NetBSD/sys/netcan/can.c

1006 lines
21 KiB
C

/* $NetBSD: can.c,v 1.13 2022/11/04 09:00:58 ozaki-r Exp $ */
/*-
* Copyright (c) 2003, 2017 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Robert Swindells and Manuel Bouyer
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: can.c,v 1.13 2022/11/04 09:00:58 ozaki-r Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/ioctl.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/errno.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/proc.h>
#include <sys/kauth.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/pktqueue.h>
#include <net/route.h>
#include <net/bpf.h>
#include <netcan/can.h>
#include <netcan/can_pcb.h>
#include <netcan/can_var.h>
struct canpcb canpcb;
#if 0
struct canpcb canrawpcb;
#endif
struct canpcbtable cbtable;
pktqueue_t * can_pktq __read_mostly;
int canqmaxlen = IFQ_MAXLEN;
int can_copy_output = 0;
int can_output_cnt = 0;
struct mbuf *can_lastout;
int can_sendspace = 4096; /* really max datagram size */
int can_recvspace = 40 * (1024 + sizeof(struct sockaddr_can));
/* 40 1K datagrams */
#ifndef CANHASHSIZE
#define CANHASHSIZE 128
#endif
int canhashsize = CANHASHSIZE;
#ifdef MBUFTRACE
static struct mowner can_mowner = MOWNER_INIT("can", "");
static struct mowner can_rx_mowner = MOWNER_INIT("can", "rx");
static struct mowner can_tx_mowner = MOWNER_INIT("can", "tx");
#endif
static int can_output(struct mbuf *, struct canpcb *);
static int can_control(struct socket *, u_long, void *, struct ifnet *);
static void canintr(void *);
void
can_init(void)
{
can_pktq = pktq_create(canqmaxlen, canintr, NULL);
KASSERT(can_pktq != NULL);
can_pcbinit(&cbtable, canhashsize, canhashsize);
}
/*
* Generic control operations (ioctl's).
*/
static int
can_get_netlink(struct ifnet *ifp, struct ifdrv *ifd)
{
struct canif_softc *csc = ifp->if_softc;
if (ifp->if_dlt != DLT_CAN_SOCKETCAN || csc == NULL)
return EOPNOTSUPP;
switch(ifd->ifd_cmd) {
case CANGLINKTIMECAP:
if (ifd->ifd_len != sizeof(struct can_link_timecaps))
return EINVAL;
return copyout(&csc->csc_timecaps, ifd->ifd_data, ifd->ifd_len);
case CANGLINKTIMINGS:
if (ifd->ifd_len != sizeof(struct can_link_timings))
return EINVAL;
return copyout(&csc->csc_timings, ifd->ifd_data, ifd->ifd_len);
case CANGLINKMODE:
if (ifd->ifd_len != sizeof(uint32_t))
return EINVAL;
return copyout(&csc->csc_linkmodes, ifd->ifd_data, ifd->ifd_len);
}
return EOPNOTSUPP;
}
static int
can_set_netlink(struct ifnet *ifp, struct ifdrv *ifd)
{
struct canif_softc *csc = ifp->if_softc;
uint32_t mode;
int error;
if (ifp->if_dlt != DLT_CAN_SOCKETCAN || csc == NULL)
return EOPNOTSUPP;
error = kauth_authorize_network(kauth_cred_get(),
KAUTH_NETWORK_INTERFACE,
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp,
(void *)SIOCSDRVSPEC, NULL);
if (error != 0)
return error;
if ((ifp->if_flags & IFF_UP) != 0) {
return EBUSY;
}
switch(ifd->ifd_cmd) {
case CANSLINKTIMINGS:
if (ifd->ifd_len != sizeof(struct can_link_timings))
return EINVAL;
return copyin(ifd->ifd_data, &csc->csc_timings, ifd->ifd_len);
case CANSLINKMODE:
case CANCLINKMODE:
if (ifd->ifd_len != sizeof(uint32_t))
return EINVAL;
error = copyin(ifd->ifd_data, &mode, ifd->ifd_len);
if (error)
return error;
if ((mode & csc->csc_timecaps.cltc_linkmode_caps) != mode)
return EINVAL;
/* XXX locking */
if (ifd->ifd_cmd == CANSLINKMODE)
csc->csc_linkmodes |= mode;
else
csc->csc_linkmodes &= ~mode;
return 0;
}
return EOPNOTSUPP;
}
/* ARGSUSED */
static int
can_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp)
{
#if 0
struct can_ifreq *cfr = (struct can_ifreq *)data;
int error = 0;
#endif
if (ifp == NULL)
return (EOPNOTSUPP);
switch (cmd) {
case SIOCGDRVSPEC:
return can_get_netlink(ifp, (struct ifdrv *) data);
case SIOCSDRVSPEC:
return can_set_netlink(ifp, (struct ifdrv *) data);
default:
if (ifp->if_ioctl == 0)
return (EOPNOTSUPP);
return (if_ioctl(ifp, cmd, data));
}
return (0);
}
static int
can_purgeif(struct socket *so, struct ifnet *ifp)
{
return 0;
}
void
can_ifattach(struct ifnet *ifp)
{
if_attach(ifp);
ifp->if_mtu = sizeof(struct can_frame);
ifp->if_type = IFT_OTHER;
ifp->if_hdrlen = 0;
ifp->if_addrlen = 0;
ifp->if_dlt = DLT_CAN_SOCKETCAN;
ifp->if_output = NULL; /* unused */
IFQ_SET_READY(&ifp->if_snd);
if_alloc_sadl(ifp);
bpf_attach(ifp, DLT_CAN_SOCKETCAN, 0);
}
void
can_ifdetach(struct ifnet *ifp)
{
bpf_detach(ifp);
if_detach(ifp);
}
void
can_ifinit_timings(struct canif_softc *csc)
{
/* uninitialized parameters is all-one */
memset(&csc->csc_timings, 0xff, sizeof(struct can_link_timings));
}
static int
can_output(struct mbuf *m, struct canpcb *canp)
{
struct ifnet *ifp;
struct m_tag *sotag;
struct canif_softc *csc;
if (canp == NULL) {
printf("can_output: no pcb\n");
return EINVAL;
}
ifp = canp->canp_ifp;
if (ifp == 0) {
return EDESTADDRREQ;
}
csc = ifp->if_softc;
if (csc && (csc->csc_linkmodes & CAN_LINKMODE_LISTENONLY)) {
return ENETUNREACH;
}
sotag = m_tag_get(PACKET_TAG_SO, sizeof(struct socket *), PR_NOWAIT);
if (sotag == NULL) {
if_statinc(ifp, if_oerrors);
return ENOMEM;
}
mutex_enter(&canp->canp_mtx);
canp_ref(canp);
mutex_exit(&canp->canp_mtx);
*(struct canpcb **)(sotag + 1) = canp;
m_tag_prepend(m, sotag);
if (m->m_len <= ifp->if_mtu) {
can_output_cnt++;
return ifq_enqueue(ifp, m);
} else
return EMSGSIZE;
}
/*
* cleanup mbuf tag, keeping the PACKET_TAG_SO tag
*/
void
can_mbuf_tag_clean(struct mbuf *m)
{
struct m_tag *sotag;
sotag = m_tag_find(m, PACKET_TAG_SO);
if (sotag)
m_tag_unlink(m, sotag);
m_tag_delete_chain(m);
if (sotag)
m_tag_prepend(m, sotag);
}
/*
* Process a received CAN frame
* the packet is in the mbuf chain m with
* the CAN header.
*/
void
can_input(struct ifnet *ifp, struct mbuf *m)
{
if ((ifp->if_flags & IFF_UP) == 0) {
m_freem(m);
return;
}
const int pktlen = m->m_pkthdr.len;
if (__predict_false(!pktq_enqueue(can_pktq, m, 0))) {
m_freem(m);
} else {
if_statadd2(ifp, if_ipackets, 1, if_ibytes, pktlen);
}
}
static void
canintr(void *arg __unused)
{
int rcv_ifindex;
struct mbuf *m;
struct sockaddr_can from;
struct canpcb *canp;
struct m_tag *sotag;
struct canpcb *sender_canp;
mutex_enter(softnet_lock);
while ((m = pktq_dequeue(can_pktq)) != NULL) {
#if 0
m_claim(m, &can_rx_mowner);
#endif
sotag = m_tag_find(m, PACKET_TAG_SO);
if (sotag) {
sender_canp = *(struct canpcb **)(sotag + 1);
m_tag_delete(m, sotag);
KASSERT(sender_canp != NULL);
/* if the sender doesn't want loopback, don't do it */
if ((sender_canp->canp_flags & CANP_NO_LOOPBACK) != 0) {
m_freem(m);
canp_unref(sender_canp);
continue;
}
} else {
sender_canp = NULL;
}
memset(&from, 0, sizeof(struct sockaddr_can));
rcv_ifindex = m->m_pkthdr.rcvif_index;
from.can_ifindex = rcv_ifindex;
from.can_len = sizeof(struct sockaddr_can);
from.can_family = AF_CAN;
TAILQ_FOREACH(canp, &cbtable.canpt_queue, canp_queue) {
struct mbuf *mc;
mutex_enter(&canp->canp_mtx);
/* skip if we're detached */
if (canp->canp_state == CANP_DETACHED) {
mutex_exit(&canp->canp_mtx);
continue;
}
/* don't loop back to sockets on other interfaces */
if (canp->canp_ifp != NULL &&
canp->canp_ifp->if_index != rcv_ifindex) {
mutex_exit(&canp->canp_mtx);
continue;
}
/* don't loop back to myself if I don't want it */
if (canp == sender_canp &&
(canp->canp_flags & CANP_RECEIVE_OWN) == 0) {
mutex_exit(&canp->canp_mtx);
continue;
}
/* skip if the accept filter doen't match this pkt */
if (!can_pcbfilter(canp, m)) {
mutex_exit(&canp->canp_mtx);
continue;
}
if (TAILQ_NEXT(canp, canp_queue) != NULL) {
/*
* we can't be sure we won't need
* the original mbuf later so copy
*/
mc = m_copypacket(m, M_NOWAIT);
if (mc == NULL) {
/* deliver this mbuf and abort */
mc = m;
m = NULL;
}
} else {
mc = m;
m = NULL;
}
if (sbappendaddr(&canp->canp_socket->so_rcv,
(struct sockaddr *) &from, mc,
(struct mbuf *) 0) == 0) {
soroverflow(canp->canp_socket);
m_freem(mc);
} else
sorwakeup(canp->canp_socket);
mutex_exit(&canp->canp_mtx);
if (m == NULL)
break;
}
if (sender_canp) {
canp_unref(sender_canp);
}
/* If it didn't go anywhere just delete it */
if (m) {
m_freem(m);
}
}
mutex_exit(softnet_lock);
}
void
can_bpf_mtap(struct ifnet *ifp, struct mbuf *m, bool do_softint)
{
/* bpf wants the CAN id in network byte order */
struct can_frame *cf;
canid_t oid;
cf = mtod(m, struct can_frame *);
oid = cf->can_id;
cf->can_id = htonl(oid);
/* Assume the direction is input when do_softint is set. */
if (do_softint)
bpf_mtap_softint(ifp, m);
else
bpf_mtap(ifp, m, BPF_D_OUT);
cf->can_id = oid;
}
static int
can_attach(struct socket *so, int proto)
{
int error;
KASSERT(sotocanpcb(so) == NULL);
/* Assign the lock (must happen even if we will error out). */
sosetlock(so);
#ifdef MBUFTRACE
so->so_mowner = &can_mowner;
so->so_rcv.sb_mowner = &can_rx_mowner;
so->so_snd.sb_mowner = &can_tx_mowner;
#endif
if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
error = soreserve(so, can_sendspace, can_recvspace);
if (error) {
return error;
}
}
error = can_pcballoc(so, &cbtable);
if (error) {
return error;
}
KASSERT(solocked(so));
return error;
}
static void
can_detach(struct socket *so)
{
struct canpcb *canp;
KASSERT(solocked(so));
canp = sotocanpcb(so);
can_pcbdetach(canp);
}
static int
can_accept(struct socket *so, struct sockaddr *nam)
{
KASSERT(solocked(so));
panic("can_accept");
return EOPNOTSUPP;
}
static int
can_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
{
struct canpcb *canp = sotocanpcb(so);
struct sockaddr_can *scan = (struct sockaddr_can *)nam;
KASSERT(solocked(so));
KASSERT(nam != NULL);
return can_pcbbind(canp, scan, l);
}
static int
can_listen(struct socket *so, struct lwp *l)
{
KASSERT(solocked(so));
return EOPNOTSUPP;
}
static int
can_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
{
struct canpcb *canp = sotocanpcb(so);
int error = 0;
KASSERT(solocked(so));
KASSERT(canp != NULL);
KASSERT(nam != NULL);
error = can_pcbconnect(canp, (struct sockaddr_can *)nam);
if (! error)
soisconnected(so);
return error;
}
static int
can_connect2(struct socket *so, struct socket *so2)
{
KASSERT(solocked(so));
return EOPNOTSUPP;
}
static int
can_disconnect(struct socket *so)
{
struct canpcb *canp = sotocanpcb(so);
KASSERT(solocked(so));
KASSERT(canp != NULL);
/*soisdisconnected(so);*/
so->so_state &= ~SS_ISCONNECTED; /* XXX */
can_pcbdisconnect(canp);
return 0;
}
static int
can_shutdown(struct socket *so)
{
KASSERT(solocked(so));
socantsendmore(so);
return 0;
}
static int
can_abort(struct socket *so)
{
KASSERT(solocked(so));
panic("can_abort");
return EOPNOTSUPP;
}
static int
can_ioctl(struct socket *so, u_long cmd, void *nam, struct ifnet *ifp)
{
return can_control(so, cmd, nam, ifp);
}
static int
can_stat(struct socket *so, struct stat *ub)
{
KASSERT(solocked(so));
/* stat: don't bother with a blocksize. */
return 0;
}
static int
can_peeraddr(struct socket *so, struct sockaddr *nam)
{
KASSERT(solocked(so));
KASSERT(sotocanpcb(so) != NULL);
KASSERT(nam != NULL);
return EOPNOTSUPP;
}
static int
can_sockaddr(struct socket *so, struct sockaddr *nam)
{
KASSERT(solocked(so));
KASSERT(sotocanpcb(so) != NULL);
KASSERT(nam != NULL);
can_setsockaddr(sotocanpcb(so), (struct sockaddr_can *)nam);
return 0;
}
static int
can_rcvd(struct socket *so, int flags, struct lwp *l)
{
KASSERT(solocked(so));
return EOPNOTSUPP;
}
static int
can_recvoob(struct socket *so, struct mbuf *m, int flags)
{
KASSERT(solocked(so));
return EOPNOTSUPP;
}
static int
can_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
struct mbuf *control, struct lwp *l)
{
struct canpcb *canp = sotocanpcb(so);
int error = 0;
int s;
if (control && control->m_len) {
m_freem(control);
error = EINVAL;
goto err;
}
if (m->m_len > sizeof(struct can_frame) ||
m->m_len < offsetof(struct can_frame, can_dlc)) {
error = EINVAL;
goto err;
}
/* we expect all data in the first mbuf */
KASSERT((m->m_flags & M_PKTHDR) != 0);
KASSERT(m->m_len == m->m_pkthdr.len);
if (nam) {
if ((so->so_state & SS_ISCONNECTED) != 0) {
error = EISCONN;
goto err;
}
s = splnet();
error = can_pcbbind(canp, (struct sockaddr_can *)nam, l);
if (error) {
splx(s);
goto err;
}
} else {
if ((so->so_state & SS_ISCONNECTED) == 0) {
error = EDESTADDRREQ;
goto err;
}
}
error = can_output(m, canp);
if (nam) {
struct sockaddr_can lscan;
memset(&lscan, 0, sizeof(lscan));
lscan.can_family = AF_CAN;
lscan.can_len = sizeof(lscan);
can_pcbbind(canp, &lscan, l);
}
if (error)
goto err;
return 0;
err:
m_freem(m);
return error;
}
static int
can_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control)
{
KASSERT(solocked(so));
m_freem(m);
m_freem(control);
return EOPNOTSUPP;
}
#if 0
int
can_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
struct mbuf *control, struct lwp *l)
{
struct canpcb *canp;
int s;
int error = 0;
if (req == PRU_CONTROL)
return (can_control(so, (long)m, nam,
(struct ifnet *)control));
if (req == PRU_PURGEIF) {
#if 0
can_pcbpurgeif0(&udbtable, (struct ifnet *)control);
can_purgeif((struct ifnet *)control);
can_pcbpurgeif(&udbtable, (struct ifnet *)control);
#endif
return (0);
}
s = splsoftnet();
canp = sotocanpcb(so);
#ifdef DIAGNOSTIC
if (req != PRU_SEND && req != PRU_SENDOOB && control)
panic("can_usrreq: unexpected control mbuf");
#endif
if (canp == 0 && req != PRU_ATTACH) {
printf("can_usrreq: no pcb %p %d\n", canp, req);
error = EINVAL;
goto release;
}
/*
* Note: need to block can_input while changing
* the can pcb queue and/or pcb addresses.
*/
switch (req) {
case PRU_ATTACH:
if (canp != 0) {
error = EISCONN;
break;
}
#ifdef MBUFTRACE
so->so_mowner = &can_mowner;
so->so_rcv.sb_mowner = &can_rx_mowner;
so->so_snd.sb_mowner = &can_tx_mowner;
#endif
if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
error = soreserve(so, can_sendspace, can_recvspace);
if (error)
break;
}
error = can_pcballoc(so, &cbtable);
if (error)
break;
canp = sotocanpcb(so);
#if 0
inp->inp_ip.ip_ttl = ip_defttl;
#endif
break;
case PRU_DETACH:
can_pcbdetach(canp);
break;
case PRU_BIND:
error = can_pcbbind(canp, nam, l);
break;
case PRU_LISTEN:
error = EOPNOTSUPP;
break;
case PRU_CONNECT:
error = can_pcbconnect(canp, nam);
if (error)
break;
soisconnected(so);
break;
case PRU_CONNECT2:
error = EOPNOTSUPP;
break;
case PRU_DISCONNECT:
/*soisdisconnected(so);*/
so->so_state &= ~SS_ISCONNECTED; /* XXX */
can_pcbdisconnect(canp);
can_pcbstate(canp, CANP_BOUND); /* XXX */
break;
case PRU_SHUTDOWN:
socantsendmore(so);
break;
case PRU_RCVD:
error = EOPNOTSUPP;
break;
case PRU_SEND:
break;
case PRU_SENSE:
/*
* stat: don't bother with a blocksize.
*/
splx(s);
return (0);
case PRU_RCVOOB:
error = EOPNOTSUPP;
break;
case PRU_SENDOOB:
m_freem(control);
m_freem(m);
error = EOPNOTSUPP;
break;
case PRU_SOCKADDR:
break;
case PRU_PEERADDR:
error = EOPNOTSUPP;
break;
default:
panic("can_usrreq");
}
release:
splx(s);
return (error);
}
#endif
#if 0
static void
can_notify(struct canpcb *canp, int errno)
{
canp->canp_socket->so_error = errno;
sorwakeup(canp->canp_socket);
sowwakeup(canp->canp_socket);
}
void *
can_ctlinput(int cmd, struct sockaddr *sa, void *v)
{
struct ip *ip = v;
struct canhdr *uh;
void (*notify) __P((struct inpcb *, int)) = can_notify;
int errno;
if (sa->sa_family != AF_CAN
|| sa->sa_len != sizeof(struct sockaddr_can))
return NULL;
if ((unsigned)cmd >= PRC_NCMDS)
return NULL;
errno = inetctlerrmap[cmd];
if (PRC_IS_REDIRECT(cmd))
notify = inpcb_rtchange, ip = 0;
else if (cmd == PRC_HOSTDEAD)
ip = 0;
else if (errno == 0)
return NULL;
if (ip) {
uh = (struct canhdr *)((caddr_t)ip + (ip->ip_hl << 2));
inpcb_notify(&udbtable, satosin(sa)->sin_addr, uh->uh_dport,
ip->ip_src, uh->uh_sport, errno, notify);
/* XXX mapped address case */
} else
can_pcbnotifyall(&cbtable, satoscan(sa)->scan_addr, errno,
notify);
return NULL;
}
#endif
static int
can_raw_getop(struct canpcb *canp, struct sockopt *sopt)
{
int optval = 0;
int error;
switch (sopt->sopt_name) {
case CAN_RAW_LOOPBACK:
optval = (canp->canp_flags & CANP_NO_LOOPBACK) ? 0 : 1;
error = sockopt_set(sopt, &optval, sizeof(optval));
break;
case CAN_RAW_RECV_OWN_MSGS:
optval = (canp->canp_flags & CANP_RECEIVE_OWN) ? 1 : 0;
error = sockopt_set(sopt, &optval, sizeof(optval));
break;
case CAN_RAW_FILTER:
error = sockopt_set(sopt, canp->canp_filters,
sizeof(struct can_filter) * canp->canp_nfilters);
break;
default:
error = ENOPROTOOPT;
break;
}
return error;
}
static int
can_raw_setop(struct canpcb *canp, struct sockopt *sopt)
{
int optval = 0;
int error;
switch (sopt->sopt_name) {
case CAN_RAW_LOOPBACK:
error = sockopt_getint(sopt, &optval);
if (error == 0) {
if (optval) {
canp->canp_flags &= ~CANP_NO_LOOPBACK;
} else {
canp->canp_flags |= CANP_NO_LOOPBACK;
}
}
break;
case CAN_RAW_RECV_OWN_MSGS:
error = sockopt_getint(sopt, &optval);
if (error == 0) {
if (optval) {
canp->canp_flags |= CANP_RECEIVE_OWN;
} else {
canp->canp_flags &= ~CANP_RECEIVE_OWN;
}
}
break;
case CAN_RAW_FILTER:
{
int nfilters = sopt->sopt_size / sizeof(struct can_filter);
if (sopt->sopt_size % sizeof(struct can_filter) != 0)
return EINVAL;
error = can_pcbsetfilter(canp, sopt->sopt_data, nfilters);
break;
}
default:
error = ENOPROTOOPT;
break;
}
return error;
}
/*
* Called by getsockopt and setsockopt.
*
*/
int
can_ctloutput(int op, struct socket *so, struct sockopt *sopt)
{
struct canpcb *canp;
int error;
int s;
if (so->so_proto->pr_domain->dom_family != PF_CAN)
return EAFNOSUPPORT;
if (sopt->sopt_level != SOL_CAN_RAW)
return EINVAL;
s = splsoftnet();
canp = sotocanpcb(so);
if (canp == NULL) {
splx(s);
return ECONNRESET;
}
if (op == PRCO_SETOPT) {
error = can_raw_setop(canp, sopt);
} else if (op == PRCO_GETOPT) {
error = can_raw_getop(canp, sopt);
} else {
error = EINVAL;
}
splx(s);
return error;
}
PR_WRAP_USRREQS(can)
#define can_attach can_attach_wrapper
#define can_detach can_detach_wrapper
#define can_accept can_accept_wrapper
#define can_bind can_bind_wrapper
#define can_listen can_listen_wrapper
#define can_connect can_connect_wrapper
#define can_connect2 can_connect2_wrapper
#define can_disconnect can_disconnect_wrapper
#define can_shutdown can_shutdown_wrapper
#define can_abort can_abort_wrapper
#define can_ioctl can_ioctl_wrapper
#define can_stat can_stat_wrapper
#define can_peeraddr can_peeraddr_wrapper
#define can_sockaddr can_sockaddr_wrapper
#define can_rcvd can_rcvd_wrapper
#define can_recvoob can_recvoob_wrapper
#define can_send can_send_wrapper
#define can_sendoob can_sendoob_wrapper
#define can_purgeif can_purgeif_wrapper
const struct pr_usrreqs can_usrreqs = {
.pr_attach = can_attach,
.pr_detach = can_detach,
.pr_accept = can_accept,
.pr_bind = can_bind,
.pr_listen = can_listen,
.pr_connect = can_connect,
.pr_connect2 = can_connect2,
.pr_disconnect = can_disconnect,
.pr_shutdown = can_shutdown,
.pr_abort = can_abort,
.pr_ioctl = can_ioctl,
.pr_stat = can_stat,
.pr_peeraddr = can_peeraddr,
.pr_sockaddr = can_sockaddr,
.pr_rcvd = can_rcvd,
.pr_recvoob = can_recvoob,
.pr_send = can_send,
.pr_sendoob = can_sendoob,
.pr_purgeif = can_purgeif,
};