NetBSD/sys/dev/ic/gem.c

2802 lines
76 KiB
C

/* $NetBSD: gem.c,v 1.128 2020/02/07 00:56:48 thorpej Exp $ */
/*
*
* Copyright (C) 2001 Eduardo Horvath.
* Copyright (c) 2001-2003 Thomas Moestl
* All rights reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
/*
* Driver for Apple GMAC, Sun ERI and Sun GEM Ethernet controllers
* See `GEM Gigabit Ethernet ASIC Specification'
* http://www.sun.com/processors/manuals/ge.pdf
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: gem.c,v 1.128 2020/02/07 00:56:48 thorpej Exp $");
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/syslog.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <machine/endian.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#endif
#include <net/bpf.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/ic/gemreg.h>
#include <dev/ic/gemvar.h>
#define TRIES 10000
static void gem_inten(struct gem_softc *);
static void gem_start(struct ifnet *);
static void gem_stop(struct ifnet *, int);
int gem_ioctl(struct ifnet *, u_long, void *);
void gem_tick(void *);
void gem_watchdog(struct ifnet *);
void gem_rx_watchdog(void *);
void gem_pcs_start(struct gem_softc *sc);
void gem_pcs_stop(struct gem_softc *sc, int);
int gem_init(struct ifnet *);
void gem_init_regs(struct gem_softc *sc);
static int gem_ringsize(int sz);
static int gem_meminit(struct gem_softc *);
void gem_mifinit(struct gem_softc *);
static int gem_bitwait(struct gem_softc *sc, bus_space_handle_t, int,
uint32_t, uint32_t);
void gem_reset(struct gem_softc *);
int gem_reset_rx(struct gem_softc *sc);
static void gem_reset_rxdma(struct gem_softc *sc);
static void gem_rx_common(struct gem_softc *sc);
int gem_reset_tx(struct gem_softc *sc);
int gem_disable_rx(struct gem_softc *sc);
int gem_disable_tx(struct gem_softc *sc);
static void gem_rxdrain(struct gem_softc *sc);
int gem_add_rxbuf(struct gem_softc *sc, int idx);
void gem_setladrf(struct gem_softc *);
/* MII methods & callbacks */
static int gem_mii_readreg(device_t, int, int, uint16_t *);
static int gem_mii_writereg(device_t, int, int, uint16_t);
static void gem_mii_statchg(struct ifnet *);
static int gem_ifflags_cb(struct ethercom *);
void gem_statuschange(struct gem_softc *);
int gem_ser_mediachange(struct ifnet *);
void gem_ser_mediastatus(struct ifnet *, struct ifmediareq *);
static void gem_partial_detach(struct gem_softc *, enum gem_attach_stage);
struct mbuf *gem_get(struct gem_softc *, int, int);
int gem_put(struct gem_softc *, int, struct mbuf *);
void gem_read(struct gem_softc *, int, int);
int gem_pint(struct gem_softc *);
int gem_eint(struct gem_softc *, u_int);
int gem_rint(struct gem_softc *);
int gem_tint(struct gem_softc *);
void gem_power(int, void *);
#ifdef GEM_DEBUG
static void gem_txsoft_print(const struct gem_softc *, int, int);
#define DPRINTF(sc, x) if ((sc)->sc_ethercom.ec_if.if_flags & IFF_DEBUG) \
printf x
#else
#define DPRINTF(sc, x) /* nothing */
#endif
#define ETHER_MIN_TX (ETHERMIN + sizeof(struct ether_header))
int
gem_detach(struct gem_softc *sc, int flags)
{
int i;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1;
/*
* Free any resources we've allocated during the attach.
* Do this in reverse order and fall through.
*/
switch (sc->sc_att_stage) {
case GEM_ATT_BACKEND_2:
case GEM_ATT_BACKEND_1:
case GEM_ATT_FINISHED:
bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
gem_stop(&sc->sc_ethercom.ec_if, 1);
#ifdef GEM_COUNTERS
for (i = __arraycount(sc->sc_ev_rxhist); --i >= 0; )
evcnt_detach(&sc->sc_ev_rxhist[i]);
evcnt_detach(&sc->sc_ev_rxnobuf);
evcnt_detach(&sc->sc_ev_rxfull);
evcnt_detach(&sc->sc_ev_rxint);
evcnt_detach(&sc->sc_ev_txint);
#endif
evcnt_detach(&sc->sc_ev_intr);
rnd_detach_source(&sc->rnd_source);
ether_ifdetach(ifp);
if_detach(ifp);
ifmedia_fini(&sc->sc_mii.mii_media);
callout_destroy(&sc->sc_tick_ch);
callout_destroy(&sc->sc_rx_watchdog);
/*FALLTHROUGH*/
case GEM_ATT_MII:
sc->sc_att_stage = GEM_ATT_MII;
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
/*FALLTHROUGH*/
case GEM_ATT_7:
for (i = 0; i < GEM_NRXDESC; i++) {
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmatag,
sc->sc_rxsoft[i].rxs_dmamap);
}
/*FALLTHROUGH*/
case GEM_ATT_6:
for (i = 0; i < GEM_TXQUEUELEN; i++) {
if (sc->sc_txsoft[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmatag,
sc->sc_txsoft[i].txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmatag, sc->sc_cddmamap);
/*FALLTHROUGH*/
case GEM_ATT_5:
bus_dmamap_unload(sc->sc_dmatag, sc->sc_nulldmamap);
/*FALLTHROUGH*/
case GEM_ATT_4:
bus_dmamap_destroy(sc->sc_dmatag, sc->sc_nulldmamap);
/*FALLTHROUGH*/
case GEM_ATT_3:
bus_dmamap_destroy(sc->sc_dmatag, sc->sc_cddmamap);
/*FALLTHROUGH*/
case GEM_ATT_2:
bus_dmamem_unmap(sc->sc_dmatag, sc->sc_control_data,
sizeof(struct gem_control_data));
/*FALLTHROUGH*/
case GEM_ATT_1:
bus_dmamem_free(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg);
/*FALLTHROUGH*/
case GEM_ATT_0:
sc->sc_att_stage = GEM_ATT_0;
/*FALLTHROUGH*/
case GEM_ATT_BACKEND_0:
break;
}
return 0;
}
static void
gem_partial_detach(struct gem_softc *sc, enum gem_attach_stage stage)
{
cfattach_t ca = device_cfattach(sc->sc_dev);
sc->sc_att_stage = stage;
(*ca->ca_detach)(sc->sc_dev, 0);
}
/*
* gem_attach:
*
* Attach a Gem interface to the system.
*/
void
gem_attach(struct gem_softc *sc, const uint8_t *enaddr)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mii_data *mii = &sc->sc_mii;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1;
struct ifmedia_entry *ife;
int i, error, phyaddr;
uint32_t v;
char *nullbuf;
/* Make sure the chip is stopped. */
ifp->if_softc = sc;
gem_reset(sc);
/*
* Allocate the control data structures, and create and load the
* DMA map for it. gem_control_data is 9216 bytes, we have space for
* the padding buffer in the bus_dmamem_alloc()'d memory.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmatag,
sizeof(struct gem_control_data) + ETHER_MIN_TX, PAGE_SIZE,
0, &sc->sc_cdseg, 1, &sc->sc_cdnseg, 0)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to allocate control data, error = %d\n",
error);
gem_partial_detach(sc, GEM_ATT_0);
return;
}
/* XXX should map this in with correct endianness */
if ((error = bus_dmamem_map(sc->sc_dmatag, &sc->sc_cdseg, sc->sc_cdnseg,
sizeof(struct gem_control_data), (void **)&sc->sc_control_data,
BUS_DMA_COHERENT)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to map control data, error = %d\n", error);
gem_partial_detach(sc, GEM_ATT_1);
return;
}
nullbuf =
(char *)sc->sc_control_data + sizeof(struct gem_control_data);
if ((error = bus_dmamap_create(sc->sc_dmatag,
sizeof(struct gem_control_data), 1,
sizeof(struct gem_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create control data DMA map, error = %d\n",
error);
gem_partial_detach(sc, GEM_ATT_2);
return;
}
if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct gem_control_data), NULL,
0)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to load control data DMA map, error = %d\n",
error);
gem_partial_detach(sc, GEM_ATT_3);
return;
}
memset(nullbuf, 0, ETHER_MIN_TX);
if ((error = bus_dmamap_create(sc->sc_dmatag,
ETHER_MIN_TX, 1, ETHER_MIN_TX, 0, 0, &sc->sc_nulldmamap)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create padding DMA map, error = %d\n", error);
gem_partial_detach(sc, GEM_ATT_4);
return;
}
if ((error = bus_dmamap_load(sc->sc_dmatag, sc->sc_nulldmamap,
nullbuf, ETHER_MIN_TX, NULL, 0)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to load padding DMA map, error = %d\n", error);
gem_partial_detach(sc, GEM_ATT_5);
return;
}
bus_dmamap_sync(sc->sc_dmatag, sc->sc_nulldmamap, 0, ETHER_MIN_TX,
BUS_DMASYNC_PREWRITE);
/*
* Initialize the transmit job descriptors.
*/
SIMPLEQ_INIT(&sc->sc_txfreeq);
SIMPLEQ_INIT(&sc->sc_txdirtyq);
/*
* Create the transmit buffer DMA maps.
*/
for (i = 0; i < GEM_TXQUEUELEN; i++) {
struct gem_txsoft *txs;
txs = &sc->sc_txsoft[i];
txs->txs_mbuf = NULL;
if ((error = bus_dmamap_create(sc->sc_dmatag,
ETHER_MAX_LEN_JUMBO, GEM_NTXSEGS,
ETHER_MAX_LEN_JUMBO, 0, 0,
&txs->txs_dmamap)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create tx DMA map %d, error = %d\n",
i, error);
gem_partial_detach(sc, GEM_ATT_6);
return;
}
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < GEM_NRXDESC; i++) {
if ((error = bus_dmamap_create(sc->sc_dmatag, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create rx DMA map %d, error = %d\n",
i, error);
gem_partial_detach(sc, GEM_ATT_7);
return;
}
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
/* Initialize ifmedia structures and MII info */
mii->mii_ifp = ifp;
mii->mii_readreg = gem_mii_readreg;
mii->mii_writereg = gem_mii_writereg;
mii->mii_statchg = gem_mii_statchg;
sc->sc_ethercom.ec_mii = mii;
/*
* Initialization based on `GEM Gigabit Ethernet ASIC Specification'
* Section 3.2.1 `Initialization Sequence'.
* However, we can't assume SERDES or Serialink if neither
* GEM_MIF_CONFIG_MDI0 nor GEM_MIF_CONFIG_MDI1 are set
* being set, as both are set on Sun X1141A (with SERDES). So,
* we rely on our bus attachment setting GEM_SERDES or GEM_SERIAL.
* Also, for variants that report 2 PHY's, we prefer the external
* PHY over the internal PHY, so we look for that first.
*/
gem_mifinit(sc);
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
ifmedia_init(&mii->mii_media, IFM_IMASK, ether_mediachange,
ether_mediastatus);
/* Look for external PHY */
if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
sc->sc_mif_config |= GEM_MIF_CONFIG_PHY_SEL;
bus_space_write_4(t, h, GEM_MIF_CONFIG,
sc->sc_mif_config);
switch (sc->sc_variant) {
case GEM_SUN_ERI:
phyaddr = GEM_PHYAD_EXTERNAL;
break;
default:
phyaddr = MII_PHY_ANY;
break;
}
mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
MII_OFFSET_ANY, MIIF_FORCEANEG);
}
#ifdef GEM_DEBUG
else
aprint_debug_dev(sc->sc_dev, "using external PHY\n");
#endif
/* Look for internal PHY if no external PHY was found */
if (LIST_EMPTY(&mii->mii_phys) &&
((sc->sc_mif_config & GEM_MIF_CONFIG_MDI0) ||
(sc->sc_variant == GEM_APPLE_K2_GMAC))) {
sc->sc_mif_config &= ~GEM_MIF_CONFIG_PHY_SEL;
bus_space_write_4(t, h, GEM_MIF_CONFIG,
sc->sc_mif_config);
switch (sc->sc_variant) {
case GEM_SUN_ERI:
case GEM_APPLE_K2_GMAC:
phyaddr = GEM_PHYAD_INTERNAL;
break;
case GEM_APPLE_GMAC:
phyaddr = GEM_PHYAD_EXTERNAL;
break;
default:
phyaddr = MII_PHY_ANY;
break;
}
mii_attach(sc->sc_dev, mii, 0xffffffff, phyaddr,
MII_OFFSET_ANY, MIIF_FORCEANEG);
#ifdef GEM_DEBUG
if (!LIST_EMPTY(&mii->mii_phys))
aprint_debug_dev(sc->sc_dev,
"using internal PHY\n");
#endif
}
if (LIST_EMPTY(&mii->mii_phys)) {
/* No PHY attached */
aprint_error_dev(sc->sc_dev,
"PHY probe failed\n");
gem_partial_detach(sc, GEM_ATT_MII);
return;
} else {
struct mii_softc *child;
/*
* Walk along the list of attached MII devices and
* establish an `MII instance' to `PHY number'
* mapping.
*/
LIST_FOREACH(child, &mii->mii_phys, mii_list) {
/*
* Note: we support just one PHY: the internal
* or external MII is already selected for us
* by the GEM_MIF_CONFIG register.
*/
if (child->mii_phy > 1 || child->mii_inst > 0) {
aprint_error_dev(sc->sc_dev,
"cannot accommodate MII device"
" %s at PHY %d, instance %d\n",
device_xname(child->mii_dev),
child->mii_phy, child->mii_inst);
continue;
}
sc->sc_phys[child->mii_inst] = child->mii_phy;
}
if (sc->sc_variant != GEM_SUN_ERI)
bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
GEM_MII_DATAPATH_MII);
/*
* XXX - we can really do the following ONLY if the
* PHY indeed has the auto negotiation capability!!
*/
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
}
} else {
ifmedia_init(&mii->mii_media, IFM_IMASK, gem_ser_mediachange,
gem_ser_mediastatus);
/* SERDES or Serialink */
if (sc->sc_flags & GEM_SERDES) {
bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
GEM_MII_DATAPATH_SERDES);
} else {
sc->sc_flags |= GEM_SERIAL;
bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
GEM_MII_DATAPATH_SERIAL);
}
aprint_normal_dev(sc->sc_dev, "using external PCS %s: ",
sc->sc_flags & GEM_SERDES ? "SERDES" : "Serialink");
ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0, NULL);
/* Check for FDX and HDX capabilities */
sc->sc_mii_anar = bus_space_read_4(t, h, GEM_MII_ANAR);
if (sc->sc_mii_anar & GEM_MII_ANEG_FUL_DUPLX) {
ifmedia_add(&mii->mii_media, IFM_ETHER |
IFM_1000_SX | IFM_MANUAL | IFM_FDX, 0, NULL);
aprint_normal("1000baseSX-FDX, ");
}
if (sc->sc_mii_anar & GEM_MII_ANEG_HLF_DUPLX) {
ifmedia_add(&mii->mii_media, IFM_ETHER |
IFM_1000_SX | IFM_MANUAL | IFM_HDX, 0, NULL);
aprint_normal("1000baseSX-HDX, ");
}
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
sc->sc_mii_media = IFM_AUTO;
aprint_normal("auto\n");
gem_pcs_stop(sc, 1);
}
/*
* From this point forward, the attachment cannot fail. A failure
* before this point releases all resources that may have been
* allocated.
*/
/* Announce ourselves. */
aprint_normal_dev(sc->sc_dev, "Ethernet address %s",
ether_sprintf(enaddr));
/* Get RX FIFO size */
sc->sc_rxfifosize = 64 *
bus_space_read_4(t, h, GEM_RX_FIFO_SIZE);
aprint_normal(", %uKB RX fifo", sc->sc_rxfifosize / 1024);
/* Get TX FIFO size */
v = bus_space_read_4(t, h, GEM_TX_FIFO_SIZE);
aprint_normal(", %uKB TX fifo\n", v / 16);
/* Initialize ifnet structure. */
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
sc->sc_if_flags = ifp->if_flags;
#if 0
/*
* The GEM hardware supports basic TCP checksum offloading only.
* Several (all?) revisions (Sun rev. 01 and Apple rev. 00 and 80)
* have bugs in the receive checksum, so don't enable it for now.
*/
if ((GEM_IS_SUN(sc) && sc->sc_chiprev != 1) ||
(GEM_IS_APPLE(sc) &&
(sc->sc_chiprev != 0 && sc->sc_chiprev != 0x80)))
ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Rx;
#endif
ifp->if_capabilities |= IFCAP_CSUM_TCPv4_Tx;
ifp->if_start = gem_start;
ifp->if_ioctl = gem_ioctl;
ifp->if_watchdog = gem_watchdog;
ifp->if_stop = gem_stop;
ifp->if_init = gem_init;
IFQ_SET_READY(&ifp->if_snd);
/*
* If we support GigE media, we support jumbo frames too.
* Unless we are Apple.
*/
TAILQ_FOREACH(ife, &mii->mii_media.ifm_list, ifm_list) {
if (IFM_SUBTYPE(ife->ifm_media) == IFM_1000_T ||
IFM_SUBTYPE(ife->ifm_media) == IFM_1000_SX ||
IFM_SUBTYPE(ife->ifm_media) == IFM_1000_LX ||
IFM_SUBTYPE(ife->ifm_media) == IFM_1000_CX) {
if (!GEM_IS_APPLE(sc))
sc->sc_ethercom.ec_capabilities
|= ETHERCAP_JUMBO_MTU;
sc->sc_flags |= GEM_GIGABIT;
break;
}
}
/* claim 802.1q capability */
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
/* Attach the interface. */
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, enaddr);
ether_set_ifflags_cb(&sc->sc_ethercom, gem_ifflags_cb);
rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
RND_TYPE_NET, RND_FLAG_DEFAULT);
evcnt_attach_dynamic(&sc->sc_ev_intr, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "interrupts");
#ifdef GEM_COUNTERS
evcnt_attach_dynamic(&sc->sc_ev_txint, EVCNT_TYPE_INTR,
&sc->sc_ev_intr, device_xname(sc->sc_dev), "tx interrupts");
evcnt_attach_dynamic(&sc->sc_ev_rxint, EVCNT_TYPE_INTR,
&sc->sc_ev_intr, device_xname(sc->sc_dev), "rx interrupts");
evcnt_attach_dynamic(&sc->sc_ev_rxfull, EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx ring full");
evcnt_attach_dynamic(&sc->sc_ev_rxnobuf, EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx malloc failure");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[0], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 0desc");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[1], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 1desc");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[2], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 2desc");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[3], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx 3desc");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[4], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >3desc");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[5], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >7desc");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[6], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >15desc");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[7], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >31desc");
evcnt_attach_dynamic(&sc->sc_ev_rxhist[8], EVCNT_TYPE_INTR,
&sc->sc_ev_rxint, device_xname(sc->sc_dev), "rx >63desc");
#endif
callout_init(&sc->sc_tick_ch, 0);
callout_setfunc(&sc->sc_tick_ch, gem_tick, sc);
callout_init(&sc->sc_rx_watchdog, 0);
callout_setfunc(&sc->sc_rx_watchdog, gem_rx_watchdog, sc);
sc->sc_att_stage = GEM_ATT_FINISHED;
return;
}
void
gem_tick(void *arg)
{
struct gem_softc *sc = arg;
int s;
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0) {
/*
* We have to reset everything if we failed to get a
* PCS interrupt. Restarting the callout is handled
* in gem_pcs_start().
*/
gem_init(&sc->sc_ethercom.ec_if);
} else {
s = splnet();
mii_tick(&sc->sc_mii);
splx(s);
callout_schedule(&sc->sc_tick_ch, hz);
}
}
static int
gem_bitwait(struct gem_softc *sc, bus_space_handle_t h, int r, uint32_t clr,
uint32_t set)
{
int i;
uint32_t reg;
for (i = TRIES; i--; DELAY(100)) {
reg = bus_space_read_4(sc->sc_bustag, h, r);
if ((reg & clr) == 0 && (reg & set) == set)
return (1);
}
return (0);
}
void
gem_reset(struct gem_softc *sc)
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h2;
int s;
s = splnet();
DPRINTF(sc, ("%s: gem_reset\n", device_xname(sc->sc_dev)));
gem_reset_rx(sc);
gem_reset_tx(sc);
/* Do a full reset */
bus_space_write_4(t, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX);
if (!gem_bitwait(sc, h, GEM_RESET, GEM_RESET_RX | GEM_RESET_TX, 0))
aprint_error_dev(sc->sc_dev, "cannot reset device\n");
splx(s);
}
/*
* gem_rxdrain:
*
* Drain the receive queue.
*/
static void
gem_rxdrain(struct gem_softc *sc)
{
struct gem_rxsoft *rxs;
int i;
for (i = 0; i < GEM_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
}
}
/*
* Reset the whole thing.
*/
static void
gem_stop(struct ifnet *ifp, int disable)
{
struct gem_softc *sc = ifp->if_softc;
struct gem_txsoft *txs;
DPRINTF(sc, ("%s: gem_stop\n", device_xname(sc->sc_dev)));
callout_halt(&sc->sc_tick_ch, NULL);
callout_halt(&sc->sc_rx_watchdog, NULL);
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
gem_pcs_stop(sc, disable);
else
mii_down(&sc->sc_mii);
/* XXX - Should we reset these instead? */
gem_disable_tx(sc);
gem_disable_rx(sc);
/*
* Release any queued transmit buffers.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
if (txs->txs_mbuf != NULL) {
bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap, 0,
txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
}
/*
* Mark the interface down and cancel the watchdog timer.
*/
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
sc->sc_if_flags = ifp->if_flags;
ifp->if_timer = 0;
if (disable)
gem_rxdrain(sc);
}
/*
* Reset the receiver
*/
int
gem_reset_rx(struct gem_softc *sc)
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
/*
* Resetting while DMA is in progress can cause a bus hang, so we
* disable DMA first.
*/
gem_disable_rx(sc);
bus_space_write_4(t, h, GEM_RX_CONFIG, 0);
bus_space_barrier(t, h, GEM_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
/* Wait till it finishes */
if (!gem_bitwait(sc, h, GEM_RX_CONFIG, 1, 0))
aprint_error_dev(sc->sc_dev, "cannot disable rx dma\n");
/* Wait 5ms extra. */
delay(5000);
/* Finally, reset the ERX */
bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_RX);
bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
/* Wait till it finishes */
if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_RX, 0)) {
aprint_error_dev(sc->sc_dev, "cannot reset receiver\n");
return (1);
}
return (0);
}
/*
* Reset the receiver DMA engine.
*
* Intended to be used in case of GEM_INTR_RX_TAG_ERR, GEM_MAC_RX_OVERFLOW
* etc in order to reset the receiver DMA engine only and not do a full
* reset which amongst others also downs the link and clears the FIFOs.
*/
static void
gem_reset_rxdma(struct gem_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1;
int i;
if (gem_reset_rx(sc) != 0) {
gem_init(ifp);
return;
}
for (i = 0; i < GEM_NRXDESC; i++)
if (sc->sc_rxsoft[i].rxs_mbuf != NULL)
GEM_UPDATE_RXDESC(sc, i);
sc->sc_rxptr = 0;
GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
/* Reprogram Descriptor Ring Base Addresses */
/* NOTE: we use only 32-bit DMA addresses here. */
bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
/* Redo ERX Configuration */
gem_rx_common(sc);
/* Give the receiver a swift kick */
bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC - 4);
}
/*
* Common RX configuration for gem_init() and gem_reset_rxdma().
*/
static void
gem_rx_common(struct gem_softc *sc)
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1;
uint32_t v;
/* Encode Receive Descriptor ring size: four possible values */
v = gem_ringsize(GEM_NRXDESC /*XXX*/);
/* Set receive h/w checksum offset */
#ifdef INET
v |= (ETHER_HDR_LEN + sizeof(struct ip) +
((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
ETHER_VLAN_ENCAP_LEN : 0)) << GEM_RX_CONFIG_CXM_START_SHFT;
#endif
/* Enable RX DMA */
bus_space_write_4(t, h, GEM_RX_CONFIG,
v | (GEM_THRSH_1024 << GEM_RX_CONFIG_FIFO_THRS_SHIFT) |
(2 << GEM_RX_CONFIG_FBOFF_SHFT) | GEM_RX_CONFIG_RXDMA_EN);
/*
* The following value is for an OFF Threshold of about 3/4 full
* and an ON Threshold of 1/4 full.
*/
bus_space_write_4(t, h, GEM_RX_PAUSE_THRESH,
(3 * sc->sc_rxfifosize / 256) |
((sc->sc_rxfifosize / 256) << 12));
bus_space_write_4(t, h, GEM_RX_BLANKING,
(6 << GEM_RX_BLANKING_TIME_SHIFT) | 8);
}
/*
* Reset the transmitter
*/
int
gem_reset_tx(struct gem_softc *sc)
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1, h2 = sc->sc_h2;
/*
* Resetting while DMA is in progress can cause a bus hang, so we
* disable DMA first.
*/
gem_disable_tx(sc);
bus_space_write_4(t, h, GEM_TX_CONFIG, 0);
bus_space_barrier(t, h, GEM_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
/* Wait till it finishes */
if (!gem_bitwait(sc, h, GEM_TX_CONFIG, 1, 0))
aprint_error_dev(sc->sc_dev, "cannot disable tx dma\n"); /* OpenBSD 1.34 */
/* Wait 5ms extra. */
delay(5000);
/* Finally, reset the ETX */
bus_space_write_4(t, h2, GEM_RESET, GEM_RESET_TX);
bus_space_barrier(t, h, GEM_RESET, 4, BUS_SPACE_BARRIER_WRITE);
/* Wait till it finishes */
if (!gem_bitwait(sc, h2, GEM_RESET, GEM_RESET_TX, 0)) {
aprint_error_dev(sc->sc_dev, "cannot reset transmitter\n"); /* OpenBSD 1.34 */
return (1);
}
return (0);
}
/*
* disable receiver.
*/
int
gem_disable_rx(struct gem_softc *sc)
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1;
uint32_t cfg;
/* Flip the enable bit */
cfg = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
cfg &= ~GEM_MAC_RX_ENABLE;
bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, cfg);
bus_space_barrier(t, h, GEM_MAC_RX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
/* Wait for it to finish */
return (gem_bitwait(sc, h, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0));
}
/*
* disable transmitter.
*/
int
gem_disable_tx(struct gem_softc *sc)
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1;
uint32_t cfg;
/* Flip the enable bit */
cfg = bus_space_read_4(t, h, GEM_MAC_TX_CONFIG);
cfg &= ~GEM_MAC_TX_ENABLE;
bus_space_write_4(t, h, GEM_MAC_TX_CONFIG, cfg);
bus_space_barrier(t, h, GEM_MAC_TX_CONFIG, 4, BUS_SPACE_BARRIER_WRITE);
/* Wait for it to finish */
return (gem_bitwait(sc, h, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0));
}
/*
* Initialize interface.
*/
int
gem_meminit(struct gem_softc *sc)
{
struct gem_rxsoft *rxs;
int i, error;
/*
* Initialize the transmit descriptor ring.
*/
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
for (i = 0; i < GEM_NTXDESC; i++) {
sc->sc_txdescs[i].gd_flags = 0;
sc->sc_txdescs[i].gd_addr = 0;
}
GEM_CDTXSYNC(sc, 0, GEM_NTXDESC,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
sc->sc_txfree = GEM_NTXDESC-1;
sc->sc_txnext = 0;
sc->sc_txwin = 0;
/*
* Initialize the receive descriptor and receive job
* descriptor rings.
*/
for (i = 0; i < GEM_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf == NULL) {
if ((error = gem_add_rxbuf(sc, i)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to allocate or map rx "
"buffer %d, error = %d\n",
i, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
gem_rxdrain(sc);
return (1);
}
} else
GEM_INIT_RXDESC(sc, i);
}
sc->sc_rxptr = 0;
sc->sc_meminited = 1;
GEM_CDSYNC(sc, BUS_DMASYNC_PREWRITE);
GEM_CDSYNC(sc, BUS_DMASYNC_PREREAD);
return (0);
}
static int
gem_ringsize(int sz)
{
switch (sz) {
case 32:
return GEM_RING_SZ_32;
case 64:
return GEM_RING_SZ_64;
case 128:
return GEM_RING_SZ_128;
case 256:
return GEM_RING_SZ_256;
case 512:
return GEM_RING_SZ_512;
case 1024:
return GEM_RING_SZ_1024;
case 2048:
return GEM_RING_SZ_2048;
case 4096:
return GEM_RING_SZ_4096;
case 8192:
return GEM_RING_SZ_8192;
default:
printf("gem: invalid Receive Descriptor ring size %d\n", sz);
return GEM_RING_SZ_32;
}
}
/*
* Start PCS
*/
void
gem_pcs_start(struct gem_softc *sc)
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1;
uint32_t v;
#ifdef GEM_DEBUG
aprint_debug_dev(sc->sc_dev, "gem_pcs_start()\n");
#endif
/*
* Set up. We must disable the MII before modifying the
* GEM_MII_ANAR register
*/
if (sc->sc_flags & GEM_SERDES) {
bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
GEM_MII_DATAPATH_SERDES);
bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
GEM_MII_SLINK_LOOPBACK);
} else {
bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
GEM_MII_DATAPATH_SERIAL);
bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL, 0);
}
bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
v = bus_space_read_4(t, h, GEM_MII_ANAR);
v |= (GEM_MII_ANEG_SYM_PAUSE | GEM_MII_ANEG_ASYM_PAUSE);
if (IFM_SUBTYPE(sc->sc_mii_media) == IFM_AUTO)
v |= (GEM_MII_ANEG_FUL_DUPLX | GEM_MII_ANEG_HLF_DUPLX);
else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_FDX) != 0) {
v |= GEM_MII_ANEG_FUL_DUPLX;
v &= ~GEM_MII_ANEG_HLF_DUPLX;
} else if ((IFM_OPTIONS(sc->sc_mii_media) & IFM_HDX) != 0) {
v &= ~GEM_MII_ANEG_FUL_DUPLX;
v |= GEM_MII_ANEG_HLF_DUPLX;
}
/* Configure link. */
bus_space_write_4(t, h, GEM_MII_ANAR, v);
bus_space_write_4(t, h, GEM_MII_CONTROL,
GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
bus_space_write_4(t, h, GEM_MII_CONFIG, GEM_MII_CONFIG_ENABLE);
gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_ANEG_CPT);
/* Start the 10 second timer */
callout_schedule(&sc->sc_tick_ch, hz * 10);
}
/*
* Stop PCS
*/
void
gem_pcs_stop(struct gem_softc *sc, int disable)
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1;
#ifdef GEM_DEBUG
aprint_debug_dev(sc->sc_dev, "gem_pcs_stop()\n");
#endif
/* Tell link partner that we're going away */
bus_space_write_4(t, h, GEM_MII_ANAR, GEM_MII_ANEG_RF);
/*
* Disable PCS MII. The documentation suggests that setting
* GEM_MII_CONFIG_ENABLE to zero and then restarting auto-
* negotiation will shut down the link. However, it appears
* that we also need to unset the datapath mode.
*/
bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
bus_space_write_4(t, h, GEM_MII_CONTROL,
GEM_MII_CONTROL_AUTONEG | GEM_MII_CONTROL_RAN);
bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE, GEM_MII_DATAPATH_MII);
bus_space_write_4(t, h, GEM_MII_CONFIG, 0);
if (disable) {
if (sc->sc_flags & GEM_SERDES)
bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
GEM_MII_SLINK_POWER_OFF);
else
bus_space_write_4(t, h, GEM_MII_SLINK_CONTROL,
GEM_MII_SLINK_LOOPBACK | GEM_MII_SLINK_POWER_OFF);
}
sc->sc_flags &= ~GEM_LINK;
sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
sc->sc_mii.mii_media_status = IFM_AVALID;
}
/*
* Initialization of interface; set up initialization block
* and transmit/receive descriptor rings.
*/
int
gem_init(struct ifnet *ifp)
{
struct gem_softc *sc = ifp->if_softc;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1;
int rc = 0, s;
u_int max_frame_size;
uint32_t v;
s = splnet();
DPRINTF(sc, ("%s: gem_init: calling stop\n", device_xname(sc->sc_dev)));
/*
* Initialization sequence. The numbered steps below correspond
* to the sequence outlined in section 6.3.5.1 in the Ethernet
* Channel Engine manual (part of the PCIO manual).
* See also the STP2002-STQ document from Sun Microsystems.
*/
/* step 1 & 2. Reset the Ethernet Channel */
gem_stop(ifp, 0);
gem_reset(sc);
DPRINTF(sc, ("%s: gem_init: restarting\n", device_xname(sc->sc_dev)));
/* Re-initialize the MIF */
gem_mifinit(sc);
/* Set up correct datapath for non-SERDES/Serialink */
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
sc->sc_variant != GEM_SUN_ERI)
bus_space_write_4(t, h, GEM_MII_DATAPATH_MODE,
GEM_MII_DATAPATH_MII);
/* Call MI reset function if any */
if (sc->sc_hwreset)
(*sc->sc_hwreset)(sc);
/* step 3. Setup data structures in host memory */
if (gem_meminit(sc) != 0) {
splx(s);
return 1;
}
/* step 4. TX MAC registers & counters */
gem_init_regs(sc);
max_frame_size = uimax(sc->sc_ethercom.ec_if.if_mtu, ETHERMTU);
max_frame_size += ETHER_HDR_LEN + ETHER_CRC_LEN;
if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU)
max_frame_size += ETHER_VLAN_ENCAP_LEN;
bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
max_frame_size|/* burst size */(0x2000<<16));
/* step 5. RX MAC registers & counters */
gem_setladrf(sc);
/* step 6 & 7. Program Descriptor Ring Base Addresses */
/* NOTE: we use only 32-bit DMA addresses here. */
bus_space_write_4(t, h, GEM_TX_RING_PTR_HI, 0);
bus_space_write_4(t, h, GEM_TX_RING_PTR_LO, GEM_CDTXADDR(sc, 0));
bus_space_write_4(t, h, GEM_RX_RING_PTR_HI, 0);
bus_space_write_4(t, h, GEM_RX_RING_PTR_LO, GEM_CDRXADDR(sc, 0));
/* step 8. Global Configuration & Interrupt Mask */
gem_inten(sc);
bus_space_write_4(t, h, GEM_MAC_RX_MASK,
GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT);
bus_space_write_4(t, h, GEM_MAC_TX_MASK, 0xffff); /* XXX */
bus_space_write_4(t, h, GEM_MAC_CONTROL_MASK,
GEM_MAC_PAUSED | GEM_MAC_PAUSE | GEM_MAC_RESUME);
/* step 9. ETX Configuration: use mostly default values */
/* Enable TX DMA */
v = gem_ringsize(GEM_NTXDESC /*XXX*/);
bus_space_write_4(t, h, GEM_TX_CONFIG,
v | GEM_TX_CONFIG_TXDMA_EN |
(((sc->sc_flags & GEM_GIGABIT ? 0x4FF : 0x100) << 10) &
GEM_TX_CONFIG_TXFIFO_TH));
bus_space_write_4(t, h, GEM_TX_KICK, sc->sc_txnext);
/* step 10. ERX Configuration */
gem_rx_common(sc);
/* step 11. Configure Media */
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0 &&
(rc = mii_ifmedia_change(&sc->sc_mii)) != 0)
goto out;
/* step 12. RX_MAC Configuration Register */
v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
v |= GEM_MAC_RX_ENABLE | GEM_MAC_RX_STRIP_CRC;
bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
/* step 14. Issue Transmit Pending command */
/* Call MI initialization function if any */
if (sc->sc_hwinit)
(*sc->sc_hwinit)(sc);
/* step 15. Give the receiver a swift kick */
bus_space_write_4(t, h, GEM_RX_KICK, GEM_NRXDESC-4);
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
/* Configure PCS */
gem_pcs_start(sc);
else
/* Start the one second timer. */
callout_schedule(&sc->sc_tick_ch, hz);
sc->sc_flags &= ~GEM_LINK;
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_timer = 0;
sc->sc_if_flags = ifp->if_flags;
out:
splx(s);
return (0);
}
void
gem_init_regs(struct gem_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1;
const u_char *laddr = CLLADDR(ifp->if_sadl);
uint32_t v;
/* These regs are not cleared on reset */
if (!sc->sc_inited) {
/* Load recommended values */
bus_space_write_4(t, h, GEM_MAC_IPG0, 0x00);
bus_space_write_4(t, h, GEM_MAC_IPG1, 0x08);
bus_space_write_4(t, h, GEM_MAC_IPG2, 0x04);
bus_space_write_4(t, h, GEM_MAC_MAC_MIN_FRAME, ETHER_MIN_LEN);
/* Max frame and max burst size */
bus_space_write_4(t, h, GEM_MAC_MAC_MAX_FRAME,
ETHER_MAX_LEN | (0x2000<<16));
bus_space_write_4(t, h, GEM_MAC_PREAMBLE_LEN, 0x07);
bus_space_write_4(t, h, GEM_MAC_JAM_SIZE, 0x04);
bus_space_write_4(t, h, GEM_MAC_ATTEMPT_LIMIT, 0x10);
bus_space_write_4(t, h, GEM_MAC_CONTROL_TYPE, 0x8088);
bus_space_write_4(t, h, GEM_MAC_RANDOM_SEED,
((laddr[5]<<8)|laddr[4])&0x3ff);
/* Secondary MAC addr set to 0:0:0:0:0:0 */
bus_space_write_4(t, h, GEM_MAC_ADDR3, 0);
bus_space_write_4(t, h, GEM_MAC_ADDR4, 0);
bus_space_write_4(t, h, GEM_MAC_ADDR5, 0);
/* MAC control addr set to 01:80:c2:00:00:01 */
bus_space_write_4(t, h, GEM_MAC_ADDR6, 0x0001);
bus_space_write_4(t, h, GEM_MAC_ADDR7, 0xc200);
bus_space_write_4(t, h, GEM_MAC_ADDR8, 0x0180);
/* MAC filter addr set to 0:0:0:0:0:0 */
bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER0, 0);
bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER1, 0);
bus_space_write_4(t, h, GEM_MAC_ADDR_FILTER2, 0);
bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK1_2, 0);
bus_space_write_4(t, h, GEM_MAC_ADR_FLT_MASK0, 0);
sc->sc_inited = 1;
}
/* Counters need to be zeroed */
bus_space_write_4(t, h, GEM_MAC_NORM_COLL_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_FIRST_COLL_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_EXCESS_COLL_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_LATE_COLL_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_DEFER_TMR_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_PEAK_ATTEMPTS, 0);
bus_space_write_4(t, h, GEM_MAC_RX_FRAME_COUNT, 0);
bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
/* Set XOFF PAUSE time. */
bus_space_write_4(t, h, GEM_MAC_SEND_PAUSE_CMD, 0x1BF0);
/*
* Set the internal arbitration to "infinite" bursts of the
* maximum length of 31 * 64 bytes so DMA transfers aren't
* split up in cache line size chunks. This greatly improves
* especially RX performance.
* Enable silicon bug workarounds for the Apple variants.
*/
bus_space_write_4(t, h, GEM_CONFIG,
GEM_CONFIG_TXDMA_LIMIT | GEM_CONFIG_RXDMA_LIMIT |
((sc->sc_flags & GEM_PCI) ?
GEM_CONFIG_BURST_INF : GEM_CONFIG_BURST_64) | (GEM_IS_APPLE(sc) ?
GEM_CONFIG_RONPAULBIT | GEM_CONFIG_BUG2FIX : 0));
/*
* Set the station address.
*/
bus_space_write_4(t, h, GEM_MAC_ADDR0, (laddr[4]<<8)|laddr[5]);
bus_space_write_4(t, h, GEM_MAC_ADDR1, (laddr[2]<<8)|laddr[3]);
bus_space_write_4(t, h, GEM_MAC_ADDR2, (laddr[0]<<8)|laddr[1]);
/*
* Enable MII outputs. Enable GMII if there is a gigabit PHY.
*/
sc->sc_mif_config = bus_space_read_4(t, h, GEM_MIF_CONFIG);
v = GEM_MAC_XIF_TX_MII_ENA;
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0) {
if (sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) {
v |= GEM_MAC_XIF_FDPLX_LED;
if (sc->sc_flags & GEM_GIGABIT)
v |= GEM_MAC_XIF_GMII_MODE;
}
} else {
v |= GEM_MAC_XIF_GMII_MODE;
}
bus_space_write_4(t, h, GEM_MAC_XIF_CONFIG, v);
}
#ifdef GEM_DEBUG
static void
gem_txsoft_print(const struct gem_softc *sc, int firstdesc, int lastdesc)
{
int i;
for (i = firstdesc;; i = GEM_NEXTTX(i)) {
printf("descriptor %d:\t", i);
printf("gd_flags: 0x%016" PRIx64 "\t",
GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_flags));
printf("gd_addr: 0x%016" PRIx64 "\n",
GEM_DMA_READ(sc, sc->sc_txdescs[i].gd_addr));
if (i == lastdesc)
break;
}
}
#endif
static void
gem_start(struct ifnet *ifp)
{
struct gem_softc *sc = ifp->if_softc;
struct mbuf *m0, *m;
struct gem_txsoft *txs;
bus_dmamap_t dmamap;
int error, firsttx, nexttx = -1, lasttx = -1, ofree, seg;
#ifdef GEM_DEBUG
int otxnext;
#endif
uint64_t flags = 0;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
/*
* Remember the previous number of free descriptors and
* the first descriptor we'll use.
*/
ofree = sc->sc_txfree;
#ifdef GEM_DEBUG
otxnext = sc->sc_txnext;
#endif
DPRINTF(sc, ("%s: gem_start: txfree %d, txnext %d\n",
device_xname(sc->sc_dev), ofree, otxnext));
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
#ifdef INET
next:
#endif
while ((txs = SIMPLEQ_FIRST(&sc->sc_txfreeq)) != NULL &&
sc->sc_txfree != 0) {
/*
* Grab a packet off the queue.
*/
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
m = NULL;
dmamap = txs->txs_dmamap;
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the alloted number of segments, or we were
* short on resources. In this case, we'll copy and try
* again.
*/
if (bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap, m0,
BUS_DMA_WRITE | BUS_DMA_NOWAIT) != 0 ||
(m0->m_pkthdr.len < ETHER_MIN_TX &&
dmamap->dm_nsegs == GEM_NTXSEGS)) {
if (m0->m_pkthdr.len > MCLBYTES) {
aprint_error_dev(sc->sc_dev,
"unable to allocate jumbo Tx cluster\n");
IFQ_DEQUEUE(&ifp->if_snd, m0);
m_freem(m0);
continue;
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
aprint_error_dev(sc->sc_dev,
"unable to allocate Tx mbuf\n");
break;
}
MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
aprint_error_dev(sc->sc_dev,
"unable to allocate Tx cluster\n");
m_freem(m);
break;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
error = bus_dmamap_load_mbuf(sc->sc_dmatag, dmamap,
m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev,
"unable to load Tx buffer, error = %d\n",
error);
break;
}
}
/*
* Ensure we have enough descriptors free to describe
* the packet.
*/
if (dmamap->dm_nsegs > ((m0->m_pkthdr.len < ETHER_MIN_TX) ?
(sc->sc_txfree - 1) : sc->sc_txfree)) {
/*
* Not enough free descriptors to transmit this
* packet. We haven't committed to anything yet,
* so just unload the DMA map, put the packet
* back on the queue, and punt. Notify the upper
* layer that there are no more slots left.
*
* XXX We could allocate an mbuf and copy, but
* XXX it is worth it?
*/
ifp->if_flags |= IFF_OACTIVE;
sc->sc_if_flags = ifp->if_flags;
bus_dmamap_unload(sc->sc_dmatag, dmamap);
if (m != NULL)
m_freem(m);
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m != NULL) {
m_freem(m0);
m0 = m;
}
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmatag, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/*
* Initialize the transmit descriptors.
*/
firsttx = sc->sc_txnext;
for (nexttx = firsttx, seg = 0;
seg < dmamap->dm_nsegs;
seg++, nexttx = GEM_NEXTTX(nexttx)) {
/*
* If this is the first descriptor we're
* enqueueing, set the start of packet flag,
* and the checksum stuff if we want the hardware
* to do it.
*/
flags = dmamap->dm_segs[seg].ds_len & GEM_TD_BUFSIZE;
if (nexttx == firsttx) {
flags |= GEM_TD_START_OF_PACKET;
#ifdef INET
/* h/w checksum */
if (ifp->if_csum_flags_tx & M_CSUM_TCPv4 &&
m0->m_pkthdr.csum_flags & M_CSUM_TCPv4) {
struct ether_header *eh;
uint16_t offset, start;
eh = mtod(m0, struct ether_header *);
switch (ntohs(eh->ether_type)) {
case ETHERTYPE_IP:
start = ETHER_HDR_LEN;
break;
case ETHERTYPE_VLAN:
start = ETHER_HDR_LEN +
ETHER_VLAN_ENCAP_LEN;
break;
default:
/* unsupported, drop it */
bus_dmamap_unload(sc->sc_dmatag,
dmamap);
m_freem(m0);
goto next;
}
start += M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
offset = M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data) + start;
flags |= (start <<
GEM_TD_CXSUM_STARTSHFT) |
(offset <<
GEM_TD_CXSUM_STUFFSHFT) |
GEM_TD_CXSUM_ENABLE;
}
#endif
if (++sc->sc_txwin > GEM_NTXSEGS * 2 / 3) {
sc->sc_txwin = 0;
flags |= GEM_TD_INTERRUPT_ME;
}
}
sc->sc_txdescs[nexttx].gd_addr =
GEM_DMA_WRITE(sc, dmamap->dm_segs[seg].ds_addr);
if (seg == dmamap->dm_nsegs - 1) {
flags |= GEM_TD_END_OF_PACKET;
} else {
/* last flag set outside of loop */
sc->sc_txdescs[nexttx].gd_flags =
GEM_DMA_WRITE(sc, flags);
}
lasttx = nexttx;
}
if (m0->m_pkthdr.len < ETHER_MIN_TX) {
/* add padding buffer at end of chain */
flags &= ~GEM_TD_END_OF_PACKET;
sc->sc_txdescs[lasttx].gd_flags =
GEM_DMA_WRITE(sc, flags);
sc->sc_txdescs[nexttx].gd_addr =
GEM_DMA_WRITE(sc,
sc->sc_nulldmamap->dm_segs[0].ds_addr);
flags = ((ETHER_MIN_TX - m0->m_pkthdr.len) &
GEM_TD_BUFSIZE) | GEM_TD_END_OF_PACKET;
lasttx = nexttx;
nexttx = GEM_NEXTTX(nexttx);
seg++;
}
sc->sc_txdescs[lasttx].gd_flags = GEM_DMA_WRITE(sc, flags);
KASSERT(lasttx != -1);
/*
* Store a pointer to the packet so we can free it later,
* and remember what txdirty will be once the packet is
* done.
*/
txs->txs_mbuf = m0;
txs->txs_firstdesc = sc->sc_txnext;
txs->txs_lastdesc = lasttx;
txs->txs_ndescs = seg;
#ifdef GEM_DEBUG
if (ifp->if_flags & IFF_DEBUG) {
printf(" gem_start %p transmit chain:\n", txs);
gem_txsoft_print(sc, txs->txs_firstdesc,
txs->txs_lastdesc);
}
#endif
/* Sync the descriptors we're using. */
GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
/* Advance the tx pointer. */
sc->sc_txfree -= txs->txs_ndescs;
sc->sc_txnext = nexttx;
SIMPLEQ_REMOVE_HEAD(&sc->sc_txfreeq, txs_q);
SIMPLEQ_INSERT_TAIL(&sc->sc_txdirtyq, txs, txs_q);
/*
* Pass the packet to any BPF listeners.
*/
bpf_mtap(ifp, m0, BPF_D_OUT);
}
if (txs == NULL || sc->sc_txfree == 0) {
/* No more slots left; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
sc->sc_if_flags = ifp->if_flags;
}
if (sc->sc_txfree != ofree) {
DPRINTF(sc, ("%s: packets enqueued, IC on %d, OWN on %d\n",
device_xname(sc->sc_dev), lasttx, otxnext));
/*
* The entire packet chain is set up.
* Kick the transmitter.
*/
DPRINTF(sc, ("%s: gem_start: kicking tx %d\n",
device_xname(sc->sc_dev), nexttx));
bus_space_write_4(sc->sc_bustag, sc->sc_h1, GEM_TX_KICK,
sc->sc_txnext);
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
DPRINTF(sc, ("%s: gem_start: watchdog %d\n",
device_xname(sc->sc_dev), ifp->if_timer));
}
}
/*
* Transmit interrupt.
*/
int
gem_tint(struct gem_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mac = sc->sc_h1;
struct gem_txsoft *txs;
int txlast;
int progress = 0;
uint32_t v;
net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
DPRINTF(sc, ("%s: gem_tint\n", device_xname(sc->sc_dev)));
/* Unload collision counters ... */
v = bus_space_read_4(t, mac, GEM_MAC_EXCESS_COLL_CNT) +
bus_space_read_4(t, mac, GEM_MAC_LATE_COLL_CNT);
if_statadd_ref(nsr, if_collisions, v +
bus_space_read_4(t, mac, GEM_MAC_NORM_COLL_CNT) +
bus_space_read_4(t, mac, GEM_MAC_FIRST_COLL_CNT));
if_statadd_ref(nsr, if_oerrors, v);
/* ... then clear the hardware counters. */
bus_space_write_4(t, mac, GEM_MAC_NORM_COLL_CNT, 0);
bus_space_write_4(t, mac, GEM_MAC_FIRST_COLL_CNT, 0);
bus_space_write_4(t, mac, GEM_MAC_EXCESS_COLL_CNT, 0);
bus_space_write_4(t, mac, GEM_MAC_LATE_COLL_CNT, 0);
/*
* Go through our Tx list and free mbufs for those
* frames that have been transmitted.
*/
while ((txs = SIMPLEQ_FIRST(&sc->sc_txdirtyq)) != NULL) {
/*
* In theory, we could harvest some descriptors before
* the ring is empty, but that's a bit complicated.
*
* GEM_TX_COMPLETION points to the last descriptor
* processed +1.
*
* Let's assume that the NIC writes back to the Tx
* descriptors before it updates the completion
* register. If the NIC has posted writes to the
* Tx descriptors, PCI ordering requires that the
* posted writes flush to RAM before the register-read
* finishes. So let's read the completion register,
* before syncing the descriptors, so that we
* examine Tx descriptors that are at least as
* current as the completion register.
*/
txlast = bus_space_read_4(t, mac, GEM_TX_COMPLETION);
DPRINTF(sc,
("gem_tint: txs->txs_lastdesc = %d, txlast = %d\n",
txs->txs_lastdesc, txlast));
if (txs->txs_firstdesc <= txs->txs_lastdesc) {
if (txlast >= txs->txs_firstdesc &&
txlast <= txs->txs_lastdesc)
break;
} else if (txlast >= txs->txs_firstdesc ||
txlast <= txs->txs_lastdesc)
break;
GEM_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_ndescs,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
#ifdef GEM_DEBUG /* XXX DMA synchronization? */
if (ifp->if_flags & IFF_DEBUG) {
printf(" txsoft %p transmit chain:\n", txs);
gem_txsoft_print(sc, txs->txs_firstdesc,
txs->txs_lastdesc);
}
#endif
DPRINTF(sc, ("gem_tint: releasing a desc\n"));
SIMPLEQ_REMOVE_HEAD(&sc->sc_txdirtyq, txs_q);
sc->sc_txfree += txs->txs_ndescs;
bus_dmamap_sync(sc->sc_dmatag, txs->txs_dmamap,
0, txs->txs_dmamap->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmatag, txs->txs_dmamap);
if (txs->txs_mbuf != NULL) {
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
SIMPLEQ_INSERT_TAIL(&sc->sc_txfreeq, txs, txs_q);
if_statinc_ref(nsr, if_opackets);
progress = 1;
}
IF_STAT_PUTREF(ifp);
#if 0
DPRINTF(sc, ("gem_tint: GEM_TX_STATE_MACHINE %x "
"GEM_TX_DATA_PTR %" PRIx64 "GEM_TX_COMPLETION %" PRIx32 "\n",
bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_STATE_MACHINE),
((uint64_t)bus_space_read_4(sc->sc_bustag, sc->sc_h1,
GEM_TX_DATA_PTR_HI) << 32) |
bus_space_read_4(sc->sc_bustag, sc->sc_h1,
GEM_TX_DATA_PTR_LO),
bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_TX_COMPLETION)));
#endif
if (progress) {
if (sc->sc_txfree == GEM_NTXDESC - 1)
sc->sc_txwin = 0;
/* Freed some descriptors, so reset IFF_OACTIVE and restart. */
ifp->if_flags &= ~IFF_OACTIVE;
sc->sc_if_flags = ifp->if_flags;
ifp->if_timer = SIMPLEQ_EMPTY(&sc->sc_txdirtyq) ? 0 : 5;
if_schedule_deferred_start(ifp);
}
DPRINTF(sc, ("%s: gem_tint: watchdog %d\n",
device_xname(sc->sc_dev), ifp->if_timer));
return (1);
}
/*
* Receive interrupt.
*/
int
gem_rint(struct gem_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1;
struct gem_rxsoft *rxs;
struct mbuf *m;
uint64_t rxstat;
uint32_t rxcomp;
int i, len, progress = 0;
DPRINTF(sc, ("%s: gem_rint\n", device_xname(sc->sc_dev)));
/*
* Ignore spurious interrupt that sometimes occurs before
* we are set up when we network boot.
*/
if (!sc->sc_meminited)
return 1;
/*
* Read the completion register once. This limits
* how long the following loop can execute.
*/
rxcomp = bus_space_read_4(t, h, GEM_RX_COMPLETION);
/*
* XXX Read the lastrx only once at the top for speed.
*/
DPRINTF(sc, ("gem_rint: sc->rxptr %d, complete %d\n",
sc->sc_rxptr, rxcomp));
/*
* Go into the loop at least once.
*/
for (i = sc->sc_rxptr; i == sc->sc_rxptr || i != rxcomp;
i = GEM_NEXTRX(i)) {
rxs = &sc->sc_rxsoft[i];
GEM_CDRXSYNC(sc, i,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
rxstat = GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags);
if (rxstat & GEM_RD_OWN) {
GEM_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
/*
* We have processed all of the receive buffers.
*/
break;
}
progress++;
if (rxstat & GEM_RD_BAD_CRC) {
if_statinc(ifp, if_ierrors);
aprint_error_dev(sc->sc_dev,
"receive error: CRC error\n");
GEM_INIT_RXDESC(sc, i);
continue;
}
bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
#ifdef GEM_DEBUG
if (ifp->if_flags & IFF_DEBUG) {
printf(" rxsoft %p descriptor %d: ", rxs, i);
printf("gd_flags: 0x%016llx\t", (long long)
GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_flags));
printf("gd_addr: 0x%016llx\n", (long long)
GEM_DMA_READ(sc, sc->sc_rxdescs[i].gd_addr));
}
#endif
/* No errors; receive the packet. */
len = GEM_RD_BUFLEN(rxstat);
/*
* Allocate a new mbuf cluster. If that fails, we are
* out of memory, and must drop the packet and recycle
* the buffer that's already attached to this descriptor.
*/
m = rxs->rxs_mbuf;
if (gem_add_rxbuf(sc, i) != 0) {
GEM_COUNTER_INCR(sc, sc_ev_rxnobuf);
if_statinc(ifp, if_ierrors);
aprint_error_dev(sc->sc_dev,
"receive error: RX no buffer space\n");
GEM_INIT_RXDESC(sc, i);
bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
continue;
}
m->m_data += 2; /* We're already off by two */
m_set_rcvif(m, ifp);
m->m_pkthdr.len = m->m_len = len;
#ifdef INET
/* hardware checksum */
if (ifp->if_csum_flags_rx & M_CSUM_TCPv4) {
struct ether_header *eh;
struct ip *ip;
int32_t hlen, pktlen;
if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
pktlen = m->m_pkthdr.len - ETHER_HDR_LEN -
ETHER_VLAN_ENCAP_LEN;
eh = (struct ether_header *) (mtod(m, char *) +
ETHER_VLAN_ENCAP_LEN);
} else {
pktlen = m->m_pkthdr.len - ETHER_HDR_LEN;
eh = mtod(m, struct ether_header *);
}
if (ntohs(eh->ether_type) != ETHERTYPE_IP)
goto swcsum;
ip = (struct ip *) ((char *)eh + ETHER_HDR_LEN);
/* IPv4 only */
if (ip->ip_v != IPVERSION)
goto swcsum;
hlen = ip->ip_hl << 2;
if (hlen < sizeof(struct ip))
goto swcsum;
/*
* bail if too short, has random trailing garbage,
* truncated, fragment, or has ethernet pad.
*/
if ((ntohs(ip->ip_len) < hlen) ||
(ntohs(ip->ip_len) != pktlen) ||
(ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)))
goto swcsum;
switch (ip->ip_p) {
case IPPROTO_TCP:
if (! (ifp->if_csum_flags_rx & M_CSUM_TCPv4))
goto swcsum;
if (pktlen < (hlen + sizeof(struct tcphdr)))
goto swcsum;
m->m_pkthdr.csum_flags = M_CSUM_TCPv4;
break;
case IPPROTO_UDP:
/* FALLTHROUGH */
default:
goto swcsum;
}
/* the uncomplemented sum is expected */
m->m_pkthdr.csum_data = (~rxstat) & GEM_RD_CHECKSUM;
/* if the pkt had ip options, we have to deduct them */
if (hlen > sizeof(struct ip)) {
uint16_t *opts;
uint32_t optsum, temp;
optsum = 0;
temp = hlen - sizeof(struct ip);
opts = (uint16_t *) ((char *) ip +
sizeof(struct ip));
while (temp > 1) {
optsum += ntohs(*opts++);
temp -= 2;
}
while (optsum >> 16)
optsum = (optsum >> 16) +
(optsum & 0xffff);
/* Deduct ip opts sum from hwsum. */
m->m_pkthdr.csum_data += (uint16_t)~optsum;
while (m->m_pkthdr.csum_data >> 16)
m->m_pkthdr.csum_data =
(m->m_pkthdr.csum_data >> 16) +
(m->m_pkthdr.csum_data &
0xffff);
}
m->m_pkthdr.csum_flags |= M_CSUM_DATA |
M_CSUM_NO_PSEUDOHDR;
} else
swcsum:
m->m_pkthdr.csum_flags = 0;
#endif
/* Pass it on. */
if_percpuq_enqueue(ifp->if_percpuq, m);
}
if (progress) {
/* Update the receive pointer. */
if (i == sc->sc_rxptr) {
GEM_COUNTER_INCR(sc, sc_ev_rxfull);
#ifdef GEM_DEBUG
if (ifp->if_flags & IFF_DEBUG)
printf("%s: rint: ring wrap\n",
device_xname(sc->sc_dev));
#endif
}
sc->sc_rxptr = i;
bus_space_write_4(t, h, GEM_RX_KICK, GEM_PREVRX(i));
}
#ifdef GEM_COUNTERS
if (progress <= 4) {
GEM_COUNTER_INCR(sc, sc_ev_rxhist[progress]);
} else if (progress < 32) {
if (progress < 16)
GEM_COUNTER_INCR(sc, sc_ev_rxhist[5]);
else
GEM_COUNTER_INCR(sc, sc_ev_rxhist[6]);
} else {
if (progress < 64)
GEM_COUNTER_INCR(sc, sc_ev_rxhist[7]);
else
GEM_COUNTER_INCR(sc, sc_ev_rxhist[8]);
}
#endif
DPRINTF(sc, ("gem_rint: done sc->rxptr %d, complete %d\n",
sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION)));
/* Read error counters ... */
if_statadd(ifp, if_ierrors,
bus_space_read_4(t, h, GEM_MAC_RX_LEN_ERR_CNT) +
bus_space_read_4(t, h, GEM_MAC_RX_ALIGN_ERR) +
bus_space_read_4(t, h, GEM_MAC_RX_CRC_ERR_CNT) +
bus_space_read_4(t, h, GEM_MAC_RX_CODE_VIOL));
/* ... then clear the hardware counters. */
bus_space_write_4(t, h, GEM_MAC_RX_LEN_ERR_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_RX_ALIGN_ERR, 0);
bus_space_write_4(t, h, GEM_MAC_RX_CRC_ERR_CNT, 0);
bus_space_write_4(t, h, GEM_MAC_RX_CODE_VIOL, 0);
return (1);
}
/*
* gem_add_rxbuf:
*
* Add a receive buffer to the indicated descriptor.
*/
int
gem_add_rxbuf(struct gem_softc *sc, int idx)
{
struct gem_rxsoft *rxs = &sc->sc_rxsoft[idx];
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
#ifdef GEM_DEBUG
/* bzero the packet to check DMA */
memset(m->m_ext.ext_buf, 0, m->m_ext.ext_size);
#endif
if (rxs->rxs_mbuf != NULL)
bus_dmamap_unload(sc->sc_dmatag, rxs->rxs_dmamap);
rxs->rxs_mbuf = m;
error = bus_dmamap_load(sc->sc_dmatag, rxs->rxs_dmamap,
m->m_ext.ext_buf, m->m_ext.ext_size, NULL,
BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev,
"can't load rx DMA map %d, error = %d\n", idx, error);
panic("gem_add_rxbuf"); /* XXX */
}
bus_dmamap_sync(sc->sc_dmatag, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
GEM_INIT_RXDESC(sc, idx);
return (0);
}
int
gem_eint(struct gem_softc *sc, u_int status)
{
char bits[128];
uint32_t r, v;
if ((status & GEM_INTR_MIF) != 0) {
printf("%s: XXXlink status changed\n", device_xname(sc->sc_dev));
return (1);
}
if ((status & GEM_INTR_RX_TAG_ERR) != 0) {
gem_reset_rxdma(sc);
return (1);
}
if (status & GEM_INTR_BERR) {
if (sc->sc_flags & GEM_PCI)
r = GEM_ERROR_STATUS;
else
r = GEM_SBUS_ERROR_STATUS;
bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
v = bus_space_read_4(sc->sc_bustag, sc->sc_h2, r);
aprint_error_dev(sc->sc_dev, "bus error interrupt: 0x%02x\n",
v);
return (1);
}
snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);
return (1);
}
/*
* PCS interrupts.
* We should receive these when the link status changes, but sometimes
* we don't receive them for link up. We compensate for this in the
* gem_tick() callout.
*/
int
gem_pint(struct gem_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1;
uint32_t v, v2;
/*
* Clear the PCS interrupt from GEM_STATUS. The PCS register is
* latched, so we have to read it twice. There is only one bit in
* use, so the value is meaningless.
*/
bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
bus_space_read_4(t, h, GEM_MII_INTERRUP_STATUS);
if ((ifp->if_flags & IFF_UP) == 0)
return 1;
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) == 0)
return 1;
v = bus_space_read_4(t, h, GEM_MII_STATUS);
/* If we see remote fault, our link partner is probably going away */
if ((v & GEM_MII_STATUS_REM_FLT) != 0) {
gem_bitwait(sc, h, GEM_MII_STATUS, GEM_MII_STATUS_REM_FLT, 0);
v = bus_space_read_4(t, h, GEM_MII_STATUS);
/* Otherwise, we may need to wait after auto-negotiation completes */
} else if ((v & (GEM_MII_STATUS_LINK_STS | GEM_MII_STATUS_ANEG_CPT)) ==
GEM_MII_STATUS_ANEG_CPT) {
gem_bitwait(sc, h, GEM_MII_STATUS, 0, GEM_MII_STATUS_LINK_STS);
v = bus_space_read_4(t, h, GEM_MII_STATUS);
}
if ((v & GEM_MII_STATUS_LINK_STS) != 0) {
if (sc->sc_flags & GEM_LINK) {
return 1;
}
callout_stop(&sc->sc_tick_ch);
v = bus_space_read_4(t, h, GEM_MII_ANAR);
v2 = bus_space_read_4(t, h, GEM_MII_ANLPAR);
sc->sc_mii.mii_media_active = IFM_ETHER | IFM_1000_SX;
sc->sc_mii.mii_media_status = IFM_AVALID | IFM_ACTIVE;
v &= v2;
if (v & GEM_MII_ANEG_FUL_DUPLX) {
sc->sc_mii.mii_media_active |= IFM_FDX;
#ifdef GEM_DEBUG
aprint_debug_dev(sc->sc_dev, "link up: full duplex\n");
#endif
} else if (v & GEM_MII_ANEG_HLF_DUPLX) {
sc->sc_mii.mii_media_active |= IFM_HDX;
#ifdef GEM_DEBUG
aprint_debug_dev(sc->sc_dev, "link up: half duplex\n");
#endif
} else {
#ifdef GEM_DEBUG
aprint_debug_dev(sc->sc_dev, "duplex mismatch\n");
#endif
}
gem_statuschange(sc);
} else {
if ((sc->sc_flags & GEM_LINK) == 0) {
return 1;
}
sc->sc_mii.mii_media_active = IFM_ETHER | IFM_NONE;
sc->sc_mii.mii_media_status = IFM_AVALID;
#ifdef GEM_DEBUG
aprint_debug_dev(sc->sc_dev, "link down\n");
#endif
gem_statuschange(sc);
/* Start the 10 second timer */
callout_schedule(&sc->sc_tick_ch, hz * 10);
}
return 1;
}
int
gem_intr(void *v)
{
struct gem_softc *sc = v;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1;
uint32_t status;
int r = 0;
#ifdef GEM_DEBUG
char bits[128];
#endif
/* XXX We should probably mask out interrupts until we're done */
sc->sc_ev_intr.ev_count++;
status = bus_space_read_4(t, h, GEM_STATUS);
#ifdef GEM_DEBUG
snprintb(bits, sizeof(bits), GEM_INTR_BITS, status);
#endif
DPRINTF(sc, ("%s: gem_intr: cplt 0x%x status %s\n",
device_xname(sc->sc_dev), (status >> 19), bits));
if ((status & (GEM_INTR_RX_TAG_ERR | GEM_INTR_BERR)) != 0)
r |= gem_eint(sc, status);
/* We don't bother with GEM_INTR_TX_DONE */
if ((status & (GEM_INTR_TX_EMPTY | GEM_INTR_TX_INTME)) != 0) {
GEM_COUNTER_INCR(sc, sc_ev_txint);
r |= gem_tint(sc);
}
if ((status & (GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF)) != 0) {
GEM_COUNTER_INCR(sc, sc_ev_rxint);
r |= gem_rint(sc);
}
/* We should eventually do more than just print out error stats. */
if (status & GEM_INTR_TX_MAC) {
int txstat = bus_space_read_4(t, h, GEM_MAC_TX_STATUS);
if (txstat & ~GEM_MAC_TX_XMIT_DONE)
printf("%s: MAC tx fault, status %x\n",
device_xname(sc->sc_dev), txstat);
if (txstat & (GEM_MAC_TX_UNDERRUN | GEM_MAC_TX_PKT_TOO_LONG))
gem_init(ifp);
}
if (status & GEM_INTR_RX_MAC) {
int rxstat = bus_space_read_4(t, h, GEM_MAC_RX_STATUS);
/*
* At least with GEM_SUN_GEM and some GEM_SUN_ERI
* revisions GEM_MAC_RX_OVERFLOW happen often due to a
* silicon bug so handle them silently. So if we detect
* an RX FIFO overflow, we fire off a timer, and check
* whether we're still making progress by looking at the
* RX FIFO write and read pointers.
*/
if (rxstat & GEM_MAC_RX_OVERFLOW) {
if_statinc(ifp, if_ierrors);
aprint_error_dev(sc->sc_dev,
"receive error: RX overflow sc->rxptr %d, complete %d\n", sc->sc_rxptr, bus_space_read_4(t, h, GEM_RX_COMPLETION));
sc->sc_rx_fifo_wr_ptr =
bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
sc->sc_rx_fifo_rd_ptr =
bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
callout_schedule(&sc->sc_rx_watchdog, 400);
} else if (rxstat & ~(GEM_MAC_RX_DONE | GEM_MAC_RX_FRAME_CNT))
printf("%s: MAC rx fault, status 0x%02x\n",
device_xname(sc->sc_dev), rxstat);
}
if (status & GEM_INTR_PCS) {
r |= gem_pint(sc);
}
/* Do we need to do anything with these?
if ((status & GEM_MAC_CONTROL_STATUS) != 0) {
status2 = bus_read_4(sc->sc_res[0], GEM_MAC_CONTROL_STATUS);
if ((status2 & GEM_MAC_PAUSED) != 0)
aprintf_debug_dev(sc->sc_dev, "PAUSE received (%d slots)\n",
GEM_MAC_PAUSE_TIME(status2));
if ((status2 & GEM_MAC_PAUSE) != 0)
aprintf_debug_dev(sc->sc_dev, "transited to PAUSE state\n");
if ((status2 & GEM_MAC_RESUME) != 0)
aprintf_debug_dev(sc->sc_dev, "transited to non-PAUSE state\n");
}
if ((status & GEM_INTR_MIF) != 0)
aprintf_debug_dev(sc->sc_dev, "MIF interrupt\n");
*/
rnd_add_uint32(&sc->rnd_source, status);
return (r);
}
void
gem_rx_watchdog(void *arg)
{
struct gem_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1;
uint32_t rx_fifo_wr_ptr;
uint32_t rx_fifo_rd_ptr;
uint32_t state;
if ((ifp->if_flags & IFF_RUNNING) == 0) {
aprint_error_dev(sc->sc_dev, "receiver not running\n");
return;
}
rx_fifo_wr_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_WR_PTR);
rx_fifo_rd_ptr = bus_space_read_4(t, h, GEM_RX_FIFO_RD_PTR);
state = bus_space_read_4(t, h, GEM_MAC_MAC_STATE);
if ((state & GEM_MAC_STATE_OVERFLOW) == GEM_MAC_STATE_OVERFLOW &&
((rx_fifo_wr_ptr == rx_fifo_rd_ptr) ||
((sc->sc_rx_fifo_wr_ptr == rx_fifo_wr_ptr) &&
(sc->sc_rx_fifo_rd_ptr == rx_fifo_rd_ptr))))
{
/*
* The RX state machine is still in overflow state and
* the RX FIFO write and read pointers seem to be
* stuck. Whack the chip over the head to get things
* going again.
*/
aprint_error_dev(sc->sc_dev,
"receiver stuck in overflow, resetting\n");
gem_init(ifp);
} else {
if ((state & GEM_MAC_STATE_OVERFLOW) != GEM_MAC_STATE_OVERFLOW) {
aprint_error_dev(sc->sc_dev,
"rx_watchdog: not in overflow state: 0x%x\n",
state);
}
if (rx_fifo_wr_ptr != rx_fifo_rd_ptr) {
aprint_error_dev(sc->sc_dev,
"rx_watchdog: wr & rd ptr different\n");
}
if (sc->sc_rx_fifo_wr_ptr != rx_fifo_wr_ptr) {
aprint_error_dev(sc->sc_dev,
"rx_watchdog: wr pointer != saved\n");
}
if (sc->sc_rx_fifo_rd_ptr != rx_fifo_rd_ptr) {
aprint_error_dev(sc->sc_dev,
"rx_watchdog: rd pointer != saved\n");
}
aprint_error_dev(sc->sc_dev, "resetting anyway\n");
gem_init(ifp);
}
}
void
gem_watchdog(struct ifnet *ifp)
{
struct gem_softc *sc = ifp->if_softc;
DPRINTF(sc, ("gem_watchdog: GEM_RX_CONFIG %x GEM_MAC_RX_STATUS %x "
"GEM_MAC_RX_CONFIG %x\n",
bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_RX_CONFIG),
bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_STATUS),
bus_space_read_4(sc->sc_bustag, sc->sc_h1, GEM_MAC_RX_CONFIG)));
log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
if_statinc(ifp, if_oerrors);
/* Try to get more packets going. */
gem_init(ifp);
gem_start(ifp);
}
/*
* Initialize the MII Management Interface
*/
void
gem_mifinit(struct gem_softc *sc)
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_h1;
/* Configure the MIF in frame mode */
sc->sc_mif_config = bus_space_read_4(t, mif, GEM_MIF_CONFIG);
sc->sc_mif_config &= ~GEM_MIF_CONFIG_BB_ENA;
bus_space_write_4(t, mif, GEM_MIF_CONFIG, sc->sc_mif_config);
}
/*
* MII interface
*
* The GEM MII interface supports at least three different operating modes:
*
* Bitbang mode is implemented using data, clock and output enable registers.
*
* Frame mode is implemented by loading a complete frame into the frame
* register and polling the valid bit for completion.
*
* Polling mode uses the frame register but completion is indicated by
* an interrupt.
*
*/
static int
gem_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
{
struct gem_softc *sc = device_private(self);
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_h1;
int n;
uint32_t v;
#ifdef GEM_DEBUG1
if (sc->sc_debug)
printf("gem_mii_readreg: PHY %d reg %d\n", phy, reg);
#endif
/* Construct the frame command */
v = (reg << GEM_MIF_REG_SHIFT) | (phy << GEM_MIF_PHY_SHIFT) |
GEM_MIF_FRAME_READ;
bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
for (n = 0; n < 100; n++) {
DELAY(1);
v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
if (v & GEM_MIF_FRAME_TA0) {
*val = v & GEM_MIF_FRAME_DATA;
return 0;
}
}
printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));
return ETIMEDOUT;
}
static int
gem_mii_writereg(device_t self, int phy, int reg, uint16_t val)
{
struct gem_softc *sc = device_private(self);
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mif = sc->sc_h1;
int n;
uint32_t v;
#ifdef GEM_DEBUG1
if (sc->sc_debug)
printf("gem_mii_writereg: PHY %d reg %d val %x\n",
phy, reg, val);
#endif
/* Construct the frame command */
v = GEM_MIF_FRAME_WRITE |
(phy << GEM_MIF_PHY_SHIFT) |
(reg << GEM_MIF_REG_SHIFT) |
(val & GEM_MIF_FRAME_DATA);
bus_space_write_4(t, mif, GEM_MIF_FRAME, v);
for (n = 0; n < 100; n++) {
DELAY(1);
v = bus_space_read_4(t, mif, GEM_MIF_FRAME);
if (v & GEM_MIF_FRAME_TA0)
return 0;
}
printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
return ETIMEDOUT;
}
static void
gem_mii_statchg(struct ifnet *ifp)
{
struct gem_softc *sc = ifp->if_softc;
#ifdef GEM_DEBUG
int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
#endif
#ifdef GEM_DEBUG
if (sc->sc_debug)
printf("gem_mii_statchg: status change: phy = %d\n",
sc->sc_phys[instance]);
#endif
gem_statuschange(sc);
}
/*
* Common status change for gem_mii_statchg() and gem_pint()
*/
void
gem_statuschange(struct gem_softc* sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t mac = sc->sc_h1;
int gigabit;
uint32_t rxcfg, txcfg, v;
if ((sc->sc_mii.mii_media_status & IFM_ACTIVE) != 0 &&
IFM_SUBTYPE(sc->sc_mii.mii_media_active) != IFM_NONE)
sc->sc_flags |= GEM_LINK;
else
sc->sc_flags &= ~GEM_LINK;
if (sc->sc_ethercom.ec_if.if_baudrate == IF_Mbps(1000))
gigabit = 1;
else
gigabit = 0;
/*
* The configuration done here corresponds to the steps F) and
* G) and as far as enabling of RX and TX MAC goes also step H)
* of the initialization sequence outlined in section 3.2.1 of
* the GEM Gigabit Ethernet ASIC Specification.
*/
rxcfg = bus_space_read_4(t, mac, GEM_MAC_RX_CONFIG);
rxcfg &= ~(GEM_MAC_RX_CARR_EXTEND | GEM_MAC_RX_ENABLE);
txcfg = GEM_MAC_TX_ENA_IPG0 | GEM_MAC_TX_NGU | GEM_MAC_TX_NGU_LIMIT;
if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
txcfg |= GEM_MAC_TX_IGN_CARRIER | GEM_MAC_TX_IGN_COLLIS;
else if (gigabit) {
rxcfg |= GEM_MAC_RX_CARR_EXTEND;
txcfg |= GEM_MAC_RX_CARR_EXTEND;
}
bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, 0);
bus_space_barrier(t, mac, GEM_MAC_TX_CONFIG, 4,
BUS_SPACE_BARRIER_WRITE);
if (!gem_bitwait(sc, mac, GEM_MAC_TX_CONFIG, GEM_MAC_TX_ENABLE, 0))
aprint_normal_dev(sc->sc_dev, "cannot disable TX MAC\n");
bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG, txcfg);
bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, 0);
bus_space_barrier(t, mac, GEM_MAC_RX_CONFIG, 4,
BUS_SPACE_BARRIER_WRITE);
if (!gem_bitwait(sc, mac, GEM_MAC_RX_CONFIG, GEM_MAC_RX_ENABLE, 0))
aprint_normal_dev(sc->sc_dev, "cannot disable RX MAC\n");
bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG, rxcfg);
v = bus_space_read_4(t, mac, GEM_MAC_CONTROL_CONFIG) &
~(GEM_MAC_CC_RX_PAUSE | GEM_MAC_CC_TX_PAUSE);
bus_space_write_4(t, mac, GEM_MAC_CONTROL_CONFIG, v);
if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) == 0 &&
gigabit != 0)
bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
GEM_MAC_SLOT_TIME_CARR_EXTEND);
else
bus_space_write_4(t, mac, GEM_MAC_SLOT_TIME,
GEM_MAC_SLOT_TIME_NORMAL);
/* XIF Configuration */
if (sc->sc_flags & GEM_LINK)
v = GEM_MAC_XIF_LINK_LED;
else
v = 0;
v |= GEM_MAC_XIF_TX_MII_ENA;
/* If an external transceiver is connected, enable its MII drivers */
sc->sc_mif_config = bus_space_read_4(t, mac, GEM_MIF_CONFIG);
if ((sc->sc_flags &(GEM_SERDES | GEM_SERIAL)) == 0) {
if ((sc->sc_mif_config & GEM_MIF_CONFIG_MDI1) != 0) {
if (gigabit)
v |= GEM_MAC_XIF_GMII_MODE;
else
v &= ~GEM_MAC_XIF_GMII_MODE;
} else
/* Internal MII needs buf enable */
v |= GEM_MAC_XIF_MII_BUF_ENA;
/* MII needs echo disable if half duplex. */
if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
/* turn on full duplex LED */
v |= GEM_MAC_XIF_FDPLX_LED;
else
/* half duplex -- disable echo */
v |= GEM_MAC_XIF_ECHO_DISABL;
} else {
if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0)
v |= GEM_MAC_XIF_FDPLX_LED;
v |= GEM_MAC_XIF_GMII_MODE;
}
bus_space_write_4(t, mac, GEM_MAC_XIF_CONFIG, v);
if ((ifp->if_flags & IFF_RUNNING) != 0 &&
(sc->sc_flags & GEM_LINK) != 0) {
bus_space_write_4(t, mac, GEM_MAC_TX_CONFIG,
txcfg | GEM_MAC_TX_ENABLE);
bus_space_write_4(t, mac, GEM_MAC_RX_CONFIG,
rxcfg | GEM_MAC_RX_ENABLE);
}
}
int
gem_ser_mediachange(struct ifnet *ifp)
{
struct gem_softc *sc = ifp->if_softc;
u_int s, t;
if (IFM_TYPE(sc->sc_mii.mii_media.ifm_media) != IFM_ETHER)
return EINVAL;
s = IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_media);
if (s == IFM_AUTO) {
if (sc->sc_mii_media != s) {
#ifdef GEM_DEBUG
aprint_debug_dev(sc->sc_dev, "setting media to auto\n");
#endif
sc->sc_mii_media = s;
if (ifp->if_flags & IFF_UP) {
gem_pcs_stop(sc, 0);
gem_pcs_start(sc);
}
}
return 0;
}
if (s == IFM_1000_SX) {
t = IFM_OPTIONS(sc->sc_mii.mii_media.ifm_media)
& (IFM_FDX | IFM_HDX);
if ((sc->sc_mii_media & (IFM_FDX | IFM_HDX)) != t) {
sc->sc_mii_media &= ~(IFM_FDX | IFM_HDX);
sc->sc_mii_media |= t;
#ifdef GEM_DEBUG
aprint_debug_dev(sc->sc_dev,
"setting media to 1000baseSX-%s\n",
t == IFM_FDX ? "FDX" : "HDX");
#endif
if (ifp->if_flags & IFF_UP) {
gem_pcs_stop(sc, 0);
gem_pcs_start(sc);
}
}
return 0;
}
return EINVAL;
}
void
gem_ser_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct gem_softc *sc = ifp->if_softc;
if ((ifp->if_flags & IFF_UP) == 0)
return;
ifmr->ifm_active = sc->sc_mii.mii_media_active;
ifmr->ifm_status = sc->sc_mii.mii_media_status;
}
static int
gem_ifflags_cb(struct ethercom *ec)
{
struct ifnet *ifp = &ec->ec_if;
struct gem_softc *sc = ifp->if_softc;
u_short change = ifp->if_flags ^ sc->sc_if_flags;
if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0)
return ENETRESET;
else if ((change & IFF_PROMISC) != 0)
gem_setladrf(sc);
return 0;
}
/*
* Process an ioctl request.
*/
int
gem_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
{
struct gem_softc *sc = ifp->if_softc;
int s, error = 0;
s = splnet();
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
error = 0;
if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
;
else if (ifp->if_flags & IFF_RUNNING) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
gem_setladrf(sc);
}
}
/* Try to get things going again */
if (ifp->if_flags & IFF_UP)
gem_start(ifp);
splx(s);
return (error);
}
static void
gem_inten(struct gem_softc *sc)
{
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1;
uint32_t v;
if ((sc->sc_flags & (GEM_SERDES | GEM_SERIAL)) != 0)
v = GEM_INTR_PCS;
else
v = GEM_INTR_MIF;
bus_space_write_4(t, h, GEM_INTMASK,
~(GEM_INTR_TX_INTME |
GEM_INTR_TX_EMPTY |
GEM_INTR_TX_MAC |
GEM_INTR_RX_DONE | GEM_INTR_RX_NOBUF |
GEM_INTR_RX_TAG_ERR | GEM_INTR_MAC_CONTROL |
GEM_INTR_BERR | v));
}
bool
gem_resume(device_t self, const pmf_qual_t *qual)
{
struct gem_softc *sc = device_private(self);
gem_inten(sc);
return true;
}
bool
gem_suspend(device_t self, const pmf_qual_t *qual)
{
struct gem_softc *sc = device_private(self);
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1;
bus_space_write_4(t, h, GEM_INTMASK, ~(uint32_t)0);
return true;
}
bool
gem_shutdown(device_t self, int howto)
{
struct gem_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
gem_stop(ifp, 1);
return true;
}
/*
* Set up the logical address filter.
*/
void
gem_setladrf(struct gem_softc *sc)
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &ec->ec_if;
struct ether_multi *enm;
struct ether_multistep step;
bus_space_tag_t t = sc->sc_bustag;
bus_space_handle_t h = sc->sc_h1;
uint32_t crc;
uint32_t hash[16];
uint32_t v;
int i;
/* Get current RX configuration */
v = bus_space_read_4(t, h, GEM_MAC_RX_CONFIG);
/*
* Turn off promiscuous mode, promiscuous group mode (all multicast),
* and hash filter. Depending on the case, the right bit will be
* enabled.
*/
v &= ~(GEM_MAC_RX_PROMISCUOUS | GEM_MAC_RX_HASH_FILTER |
GEM_MAC_RX_PROMISC_GRP);
if ((ifp->if_flags & IFF_PROMISC) != 0) {
/* Turn on promiscuous mode */
v |= GEM_MAC_RX_PROMISCUOUS;
ifp->if_flags |= IFF_ALLMULTI;
goto chipit;
}
/*
* Set up multicast address filter by passing all multicast addresses
* through a crc generator, and then using the high order 8 bits as an
* index into the 256 bit logical address filter. The high order 4
* bits selects the word, while the other 4 bits select the bit within
* the word (where bit 0 is the MSB).
*/
/* Clear hash table */
memset(hash, 0, sizeof(hash));
ETHER_LOCK(ec);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
* XXX should use the address filters for this
*/
ifp->if_flags |= IFF_ALLMULTI;
v |= GEM_MAC_RX_PROMISC_GRP;
ETHER_UNLOCK(ec);
goto chipit;
}
/* Get the LE CRC32 of the address */
crc = ether_crc32_le(enm->enm_addrlo, sizeof(enm->enm_addrlo));
/* Just want the 8 most significant bits. */
crc >>= 24;
/* Set the corresponding bit in the filter. */
hash[crc >> 4] |= 1 << (15 - (crc & 15));
ETHER_NEXT_MULTI(step, enm);
}
ETHER_UNLOCK(ec);
v |= GEM_MAC_RX_HASH_FILTER;
ifp->if_flags &= ~IFF_ALLMULTI;
/* Now load the hash table into the chip (if we are using it) */
for (i = 0; i < 16; i++) {
bus_space_write_4(t, h,
GEM_MAC_HASH0 + i * (GEM_MAC_HASH1-GEM_MAC_HASH0),
hash[i]);
}
chipit:
sc->sc_if_flags = ifp->if_flags;
bus_space_write_4(t, h, GEM_MAC_RX_CONFIG, v);
}