NetBSD/sys/dev/pci/if_txp.c
2003-07-14 15:47:00 +00:00

2101 lines
55 KiB
C

/* $NetBSD: if_txp.c,v 1.3 2003/07/14 15:47:24 lukem Exp $ */
/*
* Copyright (c) 2001
* Jason L. Wright <jason@thought.net>, Theo de Raadt, and
* Aaron Campbell <aaron@monkey.org>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR THE VOICES IN THEIR HEADS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Driver for 3c990 (Typhoon) Ethernet ASIC
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_txp.c,v 1.3 2003/07/14 15:47:24 lukem Exp $");
#include "bpfilter.h"
/* #include "vlan.h" XXX notyet */
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/callout.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/if_ether.h>
#include <net/if_arp.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#endif
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#if NVLAN > 0
#include <net/if_vlanvar.h>
#endif
#include <uvm/uvm_extern.h> /* for vtophys */
#include <machine/bus.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_txpreg.h>
#include <dev/microcode/typhoon/3c990img.h>
/*
* These currently break the 3c990 firmware, hopefully will be resolved
* at some point.
*/
#undef TRY_TX_UDP_CSUM
#undef TRY_TX_TCP_CSUM
int txp_probe(struct device *, struct cfdata *, void *);
void txp_attach(struct device *, struct device *, void *);
int txp_intr(void *);
void txp_tick(void *);
void txp_shutdown(void *);
int txp_ioctl(struct ifnet *, u_long, caddr_t);
void txp_start(struct ifnet *);
void txp_stop(struct txp_softc *);
void txp_init(struct txp_softc *);
void txp_watchdog(struct ifnet *);
int txp_chip_init(struct txp_softc *);
int txp_reset_adapter(struct txp_softc *);
int txp_download_fw(struct txp_softc *);
int txp_download_fw_wait(struct txp_softc *);
int txp_download_fw_section(struct txp_softc *,
struct txp_fw_section_header *, int);
int txp_alloc_rings(struct txp_softc *);
void txp_dma_free(struct txp_softc *, struct txp_dma_alloc *);
int txp_dma_malloc(struct txp_softc *, bus_size_t, struct txp_dma_alloc *, int);
void txp_set_filter(struct txp_softc *);
int txp_cmd_desc_numfree(struct txp_softc *);
int txp_command(struct txp_softc *, u_int16_t, u_int16_t, u_int32_t,
u_int32_t, u_int16_t *, u_int32_t *, u_int32_t *, int);
int txp_command2(struct txp_softc *, u_int16_t, u_int16_t,
u_int32_t, u_int32_t, struct txp_ext_desc *, u_int8_t,
struct txp_rsp_desc **, int);
int txp_response(struct txp_softc *, u_int32_t, u_int16_t, u_int16_t,
struct txp_rsp_desc **);
void txp_rsp_fixup(struct txp_softc *, struct txp_rsp_desc *,
struct txp_rsp_desc *);
void txp_capabilities(struct txp_softc *);
void txp_ifmedia_sts(struct ifnet *, struct ifmediareq *);
int txp_ifmedia_upd(struct ifnet *);
void txp_show_descriptor(void *);
void txp_tx_reclaim(struct txp_softc *, struct txp_tx_ring *,
struct txp_dma_alloc *);
void txp_rxbuf_reclaim(struct txp_softc *);
void txp_rx_reclaim(struct txp_softc *, struct txp_rx_ring *,
struct txp_dma_alloc *);
CFATTACH_DECL(txp, sizeof(struct txp_softc), txp_probe, txp_attach,
NULL, NULL);
const struct txp_pci_match {
int vid, did, flags;
} txp_devices[] = {
{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3CR990, 0 },
{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3CR990TX95, 0 },
{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3CR990TX97, 0 },
{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3CR990SVR95, TXP_SERVERVERSION },
{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3CR990SVR97, TXP_SERVERVERSION },
{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C990B, TXP_USESUBSYSTEM },
{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3C990BSVR, TXP_SERVERVERSION },
{ PCI_VENDOR_3COM, PCI_PRODUCT_3COM_3CR990FX, TXP_USESUBSYSTEM },
};
static const struct txp_pci_match *txp_pcilookup(pcireg_t);
static const struct {
u_int16_t mask, value;
int flags;
} txp_subsysinfo[] = {
{0xf000, 0x2000, TXP_SERVERVERSION},
{0x0100, 0x0100, TXP_FIBER},
#if 0 /* information from 3com header, unused */
{0x0010, 0x0010, /* secured firmware */},
{0x0003, 0x0000, /* variable DES */},
{0x0003, 0x0001, /* single DES - "95" */},
{0x0003, 0x0002, /* triple DES - "97" */},
#endif
};
static const struct txp_pci_match *
txp_pcilookup(id)
pcireg_t id;
{
int i;
for (i = 0; i < sizeof(txp_devices) / sizeof(txp_devices[0]); i++)
if ((PCI_VENDOR(id) == txp_devices[i].vid) &&
(PCI_PRODUCT(id) == txp_devices[i].did))
return (&txp_devices[i]);
return (0);
}
int
txp_probe(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
struct pci_attach_args *pa = aux;
if (txp_pcilookup(pa->pa_id))
return (1);
return (0);
}
void
txp_attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct txp_softc *sc = (struct txp_softc *)self;
struct pci_attach_args *pa = aux;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
struct ifnet *ifp = &sc->sc_arpcom.ec_if;
u_int32_t command;
u_int16_t p1;
u_int32_t p2;
u_char enaddr[6];
const struct txp_pci_match *pcimatch;
u_int16_t subsys;
int i, flags;
char devinfo[256];
sc->sc_cold = 1;
pcimatch = txp_pcilookup(pa->pa_id);
flags = pcimatch->flags;
if (pcimatch->flags & TXP_USESUBSYSTEM) {
subsys = PCI_PRODUCT(pci_conf_read(pc, pa->pa_tag,
PCI_SUBSYS_ID_REG));
for (i = 0;
i < sizeof(txp_subsysinfo)/sizeof(txp_subsysinfo[0]);
i++)
if ((subsys & txp_subsysinfo[i].mask) ==
txp_subsysinfo[i].value)
flags |= txp_subsysinfo[i].flags;
}
sc->sc_flags = flags;
pci_devinfo(pa->pa_id, 0, 0, devinfo);
#define TXP_EXTRAINFO ((flags & (TXP_USESUBSYSTEM|TXP_SERVERVERSION)) == \
(TXP_USESUBSYSTEM|TXP_SERVERVERSION) ? " (SVR)" : "")
printf(": %s%s\n%s", devinfo, TXP_EXTRAINFO, sc->sc_dev.dv_xname);
command = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
if (!(command & PCI_COMMAND_MASTER_ENABLE)) {
printf(": failed to enable bus mastering\n");
return;
}
if (!(command & PCI_COMMAND_MEM_ENABLE)) {
printf(": failed to enable memory mapping\n");
return;
}
if (pci_mapreg_map(pa, TXP_PCI_LOMEM, PCI_MAPREG_TYPE_MEM, 0,
&sc->sc_bt, &sc->sc_bh, NULL, NULL)) {
printf(": can't map mem space %d\n", 0);
return;
}
sc->sc_dmat = pa->pa_dmat;
/*
* Allocate our interrupt.
*/
if (pci_intr_map(pa, &ih)) {
printf(": couldn't map interrupt\n");
return;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, txp_intr, sc);
if (sc->sc_ih == NULL) {
printf(": couldn't establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf(": interrupting at %s\n", intrstr);
if (txp_chip_init(sc))
return;
if (txp_download_fw(sc))
return;
if (txp_alloc_rings(sc))
return;
if (txp_command(sc, TXP_CMD_MAX_PKT_SIZE_WRITE, TXP_MAX_PKTLEN, 0, 0,
NULL, NULL, NULL, 1))
return;
if (txp_command(sc, TXP_CMD_STATION_ADDRESS_READ, 0, 0, 0,
&p1, &p2, NULL, 1))
return;
txp_set_filter(sc);
p1 = htole16(p1);
enaddr[0] = ((u_int8_t *)&p1)[1];
enaddr[1] = ((u_int8_t *)&p1)[0];
p2 = htole32(p2);
enaddr[2] = ((u_int8_t *)&p2)[3];
enaddr[3] = ((u_int8_t *)&p2)[2];
enaddr[4] = ((u_int8_t *)&p2)[1];
enaddr[5] = ((u_int8_t *)&p2)[0];
printf("%s: Ethernet address %s\n", sc->sc_dev.dv_xname,
ether_sprintf(enaddr));
sc->sc_cold = 0;
ifmedia_init(&sc->sc_ifmedia, 0, txp_ifmedia_upd, txp_ifmedia_sts);
if (flags & TXP_FIBER) {
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER|IFM_100_FX,
0, NULL);
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER|IFM_100_FX|IFM_HDX,
0, NULL);
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER|IFM_100_FX|IFM_FDX,
0, NULL);
} else {
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER|IFM_10_T,
0, NULL);
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER|IFM_10_T|IFM_HDX,
0, NULL);
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER|IFM_10_T|IFM_FDX,
0, NULL);
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER|IFM_100_TX,
0, NULL);
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER|IFM_100_TX|IFM_HDX,
0, NULL);
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER|IFM_100_TX|IFM_FDX,
0, NULL);
}
ifmedia_add(&sc->sc_ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
sc->sc_xcvr = TXP_XCVR_AUTO;
txp_command(sc, TXP_CMD_XCVR_SELECT, TXP_XCVR_AUTO, 0, 0,
NULL, NULL, NULL, 0);
ifmedia_set(&sc->sc_ifmedia, IFM_ETHER|IFM_AUTO);
ifp->if_softc = sc;
ifp->if_mtu = ETHERMTU;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = txp_ioctl;
ifp->if_start = txp_start;
ifp->if_watchdog = txp_watchdog;
ifp->if_baudrate = 10000000;
IFQ_SET_MAXLEN(&ifp->if_snd, TX_ENTRIES);
IFQ_SET_READY(&ifp->if_snd);
ifp->if_capabilities = 0;
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
txp_capabilities(sc);
callout_setfunc(&sc->sc_tick, txp_tick, sc);
/*
* Attach us everywhere
*/
if_attach(ifp);
ether_ifattach(ifp, enaddr);
shutdownhook_establish(txp_shutdown, sc);
}
int
txp_chip_init(sc)
struct txp_softc *sc;
{
/* disable interrupts */
WRITE_REG(sc, TXP_IER, 0);
WRITE_REG(sc, TXP_IMR,
TXP_INT_SELF | TXP_INT_PCI_TABORT | TXP_INT_PCI_MABORT |
TXP_INT_DMA3 | TXP_INT_DMA2 | TXP_INT_DMA1 | TXP_INT_DMA0 |
TXP_INT_LATCH);
/* ack all interrupts */
WRITE_REG(sc, TXP_ISR, TXP_INT_RESERVED | TXP_INT_LATCH |
TXP_INT_A2H_7 | TXP_INT_A2H_6 | TXP_INT_A2H_5 | TXP_INT_A2H_4 |
TXP_INT_SELF | TXP_INT_PCI_TABORT | TXP_INT_PCI_MABORT |
TXP_INT_DMA3 | TXP_INT_DMA2 | TXP_INT_DMA1 | TXP_INT_DMA0 |
TXP_INT_A2H_3 | TXP_INT_A2H_2 | TXP_INT_A2H_1 | TXP_INT_A2H_0);
if (txp_reset_adapter(sc))
return (-1);
/* disable interrupts */
WRITE_REG(sc, TXP_IER, 0);
WRITE_REG(sc, TXP_IMR,
TXP_INT_SELF | TXP_INT_PCI_TABORT | TXP_INT_PCI_MABORT |
TXP_INT_DMA3 | TXP_INT_DMA2 | TXP_INT_DMA1 | TXP_INT_DMA0 |
TXP_INT_LATCH);
/* ack all interrupts */
WRITE_REG(sc, TXP_ISR, TXP_INT_RESERVED | TXP_INT_LATCH |
TXP_INT_A2H_7 | TXP_INT_A2H_6 | TXP_INT_A2H_5 | TXP_INT_A2H_4 |
TXP_INT_SELF | TXP_INT_PCI_TABORT | TXP_INT_PCI_MABORT |
TXP_INT_DMA3 | TXP_INT_DMA2 | TXP_INT_DMA1 | TXP_INT_DMA0 |
TXP_INT_A2H_3 | TXP_INT_A2H_2 | TXP_INT_A2H_1 | TXP_INT_A2H_0);
return (0);
}
int
txp_reset_adapter(sc)
struct txp_softc *sc;
{
u_int32_t r;
int i;
WRITE_REG(sc, TXP_SRR, TXP_SRR_ALL);
DELAY(1000);
WRITE_REG(sc, TXP_SRR, 0);
/* Should wait max 6 seconds */
for (i = 0; i < 6000; i++) {
r = READ_REG(sc, TXP_A2H_0);
if (r == STAT_WAITING_FOR_HOST_REQUEST)
break;
DELAY(1000);
}
if (r != STAT_WAITING_FOR_HOST_REQUEST) {
printf("%s: reset hung\n", TXP_DEVNAME(sc));
return (-1);
}
return (0);
}
int
txp_download_fw(sc)
struct txp_softc *sc;
{
struct txp_fw_file_header *fileheader;
struct txp_fw_section_header *secthead;
int sect;
u_int32_t r, i, ier, imr;
ier = READ_REG(sc, TXP_IER);
WRITE_REG(sc, TXP_IER, ier | TXP_INT_A2H_0);
imr = READ_REG(sc, TXP_IMR);
WRITE_REG(sc, TXP_IMR, imr | TXP_INT_A2H_0);
for (i = 0; i < 10000; i++) {
r = READ_REG(sc, TXP_A2H_0);
if (r == STAT_WAITING_FOR_HOST_REQUEST)
break;
DELAY(50);
}
if (r != STAT_WAITING_FOR_HOST_REQUEST) {
printf(": not waiting for host request\n");
return (-1);
}
/* Ack the status */
WRITE_REG(sc, TXP_ISR, TXP_INT_A2H_0);
fileheader = (struct txp_fw_file_header *)tc990image;
if (bcmp("TYPHOON", fileheader->magicid, sizeof(fileheader->magicid))) {
printf(": fw invalid magic\n");
return (-1);
}
/* Tell boot firmware to get ready for image */
WRITE_REG(sc, TXP_H2A_1, le32toh(fileheader->addr));
WRITE_REG(sc, TXP_H2A_0, TXP_BOOTCMD_RUNTIME_IMAGE);
if (txp_download_fw_wait(sc)) {
printf("%s: fw wait failed, initial\n", sc->sc_dev.dv_xname);
return (-1);
}
secthead = (struct txp_fw_section_header *)(((u_int8_t *)tc990image) +
sizeof(struct txp_fw_file_header));
for (sect = 0; sect < le32toh(fileheader->nsections); sect++) {
if (txp_download_fw_section(sc, secthead, sect))
return (-1);
secthead = (struct txp_fw_section_header *)
(((u_int8_t *)secthead) + le32toh(secthead->nbytes) +
sizeof(*secthead));
}
WRITE_REG(sc, TXP_H2A_0, TXP_BOOTCMD_DOWNLOAD_COMPLETE);
for (i = 0; i < 10000; i++) {
r = READ_REG(sc, TXP_A2H_0);
if (r == STAT_WAITING_FOR_BOOT)
break;
DELAY(50);
}
if (r != STAT_WAITING_FOR_BOOT) {
printf(": not waiting for boot\n");
return (-1);
}
WRITE_REG(sc, TXP_IER, ier);
WRITE_REG(sc, TXP_IMR, imr);
return (0);
}
int
txp_download_fw_wait(sc)
struct txp_softc *sc;
{
u_int32_t i, r;
for (i = 0; i < 10000; i++) {
r = READ_REG(sc, TXP_ISR);
if (r & TXP_INT_A2H_0)
break;
DELAY(50);
}
if (!(r & TXP_INT_A2H_0)) {
printf(": fw wait failed comm0\n");
return (-1);
}
WRITE_REG(sc, TXP_ISR, TXP_INT_A2H_0);
r = READ_REG(sc, TXP_A2H_0);
if (r != STAT_WAITING_FOR_SEGMENT) {
printf(": fw not waiting for segment\n");
return (-1);
}
return (0);
}
int
txp_download_fw_section(sc, sect, sectnum)
struct txp_softc *sc;
struct txp_fw_section_header *sect;
int sectnum;
{
struct txp_dma_alloc dma;
int rseg, err = 0;
struct mbuf m;
u_int16_t csum;
/* Skip zero length sections */
if (sect->nbytes == 0)
return (0);
/* Make sure we aren't past the end of the image */
rseg = ((u_int8_t *)sect) - ((u_int8_t *)tc990image);
if (rseg >= sizeof(tc990image)) {
printf(": fw invalid section address, section %d\n", sectnum);
return (-1);
}
/* Make sure this section doesn't go past the end */
rseg += le32toh(sect->nbytes);
if (rseg >= sizeof(tc990image)) {
printf(": fw truncated section %d\n", sectnum);
return (-1);
}
/* map a buffer, copy segment to it, get physaddr */
if (txp_dma_malloc(sc, le32toh(sect->nbytes), &dma, 0)) {
printf(": fw dma malloc failed, section %d\n", sectnum);
return (-1);
}
bcopy(((u_int8_t *)sect) + sizeof(*sect), dma.dma_vaddr,
le32toh(sect->nbytes));
/*
* dummy up mbuf and verify section checksum
*/
m.m_type = MT_DATA;
m.m_next = m.m_nextpkt = NULL;
m.m_len = le32toh(sect->nbytes);
m.m_data = dma.dma_vaddr;
m.m_flags = 0;
csum = in_cksum(&m, le32toh(sect->nbytes));
if (csum != sect->cksum) {
printf(": fw section %d, bad cksum (expected 0x%x got 0x%x)\n",
sectnum, sect->cksum, csum);
err = -1;
goto bail;
}
bus_dmamap_sync(sc->sc_dmat, dma.dma_map, 0,
dma.dma_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
WRITE_REG(sc, TXP_H2A_1, le32toh(sect->nbytes));
WRITE_REG(sc, TXP_H2A_2, le32toh(sect->cksum));
WRITE_REG(sc, TXP_H2A_3, le32toh(sect->addr));
WRITE_REG(sc, TXP_H2A_4, dma.dma_paddr >> 32);
WRITE_REG(sc, TXP_H2A_5, dma.dma_paddr & 0xffffffff);
WRITE_REG(sc, TXP_H2A_0, TXP_BOOTCMD_SEGMENT_AVAILABLE);
if (txp_download_fw_wait(sc)) {
printf("%s: fw wait failed, section %d\n",
sc->sc_dev.dv_xname, sectnum);
err = -1;
}
bus_dmamap_sync(sc->sc_dmat, dma.dma_map, 0,
dma.dma_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bail:
txp_dma_free(sc, &dma);
return (err);
}
int
txp_intr(vsc)
void *vsc;
{
struct txp_softc *sc = vsc;
struct txp_hostvar *hv = sc->sc_hostvar;
u_int32_t isr;
int claimed = 0;
/* mask all interrupts */
WRITE_REG(sc, TXP_IMR, TXP_INT_RESERVED | TXP_INT_SELF |
TXP_INT_A2H_7 | TXP_INT_A2H_6 | TXP_INT_A2H_5 | TXP_INT_A2H_4 |
TXP_INT_A2H_2 | TXP_INT_A2H_1 | TXP_INT_A2H_0 |
TXP_INT_DMA3 | TXP_INT_DMA2 | TXP_INT_DMA1 | TXP_INT_DMA0 |
TXP_INT_PCI_TABORT | TXP_INT_PCI_MABORT | TXP_INT_LATCH);
bus_dmamap_sync(sc->sc_dmat, sc->sc_host_dma.dma_map, 0,
sizeof(struct txp_hostvar), BUS_DMASYNC_POSTWRITE|BUS_DMASYNC_POSTREAD);
isr = READ_REG(sc, TXP_ISR);
while (isr) {
claimed = 1;
WRITE_REG(sc, TXP_ISR, isr);
if ((*sc->sc_rxhir.r_roff) != (*sc->sc_rxhir.r_woff))
txp_rx_reclaim(sc, &sc->sc_rxhir, &sc->sc_rxhiring_dma);
if ((*sc->sc_rxlor.r_roff) != (*sc->sc_rxlor.r_woff))
txp_rx_reclaim(sc, &sc->sc_rxlor, &sc->sc_rxloring_dma);
if (hv->hv_rx_buf_write_idx == hv->hv_rx_buf_read_idx)
txp_rxbuf_reclaim(sc);
if (sc->sc_txhir.r_cnt && (sc->sc_txhir.r_cons !=
TXP_OFFSET2IDX(le32toh(*(sc->sc_txhir.r_off)))))
txp_tx_reclaim(sc, &sc->sc_txhir, &sc->sc_txhiring_dma);
if (sc->sc_txlor.r_cnt && (sc->sc_txlor.r_cons !=
TXP_OFFSET2IDX(le32toh(*(sc->sc_txlor.r_off)))))
txp_tx_reclaim(sc, &sc->sc_txlor, &sc->sc_txloring_dma);
isr = READ_REG(sc, TXP_ISR);
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_host_dma.dma_map, 0,
sizeof(struct txp_hostvar), BUS_DMASYNC_POSTWRITE|BUS_DMASYNC_POSTREAD);
/* unmask all interrupts */
WRITE_REG(sc, TXP_IMR, TXP_INT_A2H_3);
txp_start(&sc->sc_arpcom.ec_if);
return (claimed);
}
void
txp_rx_reclaim(sc, r, dma)
struct txp_softc *sc;
struct txp_rx_ring *r;
struct txp_dma_alloc *dma;
{
struct ifnet *ifp = &sc->sc_arpcom.ec_if;
struct txp_rx_desc *rxd;
struct mbuf *m;
struct txp_swdesc *sd;
u_int32_t roff, woff;
int sumflags = 0;
int idx;
roff = le32toh(*r->r_roff);
woff = le32toh(*r->r_woff);
idx = roff / sizeof(struct txp_rx_desc);
rxd = r->r_desc + idx;
while (roff != woff) {
bus_dmamap_sync(sc->sc_dmat, dma->dma_map,
idx * sizeof(struct txp_rx_desc), sizeof(struct txp_rx_desc),
BUS_DMASYNC_POSTREAD);
if (rxd->rx_flags & RX_FLAGS_ERROR) {
printf("%s: error 0x%x\n", sc->sc_dev.dv_xname,
le32toh(rxd->rx_stat));
ifp->if_ierrors++;
goto next;
}
/* retrieve stashed pointer */
bcopy((u_long *)&rxd->rx_vaddrlo, &sd, sizeof(sd));
bus_dmamap_sync(sc->sc_dmat, sd->sd_map, 0,
sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, sd->sd_map);
bus_dmamap_destroy(sc->sc_dmat, sd->sd_map);
m = sd->sd_mbuf;
free(sd, M_DEVBUF);
m->m_pkthdr.len = m->m_len = le16toh(rxd->rx_len);
#ifdef __STRICT_ALIGNMENT
{
/*
* XXX Nice chip, except it won't accept "off by 2"
* buffers, so we're force to copy. Supposedly
* this will be fixed in a newer firmware rev
* and this will be temporary.
*/
struct mbuf *mnew;
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
m_freem(m);
goto next;
}
if (m->m_len > (MHLEN - 2)) {
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
m_freem(mnew);
m_freem(m);
goto next;
}
}
mnew->m_pkthdr.rcvif = ifp;
mnew->m_pkthdr.len = mnew->m_len = m->m_len;
mnew->m_data += 2;
bcopy(m->m_data, mnew->m_data, m->m_len);
m_freem(m);
m = mnew;
}
#endif
#if NBPFILTER > 0
/*
* Handle BPF listeners. Let the BPF user see the packet.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
if (rxd->rx_stat & htole32(RX_STAT_IPCKSUMBAD))
sumflags |= (M_CSUM_IPv4|M_CSUM_IPv4_BAD);
else if (rxd->rx_stat & htole32(RX_STAT_IPCKSUMGOOD))
sumflags |= M_CSUM_IPv4;
if (rxd->rx_stat & htole32(RX_STAT_TCPCKSUMBAD))
sumflags |= (M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD);
else if (rxd->rx_stat & htole32(RX_STAT_TCPCKSUMGOOD))
sumflags |= M_CSUM_TCPv4;
if (rxd->rx_stat & htole32(RX_STAT_UDPCKSUMBAD))
sumflags |= (M_CSUM_UDPv4|M_CSUM_TCP_UDP_BAD);
else if (rxd->rx_stat & htole32(RX_STAT_UDPCKSUMGOOD))
sumflags |= M_CSUM_UDPv4;
m->m_pkthdr.csum_flags = sumflags;
#if NVLAN > 0
if (rxd->rx_stat & htole32(RX_STAT_VLAN)) {
if (vlan_input_tag(m, htons(rxd->rx_vlan >> 16)) < 0)
ifp->if_noproto++;
goto next;
}
#endif
(*ifp->if_input)(ifp, m);
next:
bus_dmamap_sync(sc->sc_dmat, dma->dma_map,
idx * sizeof(struct txp_rx_desc), sizeof(struct txp_rx_desc),
BUS_DMASYNC_PREREAD);
roff += sizeof(struct txp_rx_desc);
if (roff == (RX_ENTRIES * sizeof(struct txp_rx_desc))) {
idx = 0;
roff = 0;
rxd = r->r_desc;
} else {
idx++;
rxd++;
}
woff = le32toh(*r->r_woff);
}
*r->r_roff = htole32(woff);
}
void
txp_rxbuf_reclaim(sc)
struct txp_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ec_if;
struct txp_hostvar *hv = sc->sc_hostvar;
struct txp_rxbuf_desc *rbd;
struct txp_swdesc *sd;
u_int32_t i, end;
end = TXP_OFFSET2IDX(le32toh(hv->hv_rx_buf_read_idx));
i = TXP_OFFSET2IDX(le32toh(hv->hv_rx_buf_write_idx));
if (++i == RXBUF_ENTRIES)
i = 0;
rbd = sc->sc_rxbufs + i;
while (i != end) {
sd = (struct txp_swdesc *)malloc(sizeof(struct txp_swdesc),
M_DEVBUF, M_NOWAIT);
if (sd == NULL)
break;
MGETHDR(sd->sd_mbuf, M_DONTWAIT, MT_DATA);
if (sd->sd_mbuf == NULL)
goto err_sd;
MCLGET(sd->sd_mbuf, M_DONTWAIT);
if ((sd->sd_mbuf->m_flags & M_EXT) == 0)
goto err_mbuf;
sd->sd_mbuf->m_pkthdr.rcvif = ifp;
sd->sd_mbuf->m_pkthdr.len = sd->sd_mbuf->m_len = MCLBYTES;
if (bus_dmamap_create(sc->sc_dmat, TXP_MAX_PKTLEN, 1,
TXP_MAX_PKTLEN, 0, BUS_DMA_NOWAIT, &sd->sd_map))
goto err_mbuf;
if (bus_dmamap_load_mbuf(sc->sc_dmat, sd->sd_map, sd->sd_mbuf,
BUS_DMA_NOWAIT)) {
bus_dmamap_destroy(sc->sc_dmat, sd->sd_map);
goto err_mbuf;
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_rxbufring_dma.dma_map,
i * sizeof(struct txp_rxbuf_desc),
sizeof(struct txp_rxbuf_desc), BUS_DMASYNC_POSTWRITE);
/* stash away pointer */
bcopy(&sd, (u_long *)&rbd->rb_vaddrlo, sizeof(sd));
rbd->rb_paddrlo = ((u_int64_t)sd->sd_map->dm_segs[0].ds_addr)
& 0xffffffff;
rbd->rb_paddrhi = ((u_int64_t)sd->sd_map->dm_segs[0].ds_addr)
>> 32;
bus_dmamap_sync(sc->sc_dmat, sd->sd_map, 0,
sd->sd_map->dm_mapsize, BUS_DMASYNC_PREREAD);
bus_dmamap_sync(sc->sc_dmat, sc->sc_rxbufring_dma.dma_map,
i * sizeof(struct txp_rxbuf_desc),
sizeof(struct txp_rxbuf_desc), BUS_DMASYNC_PREWRITE);
hv->hv_rx_buf_write_idx = htole32(TXP_IDX2OFFSET(i));
if (++i == RXBUF_ENTRIES) {
i = 0;
rbd = sc->sc_rxbufs;
} else
rbd++;
}
return;
err_mbuf:
m_freem(sd->sd_mbuf);
err_sd:
free(sd, M_DEVBUF);
}
/*
* Reclaim mbufs and entries from a transmit ring.
*/
void
txp_tx_reclaim(sc, r, dma)
struct txp_softc *sc;
struct txp_tx_ring *r;
struct txp_dma_alloc *dma;
{
struct ifnet *ifp = &sc->sc_arpcom.ec_if;
u_int32_t idx = TXP_OFFSET2IDX(le32toh(*(r->r_off)));
u_int32_t cons = r->r_cons, cnt = r->r_cnt;
struct txp_tx_desc *txd = r->r_desc + cons;
struct txp_swdesc *sd = sc->sc_txd + cons;
struct mbuf *m;
while (cons != idx) {
if (cnt == 0)
break;
bus_dmamap_sync(sc->sc_dmat, dma->dma_map,
cons * sizeof(struct txp_tx_desc),
sizeof(struct txp_tx_desc),
BUS_DMASYNC_POSTWRITE);
if ((txd->tx_flags & TX_FLAGS_TYPE_M) ==
TX_FLAGS_TYPE_DATA) {
bus_dmamap_sync(sc->sc_dmat, sd->sd_map, 0,
sd->sd_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, sd->sd_map);
m = sd->sd_mbuf;
if (m != NULL) {
m_freem(m);
txd->tx_addrlo = 0;
txd->tx_addrhi = 0;
ifp->if_opackets++;
}
}
ifp->if_flags &= ~IFF_OACTIVE;
if (++cons == TX_ENTRIES) {
txd = r->r_desc;
cons = 0;
sd = sc->sc_txd;
} else {
txd++;
sd++;
}
cnt--;
}
r->r_cons = cons;
r->r_cnt = cnt;
if (cnt == 0)
ifp->if_timer = 0;
}
void
txp_shutdown(vsc)
void *vsc;
{
struct txp_softc *sc = (struct txp_softc *)vsc;
/* mask all interrupts */
WRITE_REG(sc, TXP_IMR,
TXP_INT_SELF | TXP_INT_PCI_TABORT | TXP_INT_PCI_MABORT |
TXP_INT_DMA3 | TXP_INT_DMA2 | TXP_INT_DMA1 | TXP_INT_DMA0 |
TXP_INT_LATCH);
txp_command(sc, TXP_CMD_TX_DISABLE, 0, 0, 0, NULL, NULL, NULL, 0);
txp_command(sc, TXP_CMD_RX_DISABLE, 0, 0, 0, NULL, NULL, NULL, 0);
txp_command(sc, TXP_CMD_HALT, 0, 0, 0, NULL, NULL, NULL, 0);
}
int
txp_alloc_rings(sc)
struct txp_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ec_if;
struct txp_boot_record *boot;
struct txp_swdesc *sd;
u_int32_t r;
int i, j;
/* boot record */
if (txp_dma_malloc(sc, sizeof(struct txp_boot_record), &sc->sc_boot_dma,
BUS_DMA_COHERENT)) {
printf(": can't allocate boot record\n");
return (-1);
}
boot = (struct txp_boot_record *)sc->sc_boot_dma.dma_vaddr;
bzero(boot, sizeof(*boot));
sc->sc_boot = boot;
/* host variables */
if (txp_dma_malloc(sc, sizeof(struct txp_hostvar), &sc->sc_host_dma,
BUS_DMA_COHERENT)) {
printf(": can't allocate host ring\n");
goto bail_boot;
}
bzero(sc->sc_host_dma.dma_vaddr, sizeof(struct txp_hostvar));
boot->br_hostvar_lo = htole32(sc->sc_host_dma.dma_paddr & 0xffffffff);
boot->br_hostvar_hi = htole32(sc->sc_host_dma.dma_paddr >> 32);
sc->sc_hostvar = (struct txp_hostvar *)sc->sc_host_dma.dma_vaddr;
/* high priority tx ring */
if (txp_dma_malloc(sc, sizeof(struct txp_tx_desc) * TX_ENTRIES,
&sc->sc_txhiring_dma, BUS_DMA_COHERENT)) {
printf(": can't allocate high tx ring\n");
goto bail_host;
}
bzero(sc->sc_txhiring_dma.dma_vaddr, sizeof(struct txp_tx_desc) * TX_ENTRIES);
boot->br_txhipri_lo = htole32(sc->sc_txhiring_dma.dma_paddr & 0xffffffff);
boot->br_txhipri_hi = htole32(sc->sc_txhiring_dma.dma_paddr >> 32);
boot->br_txhipri_siz = htole32(TX_ENTRIES * sizeof(struct txp_tx_desc));
sc->sc_txhir.r_reg = TXP_H2A_1;
sc->sc_txhir.r_desc = (struct txp_tx_desc *)sc->sc_txhiring_dma.dma_vaddr;
sc->sc_txhir.r_cons = sc->sc_txhir.r_prod = sc->sc_txhir.r_cnt = 0;
sc->sc_txhir.r_off = &sc->sc_hostvar->hv_tx_hi_desc_read_idx;
for (i = 0; i < TX_ENTRIES; i++) {
if (bus_dmamap_create(sc->sc_dmat, TXP_MAX_PKTLEN,
TX_ENTRIES - 4, TXP_MAX_SEGLEN, 0,
BUS_DMA_NOWAIT, &sc->sc_txd[i].sd_map) != 0) {
for (j = 0; j < i; j++) {
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_txd[j].sd_map);
sc->sc_txd[j].sd_map = NULL;
}
goto bail_txhiring;
}
}
/* low priority tx ring */
if (txp_dma_malloc(sc, sizeof(struct txp_tx_desc) * TX_ENTRIES,
&sc->sc_txloring_dma, BUS_DMA_COHERENT)) {
printf(": can't allocate low tx ring\n");
goto bail_txhiring;
}
bzero(sc->sc_txloring_dma.dma_vaddr, sizeof(struct txp_tx_desc) * TX_ENTRIES);
boot->br_txlopri_lo = htole32(sc->sc_txloring_dma.dma_paddr & 0xffffffff);
boot->br_txlopri_hi = htole32(sc->sc_txloring_dma.dma_paddr >> 32);
boot->br_txlopri_siz = htole32(TX_ENTRIES * sizeof(struct txp_tx_desc));
sc->sc_txlor.r_reg = TXP_H2A_3;
sc->sc_txlor.r_desc = (struct txp_tx_desc *)sc->sc_txloring_dma.dma_vaddr;
sc->sc_txlor.r_cons = sc->sc_txlor.r_prod = sc->sc_txlor.r_cnt = 0;
sc->sc_txlor.r_off = &sc->sc_hostvar->hv_tx_lo_desc_read_idx;
/* high priority rx ring */
if (txp_dma_malloc(sc, sizeof(struct txp_rx_desc) * RX_ENTRIES,
&sc->sc_rxhiring_dma, BUS_DMA_COHERENT)) {
printf(": can't allocate high rx ring\n");
goto bail_txloring;
}
bzero(sc->sc_rxhiring_dma.dma_vaddr, sizeof(struct txp_rx_desc) * RX_ENTRIES);
boot->br_rxhipri_lo = htole32(sc->sc_rxhiring_dma.dma_paddr & 0xffffffff);
boot->br_rxhipri_hi = htole32(sc->sc_rxhiring_dma.dma_paddr >> 32);
boot->br_rxhipri_siz = htole32(RX_ENTRIES * sizeof(struct txp_rx_desc));
sc->sc_rxhir.r_desc =
(struct txp_rx_desc *)sc->sc_rxhiring_dma.dma_vaddr;
sc->sc_rxhir.r_roff = &sc->sc_hostvar->hv_rx_hi_read_idx;
sc->sc_rxhir.r_woff = &sc->sc_hostvar->hv_rx_hi_write_idx;
bus_dmamap_sync(sc->sc_dmat, sc->sc_rxhiring_dma.dma_map,
0, sc->sc_rxhiring_dma.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
/* low priority ring */
if (txp_dma_malloc(sc, sizeof(struct txp_rx_desc) * RX_ENTRIES,
&sc->sc_rxloring_dma, BUS_DMA_COHERENT)) {
printf(": can't allocate low rx ring\n");
goto bail_rxhiring;
}
bzero(sc->sc_rxloring_dma.dma_vaddr, sizeof(struct txp_rx_desc) * RX_ENTRIES);
boot->br_rxlopri_lo = htole32(sc->sc_rxloring_dma.dma_paddr & 0xffffffff);
boot->br_rxlopri_hi = htole32(sc->sc_rxloring_dma.dma_paddr >> 32);
boot->br_rxlopri_siz = htole32(RX_ENTRIES * sizeof(struct txp_rx_desc));
sc->sc_rxlor.r_desc =
(struct txp_rx_desc *)sc->sc_rxloring_dma.dma_vaddr;
sc->sc_rxlor.r_roff = &sc->sc_hostvar->hv_rx_lo_read_idx;
sc->sc_rxlor.r_woff = &sc->sc_hostvar->hv_rx_lo_write_idx;
bus_dmamap_sync(sc->sc_dmat, sc->sc_rxloring_dma.dma_map,
0, sc->sc_rxloring_dma.dma_map->dm_mapsize, BUS_DMASYNC_PREREAD);
/* command ring */
if (txp_dma_malloc(sc, sizeof(struct txp_cmd_desc) * CMD_ENTRIES,
&sc->sc_cmdring_dma, BUS_DMA_COHERENT)) {
printf(": can't allocate command ring\n");
goto bail_rxloring;
}
bzero(sc->sc_cmdring_dma.dma_vaddr, sizeof(struct txp_cmd_desc) * CMD_ENTRIES);
boot->br_cmd_lo = htole32(sc->sc_cmdring_dma.dma_paddr & 0xffffffff);
boot->br_cmd_hi = htole32(sc->sc_cmdring_dma.dma_paddr >> 32);
boot->br_cmd_siz = htole32(CMD_ENTRIES * sizeof(struct txp_cmd_desc));
sc->sc_cmdring.base = (struct txp_cmd_desc *)sc->sc_cmdring_dma.dma_vaddr;
sc->sc_cmdring.size = CMD_ENTRIES * sizeof(struct txp_cmd_desc);
sc->sc_cmdring.lastwrite = 0;
/* response ring */
if (txp_dma_malloc(sc, sizeof(struct txp_rsp_desc) * RSP_ENTRIES,
&sc->sc_rspring_dma, BUS_DMA_COHERENT)) {
printf(": can't allocate response ring\n");
goto bail_cmdring;
}
bzero(sc->sc_rspring_dma.dma_vaddr, sizeof(struct txp_rsp_desc) * RSP_ENTRIES);
boot->br_resp_lo = htole32(sc->sc_rspring_dma.dma_paddr & 0xffffffff);
boot->br_resp_hi = htole32(sc->sc_rspring_dma.dma_paddr >> 32);
boot->br_resp_siz = htole32(CMD_ENTRIES * sizeof(struct txp_rsp_desc));
sc->sc_rspring.base = (struct txp_rsp_desc *)sc->sc_rspring_dma.dma_vaddr;
sc->sc_rspring.size = RSP_ENTRIES * sizeof(struct txp_rsp_desc);
sc->sc_rspring.lastwrite = 0;
/* receive buffer ring */
if (txp_dma_malloc(sc, sizeof(struct txp_rxbuf_desc) * RXBUF_ENTRIES,
&sc->sc_rxbufring_dma, BUS_DMA_COHERENT)) {
printf(": can't allocate rx buffer ring\n");
goto bail_rspring;
}
bzero(sc->sc_rxbufring_dma.dma_vaddr, sizeof(struct txp_rxbuf_desc) * RXBUF_ENTRIES);
boot->br_rxbuf_lo = htole32(sc->sc_rxbufring_dma.dma_paddr & 0xffffffff);
boot->br_rxbuf_hi = htole32(sc->sc_rxbufring_dma.dma_paddr >> 32);
boot->br_rxbuf_siz = htole32(RXBUF_ENTRIES * sizeof(struct txp_rxbuf_desc));
sc->sc_rxbufs = (struct txp_rxbuf_desc *)sc->sc_rxbufring_dma.dma_vaddr;
for (i = 0; i < RXBUF_ENTRIES; i++) {
sd = (struct txp_swdesc *)malloc(sizeof(struct txp_swdesc),
M_DEVBUF, M_NOWAIT);
if (sd == NULL)
break;
MGETHDR(sd->sd_mbuf, M_DONTWAIT, MT_DATA);
if (sd->sd_mbuf == NULL) {
goto bail_rxbufring;
}
MCLGET(sd->sd_mbuf, M_DONTWAIT);
if ((sd->sd_mbuf->m_flags & M_EXT) == 0) {
goto bail_rxbufring;
}
sd->sd_mbuf->m_pkthdr.len = sd->sd_mbuf->m_len = MCLBYTES;
sd->sd_mbuf->m_pkthdr.rcvif = ifp;
if (bus_dmamap_create(sc->sc_dmat, TXP_MAX_PKTLEN, 1,
TXP_MAX_PKTLEN, 0, BUS_DMA_NOWAIT, &sd->sd_map)) {
goto bail_rxbufring;
}
if (bus_dmamap_load_mbuf(sc->sc_dmat, sd->sd_map, sd->sd_mbuf,
BUS_DMA_NOWAIT)) {
bus_dmamap_destroy(sc->sc_dmat, sd->sd_map);
goto bail_rxbufring;
}
bus_dmamap_sync(sc->sc_dmat, sd->sd_map, 0,
sd->sd_map->dm_mapsize, BUS_DMASYNC_PREREAD);
/* stash away pointer */
bcopy(&sd, (u_long *)&sc->sc_rxbufs[i].rb_vaddrlo, sizeof(sd));
sc->sc_rxbufs[i].rb_paddrlo =
((u_int64_t)sd->sd_map->dm_segs[0].ds_addr) & 0xffffffff;
sc->sc_rxbufs[i].rb_paddrhi =
((u_int64_t)sd->sd_map->dm_segs[0].ds_addr) >> 32;
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_rxbufring_dma.dma_map,
0, sc->sc_rxbufring_dma.dma_map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
sc->sc_hostvar->hv_rx_buf_write_idx = htole32((RXBUF_ENTRIES - 1) *
sizeof(struct txp_rxbuf_desc));
/* zero dma */
if (txp_dma_malloc(sc, sizeof(u_int32_t), &sc->sc_zero_dma,
BUS_DMA_COHERENT)) {
printf(": can't allocate response ring\n");
goto bail_rxbufring;
}
bzero(sc->sc_zero_dma.dma_vaddr, sizeof(u_int32_t));
boot->br_zero_lo = htole32(sc->sc_zero_dma.dma_paddr & 0xffffffff);
boot->br_zero_hi = htole32(sc->sc_zero_dma.dma_paddr >> 32);
/* See if it's waiting for boot, and try to boot it */
for (i = 0; i < 10000; i++) {
r = READ_REG(sc, TXP_A2H_0);
if (r == STAT_WAITING_FOR_BOOT)
break;
DELAY(50);
}
if (r != STAT_WAITING_FOR_BOOT) {
printf(": not waiting for boot\n");
goto bail;
}
WRITE_REG(sc, TXP_H2A_2, sc->sc_boot_dma.dma_paddr >> 32);
WRITE_REG(sc, TXP_H2A_1, sc->sc_boot_dma.dma_paddr & 0xffffffff);
WRITE_REG(sc, TXP_H2A_0, TXP_BOOTCMD_REGISTER_BOOT_RECORD);
/* See if it booted */
for (i = 0; i < 10000; i++) {
r = READ_REG(sc, TXP_A2H_0);
if (r == STAT_RUNNING)
break;
DELAY(50);
}
if (r != STAT_RUNNING) {
printf(": fw not running\n");
goto bail;
}
/* Clear TX and CMD ring write registers */
WRITE_REG(sc, TXP_H2A_1, TXP_BOOTCMD_NULL);
WRITE_REG(sc, TXP_H2A_2, TXP_BOOTCMD_NULL);
WRITE_REG(sc, TXP_H2A_3, TXP_BOOTCMD_NULL);
WRITE_REG(sc, TXP_H2A_0, TXP_BOOTCMD_NULL);
return (0);
bail:
txp_dma_free(sc, &sc->sc_zero_dma);
bail_rxbufring:
txp_dma_free(sc, &sc->sc_rxbufring_dma);
bail_rspring:
txp_dma_free(sc, &sc->sc_rspring_dma);
bail_cmdring:
txp_dma_free(sc, &sc->sc_cmdring_dma);
bail_rxloring:
txp_dma_free(sc, &sc->sc_rxloring_dma);
bail_rxhiring:
txp_dma_free(sc, &sc->sc_rxhiring_dma);
bail_txloring:
txp_dma_free(sc, &sc->sc_txloring_dma);
bail_txhiring:
txp_dma_free(sc, &sc->sc_txhiring_dma);
bail_host:
txp_dma_free(sc, &sc->sc_host_dma);
bail_boot:
txp_dma_free(sc, &sc->sc_boot_dma);
return (-1);
}
int
txp_dma_malloc(sc, size, dma, mapflags)
struct txp_softc *sc;
bus_size_t size;
struct txp_dma_alloc *dma;
int mapflags;
{
int r;
if ((r = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0,
&dma->dma_seg, 1, &dma->dma_nseg, 0)) != 0)
goto fail_0;
if ((r = bus_dmamem_map(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg,
size, &dma->dma_vaddr, mapflags | BUS_DMA_NOWAIT)) != 0)
goto fail_1;
if ((r = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT, &dma->dma_map)) != 0)
goto fail_2;
if ((r = bus_dmamap_load(sc->sc_dmat, dma->dma_map, dma->dma_vaddr,
size, NULL, BUS_DMA_NOWAIT)) != 0)
goto fail_3;
dma->dma_paddr = dma->dma_map->dm_segs[0].ds_addr;
return (0);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, size);
fail_1:
bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
fail_0:
return (r);
}
void
txp_dma_free(sc, dma)
struct txp_softc *sc;
struct txp_dma_alloc *dma;
{
bus_dmamap_unload(sc->sc_dmat, dma->dma_map);
bus_dmamem_unmap(sc->sc_dmat, dma->dma_vaddr, dma->dma_map->dm_mapsize);
bus_dmamem_free(sc->sc_dmat, &dma->dma_seg, dma->dma_nseg);
bus_dmamap_destroy(sc->sc_dmat, dma->dma_map);
}
int
txp_ioctl(ifp, command, data)
struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct txp_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
struct ifaddr *ifa = (struct ifaddr *)data;
int s, error = 0;
s = splnet();
#if 0
if ((error = ether_ioctl(ifp, &sc->sc_arpcom, command, data)) > 0) {
splx(s);
return error;
}
#endif
switch(command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
txp_init(sc);
arp_ifinit(ifp, ifa);
break;
#endif /* INET */
default:
txp_init(sc);
break;
}
break;
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
txp_init(sc);
} else {
if (ifp->if_flags & IFF_RUNNING)
txp_stop(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
error = (command == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_arpcom) :
ether_delmulti(ifr, &sc->sc_arpcom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware
* filter accordingly.
*/
txp_set_filter(sc);
error = 0;
}
break;
case SIOCGIFMEDIA:
case SIOCSIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_ifmedia, command);
break;
default:
error = EINVAL;
break;
}
splx(s);
return(error);
}
void
txp_init(sc)
struct txp_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ec_if;
int s;
txp_stop(sc);
s = splnet();
txp_set_filter(sc);
txp_command(sc, TXP_CMD_TX_ENABLE, 0, 0, 0, NULL, NULL, NULL, 1);
txp_command(sc, TXP_CMD_RX_ENABLE, 0, 0, 0, NULL, NULL, NULL, 1);
WRITE_REG(sc, TXP_IER, TXP_INT_RESERVED | TXP_INT_SELF |
TXP_INT_A2H_7 | TXP_INT_A2H_6 | TXP_INT_A2H_5 | TXP_INT_A2H_4 |
TXP_INT_A2H_2 | TXP_INT_A2H_1 | TXP_INT_A2H_0 |
TXP_INT_DMA3 | TXP_INT_DMA2 | TXP_INT_DMA1 | TXP_INT_DMA0 |
TXP_INT_PCI_TABORT | TXP_INT_PCI_MABORT | TXP_INT_LATCH);
WRITE_REG(sc, TXP_IMR, TXP_INT_A2H_3);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_timer = 0;
if (!callout_pending(&sc->sc_tick))
callout_schedule(&sc->sc_tick, hz);
splx(s);
}
void
txp_tick(vsc)
void *vsc;
{
struct txp_softc *sc = vsc;
struct ifnet *ifp = &sc->sc_arpcom.ec_if;
struct txp_rsp_desc *rsp = NULL;
struct txp_ext_desc *ext;
int s;
s = splnet();
txp_rxbuf_reclaim(sc);
if (txp_command2(sc, TXP_CMD_READ_STATISTICS, 0, 0, 0, NULL, 0,
&rsp, 1))
goto out;
if (rsp->rsp_numdesc != 6)
goto out;
if (txp_command(sc, TXP_CMD_CLEAR_STATISTICS, 0, 0, 0,
NULL, NULL, NULL, 1))
goto out;
ext = (struct txp_ext_desc *)(rsp + 1);
ifp->if_ierrors += ext[3].ext_2 + ext[3].ext_3 + ext[3].ext_4 +
ext[4].ext_1 + ext[4].ext_4;
ifp->if_oerrors += ext[0].ext_1 + ext[1].ext_1 + ext[1].ext_4 +
ext[2].ext_1;
ifp->if_collisions += ext[0].ext_2 + ext[0].ext_3 + ext[1].ext_2 +
ext[1].ext_3;
ifp->if_opackets += rsp->rsp_par2;
ifp->if_ipackets += ext[2].ext_3;
out:
if (rsp != NULL)
free(rsp, M_DEVBUF);
splx(s);
callout_schedule(&sc->sc_tick, hz);
}
void
txp_start(ifp)
struct ifnet *ifp;
{
struct txp_softc *sc = ifp->if_softc;
struct txp_tx_ring *r = &sc->sc_txhir;
struct txp_tx_desc *txd;
int txdidx;
struct txp_frag_desc *fxd;
struct mbuf *m, *mnew;
struct txp_swdesc *sd;
u_int32_t firstprod, firstcnt, prod, cnt, i;
#if NVLAN > 0
struct ifvlan *ifv;
#endif
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
prod = r->r_prod;
cnt = r->r_cnt;
while (1) {
IFQ_POLL(&ifp->if_snd, m);
if (m == NULL)
break;
mnew = NULL;
firstprod = prod;
firstcnt = cnt;
sd = sc->sc_txd + prod;
sd->sd_mbuf = m;
if (bus_dmamap_load_mbuf(sc->sc_dmat, sd->sd_map, m,
BUS_DMA_NOWAIT)) {
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL)
goto oactive1;
if (m->m_pkthdr.len > MHLEN) {
MCLGET(mnew, M_DONTWAIT);
if ((mnew->m_flags & M_EXT) == 0) {
m_freem(mnew);
goto oactive1;
}
}
m_copydata(m, 0, m->m_pkthdr.len, mtod(mnew, caddr_t));
mnew->m_pkthdr.len = mnew->m_len = m->m_pkthdr.len;
IFQ_DEQUEUE(&ifp->if_snd, m);
m_freem(m);
m = mnew;
if (bus_dmamap_load_mbuf(sc->sc_dmat, sd->sd_map, m,
BUS_DMA_NOWAIT))
goto oactive1;
}
if ((TX_ENTRIES - cnt) < 4)
goto oactive;
txd = r->r_desc + prod;
txdidx = prod;
txd->tx_flags = TX_FLAGS_TYPE_DATA;
txd->tx_numdesc = 0;
txd->tx_addrlo = 0;
txd->tx_addrhi = 0;
txd->tx_totlen = m->m_pkthdr.len;
txd->tx_pflags = 0;
txd->tx_numdesc = sd->sd_map->dm_nsegs;
if (++prod == TX_ENTRIES)
prod = 0;
if (++cnt >= (TX_ENTRIES - 4))
goto oactive;
#if NVLAN > 0
if ((m->m_flags & (M_PROTO1|M_PKTHDR)) == (M_PROTO1|M_PKTHDR) &&
m->m_pkthdr.rcvif != NULL) {
ifv = m->m_pkthdr.rcvif->if_softc;
txd->tx_pflags = TX_PFLAGS_VLAN |
(htons(ifv->ifv_tag) << TX_PFLAGS_VLANTAG_S);
}
#endif
if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
txd->tx_pflags |= TX_PFLAGS_IPCKSUM;
#ifdef TRY_TX_TCP_CSUM
if (m->m_pkthdr.csum_flags & M_CSUM_TCPv4)
txd->tx_pflags |= TX_PFLAGS_TCPCKSUM;
#endif
#ifdef TRY_TX_UDP_CSUM
if (m->m_pkthdr.csum_flags & M_CSUM_UDPv4)
txd->tx_pflags |= TX_PFLAGS_UDPCKSUM;
#endif
bus_dmamap_sync(sc->sc_dmat, sd->sd_map, 0,
sd->sd_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
fxd = (struct txp_frag_desc *)(r->r_desc + prod);
for (i = 0; i < sd->sd_map->dm_nsegs; i++) {
if (++cnt >= (TX_ENTRIES - 4)) {
bus_dmamap_sync(sc->sc_dmat, sd->sd_map,
0, sd->sd_map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
goto oactive;
}
fxd->frag_flags = FRAG_FLAGS_TYPE_FRAG |
FRAG_FLAGS_VALID;
fxd->frag_rsvd1 = 0;
fxd->frag_len = sd->sd_map->dm_segs[i].ds_len;
fxd->frag_addrlo =
((u_int64_t)sd->sd_map->dm_segs[i].ds_addr) &
0xffffffff;
fxd->frag_addrhi =
((u_int64_t)sd->sd_map->dm_segs[i].ds_addr) >>
32;
fxd->frag_rsvd2 = 0;
bus_dmamap_sync(sc->sc_dmat,
sc->sc_txhiring_dma.dma_map,
prod * sizeof(struct txp_frag_desc),
sizeof(struct txp_frag_desc), BUS_DMASYNC_PREWRITE);
if (++prod == TX_ENTRIES) {
fxd = (struct txp_frag_desc *)r->r_desc;
prod = 0;
} else
fxd++;
}
/*
* if mnew isn't NULL, we already dequeued and copied
* the packet.
*/
if (mnew == NULL)
IFQ_DEQUEUE(&ifp->if_snd, m);
ifp->if_timer = 5;
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
txd->tx_flags |= TX_FLAGS_VALID;
bus_dmamap_sync(sc->sc_dmat, sc->sc_txhiring_dma.dma_map,
txdidx * sizeof(struct txp_tx_desc),
sizeof(struct txp_tx_desc), BUS_DMASYNC_PREWRITE);
#if 0
{
struct mbuf *mx;
int i;
printf("txd: flags 0x%x ndesc %d totlen %d pflags 0x%x\n",
txd->tx_flags, txd->tx_numdesc, txd->tx_totlen,
txd->tx_pflags);
for (mx = m; mx != NULL; mx = mx->m_next) {
for (i = 0; i < mx->m_len; i++) {
printf(":%02x",
(u_int8_t)m->m_data[i]);
}
}
printf("\n");
}
#endif
WRITE_REG(sc, r->r_reg, TXP_IDX2OFFSET(prod));
}
r->r_prod = prod;
r->r_cnt = cnt;
return;
oactive:
bus_dmamap_unload(sc->sc_dmat, sd->sd_map);
oactive1:
ifp->if_flags |= IFF_OACTIVE;
r->r_prod = firstprod;
r->r_cnt = firstcnt;
}
/*
* Handle simple commands sent to the typhoon
*/
int
txp_command(sc, id, in1, in2, in3, out1, out2, out3, wait)
struct txp_softc *sc;
u_int16_t id, in1, *out1;
u_int32_t in2, in3, *out2, *out3;
int wait;
{
struct txp_rsp_desc *rsp = NULL;
if (txp_command2(sc, id, in1, in2, in3, NULL, 0, &rsp, wait))
return (-1);
if (!wait)
return (0);
if (out1 != NULL)
*out1 = le16toh(rsp->rsp_par1);
if (out2 != NULL)
*out2 = le32toh(rsp->rsp_par2);
if (out3 != NULL)
*out3 = le32toh(rsp->rsp_par3);
free(rsp, M_DEVBUF);
return (0);
}
int
txp_command2(sc, id, in1, in2, in3, in_extp, in_extn, rspp, wait)
struct txp_softc *sc;
u_int16_t id, in1;
u_int32_t in2, in3;
struct txp_ext_desc *in_extp;
u_int8_t in_extn;
struct txp_rsp_desc **rspp;
int wait;
{
struct txp_hostvar *hv = sc->sc_hostvar;
struct txp_cmd_desc *cmd;
struct txp_ext_desc *ext;
u_int32_t idx, i;
u_int16_t seq;
if (txp_cmd_desc_numfree(sc) < (in_extn + 1)) {
printf("%s: no free cmd descriptors\n", TXP_DEVNAME(sc));
return (-1);
}
idx = sc->sc_cmdring.lastwrite;
cmd = (struct txp_cmd_desc *)(((u_int8_t *)sc->sc_cmdring.base) + idx);
bzero(cmd, sizeof(*cmd));
cmd->cmd_numdesc = in_extn;
seq = sc->sc_seq++;
cmd->cmd_seq = htole16(seq);
cmd->cmd_id = htole16(id);
cmd->cmd_par1 = htole16(in1);
cmd->cmd_par2 = htole32(in2);
cmd->cmd_par3 = htole32(in3);
cmd->cmd_flags = CMD_FLAGS_TYPE_CMD |
(wait ? CMD_FLAGS_RESP : 0) | CMD_FLAGS_VALID;
idx += sizeof(struct txp_cmd_desc);
if (idx == sc->sc_cmdring.size)
idx = 0;
for (i = 0; i < in_extn; i++) {
ext = (struct txp_ext_desc *)(((u_int8_t *)sc->sc_cmdring.base) + idx);
bcopy(in_extp, ext, sizeof(struct txp_ext_desc));
in_extp++;
idx += sizeof(struct txp_cmd_desc);
if (idx == sc->sc_cmdring.size)
idx = 0;
}
sc->sc_cmdring.lastwrite = idx;
WRITE_REG(sc, TXP_H2A_2, sc->sc_cmdring.lastwrite);
bus_dmamap_sync(sc->sc_dmat, sc->sc_host_dma.dma_map, 0,
sizeof(struct txp_hostvar), BUS_DMASYNC_PREREAD);
if (!wait)
return (0);
for (i = 0; i < 10000; i++) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_host_dma.dma_map, 0,
sizeof(struct txp_hostvar), BUS_DMASYNC_POSTREAD);
idx = le32toh(hv->hv_resp_read_idx);
if (idx != le32toh(hv->hv_resp_write_idx)) {
*rspp = NULL;
if (txp_response(sc, idx, id, seq, rspp))
return (-1);
if (*rspp != NULL)
break;
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_host_dma.dma_map, 0,
sizeof(struct txp_hostvar), BUS_DMASYNC_PREREAD);
DELAY(50);
}
if (i == 1000 || (*rspp) == NULL) {
printf("%s: 0x%x command failed\n", TXP_DEVNAME(sc), id);
return (-1);
}
return (0);
}
int
txp_response(sc, ridx, id, seq, rspp)
struct txp_softc *sc;
u_int32_t ridx;
u_int16_t id;
u_int16_t seq;
struct txp_rsp_desc **rspp;
{
struct txp_hostvar *hv = sc->sc_hostvar;
struct txp_rsp_desc *rsp;
while (ridx != le32toh(hv->hv_resp_write_idx)) {
rsp = (struct txp_rsp_desc *)(((u_int8_t *)sc->sc_rspring.base) + ridx);
if (id == le16toh(rsp->rsp_id) && le16toh(rsp->rsp_seq) == seq) {
*rspp = (struct txp_rsp_desc *)malloc(
sizeof(struct txp_rsp_desc) * (rsp->rsp_numdesc + 1),
M_DEVBUF, M_NOWAIT);
if ((*rspp) == NULL)
return (-1);
txp_rsp_fixup(sc, rsp, *rspp);
return (0);
}
if (rsp->rsp_flags & RSP_FLAGS_ERROR) {
printf("%s: response error: id 0x%x\n",
TXP_DEVNAME(sc), le16toh(rsp->rsp_id));
txp_rsp_fixup(sc, rsp, NULL);
ridx = le32toh(hv->hv_resp_read_idx);
continue;
}
switch (le16toh(rsp->rsp_id)) {
case TXP_CMD_CYCLE_STATISTICS:
case TXP_CMD_MEDIA_STATUS_READ:
break;
case TXP_CMD_HELLO_RESPONSE:
printf("%s: hello\n", TXP_DEVNAME(sc));
break;
default:
printf("%s: unknown id(0x%x)\n", TXP_DEVNAME(sc),
le16toh(rsp->rsp_id));
}
txp_rsp_fixup(sc, rsp, NULL);
ridx = le32toh(hv->hv_resp_read_idx);
hv->hv_resp_read_idx = le32toh(ridx);
}
return (0);
}
void
txp_rsp_fixup(sc, rsp, dst)
struct txp_softc *sc;
struct txp_rsp_desc *rsp, *dst;
{
struct txp_rsp_desc *src = rsp;
struct txp_hostvar *hv = sc->sc_hostvar;
u_int32_t i, ridx;
ridx = le32toh(hv->hv_resp_read_idx);
for (i = 0; i < rsp->rsp_numdesc + 1; i++) {
if (dst != NULL)
bcopy(src, dst++, sizeof(struct txp_rsp_desc));
ridx += sizeof(struct txp_rsp_desc);
if (ridx == sc->sc_rspring.size) {
src = sc->sc_rspring.base;
ridx = 0;
} else
src++;
sc->sc_rspring.lastwrite = ridx;
hv->hv_resp_read_idx = htole32(ridx);
}
hv->hv_resp_read_idx = htole32(ridx);
}
int
txp_cmd_desc_numfree(sc)
struct txp_softc *sc;
{
struct txp_hostvar *hv = sc->sc_hostvar;
struct txp_boot_record *br = sc->sc_boot;
u_int32_t widx, ridx, nfree;
widx = sc->sc_cmdring.lastwrite;
ridx = le32toh(hv->hv_cmd_read_idx);
if (widx == ridx) {
/* Ring is completely free */
nfree = le32toh(br->br_cmd_siz) - sizeof(struct txp_cmd_desc);
} else {
if (widx > ridx)
nfree = le32toh(br->br_cmd_siz) -
(widx - ridx + sizeof(struct txp_cmd_desc));
else
nfree = ridx - widx - sizeof(struct txp_cmd_desc);
}
return (nfree / sizeof(struct txp_cmd_desc));
}
void
txp_stop(sc)
struct txp_softc *sc;
{
txp_command(sc, TXP_CMD_TX_DISABLE, 0, 0, 0, NULL, NULL, NULL, 1);
txp_command(sc, TXP_CMD_RX_DISABLE, 0, 0, 0, NULL, NULL, NULL, 1);
if (callout_pending(&sc->sc_tick))
callout_stop(&sc->sc_tick);
}
void
txp_watchdog(ifp)
struct ifnet *ifp;
{
}
int
txp_ifmedia_upd(ifp)
struct ifnet *ifp;
{
struct txp_softc *sc = ifp->if_softc;
struct ifmedia *ifm = &sc->sc_ifmedia;
u_int16_t new_xcvr;
if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
return (EINVAL);
if (IFM_SUBTYPE(ifm->ifm_media) == IFM_10_T) {
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
new_xcvr = TXP_XCVR_10_FDX;
else
new_xcvr = TXP_XCVR_10_HDX;
} else if ((IFM_SUBTYPE(ifm->ifm_media) == IFM_100_TX) ||
(IFM_SUBTYPE(ifm->ifm_media) == IFM_100_FX)) {
if ((ifm->ifm_media & IFM_GMASK) == IFM_FDX)
new_xcvr = TXP_XCVR_100_FDX;
else
new_xcvr = TXP_XCVR_100_HDX;
} else if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO) {
new_xcvr = TXP_XCVR_AUTO;
} else
return (EINVAL);
/* nothing to do */
if (sc->sc_xcvr == new_xcvr)
return (0);
txp_command(sc, TXP_CMD_XCVR_SELECT, new_xcvr, 0, 0,
NULL, NULL, NULL, 0);
sc->sc_xcvr = new_xcvr;
return (0);
}
void
txp_ifmedia_sts(ifp, ifmr)
struct ifnet *ifp;
struct ifmediareq *ifmr;
{
struct txp_softc *sc = ifp->if_softc;
struct ifmedia *ifm = &sc->sc_ifmedia;
u_int16_t bmsr, bmcr, anlpar;
ifmr->ifm_status = IFM_AVALID;
ifmr->ifm_active = IFM_ETHER;
if (txp_command(sc, TXP_CMD_PHY_MGMT_READ, 0, MII_BMSR, 0,
&bmsr, NULL, NULL, 1))
goto bail;
if (txp_command(sc, TXP_CMD_PHY_MGMT_READ, 0, MII_BMSR, 0,
&bmsr, NULL, NULL, 1))
goto bail;
if (txp_command(sc, TXP_CMD_PHY_MGMT_READ, 0, MII_BMCR, 0,
&bmcr, NULL, NULL, 1))
goto bail;
if (txp_command(sc, TXP_CMD_PHY_MGMT_READ, 0, MII_ANLPAR, 0,
&anlpar, NULL, NULL, 1))
goto bail;
if (bmsr & BMSR_LINK)
ifmr->ifm_status |= IFM_ACTIVE;
if (bmcr & BMCR_ISO) {
ifmr->ifm_active |= IFM_NONE;
ifmr->ifm_status = 0;
return;
}
if (bmcr & BMCR_LOOP)
ifmr->ifm_active |= IFM_LOOP;
if (!(sc->sc_flags & TXP_FIBER) && (bmcr & BMCR_AUTOEN)) {
if ((bmsr & BMSR_ACOMP) == 0) {
ifmr->ifm_active |= IFM_NONE;
return;
}
if (anlpar & ANLPAR_T4)
ifmr->ifm_active |= IFM_100_T4;
else if (anlpar & ANLPAR_TX_FD)
ifmr->ifm_active |= IFM_100_TX|IFM_FDX;
else if (anlpar & ANLPAR_TX)
ifmr->ifm_active |= IFM_100_TX;
else if (anlpar & ANLPAR_10_FD)
ifmr->ifm_active |= IFM_10_T|IFM_FDX;
else if (anlpar & ANLPAR_10)
ifmr->ifm_active |= IFM_10_T;
else
ifmr->ifm_active |= IFM_NONE;
} else
ifmr->ifm_active = ifm->ifm_cur->ifm_media;
return;
bail:
ifmr->ifm_active |= IFM_NONE;
ifmr->ifm_status &= ~IFM_AVALID;
}
void
txp_show_descriptor(d)
void *d;
{
struct txp_cmd_desc *cmd = d;
struct txp_rsp_desc *rsp = d;
struct txp_tx_desc *txd = d;
struct txp_frag_desc *frgd = d;
switch (cmd->cmd_flags & CMD_FLAGS_TYPE_M) {
case CMD_FLAGS_TYPE_CMD:
/* command descriptor */
printf("[cmd flags 0x%x num %d id %d seq %d par1 0x%x par2 0x%x par3 0x%x]\n",
cmd->cmd_flags, cmd->cmd_numdesc, le16toh(cmd->cmd_id),
le16toh(cmd->cmd_seq), le16toh(cmd->cmd_par1),
le32toh(cmd->cmd_par2), le32toh(cmd->cmd_par3));
break;
case CMD_FLAGS_TYPE_RESP:
/* response descriptor */
printf("[rsp flags 0x%x num %d id %d seq %d par1 0x%x par2 0x%x par3 0x%x]\n",
rsp->rsp_flags, rsp->rsp_numdesc, le16toh(rsp->rsp_id),
le16toh(rsp->rsp_seq), le16toh(rsp->rsp_par1),
le32toh(rsp->rsp_par2), le32toh(rsp->rsp_par3));
break;
case CMD_FLAGS_TYPE_DATA:
/* data header (assuming tx for now) */
printf("[data flags 0x%x num %d totlen %d addr 0x%x/0x%x pflags 0x%x]",
txd->tx_flags, txd->tx_numdesc, txd->tx_totlen,
txd->tx_addrlo, txd->tx_addrhi, txd->tx_pflags);
break;
case CMD_FLAGS_TYPE_FRAG:
/* fragment descriptor */
printf("[frag flags 0x%x rsvd1 0x%x len %d addr 0x%x/0x%x rsvd2 0x%x]",
frgd->frag_flags, frgd->frag_rsvd1, frgd->frag_len,
frgd->frag_addrlo, frgd->frag_addrhi, frgd->frag_rsvd2);
break;
default:
printf("[unknown(%x) flags 0x%x num %d id %d seq %d par1 0x%x par2 0x%x par3 0x%x]\n",
cmd->cmd_flags & CMD_FLAGS_TYPE_M,
cmd->cmd_flags, cmd->cmd_numdesc, le16toh(cmd->cmd_id),
le16toh(cmd->cmd_seq), le16toh(cmd->cmd_par1),
le32toh(cmd->cmd_par2), le32toh(cmd->cmd_par3));
break;
}
}
void
txp_set_filter(sc)
struct txp_softc *sc;
{
struct ethercom *ac = &sc->sc_arpcom;
struct ifnet *ifp = &sc->sc_arpcom.ec_if;
u_int32_t crc, carry, hashbit, hash[2];
u_int16_t filter;
u_int8_t octet;
int i, j, mcnt = 0;
struct ether_multi *enm;
struct ether_multistep step;
if (ifp->if_flags & IFF_PROMISC) {
filter = TXP_RXFILT_PROMISC;
goto setit;
}
again:
filter = TXP_RXFILT_DIRECT;
if (ifp->if_flags & IFF_BROADCAST)
filter |= TXP_RXFILT_BROADCAST;
if (ifp->if_flags & IFF_ALLMULTI)
filter |= TXP_RXFILT_ALLMULTI;
else {
hash[0] = hash[1] = 0;
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast
* addresses. For now, just accept all
* multicasts, rather than trying to set only
* those filter bits needed to match the range.
* (At this time, the only use of address
* ranges is for IP multicast routing, for
* which the range is big enough to require
* all bits set.)
*/
ifp->if_flags |= IFF_ALLMULTI;
goto again;
}
mcnt++;
crc = 0xffffffff;
for (i = 0; i < ETHER_ADDR_LEN; i++) {
octet = enm->enm_addrlo[i];
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000) ? 1 : 0) ^
(octet & 1);
crc <<= 1;
octet >>= 1;
if (carry)
crc = (crc ^ TXP_POLYNOMIAL) |
carry;
}
}
hashbit = (u_int16_t)(crc & (64 - 1));
hash[hashbit / 32] |= (1 << hashbit % 32);
ETHER_NEXT_MULTI(step, enm);
}
if (mcnt > 0) {
filter |= TXP_RXFILT_HASHMULTI;
txp_command(sc, TXP_CMD_MCAST_HASH_MASK_WRITE,
2, hash[0], hash[1], NULL, NULL, NULL, 0);
}
}
setit:
txp_command(sc, TXP_CMD_RX_FILTER_WRITE, filter, 0, 0,
NULL, NULL, NULL, 1);
}
void
txp_capabilities(sc)
struct txp_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ec_if;
struct txp_rsp_desc *rsp = NULL;
struct txp_ext_desc *ext;
if (txp_command2(sc, TXP_CMD_OFFLOAD_READ, 0, 0, 0, NULL, 0, &rsp, 1))
goto out;
if (rsp->rsp_numdesc != 1)
goto out;
ext = (struct txp_ext_desc *)(rsp + 1);
sc->sc_tx_capability = ext->ext_1 & OFFLOAD_MASK;
sc->sc_rx_capability = ext->ext_2 & OFFLOAD_MASK;
#if NVLAN > 0
ifp->if_capabilities |= IFCAP_VLAN_MTU;
if (rsp->rsp_par2 & rsp->rsp_par3 & OFFLOAD_VLAN) {
sc->sc_tx_capability |= OFFLOAD_VLAN;
sc->sc_rx_capability |= OFFLOAD_VLAN;
ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING;
}
#endif
#if 0
/* not ready yet */
if (rsp->rsp_par2 & rsp->rsp_par3 & OFFLOAD_IPSEC) {
sc->sc_tx_capability |= OFFLOAD_IPSEC;
sc->sc_rx_capability |= OFFLOAD_IPSEC;
ifp->if_capabilities |= IFCAP_IPSEC;
}
#endif
if (rsp->rsp_par2 & rsp->rsp_par3 & OFFLOAD_IPCKSUM) {
sc->sc_tx_capability |= OFFLOAD_IPCKSUM;
sc->sc_rx_capability |= OFFLOAD_IPCKSUM;
ifp->if_capabilities |= IFCAP_CSUM_IPv4;
}
if (rsp->rsp_par2 & rsp->rsp_par3 & OFFLOAD_TCPCKSUM) {
sc->sc_rx_capability |= OFFLOAD_TCPCKSUM;
#ifdef TRY_TX_TCP_CSUM
sc->sc_tx_capability |= OFFLOAD_TCPCKSUM;
ifp->if_capabilities |= IFCAP_CSUM_TCPv4;
#endif
}
if (rsp->rsp_par2 & rsp->rsp_par3 & OFFLOAD_UDPCKSUM) {
sc->sc_rx_capability |= OFFLOAD_UDPCKSUM;
#ifdef TRY_TX_UDP_CSUM
sc->sc_tx_capability |= OFFLOAD_UDPCKSUM;
ifp->if_capabilities |= IFCAP_CSUM_UDPv4;
#endif
}
if (txp_command(sc, TXP_CMD_OFFLOAD_WRITE, 0,
sc->sc_tx_capability, sc->sc_rx_capability, NULL, NULL, NULL, 1))
goto out;
out:
if (rsp != NULL)
free(rsp, M_DEVBUF);
}