_rx_page *rx_page;
|
|
struct rx_rs *rs;
|
|
struct mbuf *m;
|
|
uint32_t length, prod, seqno, status;
|
|
int prog;
|
|
|
|
rx_page = &sc->ale_cdata.ale_rx_page[sc->ale_cdata.ale_rx_curp];
|
|
bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
|
|
rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
|
|
rx_page->page_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
/*
|
|
* Don't directly access producer index as hardware may
|
|
* update it while Rx handler is in progress. It would
|
|
* be even better if there is a way to let hardware
|
|
* know how far driver processed its received frames.
|
|
* Alternatively, hardware could provide a way to disable
|
|
* CMB updates until driver acknowledges the end of CMB
|
|
* access.
|
|
*/
|
|
prod = *rx_page->cmb_addr;
|
|
for (prog = 0; ; prog++) {
|
|
if (rx_page->cons >= prod)
|
|
break;
|
|
rs = (struct rx_rs *)(rx_page->page_addr + rx_page->cons);
|
|
seqno = ALE_RX_SEQNO(le32toh(rs->seqno));
|
|
if (sc->ale_cdata.ale_rx_seqno != seqno) {
|
|
/*
|
|
* Normally I believe this should not happen unless
|
|
* severe driver bug or corrupted memory. However
|
|
* it seems to happen under certain conditions which
|
|
* is triggered by abrupt Rx events such as initiation
|
|
* of bulk transfer of remote host. It's not easy to
|
|
* reproduce this and I doubt it could be related
|
|
* with FIFO overflow of hardware or activity of Tx
|
|
* CMB updates. I also remember similar behaviour
|
|
* seen on RealTek 8139 which uses resembling Rx
|
|
* scheme.
|
|
*/
|
|
if (aledebug)
|
|
printf("%s: garbled seq: %u, expected: %u -- "
|
|
"resetting!\n", device_xname(sc->sc_dev),
|
|
seqno, sc->ale_cdata.ale_rx_seqno);
|
|
return EIO;
|
|
}
|
|
/* Frame received. */
|
|
sc->ale_cdata.ale_rx_seqno++;
|
|
length = ALE_RX_BYTES(le32toh(rs->length));
|
|
status = le32toh(rs->flags);
|
|
if (status & ALE_RD_ERROR) {
|
|
/*
|
|
* We want to pass the following frames to upper
|
|
* layer regardless of error status of Rx return
|
|
* status.
|
|
*
|
|
* o IP/TCP/UDP checksum is bad.
|
|
* o frame length and protocol specific length
|
|
* does not match.
|
|
*/
|
|
if (status & (ALE_RD_CRC | ALE_RD_CODE |
|
|
ALE_RD_DRIBBLE | ALE_RD_RUNT | ALE_RD_OFLOW |
|
|
ALE_RD_TRUNC)) {
|
|
ale_rx_update_page(sc, &rx_page, length, &prod);
|
|
continue;
|
|
}
|
|
}
|
|
/*
|
|
* m_devget(9) is major bottle-neck of ale(4)(It comes
|
|
* from hardware limitation). For jumbo frames we could
|
|
* get a slightly better performance if driver use
|
|
* m_getjcl(9) with proper buffer size argument. However
|
|
* that would make code more complicated and I don't
|
|
* think users would expect good Rx performance numbers
|
|
* on these low-end consumer ethernet controller.
|
|
*/
|
|
m = m_devget((char *)(rs + 1), length - ETHER_CRC_LEN,
|
|
0, ifp, NULL);
|
|
if (m == NULL) {
|
|
ifp->if_iqdrops++;
|
|
ale_rx_update_page(sc, &rx_page, length, &prod);
|
|
continue;
|
|
}
|
|
if (status & ALE_RD_IPV4)
|
|
ale_rxcsum(sc, m, status);
|
|
#if NVLAN > 0
|
|
if (status & ALE_RD_VLAN) {
|
|
uint32_t vtags = ALE_RX_VLAN(le32toh(rs->vtags));
|
|
VLAN_INPUT_TAG(ifp, m, ALE_RX_VLAN_TAG(vtags), );
|
|
}
|
|
#endif
|
|
|
|
|
|
bpf_mtap(ifp, m);
|
|
|
|
/* Pass it to upper layer. */
|
|
ether_input(ifp, m);
|
|
|
|
ale_rx_update_page(sc, &rx_page, length, &prod);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ale_tick(void *xsc)
|
|
{
|
|
struct ale_softc *sc = xsc;
|
|
struct mii_data *mii = &sc->sc_miibus;
|
|
int s;
|
|
|
|
s = splnet();
|
|
mii_tick(mii);
|
|
ale_stats_update(sc);
|
|
splx(s);
|
|
|
|
callout_schedule(&sc->sc_tick_ch, hz);
|
|
}
|
|
|
|
static void
|
|
ale_reset(struct ale_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
int i;
|
|
|
|
/* Initialize PCIe module. From Linux. */
|
|
CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
|
|
|
|
CSR_WRITE_4(sc, ALE_MASTER_CFG, MASTER_RESET);
|
|
for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
|
|
DELAY(10);
|
|
if ((CSR_READ_4(sc, ALE_MASTER_CFG) & MASTER_RESET) == 0)
|
|
break;
|
|
}
|
|
if (i == 0)
|
|
printf("%s: master reset timeout!\n", device_xname(sc->sc_dev));
|
|
|
|
for (i = ALE_RESET_TIMEOUT; i > 0; i--) {
|
|
if ((reg = CSR_READ_4(sc, ALE_IDLE_STATUS)) == 0)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
|
|
if (i == 0)
|
|
printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
|
|
reg);
|
|
}
|
|
|
|
static int
|
|
ale_init(struct ifnet *ifp)
|
|
{
|
|
struct ale_softc *sc = ifp->if_softc;
|
|
struct mii_data *mii;
|
|
uint8_t eaddr[ETHER_ADDR_LEN];
|
|
bus_addr_t paddr;
|
|
uint32_t reg, rxf_hi, rxf_lo;
|
|
|
|
/*
|
|
* Cancel any pending I/O.
|
|
*/
|
|
ale_stop(ifp, 0);
|
|
|
|
/*
|
|
* Reset the chip to a known state.
|
|
*/
|
|
ale_reset(sc);
|
|
|
|
/* Initialize Tx descriptors, DMA memory blocks. */
|
|
ale_init_rx_pages(sc);
|
|
ale_init_tx_ring(sc);
|
|
|
|
/* Reprogram the station address. */
|
|
memcpy(eaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
|
|
CSR_WRITE_4(sc, ALE_PAR0,
|
|
eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
|
|
CSR_WRITE_4(sc, ALE_PAR1, eaddr[0] << 8 | eaddr[1]);
|
|
|
|
/*
|
|
* Clear WOL status and disable all WOL feature as WOL
|
|
* would interfere Rx operation under normal environments.
|
|
*/
|
|
CSR_READ_4(sc, ALE_WOL_CFG);
|
|
CSR_WRITE_4(sc, ALE_WOL_CFG, 0);
|
|
|
|
/*
|
|
* Set Tx descriptor/RXF0/CMB base addresses. They share
|
|
* the same high address part of DMAable region.
|
|
*/
|
|
paddr = sc->ale_cdata.ale_tx_ring_paddr;
|
|
CSR_WRITE_4(sc, ALE_TPD_ADDR_HI, ALE_ADDR_HI(paddr));
|
|
CSR_WRITE_4(sc, ALE_TPD_ADDR_LO, ALE_ADDR_LO(paddr));
|
|
CSR_WRITE_4(sc, ALE_TPD_CNT,
|
|
(ALE_TX_RING_CNT << TPD_CNT_SHIFT) & TPD_CNT_MASK);
|
|
|
|
/* Set Rx page base address, note we use single queue. */
|
|
paddr = sc->ale_cdata.ale_rx_page[0].page_paddr;
|
|
CSR_WRITE_4(sc, ALE_RXF0_PAGE0_ADDR_LO, ALE_ADDR_LO(paddr));
|
|
paddr = sc->ale_cdata.ale_rx_page[1].page_paddr;
|
|
CSR_WRITE_4(sc, ALE_RXF0_PAGE1_ADDR_LO, ALE_ADDR_LO(paddr));
|
|
|
|
/* Set Tx/Rx CMB addresses. */
|
|
paddr = sc->ale_cdata.ale_tx_cmb_paddr;
|
|
CSR_WRITE_4(sc, ALE_TX_CMB_ADDR_LO, ALE_ADDR_LO(paddr));
|
|
paddr = sc->ale_cdata.ale_rx_page[0].cmb_paddr;
|
|
CSR_WRITE_4(sc, ALE_RXF0_CMB0_ADDR_LO, ALE_ADDR_LO(paddr));
|
|
paddr = sc->ale_cdata.ale_rx_page[1].cmb_paddr;
|
|
CSR_WRITE_4(sc, ALE_RXF0_CMB1_ADDR_LO, ALE_ADDR_LO(paddr));
|
|
|
|
/* Mark RXF0 is valid. */
|
|
CSR_WRITE_1(sc, ALE_RXF0_PAGE0, RXF_VALID);
|
|
CSR_WRITE_1(sc, ALE_RXF0_PAGE1, RXF_VALID);
|
|
/*
|
|
* No need to initialize RFX1/RXF2/RXF3. We don't use
|
|
* multi-queue yet.
|
|
*/
|
|
|
|
/* Set Rx page size, excluding guard frame size. */
|
|
CSR_WRITE_4(sc, ALE_RXF_PAGE_SIZE, ALE_RX_PAGE_SZ);
|
|
|
|
/* Tell hardware that we're ready to load DMA blocks. */
|
|
CSR_WRITE_4(sc, ALE_DMA_BLOCK, DMA_BLOCK_LOAD);
|
|
|
|
/* Set Rx/Tx interrupt trigger threshold. */
|
|
CSR_WRITE_4(sc, ALE_INT_TRIG_THRESH, (1 << INT_TRIG_RX_THRESH_SHIFT) |
|
|
(4 << INT_TRIG_TX_THRESH_SHIFT));
|
|
/*
|
|
* XXX
|
|
* Set interrupt trigger timer, its purpose and relation
|
|
* with interrupt moderation mechanism is not clear yet.
|
|
*/
|
|
CSR_WRITE_4(sc, ALE_INT_TRIG_TIMER,
|
|
((ALE_USECS(10) << INT_TRIG_RX_TIMER_SHIFT) |
|
|
(ALE_USECS(1000) << INT_TRIG_TX_TIMER_SHIFT)));
|
|
|
|
/* Configure interrupt moderation timer. */
|
|
sc->ale_int_rx_mod = ALE_IM_RX_TIMER_DEFAULT;
|
|
sc->ale_int_tx_mod = ALE_IM_TX_TIMER_DEFAULT;
|
|
reg = ALE_USECS(sc->ale_int_rx_mod) << IM_TIMER_RX_SHIFT;
|
|
reg |= ALE_USECS(sc->ale_int_tx_mod) << IM_TIMER_TX_SHIFT;
|
|
CSR_WRITE_4(sc, ALE_IM_TIMER, reg);
|
|
reg = CSR_READ_4(sc, ALE_MASTER_CFG);
|
|
reg &= ~(MASTER_CHIP_REV_MASK | MASTER_CHIP_ID_MASK);
|
|
reg &= ~(MASTER_IM_RX_TIMER_ENB | MASTER_IM_TX_TIMER_ENB);
|
|
if (ALE_USECS(sc->ale_int_rx_mod) != 0)
|
|
reg |= MASTER_IM_RX_TIMER_ENB;
|
|
if (ALE_USECS(sc->ale_int_tx_mod) != 0)
|
|
reg |= MASTER_IM_TX_TIMER_ENB;
|
|
CSR_WRITE_4(sc, ALE_MASTER_CFG, reg);
|
|
CSR_WRITE_2(sc, ALE_INTR_CLR_TIMER, ALE_USECS(1000));
|
|
|
|
/* Set Maximum frame size of controller. */
|
|
if (ifp->if_mtu < ETHERMTU)
|
|
sc->ale_max_frame_size = ETHERMTU;
|
|
else
|
|
sc->ale_max_frame_size = ifp->if_mtu;
|
|
sc->ale_max_frame_size += ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + ETHER_CRC_LEN;
|
|
CSR_WRITE_4(sc, ALE_FRAME_SIZE, sc->ale_max_frame_size);
|
|
|
|
/* Configure IPG/IFG parameters. */
|
|
CSR_WRITE_4(sc, ALE_IPG_IFG_CFG,
|
|
((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK) |
|
|
((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
|
|
((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
|
|
((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK));
|
|
|
|
/* Set parameters for half-duplex media. */
|
|
CSR_WRITE_4(sc, ALE_HDPX_CFG,
|
|
((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
|
|
HDPX_CFG_LCOL_MASK) |
|
|
((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
|
|
HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
|
|
((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
|
|
HDPX_CFG_ABEBT_MASK) |
|
|
((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
|
|
HDPX_CFG_JAMIPG_MASK));
|
|
|
|
/* Configure Tx jumbo frame parameters. */
|
|
if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
|
|
if (ifp->if_mtu < ETHERMTU)
|
|
reg = sc->ale_max_frame_size;
|
|
else if (ifp->if_mtu < 6 * 1024)
|
|
reg = (sc->ale_max_frame_size * 2) / 3;
|
|
else
|
|
reg = sc->ale_max_frame_size / 2;
|
|
CSR_WRITE_4(sc, ALE_TX_JUMBO_THRESH,
|
|
roundup(reg, TX_JUMBO_THRESH_UNIT) >>
|
|
TX_JUMBO_THRESH_UNIT_SHIFT);
|
|
}
|
|
|
|
/* Configure TxQ. */
|
|
reg = (128 << (sc->ale_dma_rd_burst >> DMA_CFG_RD_BURST_SHIFT))
|
|
<< TXQ_CFG_TX_FIFO_BURST_SHIFT;
|
|
reg |= (TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
|
|
TXQ_CFG_TPD_BURST_MASK;
|
|
CSR_WRITE_4(sc, ALE_TXQ_CFG, reg | TXQ_CFG_ENHANCED_MODE | TXQ_CFG_ENB);
|
|
|
|
/* Configure Rx jumbo frame & flow control parameters. */
|
|
if ((sc->ale_flags & ALE_FLAG_JUMBO) != 0) {
|
|
reg = roundup(sc->ale_max_frame_size, RX_JUMBO_THRESH_UNIT);
|
|
CSR_WRITE_4(sc, ALE_RX_JUMBO_THRESH,
|
|
(((reg >> RX_JUMBO_THRESH_UNIT_SHIFT) <<
|
|
RX_JUMBO_THRESH_MASK_SHIFT) & RX_JUMBO_THRESH_MASK) |
|
|
((RX_JUMBO_LKAH_DEFAULT << RX_JUMBO_LKAH_SHIFT) &
|
|
RX_JUMBO_LKAH_MASK));
|
|
reg = CSR_READ_4(sc, ALE_SRAM_RX_FIFO_LEN);
|
|
rxf_hi = (reg * 7) / 10;
|
|
rxf_lo = (reg * 3)/ 10;
|
|
CSR_WRITE_4(sc, ALE_RX_FIFO_PAUSE_THRESH,
|
|
((rxf_lo << RX_FIFO_PAUSE_THRESH_LO_SHIFT) &
|
|
RX_FIFO_PAUSE_THRESH_LO_MASK) |
|
|
((rxf_hi << RX_FIFO_PAUSE_THRESH_HI_SHIFT) &
|
|
RX_FIFO_PAUSE_THRESH_HI_MASK));
|
|
}
|
|
|
|
/* Disable RSS. */
|
|
CSR_WRITE_4(sc, ALE_RSS_IDT_TABLE0, 0);
|
|
CSR_WRITE_4(sc, ALE_RSS_CPU, 0);
|
|
|
|
/* Configure RxQ. */
|
|
CSR_WRITE_4(sc, ALE_RXQ_CFG,
|
|
RXQ_CFG_ALIGN_32 | RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
|
|
|
|
/* Configure DMA parameters. */
|
|
reg = 0;
|
|
if ((sc->ale_flags & ALE_FLAG_TXCMB_BUG) == 0)
|
|
reg |= DMA_CFG_TXCMB_ENB;
|
|
CSR_WRITE_4(sc, ALE_DMA_CFG,
|
|
DMA_CFG_OUT_ORDER | DMA_CFG_RD_REQ_PRI | DMA_CFG_RCB_64 |
|
|
sc->ale_dma_rd_burst | reg |
|
|
sc->ale_dma_wr_burst | DMA_CFG_RXCMB_ENB |
|
|
((DMA_CFG_RD_DELAY_CNT_DEFAULT << DMA_CFG_RD_DELAY_CNT_SHIFT) &
|
|
DMA_CFG_RD_DELAY_CNT_MASK) |
|
|
((DMA_CFG_WR_DELAY_CNT_DEFAULT << DMA_CFG_WR_DELAY_CNT_SHIFT) &
|
|
DMA_CFG_WR_DELAY_CNT_MASK));
|
|
|
|
/*
|
|
* Hardware can be configured to issue SMB interrupt based
|
|
* on programmed interval. Since there is a callout that is
|
|
* invoked for every hz in driver we use that instead of
|
|
* relying on periodic SMB interrupt.
|
|
*/
|
|
CSR_WRITE_4(sc, ALE_SMB_STAT_TIMER, ALE_USECS(0));
|
|
|
|
/* Clear MAC statistics. */
|
|
ale_stats_clear(sc);
|
|
|
|
/*
|
|
* Configure Tx/Rx MACs.
|
|
* - Auto-padding for short frames.
|
|
* - Enable CRC generation.
|
|
* Actual reconfiguration of MAC for resolved speed/duplex
|
|
* is followed after detection of link establishment.
|
|
* AR81xx always does checksum computation regardless of
|
|
* MAC_CFG_RXCSUM_ENB bit. In fact, setting the bit will
|
|
* cause Rx handling issue for fragmented IP datagrams due
|
|
* to silicon bug.
|
|
*/
|
|
reg = MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD | MAC_CFG_FULL_DUPLEX |
|
|
((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
|
|
MAC_CFG_PREAMBLE_MASK);
|
|
if ((sc->ale_flags & ALE_FLAG_FASTETHER) != 0)
|
|
reg |= MAC_CFG_SPEED_10_100;
|
|
else
|
|
reg |= MAC_CFG_SPEED_1000;
|
|
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
|
|
|
|
/* Set up the receive filter. */
|
|
ale_rxfilter(sc);
|
|
ale_rxvlan(sc);
|
|
|
|
/* Acknowledge all pending interrupts and clear it. */
|
|
CSR_WRITE_4(sc, ALE_INTR_MASK, ALE_INTRS);
|
|
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
|
|
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0);
|
|
|
|
sc->ale_flags &= ~ALE_FLAG_LINK;
|
|
|
|
/* Switch to the current media. */
|
|
mii = &sc->sc_miibus;
|
|
mii_mediachg(mii);
|
|
|
|
callout_schedule(&sc->sc_tick_ch, hz);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
ale_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct ale_softc *sc = ifp->if_softc;
|
|
struct ale_txdesc *txd;
|
|
uint32_t reg;
|
|
int i;
|
|
|
|
callout_stop(&sc->sc_tick_ch);
|
|
|
|
/*
|
|
* Mark the interface down and cancel the watchdog timer.
|
|
*/
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
|
|
sc->ale_flags &= ~ALE_FLAG_LINK;
|
|
|
|
ale_stats_update(sc);
|
|
|
|
mii_down(&sc->sc_miibus);
|
|
|
|
/* Disable interrupts. */
|
|
CSR_WRITE_4(sc, ALE_INTR_MASK, 0);
|
|
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
|
|
|
|
/* Disable queue processing and DMA. */
|
|
reg = CSR_READ_4(sc, ALE_TXQ_CFG);
|
|
reg &= ~TXQ_CFG_ENB;
|
|
CSR_WRITE_4(sc, ALE_TXQ_CFG, reg);
|
|
reg = CSR_READ_4(sc, ALE_RXQ_CFG);
|
|
reg &= ~RXQ_CFG_ENB;
|
|
CSR_WRITE_4(sc, ALE_RXQ_CFG, reg);
|
|
reg = CSR_READ_4(sc, ALE_DMA_CFG);
|
|
reg &= ~(DMA_CFG_TXCMB_ENB | DMA_CFG_RXCMB_ENB);
|
|
CSR_WRITE_4(sc, ALE_DMA_CFG, reg);
|
|
DELAY(1000);
|
|
|
|
/* Stop Rx/Tx MACs. */
|
|
ale_stop_mac(sc);
|
|
|
|
/* Disable interrupts again? XXX */
|
|
CSR_WRITE_4(sc, ALE_INTR_STATUS, 0xFFFFFFFF);
|
|
|
|
/*
|
|
* Free TX mbufs still in the queues.
|
|
*/
|
|
for (i = 0; i < ALE_TX_RING_CNT; i++) {
|
|
txd = &sc->ale_cdata.ale_txdesc[i];
|
|
if (txd->tx_m != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
|
|
m_freem(txd->tx_m);
|
|
txd->tx_m = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
ale_stop_mac(struct ale_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
int i;
|
|
|
|
reg = CSR_READ_4(sc, ALE_MAC_CFG);
|
|
if ((reg & (MAC_CFG_TX_ENB | MAC_CFG_RX_ENB)) != 0) {
|
|
reg &= ~(MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
|
|
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
|
|
}
|
|
|
|
for (i = ALE_TIMEOUT; i > 0; i--) {
|
|
reg = CSR_READ_4(sc, ALE_IDLE_STATUS);
|
|
if (reg == 0)
|
|
break;
|
|
DELAY(10);
|
|
}
|
|
if (i == 0)
|
|
printf("%s: could not disable Tx/Rx MAC(0x%08x)!\n",
|
|
device_xname(sc->sc_dev), reg);
|
|
}
|
|
|
|
static void
|
|
ale_init_tx_ring(struct ale_softc *sc)
|
|
{
|
|
struct ale_txdesc *txd;
|
|
int i;
|
|
|
|
sc->ale_cdata.ale_tx_prod = 0;
|
|
sc->ale_cdata.ale_tx_cons = 0;
|
|
sc->ale_cdata.ale_tx_cnt = 0;
|
|
|
|
memset(sc->ale_cdata.ale_tx_ring, 0, ALE_TX_RING_SZ);
|
|
memset(sc->ale_cdata.ale_tx_cmb, 0, ALE_TX_CMB_SZ);
|
|
for (i = 0; i < ALE_TX_RING_CNT; i++) {
|
|
txd = &sc->ale_cdata.ale_txdesc[i];
|
|
txd->tx_m = NULL;
|
|
}
|
|
*sc->ale_cdata.ale_tx_cmb = 0;
|
|
bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_cmb_map, 0,
|
|
sc->ale_cdata.ale_tx_cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sc_dmat, sc->ale_cdata.ale_tx_ring_map, 0,
|
|
sc->ale_cdata.ale_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
}
|
|
|
|
static void
|
|
ale_init_rx_pages(struct ale_softc *sc)
|
|
{
|
|
struct ale_rx_page *rx_page;
|
|
int i;
|
|
|
|
sc->ale_cdata.ale_rx_seqno = 0;
|
|
sc->ale_cdata.ale_rx_curp = 0;
|
|
|
|
for (i = 0; i < ALE_RX_PAGES; i++) {
|
|
rx_page = &sc->ale_cdata.ale_rx_page[i];
|
|
memset(rx_page->page_addr, 0, sc->ale_pagesize);
|
|
memset(rx_page->cmb_addr, 0, ALE_RX_CMB_SZ);
|
|
rx_page->cons = 0;
|
|
*rx_page->cmb_addr = 0;
|
|
bus_dmamap_sync(sc->sc_dmat, rx_page->page_map, 0,
|
|
rx_page->page_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sc_dmat, rx_page->cmb_map, 0,
|
|
rx_page->cmb_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
}
|
|
}
|
|
|
|
static void
|
|
ale_rxvlan(struct ale_softc *sc)
|
|
{
|
|
uint32_t reg;
|
|
|
|
reg = CSR_READ_4(sc, ALE_MAC_CFG);
|
|
reg &= ~MAC_CFG_VLAN_TAG_STRIP;
|
|
if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
|
|
reg |= MAC_CFG_VLAN_TAG_STRIP;
|
|
CSR_WRITE_4(sc, ALE_MAC_CFG, reg);
|
|
}
|
|
|
|
static void
|
|
ale_rxfilter(struct ale_softc *sc)
|
|
{
|
|
struct ethercom *ec = &sc->sc_ec;
|
|
struct ifnet *ifp = &ec->ec_if;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
uint32_t crc;
|
|
uint32_t mchash[2];
|
|
uint32_t rxcfg;
|
|
|
|
rxcfg = CSR_READ_4(sc, ALE_MAC_CFG);
|
|
rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
|
|
/*
|
|
* Always accept broadcast frames.
|
|
*/
|
|
rxcfg |= MAC_CFG_BCAST;
|
|
|
|
if (ifp->if_flags & IFF_PROMISC || ec->ec_multicnt > 0) {
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
if (ifp->if_flags & IFF_PROMISC)
|
|
rxcfg |= MAC_CFG_PROMISC;
|
|
else
|
|
rxcfg |= MAC_CFG_ALLMULTI;
|
|
mchash[0] = mchash[1] = 0xFFFFFFFF;
|
|
} else {
|
|
/* Program new filter. */
|
|
memset(mchash, 0, sizeof(mchash));
|
|
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
while (enm != NULL) {
|
|
crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
|
|
mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
}
|
|
|
|
CSR_WRITE_4(sc, ALE_MAR0, mchash[0]);
|
|
CSR_WRITE_4(sc, ALE_MAR1, mchash[1]);
|
|
CSR_WRITE_4(sc, ALE_MAC_CFG, rxcfg);
|
|
}
|