a21233e46b
on the original approach of SVR4 with some inspirations about balancing and migration from Solaris. It implements per-CPU runqueues, provides a real-time (RT) and time-sharing (TS) queues, ready to support a POSIX real-time extensions, and also prepared for the support of CPU affinity. The following lines in the kernel config enables the SCHED_M2: no options SCHED_4BSD options SCHED_M2 The scheduler seems to be stable. Further work will come soon. http://mail-index.netbsd.org/tech-kern/2007/10/04/0001.html http://www.netbsd.org/~rmind/m2/mysql_bench_ro_4x_local.png Thanks <ad> for the benchmarks!
1022 lines
23 KiB
C
1022 lines
23 KiB
C
/* $NetBSD: sched_m2.c,v 1.1 2007/10/09 19:00:15 rmind Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2007, Mindaugas Rasiukevicius
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* TODO:
|
|
* - Implementation of fair share queue;
|
|
* - Support for NUMA;
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: sched_m2.c,v 1.1 2007/10/09 19:00:15 rmind Exp $");
|
|
|
|
#include <sys/param.h>
|
|
|
|
#include <sys/cpu.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/lwp.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/syscallargs.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <machine/cpu.h>
|
|
|
|
/*
|
|
* XXX: Some defintions below will dissapear
|
|
* XXX: with the merge of vmlocking branch.
|
|
*/
|
|
#define PRI_MAX MAXPRI
|
|
#define PRI_COUNT (PRI_MAX + 1) /* 0 .. 127 -> 128 */
|
|
#define PRI_RT_COUNT (50) /* 0 .. 49 -> 50 */
|
|
#define PRI_TS_COUNT (PRI_COUNT - PRI_RT_COUNT) /* 50 .. 127 -> 78 */
|
|
|
|
#define PRI_DEFAULT 70 /* 70 */
|
|
#define PRI_REALTIME 50 /* 50 */
|
|
#define PRI_HTS_RANGE 10 /* 50 .. 60 -> 10 */
|
|
|
|
/*
|
|
* Bits per map.
|
|
*/
|
|
#define BITMAP_SHIFT 5 /* 32 bits */
|
|
#define BITMAP_SIZE PRI_COUNT >> BITMAP_SHIFT
|
|
|
|
/*
|
|
* Time-slices and priorities.
|
|
*/
|
|
static u_int min_ts; /* Minimal time-slice */
|
|
static u_int max_ts; /* Maximal time-slice */
|
|
static u_int rt_ts; /* Real-time time-slice */
|
|
static u_int ts_map[PRI_COUNT]; /* Map of time-slices */
|
|
static pri_t high_pri[PRI_COUNT]; /* Map for priority increase */
|
|
|
|
/*
|
|
* Migration and balancing.
|
|
*/
|
|
#ifdef MULTIPROCESSOR
|
|
static u_int cacheht_time; /* Cache hotness time */
|
|
static u_int min_catch; /* Minimal LWP count for catching */
|
|
|
|
static u_int balance_period; /* Balance period */
|
|
static struct callout balance_ch; /* Callout of balancer */
|
|
|
|
static struct cpu_info * volatile worker_ci;
|
|
|
|
#define CACHE_HOT(sil) (sil->sl_lrtime && \
|
|
(hardclock_ticks - sil->sl_lrtime < cacheht_time))
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Structures, runqueue.
|
|
*/
|
|
|
|
typedef struct {
|
|
TAILQ_HEAD(, lwp) q_head;
|
|
} queue_t;
|
|
|
|
typedef struct {
|
|
/* Lock and bitmap */
|
|
kmutex_t r_rq_mutex;
|
|
uint32_t r_bitmap[BITMAP_SIZE];
|
|
/* Counters */
|
|
u_int r_count; /* Count of the threads */
|
|
pri_t r_highest_pri; /* Highest priority */
|
|
u_int r_avgcount; /* Average count of threads */
|
|
u_int r_mcount; /* Count of migratable threads */
|
|
/* Runqueues */
|
|
queue_t r_rt_queue[PRI_RT_COUNT];
|
|
queue_t r_ts_queue[PRI_TS_COUNT];
|
|
} runqueue_t;
|
|
|
|
typedef struct {
|
|
u_int sl_flags;
|
|
u_int sl_timeslice; /* Time-slice of thread */
|
|
u_int sl_slept; /* Saved sleep time for sleep sum */
|
|
u_int sl_slpsum; /* Sum of sleep time */
|
|
u_int sl_rtime; /* Saved start time of run */
|
|
u_int sl_rtsum; /* Sum of the run time */
|
|
u_int sl_lrtime; /* Last run time */
|
|
} sched_info_lwp_t;
|
|
|
|
/* Flags */
|
|
#define SL_BATCH 0x01
|
|
|
|
/* Pool of the scheduler-specific structures for threads */
|
|
static struct pool sil_pool;
|
|
|
|
/*
|
|
* Prototypes.
|
|
*/
|
|
|
|
static inline void * sched_getrq(runqueue_t *, const pri_t);
|
|
static inline void sched_newts(struct lwp *);
|
|
static void sched_precalcts(void);
|
|
|
|
#ifdef MULTIPROCESSOR
|
|
static struct lwp * sched_catchlwp(void);
|
|
static void sched_balance(void *);
|
|
#endif
|
|
|
|
/*
|
|
* Initialization and setup.
|
|
*/
|
|
|
|
void
|
|
sched_rqinit(void)
|
|
{
|
|
struct cpu_info *ci = curcpu();
|
|
|
|
if (hz < 100) {
|
|
panic("sched_rqinit: value of HZ is too low\n");
|
|
}
|
|
|
|
/* Default timing ranges */
|
|
min_ts = mstohz(50); /* ~50ms */
|
|
max_ts = mstohz(150); /* ~150ms */
|
|
rt_ts = mstohz(100); /* ~100ms */
|
|
sched_precalcts();
|
|
|
|
#ifdef MULTIPROCESSOR
|
|
/* Balancing */
|
|
worker_ci = ci;
|
|
cacheht_time = mstohz(5); /* ~5 ms */
|
|
balance_period = mstohz(300); /* ~300ms */
|
|
min_catch = ~0;
|
|
#endif
|
|
|
|
/* Pool of the scheduler-specific structures */
|
|
pool_init(&sil_pool, sizeof(sched_info_lwp_t), 0, 0, 0,
|
|
"lwpsd", &pool_allocator_nointr, IPL_NONE);
|
|
|
|
/* Attach the primary CPU here */
|
|
sched_cpuattach(ci);
|
|
|
|
/* Initialize the scheduler structure of the primary LWP */
|
|
lwp0.l_mutex = &ci->ci_schedstate.spc_lwplock;
|
|
sched_lwp_fork(&lwp0);
|
|
sched_newts(&lwp0);
|
|
}
|
|
|
|
void
|
|
sched_setup(void)
|
|
{
|
|
|
|
#ifdef MULTIPROCESSOR
|
|
/* Minimal count of LWPs for catching: log2(count of CPUs) */
|
|
min_catch = min(ffs(ncpu) - 1, 4);
|
|
|
|
/* Initialize balancing callout and run it */
|
|
callout_init(&balance_ch, CALLOUT_MPSAFE);
|
|
callout_setfunc(&balance_ch, sched_balance, NULL);
|
|
callout_schedule(&balance_ch, balance_period);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
sched_cpuattach(struct cpu_info *ci)
|
|
{
|
|
runqueue_t *ci_rq;
|
|
void *rq_ptr;
|
|
u_int i, size;
|
|
|
|
/*
|
|
* Allocate the run queue.
|
|
* XXX: Estimate cache behaviour more..
|
|
*/
|
|
size = roundup(sizeof(runqueue_t), CACHE_LINE_SIZE) + CACHE_LINE_SIZE;
|
|
rq_ptr = kmem_zalloc(size, KM_NOSLEEP);
|
|
if (rq_ptr == NULL) {
|
|
panic("scheduler: could not allocate the runqueue");
|
|
}
|
|
/* XXX: Save the original pointer for future.. */
|
|
ci_rq = (void *)(roundup((intptr_t)(rq_ptr), CACHE_LINE_SIZE));
|
|
|
|
/* Initialize run queues */
|
|
mutex_init(&ci_rq->r_rq_mutex, MUTEX_SPIN, IPL_SCHED);
|
|
for (i = 0; i < PRI_RT_COUNT; i++)
|
|
TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
|
|
for (i = 0; i < PRI_TS_COUNT; i++)
|
|
TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
|
|
ci_rq->r_highest_pri = PRI_MAX;
|
|
|
|
ci->ci_schedstate.spc_sched_info = ci_rq;
|
|
ci->ci_schedstate.spc_mutex = &ci_rq->r_rq_mutex;
|
|
}
|
|
|
|
/* Pre-calculate the time-slices for the priorities */
|
|
static void
|
|
sched_precalcts(void)
|
|
{
|
|
pri_t p;
|
|
u_int i;
|
|
|
|
for (p = 0; p < PRI_REALTIME; p++) {
|
|
ts_map[p] = rt_ts;
|
|
high_pri[p] = p;
|
|
}
|
|
|
|
for (p = PRI_REALTIME, i = 0; p < PRI_COUNT; p++, i++) {
|
|
ts_map[p] = min_ts +
|
|
(i * 100 / (PRI_TS_COUNT - 1) * (max_ts - min_ts) / 100);
|
|
high_pri[p] = PRI_REALTIME + (i * PRI_HTS_RANGE /
|
|
(PRI_MAX - PRI_REALTIME));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Hooks.
|
|
*/
|
|
|
|
void
|
|
sched_proc_fork(struct proc *parent, struct proc *child)
|
|
{
|
|
struct lwp *l;
|
|
|
|
LIST_FOREACH(l, &child->p_lwps, l_sibling) {
|
|
lwp_lock(l);
|
|
sched_newts(l);
|
|
lwp_unlock(l);
|
|
}
|
|
}
|
|
|
|
void
|
|
sched_proc_exit(struct proc *child, struct proc *parent)
|
|
{
|
|
|
|
/* Dummy */
|
|
}
|
|
|
|
void
|
|
sched_lwp_fork(struct lwp *l)
|
|
{
|
|
|
|
KASSERT(l->l_sched_info == NULL);
|
|
l->l_sched_info = pool_get(&sil_pool, PR_WAITOK);
|
|
memset(l->l_sched_info, 0, sizeof(sched_info_lwp_t));
|
|
if (l->l_usrpri >= PRI_REALTIME) /* XXX: For now only.. */
|
|
l->l_usrpri = l->l_priority = PRI_DEFAULT;
|
|
}
|
|
|
|
void
|
|
sched_lwp_exit(struct lwp *l)
|
|
{
|
|
|
|
KASSERT(l->l_sched_info != NULL);
|
|
pool_put(&sil_pool, l->l_sched_info);
|
|
l->l_sched_info = NULL;
|
|
}
|
|
|
|
void
|
|
sched_setrunnable(struct lwp *l)
|
|
{
|
|
|
|
/* Dummy */
|
|
}
|
|
|
|
void
|
|
sched_schedclock(struct lwp *l)
|
|
{
|
|
|
|
/* Dummy */
|
|
}
|
|
|
|
/*
|
|
* Priorities and time-slice.
|
|
*/
|
|
|
|
void
|
|
sched_nice(struct proc *p, int prio)
|
|
{
|
|
int nprio;
|
|
struct lwp *l;
|
|
|
|
KASSERT(mutex_owned(&p->p_stmutex));
|
|
|
|
p->p_nice = prio;
|
|
nprio = max(PRI_DEFAULT + p->p_nice, PRI_REALTIME);
|
|
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
lwp_lock(l);
|
|
lwp_changepri(l, nprio);
|
|
lwp_unlock(l);
|
|
}
|
|
}
|
|
|
|
/* Recalculate the time-slice */
|
|
static inline void
|
|
sched_newts(struct lwp *l)
|
|
{
|
|
sched_info_lwp_t *sil = l->l_sched_info;
|
|
|
|
sil->sl_timeslice = ts_map[lwp_eprio(l)];
|
|
}
|
|
|
|
/*
|
|
* Control of the runqueue.
|
|
*/
|
|
|
|
static inline void *
|
|
sched_getrq(runqueue_t *ci_rq, const pri_t prio)
|
|
{
|
|
|
|
KASSERT(prio < PRI_COUNT);
|
|
return (prio < PRI_REALTIME) ?
|
|
&ci_rq->r_rt_queue[prio].q_head :
|
|
&ci_rq->r_ts_queue[prio - PRI_REALTIME].q_head;
|
|
}
|
|
|
|
void
|
|
sched_enqueue(struct lwp *l, bool swtch)
|
|
{
|
|
runqueue_t *ci_rq;
|
|
sched_info_lwp_t *sil = l->l_sched_info;
|
|
TAILQ_HEAD(, lwp) *q_head;
|
|
const pri_t eprio = lwp_eprio(l);
|
|
|
|
ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
|
|
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
|
|
|
|
/* Update the last run time on switch */
|
|
if (swtch == true) {
|
|
sil->sl_lrtime = hardclock_ticks;
|
|
sil->sl_rtsum += (hardclock_ticks - sil->sl_rtime);
|
|
} else
|
|
sil->sl_lrtime = 0;
|
|
|
|
/* Enqueue the thread */
|
|
q_head = sched_getrq(ci_rq, eprio);
|
|
if (TAILQ_EMPTY(q_head)) {
|
|
u_int i;
|
|
uint32_t q;
|
|
|
|
/* Mark bit */
|
|
i = eprio >> BITMAP_SHIFT;
|
|
q = eprio - (i << BITMAP_SHIFT);
|
|
KASSERT((ci_rq->r_bitmap[i] & (1 << q)) == 0);
|
|
ci_rq->r_bitmap[i] |= 1 << q;
|
|
}
|
|
TAILQ_INSERT_TAIL(q_head, l, l_runq);
|
|
ci_rq->r_count++;
|
|
if ((l->l_flag & LW_BOUND) == 0)
|
|
ci_rq->r_mcount++;
|
|
|
|
/*
|
|
* Update the value of highest priority in the runqueue,
|
|
* if priority of this thread is higher.
|
|
*/
|
|
if (eprio < ci_rq->r_highest_pri)
|
|
ci_rq->r_highest_pri = eprio;
|
|
|
|
sched_newts(l);
|
|
}
|
|
|
|
void
|
|
sched_dequeue(struct lwp *l)
|
|
{
|
|
runqueue_t *ci_rq;
|
|
TAILQ_HEAD(, lwp) *q_head;
|
|
const pri_t eprio = lwp_eprio(l);
|
|
|
|
ci_rq = l->l_cpu->ci_schedstate.spc_sched_info;
|
|
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
|
|
KASSERT(ci_rq->r_highest_pri <= eprio);
|
|
KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
|
|
KASSERT(ci_rq->r_count > 0);
|
|
|
|
ci_rq->r_count--;
|
|
if ((l->l_flag & LW_BOUND) == 0)
|
|
ci_rq->r_mcount--;
|
|
|
|
q_head = sched_getrq(ci_rq, eprio);
|
|
TAILQ_REMOVE(q_head, l, l_runq);
|
|
if (TAILQ_EMPTY(q_head)) {
|
|
u_int i;
|
|
uint32_t q;
|
|
|
|
/* Unmark bit */
|
|
i = eprio >> BITMAP_SHIFT;
|
|
q = eprio - (i << BITMAP_SHIFT);
|
|
KASSERT((ci_rq->r_bitmap[i] & (1 << q)) != 0);
|
|
ci_rq->r_bitmap[i] &= ~(1 << q);
|
|
|
|
/*
|
|
* Update the value of highest priority in the runqueue, in a
|
|
* case it was a last thread in the queue of highest priority.
|
|
*/
|
|
if (eprio != ci_rq->r_highest_pri)
|
|
return;
|
|
|
|
do {
|
|
q = ffs(ci_rq->r_bitmap[i]);
|
|
if (q) {
|
|
ci_rq->r_highest_pri =
|
|
(i << BITMAP_SHIFT) + q - 1;
|
|
return;
|
|
}
|
|
} while (++i < BITMAP_SIZE);
|
|
|
|
/* If not found - set the maximal value */
|
|
ci_rq->r_highest_pri = PRI_MAX;
|
|
}
|
|
}
|
|
|
|
void
|
|
sched_slept(struct lwp *l)
|
|
{
|
|
sched_info_lwp_t *sil = l->l_sched_info;
|
|
|
|
/* Save the time when thread has slept */
|
|
sil->sl_slept = hardclock_ticks;
|
|
|
|
/*
|
|
* If thread is not a real-time and batch flag is not marked,
|
|
* increase the the priority, and run with lower time-quantum.
|
|
*/
|
|
if (l->l_usrpri > PRI_REALTIME && (sil->sl_flags & SL_BATCH) == 0)
|
|
l->l_usrpri--;
|
|
}
|
|
|
|
void
|
|
sched_wakeup(struct lwp *l)
|
|
{
|
|
sched_info_lwp_t *sil = l->l_sched_info;
|
|
|
|
/* Update sleep time delta */
|
|
sil->sl_slpsum += (l->l_slptime == 0) ?
|
|
(hardclock_ticks - sil->sl_slept) : hz;
|
|
|
|
/* If thread was sleeping a second or more - set a high priority */
|
|
if (l->l_slptime > 1 || (hardclock_ticks - sil->sl_slept) >= hz)
|
|
l->l_usrpri = l->l_priority = high_pri[l->l_usrpri];
|
|
KASSERT(sil->sl_slept > 0);
|
|
|
|
/* Also, consider looking for a better CPU to wake up */
|
|
if ((l->l_flag & (LW_BOUND | LW_SYSTEM)) == 0)
|
|
l->l_cpu = sched_takecpu(l);
|
|
}
|
|
|
|
void
|
|
sched_pstats_hook(struct lwp *l)
|
|
{
|
|
sched_info_lwp_t *sil = l->l_sched_info;
|
|
|
|
/*
|
|
* Set that thread is more CPU-bound, if sum of run time exceeds the
|
|
* sum of sleep time. If it is CPU-bound not a first time - decrease
|
|
* the priority.
|
|
*/
|
|
if (sil->sl_rtsum > sil->sl_slpsum) {
|
|
if ((sil->sl_flags & SL_BATCH) && (l->l_usrpri < PRI_MAX))
|
|
l->l_usrpri++;
|
|
sil->sl_flags |= SL_BATCH;
|
|
} else {
|
|
sil->sl_flags &= ~SL_BATCH;
|
|
}
|
|
sil->sl_slpsum = 0;
|
|
sil->sl_rtsum = 0;
|
|
|
|
/*
|
|
* Estimate only threads on time-sharing run queue, also,
|
|
* ignore the highest time-sharing priority.
|
|
*/
|
|
if (l->l_stat != LSRUN || l->l_usrpri <= PRI_REALTIME)
|
|
return;
|
|
|
|
/* If thread was not ran a second or more - set a high priority */
|
|
if (sil->sl_lrtime && (hardclock_ticks - sil->sl_lrtime >= hz))
|
|
lwp_changepri(l, high_pri[l->l_usrpri]);
|
|
}
|
|
|
|
/*
|
|
* Migration and balancing.
|
|
*/
|
|
|
|
#ifdef MULTIPROCESSOR
|
|
|
|
/* Check if LWP can migrate to the chosen CPU */
|
|
static inline bool
|
|
sched_migratable(const struct lwp *l, const struct cpu_info *ci)
|
|
{
|
|
|
|
if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
|
|
return false;
|
|
|
|
if ((l->l_flag & LW_BOUND) == 0)
|
|
return true;
|
|
#if 0
|
|
return cpu_in_pset(ci, l->l_psid);
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Estimate the migration of LWP to the other CPU.
|
|
* Take and return the CPU, if migration is needed.
|
|
*/
|
|
struct cpu_info *
|
|
sched_takecpu(struct lwp *l)
|
|
{
|
|
struct cpu_info *ci, *tci = NULL;
|
|
struct schedstate_percpu *spc;
|
|
runqueue_t *ci_rq;
|
|
sched_info_lwp_t *sil;
|
|
CPU_INFO_ITERATOR cii;
|
|
pri_t eprio, lpri;
|
|
|
|
ci = l->l_cpu;
|
|
spc = &ci->ci_schedstate;
|
|
ci_rq = spc->spc_sched_info;
|
|
|
|
/* CPU of this thread is idling - run there */
|
|
if (ci_rq->r_count == 0)
|
|
return ci;
|
|
|
|
eprio = lwp_eprio(l);
|
|
sil = l->l_sched_info;
|
|
|
|
/* Stay if thread is cache-hot */
|
|
if (l->l_stat == LSSLEEP && l->l_slptime <= 1 &&
|
|
CACHE_HOT(sil) && eprio <= spc->spc_curpriority)
|
|
return ci;
|
|
|
|
/* Run on current CPU if priority of thread is higher */
|
|
ci = curcpu();
|
|
spc = &ci->ci_schedstate;
|
|
if (eprio < spc->spc_curpriority && sched_migratable(l, ci))
|
|
return ci;
|
|
|
|
/*
|
|
* Look for the CPU with the lowest priority thread. In case of
|
|
* equal the priority - check the lower count of the threads.
|
|
*/
|
|
lpri = 0;
|
|
ci_rq = NULL;
|
|
tci = l->l_cpu;
|
|
for (CPU_INFO_FOREACH(cii, ci)) {
|
|
runqueue_t *ici_rq;
|
|
pri_t pri;
|
|
|
|
spc = &ci->ci_schedstate;
|
|
ici_rq = spc->spc_sched_info;
|
|
pri = min(spc->spc_curpriority, ici_rq->r_highest_pri);
|
|
if (pri < lpri)
|
|
continue;
|
|
|
|
if (pri == lpri && ci_rq && ci_rq->r_count < ici_rq->r_count)
|
|
continue;
|
|
|
|
if (sched_migratable(l, ci) == false)
|
|
continue;
|
|
|
|
lpri = pri;
|
|
tci = ci;
|
|
ci_rq = ici_rq;
|
|
}
|
|
|
|
return tci;
|
|
}
|
|
|
|
/*
|
|
* Tries to catch an LWP from the runqueue of other CPU.
|
|
*/
|
|
static struct lwp *
|
|
sched_catchlwp(void)
|
|
{
|
|
struct cpu_info *curci = curcpu(), *ci = worker_ci;
|
|
TAILQ_HEAD(, lwp) *q_head;
|
|
runqueue_t *ci_rq;
|
|
struct lwp *l;
|
|
|
|
if (curci == ci)
|
|
return NULL;
|
|
|
|
/* Lockless check */
|
|
ci_rq = ci->ci_schedstate.spc_sched_info;
|
|
if (ci_rq->r_count < min_catch)
|
|
return NULL;
|
|
|
|
/*
|
|
* Double-lock the runqueues.
|
|
*/
|
|
if (curci->ci_schedstate.spc_mutex < ci->ci_schedstate.spc_mutex) {
|
|
spc_lock(ci);
|
|
} else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
|
|
const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
|
|
|
|
spc_unlock(curci);
|
|
spc_lock(ci);
|
|
spc_lock(curci);
|
|
|
|
if (cur_rq->r_count) {
|
|
spc_unlock(ci);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (ci_rq->r_count < min_catch) {
|
|
spc_unlock(ci);
|
|
return NULL;
|
|
}
|
|
|
|
/* Take the highest priority thread */
|
|
q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
|
|
l = TAILQ_FIRST(q_head);
|
|
|
|
for (;;) {
|
|
sched_info_lwp_t *sil;
|
|
|
|
/* Check the first and next result from the queue */
|
|
if (l == NULL)
|
|
break;
|
|
|
|
/* Look for threads, whose are allowed to migrate */
|
|
sil = l->l_sched_info;
|
|
if ((l->l_flag & LW_SYSTEM) || CACHE_HOT(sil) ||
|
|
sched_migratable(l, curci) == false) {
|
|
l = TAILQ_NEXT(l, l_runq);
|
|
continue;
|
|
}
|
|
/* Recheck if chosen thread is still on the runqueue */
|
|
if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM)) {
|
|
sched_dequeue(l);
|
|
l->l_cpu = curci;
|
|
lwp_setlock(l, curci->ci_schedstate.spc_mutex);
|
|
sched_enqueue(l, false);
|
|
break;
|
|
}
|
|
l = TAILQ_NEXT(l, l_runq);
|
|
}
|
|
spc_unlock(ci);
|
|
|
|
return l;
|
|
}
|
|
|
|
/*
|
|
* Periodical calculations for balancing.
|
|
*/
|
|
static void
|
|
sched_balance(void *nocallout)
|
|
{
|
|
struct cpu_info *ci, *hci;
|
|
runqueue_t *ci_rq;
|
|
CPU_INFO_ITERATOR cii;
|
|
u_int highest;
|
|
|
|
hci = curcpu();
|
|
highest = 0;
|
|
|
|
/* Make lockless countings */
|
|
for (CPU_INFO_FOREACH(cii, ci)) {
|
|
ci_rq = ci->ci_schedstate.spc_sched_info;
|
|
|
|
/* Average count of the threads */
|
|
ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
|
|
|
|
/* Look for CPU with the highest average */
|
|
if (ci_rq->r_avgcount > highest) {
|
|
hci = ci;
|
|
highest = ci_rq->r_avgcount;
|
|
}
|
|
}
|
|
|
|
/* Update the worker */
|
|
worker_ci = hci;
|
|
|
|
if (nocallout == NULL)
|
|
callout_schedule(&balance_ch, balance_period);
|
|
}
|
|
|
|
#else
|
|
|
|
struct cpu_info *
|
|
sched_takecpu(struct lwp *l)
|
|
{
|
|
|
|
return l->l_cpu;
|
|
}
|
|
|
|
#endif /* MULTIPROCESSOR */
|
|
|
|
/*
|
|
* Scheduler mill.
|
|
*/
|
|
struct lwp *
|
|
sched_nextlwp(void)
|
|
{
|
|
struct cpu_info *ci = curcpu();
|
|
struct schedstate_percpu *spc;
|
|
TAILQ_HEAD(, lwp) *q_head;
|
|
sched_info_lwp_t *sil;
|
|
runqueue_t *ci_rq;
|
|
struct lwp *l;
|
|
|
|
spc = &ci->ci_schedstate;
|
|
ci_rq = ci->ci_schedstate.spc_sched_info;
|
|
|
|
#ifdef MULTIPROCESSOR
|
|
/* If runqueue is empty, try to catch some thread from other CPU */
|
|
if (spc->spc_flags & SPCF_OFFLINE) {
|
|
if (ci_rq->r_mcount == 0)
|
|
return NULL;
|
|
} else if (ci_rq->r_count == 0) {
|
|
/* Reset the counter, and call the balancer */
|
|
ci_rq->r_avgcount = 0;
|
|
sched_balance(ci);
|
|
|
|
/* The re-locking will be done inside */
|
|
return sched_catchlwp();
|
|
}
|
|
#else
|
|
if (ci_rq->r_count == 0)
|
|
return NULL;
|
|
#endif
|
|
|
|
/* Take the highest priority thread */
|
|
KASSERT(ci_rq->r_bitmap[ci_rq->r_highest_pri >> BITMAP_SHIFT]);
|
|
q_head = sched_getrq(ci_rq, ci_rq->r_highest_pri);
|
|
l = TAILQ_FIRST(q_head);
|
|
KASSERT(l != NULL);
|
|
|
|
/* Update the counters */
|
|
sil = l->l_sched_info;
|
|
KASSERT(sil->sl_timeslice >= min_ts);
|
|
KASSERT(sil->sl_timeslice <= max_ts);
|
|
spc->spc_ticks = sil->sl_timeslice;
|
|
sil->sl_rtime = hardclock_ticks;
|
|
|
|
return l;
|
|
}
|
|
|
|
bool
|
|
sched_curcpu_runnable_p(void)
|
|
{
|
|
const struct cpu_info *ci = curcpu();
|
|
const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
|
|
|
|
if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
|
|
return ci_rq->r_mcount;
|
|
|
|
return ci_rq->r_count;
|
|
}
|
|
|
|
/*
|
|
* Time-driven events.
|
|
*/
|
|
|
|
/*
|
|
* Called once per time-quantum. This routine is CPU-local and runs at
|
|
* IPL_SCHED, thus the locking is not needed.
|
|
*/
|
|
void
|
|
sched_tick(struct cpu_info *ci)
|
|
{
|
|
const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
|
|
struct schedstate_percpu *spc = &ci->ci_schedstate;
|
|
struct lwp *l = curlwp;
|
|
sched_info_lwp_t *sil = l->l_sched_info;
|
|
|
|
/* Decrease the priority, and run with a higher time-quantum */
|
|
if (!CURCPU_IDLE_P() && l->l_policy == SCHED_OTHER) {
|
|
if (l->l_usrpri >= PRI_REALTIME) {
|
|
l->l_usrpri = min(l->l_usrpri + 1, PRI_MAX);
|
|
l->l_priority = l->l_usrpri;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the time-quantum, and continue running,
|
|
* if thread runs on FIFO real-time policy.
|
|
*/
|
|
if (l->l_policy == SCHED_FIFO) {
|
|
spc->spc_ticks = sil->sl_timeslice;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If there are higher priority threads with or threads in the same
|
|
* queue, mark that thread should yield, otherwise, continue running.
|
|
*/
|
|
if (CURCPU_IDLE_P() || lwp_eprio(l) >= ci_rq->r_highest_pri) {
|
|
spc->spc_flags |= SPCF_SHOULDYIELD;
|
|
cpu_need_resched(ci, 0);
|
|
} else
|
|
spc->spc_ticks = sil->sl_timeslice;
|
|
}
|
|
|
|
/*
|
|
* Sysctl nodes and initialization.
|
|
*/
|
|
|
|
static int
|
|
sysctl_sched_mints(SYSCTLFN_ARGS)
|
|
{
|
|
struct sysctlnode node;
|
|
struct cpu_info *ci;
|
|
int error, newsize;
|
|
CPU_INFO_ITERATOR cii;
|
|
|
|
node = *rnode;
|
|
node.sysctl_data = &newsize;
|
|
|
|
newsize = hztoms(min_ts);
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
|
|
if (newsize < 1 || newsize > hz || newsize >= max_ts)
|
|
return EINVAL;
|
|
|
|
/* It is safe to do this in such order */
|
|
for (CPU_INFO_FOREACH(cii, ci))
|
|
spc_lock(ci);
|
|
|
|
min_ts = mstohz(newsize);
|
|
sched_precalcts();
|
|
|
|
for (CPU_INFO_FOREACH(cii, ci))
|
|
spc_unlock(ci);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sysctl_sched_maxts(SYSCTLFN_ARGS)
|
|
{
|
|
struct sysctlnode node;
|
|
struct cpu_info *ci;
|
|
int error, newsize;
|
|
CPU_INFO_ITERATOR cii;
|
|
|
|
node = *rnode;
|
|
node.sysctl_data = &newsize;
|
|
|
|
newsize = hztoms(max_ts);
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
|
|
if (newsize < 10 || newsize > hz || newsize <= min_ts)
|
|
return EINVAL;
|
|
|
|
/* It is safe to do this in such order */
|
|
for (CPU_INFO_FOREACH(cii, ci))
|
|
spc_lock(ci);
|
|
|
|
max_ts = mstohz(newsize);
|
|
sched_precalcts();
|
|
|
|
for (CPU_INFO_FOREACH(cii, ci))
|
|
spc_unlock(ci);
|
|
|
|
return 0;
|
|
}
|
|
|
|
SYSCTL_SETUP(sysctl_sched_setup, "sysctl kern.sched subtree setup")
|
|
{
|
|
const struct sysctlnode *node = NULL;
|
|
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "kern", NULL,
|
|
NULL, 0, NULL, 0,
|
|
CTL_KERN, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, &node,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "sched",
|
|
SYSCTL_DESCR("Scheduler options"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_KERN, CTL_CREATE, CTL_EOL);
|
|
|
|
if (node == NULL)
|
|
return;
|
|
|
|
sysctl_createv(clog, 0, &node, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_STRING, "name", NULL,
|
|
NULL, 0, __UNCONST("M2"), 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(clog, 0, &node, NULL,
|
|
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "maxts",
|
|
SYSCTL_DESCR("Maximal time quantum (in microseconds)"),
|
|
sysctl_sched_maxts, 0, &max_ts, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(clog, 0, &node, NULL,
|
|
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "mints",
|
|
SYSCTL_DESCR("Minimal time quantum (in microseconds)"),
|
|
sysctl_sched_mints, 0, &min_ts, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
|
|
#ifdef MULTIPROCESSOR
|
|
sysctl_createv(clog, 0, &node, NULL,
|
|
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "cacheht_time",
|
|
SYSCTL_DESCR("Cache hotness time"),
|
|
NULL, 0, &cacheht_time, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(clog, 0, &node, NULL,
|
|
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "balance_period",
|
|
SYSCTL_DESCR("Balance period"),
|
|
NULL, 0, &balance_period, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(clog, 0, &node, NULL,
|
|
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "min_catch",
|
|
SYSCTL_DESCR("Minimal count of threads for catching"),
|
|
NULL, 0, &min_catch, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Debugging.
|
|
*/
|
|
|
|
#ifdef DDB
|
|
|
|
void
|
|
sched_print_runqueue(void (*pr)(const char *, ...))
|
|
{
|
|
runqueue_t *ci_rq;
|
|
sched_info_lwp_t *sil;
|
|
struct lwp *l;
|
|
struct proc *p;
|
|
int i;
|
|
|
|
struct cpu_info *ci;
|
|
CPU_INFO_ITERATOR cii;
|
|
|
|
for (CPU_INFO_FOREACH(cii, ci)) {
|
|
ci_rq = ci->ci_schedstate.spc_sched_info;
|
|
|
|
(*pr)("Run-queue (CPU = %d):\n", ci->ci_cpuid);
|
|
(*pr)(" pid.lid = %d.%d, threads count = %u, "
|
|
"avgcount = %u, highest pri = %d\n",
|
|
ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
|
|
ci_rq->r_count, ci_rq->r_avgcount, ci_rq->r_highest_pri);
|
|
i = 0;
|
|
do {
|
|
int b;
|
|
b = ci_rq->r_bitmap[i];
|
|
(*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(b), b);
|
|
} while (++i < BITMAP_SIZE);
|
|
}
|
|
|
|
(*pr)(" %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
|
|
"LID", "PRI", "UPRI", "FL", "ST", "TS", "LWP", "CPU", "LRTIME");
|
|
|
|
PROCLIST_FOREACH(p, &allproc) {
|
|
(*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
sil = l->l_sched_info;
|
|
ci = l->l_cpu;
|
|
(*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3d "
|
|
"%u ST=%d RT=%d %d\n",
|
|
(int)l->l_lid, l->l_priority, l->l_usrpri,
|
|
l->l_flag, l->l_stat == LSRUN ? "RQ" :
|
|
(l->l_stat == LSSLEEP ? "SQ" : "-"),
|
|
sil->sl_timeslice, l, ci->ci_cpuid,
|
|
(u_int)(hardclock_ticks - sil->sl_lrtime),
|
|
sil->sl_slpsum, sil->sl_rtsum, sil->sl_flags);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* defined(DDB) */
|