NetBSD/sys/arch/amiga/dev/fd.c
1999-12-04 21:13:19 +00:00

2225 lines
47 KiB
C

/* $NetBSD: fd.c,v 1.41 1999/12/04 21:20:04 ragge Exp $ */
/*
* Copyright (c) 1994 Christian E. Hopps
* Copyright (c) 1996 Ezra Story
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Christian E. Hopps.
* This product includes software developed by Ezra Story.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/buf.h>
#include <sys/device.h>
#include <sys/ioctl.h>
#include <sys/fcntl.h>
#include <sys/disklabel.h>
#include <sys/disk.h>
#include <sys/dkbad.h>
#include <sys/proc.h>
#include <machine/cpu.h>
#include <amiga/amiga/device.h>
#include <amiga/amiga/custom.h>
#include <amiga/amiga/cia.h>
#include <amiga/amiga/cc.h>
#include <sys/conf.h>
#include <machine/conf.h>
#include "locators.h"
enum fdc_bits { FDB_CHANGED = 2, FDB_PROTECT, FDB_CYLZERO, FDB_READY };
/*
* partitions in fd represent different format floppies
* partition a is 0 etc..
*/
enum fd_parttypes {
FDAMIGAPART = 0,
FDMSDOSPART,
FDMAXPARTS
};
#define FDBBSIZE (8192)
#define FDSBSIZE (8192)
#define b_cylin b_resid
#define FDUNIT(dev) DISKUNIT(dev)
#define FDPART(dev) DISKPART(dev)
#define FDMAKEDEV(m, u, p) MAKEDISKDEV((m), (u), (p))
/* that's nice, but we don't want to always use this as an amiga drive
bunghole :-) */
#define FDNHEADS (2) /* amiga drives always have 2 heads */
#define FDSECSIZE (512) /* amiga drives always have 512 byte sectors */
#define FDSECLWORDS (128)
#define FDSETTLEDELAY (18000) /* usec delay after seeking after switch dir */
#define FDSTEPDELAY (3500) /* usec delay after steping */
#define FDPRESIDEDELAY (1000) /* usec delay before writing can occur */
#define FDWRITEDELAY (1300) /* usec delay after write */
#define FDSTEPOUT (1) /* decrease track step */
#define FDSTEPIN (0) /* increase track step */
#define FDCUNITMASK (0x78) /* mask for all units (bits 6-3) */
#define FDRETRIES (2) /* default number of retries */
#define FDMAXUNITS (4) /* maximum number of supported units */
#define DISKLEN_READ (0) /* fake mask for reading */
#define DISKLEN_WRITE (1 << 14) /* bit for writing */
#define DISKLEN_DMAEN (1 << 15) /* dma go */
#define DMABUFSZ ((DISKLEN_WRITE - 1) * 2) /* largest dma possible */
#define FDMFMSYNC (0x4489)
#define FDMFMID (0x5554)
#define FDMFMDATA (0x5545)
#define FDMFMGAP1 (0x9254)
#define FDMFMGAP2 (0xAAAA)
#define FDMFMGAP3 (0x9254)
#define CRC16POLY (0x1021) /* (x^16) + x^12 + x^5 + x^0 */
/*
* Msdos-type MFM encode/decode
*/
static u_char msdecode[128];
static u_char msencode[16] =
{
0x2a, 0x29, 0x24, 0x25, 0x12, 0x11, 0x14, 0x15,
0x4a, 0x49, 0x44, 0x45, 0x52, 0x51, 0x54, 0x55
};
static u_short mscrctab[256];
/*
5554 aaaa aaaa aaa5 2aa4 4452 aa51
00 00 03 02 ac 0d
*/
/*
* floppy device type
*/
struct fdtype {
u_int driveid; /* drive identification (from drive) */
u_int ncylinders; /* number of cylinders on drive */
u_int amiga_nsectors; /* number of sectors per amiga track */
u_int msdos_nsectors; /* number of sectors per msdos track */
u_int nreadw; /* number of words (short) read per track */
u_int nwritew; /* number of words (short) written per track */
u_int gap; /* track gap size in long words */
u_int precomp[2]; /* 1st and 2nd precomp values */
char *desc; /* description of drive type (useq) */
};
/*
* floppy disk device data
*/
struct fd_softc {
struct device sc_dv; /* generic device info; must come first */
struct disk dkdev; /* generic disk info */
struct buf bufq; /* queue of buf's */
struct fdtype *type;
void *cachep; /* cached track data (write through) */
int cachetrk; /* cahced track -1 for none */
int hwunit; /* unit for amiga controlling hw */
int unitmask; /* mask for cia select deslect */
int pstepdir; /* previous step direction */
int curcyl; /* current curcyl head positioned on */
int flags; /* misc flags */
int wlabel;
int stepdelay; /* useq to delay after seek user setable */
int nsectors; /* number of sectors per track */
int openpart; /* which partition [ab] == [12] is open */
short retries; /* number of times to retry failed io */
short retried; /* number of times current io retried */
int bytespersec; /* number of bytes per sector */
};
/* fd_softc->flags */
#define FDF_MOTORON (0x01) /* motor is running */
#define FDF_MOTOROFF (0x02) /* motor is waiting to be turned off */
#define FDF_WMOTOROFF (0x04) /* unit wants a wakeup after off */
#define FDF_DIRTY (0x08) /* track cache needs write */
#define FDF_WRITEWAIT (0x10) /* need to head select delay on next setpos */
#define FDF_HAVELABEL (0x20) /* label is valid */
#define FDF_JUSTFLUSH (0x40) /* don't bother caching track. */
#define FDF_NOTRACK0 (0x80) /* was not able to recalibrate drive */
int fdc_wantwakeup;
int fdc_side;
void *fdc_dmap;
struct fd_softc *fdc_indma;
int fdc_dmalen;
int fdc_dmawrite;
struct fdcargs {
struct fdtype *type;
int unit;
};
int fdcmatch __P((struct device *, struct cfdata *, void *));
void fdcattach __P((struct device *, struct device *, void *));
int fdcprint __P((void *, const char *));
int fdmatch __P((struct device *, struct cfdata *, void *));
void fdattach __P((struct device *, struct device *, void *));
void fdintr __P((int));
void fdidxintr __P((void));
void fdstrategy __P((struct buf *));
int fdloaddisk __P((struct fd_softc *));
void fdgetdefaultlabel __P((struct fd_softc *, struct disklabel *, int));
int fdgetdisklabel __P((struct fd_softc *, dev_t));
int fdsetdisklabel __P((struct fd_softc *, struct disklabel *));
int fdputdisklabel __P((struct fd_softc *, dev_t));
struct fdtype * fdcgetfdtype __P((int));
void fdmotoroff __P((void *));
void fdsetpos __P((struct fd_softc *, int, int));
void fdselunit __P((struct fd_softc *));
void fdstart __P((struct fd_softc *));
void fdcont __P((struct fd_softc *));
void fddmastart __P((struct fd_softc *, int));
void fdcalibrate __P((void *));
void fddmadone __P((struct fd_softc *, int));
void fddone __P((struct fd_softc *));
void fdfindwork __P((int));
void fdminphys __P((struct buf *));
void fdcachetoraw __P((struct fd_softc *));
void amcachetoraw __P((struct fd_softc *));
int amrawtocache __P((struct fd_softc *));
u_long *fdfindsync __P((u_long *, u_long *));
int fdrawtocache __P((struct fd_softc *));
void mscachetoraw __P((struct fd_softc *));
int msrawtocache __P((struct fd_softc *));
u_long *mfmblkencode __P((u_long *, u_long *, u_long *, int));
u_long *mfmblkdecode __P((u_long *, u_long *, u_long *, int));
u_short *msblkdecode __P((u_short *, u_char *, int));
u_short *msblkencode __P((u_short *, u_char *, int, u_short *));
struct dkdriver fddkdriver = { fdstrategy };
/*
* read size is (nsectors + 1) * mfm secsize + gap bytes + 2 shorts
* write size is nsectors * mfm secsize + gap bytes + 3 shorts
* the extra shorts are to deal with a dma hw bug in the controller
* they are probably too much (I belive the bug is 1 short on write and
* 3 bits on read) but there is no need to be cheap here.
*/
#define MAXTRKSZ (22 * FDSECSIZE)
struct fdtype fdtype[] = {
{ 0x00000000, 80, 11, 9, 7358, 6815, 414, { 80, 161 }, "3.5dd" },
{ 0x55555555, 40, 11, 9, 7358, 6815, 414, { 80, 161 }, "5.25dd" },
{ 0xAAAAAAAA, 80, 22, 18, 14716, 13630, 828, { 80, 161 }, "3.5hd" }
};
int nfdtype = sizeof(fdtype) / sizeof(*fdtype);
struct cfattach fd_ca = {
sizeof(struct fd_softc), fdmatch, fdattach
};
extern struct cfdriver fd_cd;
struct cfattach fdc_ca = {
sizeof(struct device), fdcmatch, fdcattach
};
/*
* all hw access through macros, this helps to hide the active low
* properties
*/
#define FDUNITMASK(unit) (1 << (3 + (unit)))
/*
* select units using mask
*/
#define FDSELECT(um) do { ciab.prb &= ~(um); } while (0)
/*
* deselect units using mask
*/
#define FDDESELECT(um) do { ciab.prb |= (um); delay(1); } while (0)
/*
* test hw condition bits
*/
#define FDTESTC(bit) ((ciaa.pra & (1 << (bit))) == 0)
/*
* set motor for select units, true motor on else off
*/
#define FDSETMOTOR(on) do { \
if (on) ciab.prb &= ~CIAB_PRB_MTR; else ciab.prb |= CIAB_PRB_MTR; \
} while (0)
/*
* set head for select units
*/
#define FDSETHEAD(head) do { \
if (head) ciab.prb &= ~CIAB_PRB_SIDE; else ciab.prb |= CIAB_PRB_SIDE; \
delay(1); } while (0)
/*
* select direction, true towards spindle else outwards
*/
#define FDSETDIR(in) do { \
if (in) ciab.prb &= ~CIAB_PRB_DIR; else ciab.prb |= CIAB_PRB_DIR; \
delay(1); } while (0)
/*
* step the selected units
*/
#define FDSTEP do { \
ciab.prb &= ~CIAB_PRB_STEP; ciab.prb |= CIAB_PRB_STEP; \
} while (0)
#define FDDMASTART(len, towrite) do { \
int dmasz = (len) | ((towrite) ? DISKLEN_WRITE : 0) | DISKLEN_DMAEN; \
custom.dsklen = dmasz; custom.dsklen = dmasz; } while (0)
#define FDDMASTOP do { custom.dsklen = 0; } while (0)
int
fdcmatch(pdp, cfp, auxp)
struct device *pdp;
struct cfdata *cfp;
void *auxp;
{
if (matchname("fdc", auxp) == 0 || cfp->cf_unit != 0)
return(0);
if ((fdc_dmap = alloc_chipmem(DMABUFSZ)) == NULL) {
printf("fdc: unable to allocate dma buffer\n");
return(0);
}
return(1);
}
void
fdcattach(pdp, dp, auxp)
struct device *pdp, *dp;
void *auxp;
{
struct fdcargs args;
printf(": dmabuf pa 0x%x", kvtop(fdc_dmap));
printf(": dmabuf ka %p\n", fdc_dmap);
args.unit = 0;
args.type = fdcgetfdtype(args.unit);
fdc_side = -1;
config_found(dp, &args, fdcprint);
for (args.unit++; args.unit < FDMAXUNITS; args.unit++) {
if ((args.type = fdcgetfdtype(args.unit)) == NULL)
continue;
config_found(dp, &args, fdcprint);
}
}
int
fdcprint(auxp, pnp)
void *auxp;
const char *pnp;
{
struct fdcargs *fcp;
fcp = auxp;
if (pnp)
printf("fd%d at %s unit %d:", fcp->unit, pnp,
fcp->type->driveid);
return(UNCONF);
}
/*ARGSUSED*/
int
fdmatch(pdp, cfp, auxp)
struct device *pdp;
struct cfdata *cfp;
void *auxp;
{
#define cf_unit cf_loc[FDCCF_UNIT]
struct fdcargs *fdap;
fdap = auxp;
if (cfp->cf_unit == fdap->unit || cfp->cf_unit == FDCCF_UNIT_DEFAULT)
return(1);
return(0);
#undef cf_unit
}
void
fdattach(pdp, dp, auxp)
struct device *pdp, *dp;
void *auxp;
{
struct fdcargs *ap;
struct fd_softc *sc;
int i;
ap = auxp;
sc = (struct fd_softc *)dp;
sc->curcyl = sc->cachetrk = -1;
sc->openpart = -1;
sc->type = ap->type;
sc->hwunit = ap->unit;
sc->unitmask = 1 << (3 + ap->unit);
sc->retries = FDRETRIES;
sc->stepdelay = FDSTEPDELAY;
sc->bytespersec = 512;
printf(" unit %d: %s %d cyl, %d head, %d sec [%d sec], 512 bytes/sec\n",
sc->hwunit, sc->type->desc, sc->type->ncylinders, FDNHEADS,
sc->type->amiga_nsectors, sc->type->msdos_nsectors);
/*
* Initialize and attach the disk structure.
*/
sc->dkdev.dk_name = sc->sc_dv.dv_xname;
sc->dkdev.dk_driver = &fddkdriver;
disk_attach(&sc->dkdev);
/*
* calibrate the drive
*/
fdsetpos(sc, 0, 0);
fdsetpos(sc, sc->type->ncylinders, 0);
fdsetpos(sc, 0, 0);
fdmotoroff(sc);
/*
* precalc msdos MFM and CRC
*/
for (i = 0; i < 128; i++)
msdecode[i] = 0xff;
for (i = 0; i < 16; i++)
msdecode[msencode[i]] = i;
for (i = 0; i < 256; i++) {
mscrctab[i] = (0x1021 * (i & 0xf0)) ^ (0x1021 * (i & 0x0f)) ^
(0x1021 * (i >> 4));
}
/*
* enable disk related interrupts
*/
custom.dmacon = DMAF_SETCLR | DMAF_MASTER | DMAF_DISK;
custom.intena = INTF_SETCLR | INTF_DSKBLK;
ciab.icr = CIA_ICR_FLG;
}
/*ARGSUSED*/
int
fdopen(dev, flags, devtype, p)
dev_t dev;
int flags, devtype;
struct proc *p;
{
struct fd_softc *sc;
int wasopen, fwork, error, s;
error = 0;
if (FDPART(dev) >= FDMAXPARTS)
return(ENXIO);
if ((sc = getsoftc(fd_cd, FDUNIT(dev))) == NULL)
return(ENXIO);
if (sc->flags & FDF_NOTRACK0)
return(ENXIO);
if (sc->cachep == NULL)
sc->cachep = malloc(MAXTRKSZ, M_DEVBUF, M_WAITOK);
s = splbio();
/*
* if we are sleeping in fdclose(); waiting for a chance to
* shut the motor off, do a sleep here also.
*/
while (sc->flags & FDF_WMOTOROFF)
tsleep(fdmotoroff, PRIBIO, "fdopen", 0);
fwork = 0;
/*
* if not open let user open request type, otherwise
* ensure they are trying to open same type.
*/
if (sc->openpart == FDPART(dev))
wasopen = 1;
else if (sc->openpart == -1) {
sc->openpart = FDPART(dev);
wasopen = 0;
} else {
wasopen = 1;
error = EPERM;
goto done;
}
/*
* wait for current io to complete if any
*/
if (fdc_indma) {
fwork = 1;
fdc_wantwakeup++;
tsleep(fdopen, PRIBIO, "fdopen", 0);
}
if ((error = fdloaddisk(sc)) != 0)
goto done;
if ((error = fdgetdisklabel(sc, dev)) != 0)
goto done;
#ifdef FDDEBUG
printf(" open successful\n");
#endif
done:
/*
* if we requested that fddone()->fdfindwork() wake us, allow it to
* complete its job now
*/
if (fwork)
fdfindwork(FDUNIT(dev));
splx(s);
/*
* if we were not open and we marked us so reverse that.
*/
if (error && wasopen == 0)
sc->openpart = -1;
return(error);
}
/*ARGSUSED*/
int
fdclose(dev, flags, devtype, p)
dev_t dev;
int flags, devtype;
struct proc *p;
{
struct fd_softc *sc;
int s;
#ifdef FDDEBUG
printf("fdclose()\n");
#endif
sc = getsoftc(fd_cd, FDUNIT(dev));
s = splbio();
if (sc->flags & FDF_MOTORON) {
sc->flags |= FDF_WMOTOROFF;
tsleep(fdmotoroff, PRIBIO, "fdclose", 0);
sc->flags &= ~FDF_WMOTOROFF;
wakeup(fdmotoroff);
}
sc->openpart = -1;
splx(s);
return(0);
}
int
fdioctl(dev, cmd, addr, flag, p)
dev_t dev;
u_long cmd;
caddr_t addr;
int flag;
struct proc *p;
{
struct fd_softc *sc;
int error, wlab;
sc = getsoftc(fd_cd, FDUNIT(dev));
if ((sc->flags & FDF_HAVELABEL) == 0)
return(EBADF);
switch (cmd) {
case DIOCSBAD:
return(EINVAL);
case DIOCSRETRIES:
if (*(int *)addr < 0)
return(EINVAL);
sc->retries = *(int *)addr;
return(0);
case DIOCSSTEP:
if (*(int *)addr < FDSTEPDELAY)
return(EINVAL);
sc->dkdev.dk_label->d_trkseek = sc->stepdelay = *(int *)addr;
return(0);
case DIOCGDINFO:
*(struct disklabel *)addr = *(sc->dkdev.dk_label);
return(0);
case DIOCGPART:
((struct partinfo *)addr)->disklab = sc->dkdev.dk_label;
((struct partinfo *)addr)->part =
&sc->dkdev.dk_label->d_partitions[FDPART(dev)];
return(0);
case DIOCSDINFO:
if ((flag & FWRITE) == 0)
return(EBADF);
return(fdsetdisklabel(sc, (struct disklabel *)addr));
case DIOCWDINFO:
if ((flag & FWRITE) == 0)
return(EBADF);
if ((error = fdsetdisklabel(sc, (struct disklabel *)addr)) != 0)
return(error);
wlab = sc->wlabel;
sc->wlabel = 1;
error = fdputdisklabel(sc, dev);
sc->wlabel = wlab;
return(error);
case DIOCWLABEL:
if ((flag & FWRITE) == 0)
return(EBADF);
sc->wlabel = *(int *)addr;
return(0);
case DIOCGDEFLABEL:
fdgetdefaultlabel(sc, (struct disklabel *)addr, FDPART(dev));
return(0);
default:
return(ENOTTY);
}
}
/*
* no dumps to floppy disks thank you.
*/
int
fdsize(dev)
dev_t dev;
{
return(-1);
}
int
fdread(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
return (physio(fdstrategy, NULL, dev, B_READ, fdminphys, uio));
}
int
fdwrite(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
return (physio(fdstrategy, NULL, dev, B_WRITE, fdminphys, uio));
}
void
fdintr(flag)
int flag;
{
int s;
s = splbio();
if (fdc_indma)
fddmadone(fdc_indma, 0);
splx(s);
}
void
fdidxintr()
{
if (fdc_indma && fdc_dmalen) {
/*
* turn off intr and start actual dma
*/
ciab.icr = CIA_ICR_FLG;
FDDMASTART(fdc_dmalen, fdc_dmawrite);
fdc_dmalen = 0;
}
}
void
fdstrategy(bp)
struct buf *bp;
{
struct disklabel *lp;
struct fd_softc *sc;
struct buf *dp;
int unit, part, s;
unit = FDUNIT(bp->b_dev);
part = FDPART(bp->b_dev);
sc = getsoftc(fd_cd, unit);
#ifdef FDDEBUG
printf("fdstrategy: 0x%x\n", bp);
#endif
/*
* check for valid partition and bounds
*/
lp = sc->dkdev.dk_label;
if ((sc->flags & FDF_HAVELABEL) == 0) {
bp->b_error = EIO;
goto bad;
}
if (bounds_check_with_label(bp, lp, sc->wlabel) <= 0)
goto done;
/*
* trans count of zero or bounds check indicates io is done
* we are done.
*/
if (bp->b_bcount == 0)
goto done;
/*
* queue the buf and kick the low level code
*/
s = splbio();
dp = &sc->bufq;
disksort(dp, bp);
fdstart(sc);
splx(s);
return;
bad:
bp->b_flags |= B_ERROR;
done:
bp->b_resid = bp->b_bcount;
biodone(bp);
}
/*
* make sure disk is loaded and label is up-to-date.
*/
int
fdloaddisk(sc)
struct fd_softc *sc;
{
/*
* if diskchange is low step drive to 0 then up one then to zero.
*/
fdselunit(sc); /* make sure the unit is selected */
if (FDTESTC(FDB_CHANGED)) {
fdsetpos(sc, 0, 0);
sc->cachetrk = -1; /* invalidate the cache */
sc->flags &= ~FDF_HAVELABEL;
fdsetpos(sc, FDNHEADS, 0);
fdsetpos(sc, 0, 0);
if (FDTESTC(FDB_CHANGED)) {
fdmotoroff(sc);
FDDESELECT(sc->unitmask);
return(ENXIO);
}
}
FDDESELECT(sc->unitmask);
fdmotoroff(sc);
sc->type = fdcgetfdtype(sc->hwunit);
if (sc->type == NULL)
return(ENXIO);
if (sc->openpart == FDMSDOSPART)
sc->nsectors = sc->type->msdos_nsectors;
else
sc->nsectors = sc->type->amiga_nsectors;
return(0);
}
void
fdgetdefaultlabel(sc, lp, part)
struct fd_softc *sc;
struct disklabel *lp;
int part; /* XXX ick */
{
bzero(lp, sizeof(struct disklabel));
lp->d_secsize = FDSECSIZE;
lp->d_ntracks = FDNHEADS;
lp->d_ncylinders = sc->type->ncylinders;
lp->d_nsectors = sc->nsectors;
lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
lp->d_type = DTYPE_FLOPPY;
lp->d_secperunit = lp->d_secpercyl * lp->d_ncylinders;
lp->d_rpm = 300; /* good guess I suppose. */
lp->d_interleave = 1; /* should change when adding msdos */
sc->stepdelay = lp->d_trkseek = FDSTEPDELAY;
lp->d_bbsize = 0;
lp->d_sbsize = 0;
lp->d_partitions[part].p_size = lp->d_secperunit;
lp->d_partitions[part].p_fstype = FS_UNUSED;
lp->d_partitions[part].p_fsize = 1024;
lp->d_partitions[part].p_frag = 8;
lp->d_partitions[part].p_cpg = 2; /* adosfs: reserved blocks */
lp->d_npartitions = part + 1;
lp->d_magic = lp->d_magic2 = DISKMAGIC;
lp->d_checksum = dkcksum(lp);
}
/*
* read disk label, if present otherwise create one
* return a new label if raw part and none found, otherwise err.
*/
int
fdgetdisklabel(sc, dev)
struct fd_softc *sc;
dev_t dev;
{
struct disklabel *lp, *dlp;
struct cpu_disklabel *clp;
struct buf *bp;
int error, part;
if (sc->flags & FDF_HAVELABEL &&
sc->dkdev.dk_label->d_npartitions == (FDPART(dev) + 1))
return(0);
#ifdef FDDEBUG
printf("fdgetdisklabel()\n");
#endif
part = FDPART(dev);
lp = sc->dkdev.dk_label;
clp = sc->dkdev.dk_cpulabel;
bzero(lp, sizeof(struct disklabel));
bzero(clp, sizeof(struct cpu_disklabel));
lp->d_secsize = FDSECSIZE;
lp->d_ntracks = FDNHEADS;
lp->d_ncylinders = sc->type->ncylinders;
lp->d_nsectors = sc->nsectors;
lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
lp->d_secperunit = lp->d_secpercyl * lp->d_ncylinders;
lp->d_npartitions = part + 1;
lp->d_partitions[part].p_size = lp->d_secperunit;
lp->d_partitions[part].p_fstype = FS_UNUSED;
lp->d_partitions[part].p_fsize = 1024;
lp->d_partitions[part].p_frag = 8;
lp->d_partitions[part].p_cpg = 2; /* for adosfs: reserved blks */
sc->flags |= FDF_HAVELABEL;
bp = (void *)geteblk((int)lp->d_secsize);
bp->b_dev = dev;
bp->b_blkno = 0;
bp->b_cylin = 0;
bp->b_bcount = FDSECSIZE;
bp->b_flags = B_BUSY | B_READ;
fdstrategy(bp);
if ((error = biowait(bp)) != 0)
goto nolabel;
dlp = (struct disklabel *)(bp->b_data + LABELOFFSET);
if (dlp->d_magic != DISKMAGIC || dlp->d_magic2 != DISKMAGIC ||
dkcksum(dlp)) {
error = EINVAL;
goto nolabel;
}
bcopy(dlp, lp, sizeof(struct disklabel));
if (lp->d_trkseek > FDSTEPDELAY)
sc->stepdelay = lp->d_trkseek;
brelse(bp);
return(0);
nolabel:
fdgetdefaultlabel(sc, lp, part);
brelse(bp);
return(0);
}
/*
* set the incore copy of this units disklabel
*/
int
fdsetdisklabel(sc, lp)
struct fd_softc *sc;
struct disklabel *lp;
{
struct disklabel *clp;
struct partition *pp;
/*
* must have at least opened raw unit to fetch the
* raw_part stuff.
*/
if ((sc->flags & FDF_HAVELABEL) == 0)
return(EINVAL);
clp = sc->dkdev.dk_label;
/*
* make sure things check out and we only have one valid
* partition
*/
#ifdef FDDEBUG
printf("fdsetdisklabel\n");
#endif
if (lp->d_secsize != FDSECSIZE ||
lp->d_nsectors != clp->d_nsectors ||
lp->d_ntracks != FDNHEADS ||
lp->d_ncylinders != clp->d_ncylinders ||
lp->d_secpercyl != clp->d_secpercyl ||
lp->d_secperunit != clp->d_secperunit ||
lp->d_magic != DISKMAGIC ||
lp->d_magic2 != DISKMAGIC ||
lp->d_npartitions == 0 ||
lp->d_npartitions > FDMAXPARTS ||
(lp->d_partitions[0].p_offset && lp->d_partitions[1].p_offset) ||
dkcksum(lp))
return(EINVAL);
/*
* if any partitions are present make sure they
* represent the currently open type
*/
if ((pp = &lp->d_partitions[0])->p_size) {
if ((pp = &lp->d_partitions[1])->p_size == 0)
goto done;
else if (sc->openpart != 1)
return(EINVAL);
} else if (sc->openpart != 0)
return(EINVAL);
/*
* make sure selected partition is within bounds
* XXX on the second check, its to handle a bug in
* XXX the cluster routines as they require mutliples
* XXX of NBPG currently
*/
if ((pp->p_offset + pp->p_size >= lp->d_secperunit) ||
(pp->p_frag * pp->p_fsize % NBPG))
return(EINVAL);
done:
bcopy(lp, clp, sizeof(struct disklabel));
return(0);
}
/*
* write out the incore copy of this units disklabel
*/
int
fdputdisklabel(sc, dev)
struct fd_softc *sc;
dev_t dev;
{
struct disklabel *lp, *dlp;
struct buf *bp;
int error;
if ((sc->flags & FDF_HAVELABEL) == 0)
return(EBADF);
#ifdef FDDEBUG
printf("fdputdisklabel\n");
#endif
/*
* get buf and read in sector 0
*/
lp = sc->dkdev.dk_label;
bp = (void *)geteblk((int)lp->d_secsize);
bp->b_dev = FDMAKEDEV(major(dev), FDUNIT(dev), RAW_PART);
bp->b_blkno = 0;
bp->b_cylin = 0;
bp->b_bcount = FDSECSIZE;
bp->b_flags = B_BUSY | B_READ;
fdstrategy(bp);
if ((error = biowait(bp)) != 0)
goto done;
/*
* copy disklabel to buf and write it out syncronous
*/
dlp = (struct disklabel *)(bp->b_data + LABELOFFSET);
bcopy(lp, dlp, sizeof(struct disklabel));
bp->b_blkno = 0;
bp->b_cylin = 0;
bp->b_flags = B_WRITE;
fdstrategy(bp);
error = biowait(bp);
done:
brelse(bp);
return(error);
}
/*
* figure out drive type or NULL if none.
*/
struct fdtype *
fdcgetfdtype(unit)
int unit;
{
struct fdtype *ftp;
u_long id, idb;
int cnt, umask;
id = 0;
umask = 1 << (3 + unit);
FDDESELECT(FDCUNITMASK);
FDSETMOTOR(1);
delay(1);
FDSELECT(umask);
delay(1);
FDDESELECT(umask);
FDSETMOTOR(0);
delay(1);
FDSELECT(umask);
delay(1);
FDDESELECT(umask);
for (idb = 0x80000000; idb; idb >>= 1) {
FDSELECT(umask);
delay(1);
if (FDTESTC(FDB_READY) == 0)
id |= idb;
FDDESELECT(umask);
delay(1);
}
#ifdef FDDEBUG
printf("fdcgettype unit %d id 0x%lx\n", unit, id);
#endif
for (cnt = 0, ftp = fdtype; cnt < nfdtype; ftp++, cnt++)
if (ftp->driveid == id)
return(ftp);
/*
* 3.5dd's at unit 0 do not always return id.
*/
if (unit == 0)
return(fdtype);
return(NULL);
}
/*
* turn motor off if possible otherwise mark as needed and will be done
* later.
*/
void
fdmotoroff(arg)
void *arg;
{
struct fd_softc *sc;
int s;
sc = arg;
s = splbio();
#ifdef FDDEBUG
printf("fdmotoroff: unit %d\n", sc->hwunit);
#endif
if ((sc->flags & FDF_MOTORON) == 0)
goto done;
/*
* if we have a timeout on a dma operation let fddmadone()
* deal with it.
*/
if (fdc_indma == sc) {
fddmadone(sc, 1);
goto done;
}
#ifdef FDDEBUG
printf(" motor was on, turning off\n");
#endif
/*
* flush cache if needed
*/
if (sc->flags & FDF_DIRTY) {
sc->flags |= FDF_JUSTFLUSH | FDF_MOTOROFF;
#ifdef FDDEBUG
printf(" flushing dirty buffer first\n");
#endif
/*
* if dma'ing done for now, fddone() will call us again
*/
if (fdc_indma)
goto done;
fddmastart(sc, sc->cachetrk);
goto done;
}
/*
* if controller is busy just schedule us to be called back
*/
if (fdc_indma) {
/*
* someone else has the controller now
* just set flag and let fddone() call us again.
*/
sc->flags |= FDF_MOTOROFF;
goto done;
}
#ifdef FDDEBUG
printf(" hw turning unit off\n");
#endif
sc->flags &= ~(FDF_MOTORON | FDF_MOTOROFF);
FDDESELECT(FDCUNITMASK);
FDSETMOTOR(0);
delay(1);
FDSELECT(sc->unitmask);
delay(4);
FDDESELECT(sc->unitmask);
delay(1);
if (sc->flags & FDF_WMOTOROFF)
wakeup(fdmotoroff);
done:
splx(s);
}
/*
* select drive seek to track exit with motor on.
* fdsetpos(x, 0, 0) does calibrates the drive.
*/
void
fdsetpos(sc, trk, towrite)
struct fd_softc *sc;
int trk, towrite;
{
int nstep, sdir, ondly, ncyl, nside;
FDDESELECT(FDCUNITMASK);
FDSETMOTOR(1);
delay(1);
FDSELECT(sc->unitmask);
delay(1);
if ((sc->flags & FDF_MOTORON) == 0) {
ondly = 0;
while (FDTESTC(FDB_READY) == 0) {
delay(1000);
if (++ondly >= 1000)
break;
}
}
sc->flags |= FDF_MOTORON;
ncyl = trk / FDNHEADS;
nside = trk % FDNHEADS;
if (sc->curcyl == ncyl && fdc_side == nside)
return;
if (towrite)
sc->flags |= FDF_WRITEWAIT;
#ifdef FDDEBUG
printf("fdsetpos: cyl %d head %d towrite %d\n", trk / FDNHEADS,
trk % FDNHEADS, towrite);
#endif
nstep = ncyl - sc->curcyl;
if (nstep) {
/*
* figure direction
*/
if (nstep > 0 && ncyl != 0) {
sdir = FDSTEPIN;
FDSETDIR(1);
} else {
nstep = -nstep;
sdir = FDSTEPOUT;
FDSETDIR(0);
}
if (ncyl == 0) {
/*
* either just want cylinder 0 or doing
* a calibrate.
*/
nstep = 256;
while (FDTESTC(FDB_CYLZERO) == 0 && nstep--) {
FDSTEP;
delay(sc->stepdelay);
}
if (nstep < 0)
sc->flags |= FDF_NOTRACK0;
} else {
/*
* step the needed amount amount.
*/
while (nstep--) {
FDSTEP;
delay(sc->stepdelay);
}
}
/*
* if switched directions
* allow drive to settle.
*/
if (sc->pstepdir != sdir)
delay(FDSETTLEDELAY);
sc->pstepdir = sdir;
sc->curcyl = ncyl;
}
if (nside == fdc_side)
return;
/*
* select side
*/
fdc_side = nside;
FDSETHEAD(nside);
delay(FDPRESIDEDELAY);
}
void
fdselunit(sc)
struct fd_softc *sc;
{
FDDESELECT(FDCUNITMASK); /* deselect all */
FDSETMOTOR(sc->flags & FDF_MOTORON); /* set motor to unit's state */
delay(1);
FDSELECT(sc->unitmask); /* select unit */
delay(1);
}
/*
* process next buf on device queue.
* normall sequence of events:
* fdstart() -> fddmastart();
* fdidxintr();
* fdintr() -> fddmadone() -> fddone();
* if the track is in the cache then fdstart() will short-circuit
* to fddone() else if the track cache is dirty it will flush. If
* the buf is not an entire track it will cache the requested track.
*/
void
fdstart(sc)
struct fd_softc *sc;
{
int trk, error, write;
struct buf *bp, *dp;
int changed;
#ifdef FDDEBUG
printf("fdstart: unit %d\n", sc->hwunit);
#endif
/*
* if dma'ing just return. we must have been called from fdstartegy.
*/
if (fdc_indma)
return;
/*
* get next buf if there.
*/
dp = &sc->bufq;
if ((bp = dp->b_actf) == NULL) {
#ifdef FDDEBUG
printf(" nothing to do\n");
#endif
return;
}
/*
* Mark us as busy now, in case fddone() gets called in one
* of the cases below.
*/
disk_busy(&sc->dkdev);
/*
* make sure same disk is loaded
*/
fdselunit(sc);
changed = FDTESTC(FDB_CHANGED);
FDDESELECT(sc->unitmask);
if (changed) {
/*
* disk missing, invalidate all future io on
* this unit until re-open()'ed also invalidate
* all current io
*/
printf("fdstart: disk changed\n");
#ifdef FDDEBUG
printf(" disk was removed invalidating all io\n");
#endif
sc->flags &= ~FDF_HAVELABEL;
for (;;) {
bp->b_flags |= B_ERROR;
bp->b_error = EIO;
if (bp->b_actf == NULL)
break;
biodone(bp);
bp = bp->b_actf;
}
/*
* do fddone() on last buf to allow other units to start.
*/
dp->b_actf = bp;
fddone(sc);
return;
}
/*
* we have a valid buf, setup our local version
* we use this count to allow reading over multiple tracks.
* into a single buffer
*/
dp->b_bcount = bp->b_bcount;
dp->b_blkno = bp->b_blkno;
dp->b_data = bp->b_data;
dp->b_flags = bp->b_flags;
dp->b_resid = 0;
if (bp->b_flags & B_READ)
write = 0;
else if (FDTESTC(FDB_PROTECT) == 0)
write = 1;
else {
error = EPERM;
goto bad;
}
/*
* figure trk given blkno
*/
trk = bp->b_blkno / sc->nsectors;
/*
* check to see if same as currently cached track
* if so we need to do no dma read.
*/
if (trk == sc->cachetrk) {
fddone(sc);
return;
}
/*
* if we will be overwriting the entire cache, don't bother to
* fetch it.
*/
if (bp->b_bcount == (sc->nsectors * FDSECSIZE) && write &&
bp->b_blkno % sc->nsectors == 0) {
if (sc->flags & FDF_DIRTY)
sc->flags |= FDF_JUSTFLUSH;
else {
sc->cachetrk = trk;
fddone(sc);
return;
}
}
/*
* start dma read of `trk'
*/
fddmastart(sc, trk);
return;
bad:
bp->b_flags |= B_ERROR;
bp->b_error = error;
fddone(sc);
}
/*
* continue a started operation on next track. always begin at
* sector 0 on the next track.
*/
void
fdcont(sc)
struct fd_softc *sc;
{
struct buf *dp, *bp;
int trk, write;
dp = &sc->bufq;
bp = dp->b_actf;
dp->b_data += (dp->b_bcount - bp->b_resid);
dp->b_blkno += (dp->b_bcount - bp->b_resid) / FDSECSIZE;
dp->b_bcount = bp->b_resid;
/*
* figure trk given blkno
*/
trk = dp->b_blkno / sc->nsectors;
#ifdef DEBUG
if (trk != sc->cachetrk + 1 || dp->b_blkno % sc->nsectors != 0)
panic("fdcont: confused");
#endif
if (dp->b_flags & B_READ)
write = 0;
else
write = 1;
/*
* if we will be overwriting the entire cache, don't bother to
* fetch it.
*/
if (dp->b_bcount == (sc->nsectors * FDSECSIZE) && write) {
if (sc->flags & FDF_DIRTY)
sc->flags |= FDF_JUSTFLUSH;
else {
sc->cachetrk = trk;
fddone(sc);
return;
}
}
/*
* start dma read of `trk'
*/
fddmastart(sc, trk);
return;
}
void
fddmastart(sc, trk)
struct fd_softc *sc;
int trk;
{
int adkmask, ndmaw, write, dmatrk;
#ifdef FDDEBUG
printf("fddmastart: unit %d cyl %d head %d", sc->hwunit,
trk / FDNHEADS, trk % FDNHEADS);
#endif
/*
* flush the cached track if dirty else read requested track.
*/
if (sc->flags & FDF_DIRTY) {
fdcachetoraw(sc);
ndmaw = sc->type->nwritew;
dmatrk = sc->cachetrk;
write = 1;
} else {
ndmaw = sc->type->nreadw;
dmatrk = trk;
write = 0;
}
#ifdef FDDEBUG
printf(" %s", write ? " flushing cache\n" : " loading cache\n");
#endif
sc->cachetrk = trk;
fdc_indma = sc;
fdsetpos(sc, dmatrk, write);
/*
* setup dma stuff
*/
if (write == 0) {
custom.adkcon = ADKF_MSBSYNC;
custom.adkcon = ADKF_SETCLR | ADKF_WORDSYNC | ADKF_FAST;
custom.dsksync = FDMFMSYNC;
} else {
custom.adkcon = ADKF_PRECOMP1 | ADKF_PRECOMP0 | ADKF_WORDSYNC |
ADKF_MSBSYNC;
adkmask = ADKF_SETCLR | ADKF_FAST | ADKF_MFMPREC;
if (dmatrk >= sc->type->precomp[0])
adkmask |= ADKF_PRECOMP0;
if (dmatrk >= sc->type->precomp[1])
adkmask |= ADKF_PRECOMP1;
custom.adkcon = adkmask;
}
custom.dskpt = (u_char *)kvtop(fdc_dmap);
/*
* If writing an MSDOS track, activate disk index pulse
* interrupt, dma will be started in the intr routine fdidxintr()
* Otherwise, start the DMA here.
*/
if (write && sc->openpart == FDMSDOSPART) {
fdc_dmalen = ndmaw;
fdc_dmawrite = write;
ciab.icr = CIA_ICR_IR_SC | CIA_ICR_FLG;
} else {
FDDMASTART(ndmaw, write);
fdc_dmalen = 0;
}
#ifdef FDDEBUG
printf(" dma started\n");
#endif
}
/*
* recalibrate the drive
*/
void
fdcalibrate(arg)
void *arg;
{
struct fd_softc *sc;
static int loopcnt;
sc = arg;
if (loopcnt == 0) {
/*
* seek cyl 0
*/
fdc_indma = sc;
sc->stepdelay += 900;
if (sc->cachetrk > 1)
fdsetpos(sc, sc->cachetrk % FDNHEADS, 0);
sc->stepdelay -= 900;
}
if (loopcnt++ & 1)
fdsetpos(sc, sc->cachetrk, 0);
else
fdsetpos(sc, sc->cachetrk + FDNHEADS, 0);
/*
* trk++, trk, trk++, trk, trk++, trk, trk++, trk and dma
*/
if (loopcnt < 8)
timeout(fdcalibrate, sc, hz / 8);
else {
loopcnt = 0;
fdc_indma = NULL;
timeout(fdmotoroff, sc, 3 * hz / 2);
fddmastart(sc, sc->cachetrk);
}
}
void
fddmadone(sc, timeo)
struct fd_softc *sc;
int timeo;
{
#ifdef FDDEBUG
printf("fddmadone: unit %d, timeo %d\n", sc->hwunit, timeo);
#endif
fdc_indma = NULL;
untimeout(fdmotoroff, sc);
FDDMASTOP;
/*
* guarantee the drive has been at current head and cyl
* for at least FDWRITEDELAY after a write.
*/
if (sc->flags & FDF_WRITEWAIT) {
delay(FDWRITEDELAY);
sc->flags &= ~FDF_WRITEWAIT;
}
if ((sc->flags & FDF_MOTOROFF) == 0) {
/*
* motor runs for 1.5 seconds after last dma
*/
timeout(fdmotoroff, sc, 3 * hz / 2);
}
if (sc->flags & FDF_DIRTY) {
/*
* if buffer dirty, the last dma cleaned it
*/
sc->flags &= ~FDF_DIRTY;
if (timeo)
printf("%s: write of track cache timed out.\n",
sc->sc_dv.dv_xname);
if (sc->flags & FDF_JUSTFLUSH) {
sc->flags &= ~FDF_JUSTFLUSH;
/*
* we are done dma'ing
*/
fddone(sc);
return;
}
/*
* load the cache
*/
fddmastart(sc, sc->cachetrk);
return;
}
#ifdef FDDEBUG
else if (sc->flags & FDF_MOTOROFF)
panic("fddmadone: FDF_MOTOROFF with no FDF_DIRTY");
#endif
/*
* cache loaded decode it into cache buffer
*/
if (timeo == 0 && fdrawtocache(sc) == 0)
sc->retried = 0;
else {
#ifdef FDDEBUG
if (timeo)
printf("%s: fddmadone: cache load timed out.\n",
sc->sc_dv.dv_xname);
#endif
if (sc->retried >= sc->retries) {
sc->retried = 0;
sc->cachetrk = -1;
} else {
sc->retried++;
/*
* this will be restarted at end of calibrate loop.
*/
untimeout(fdmotoroff, sc);
fdcalibrate(sc);
return;
}
}
fddone(sc);
}
void
fddone(sc)
struct fd_softc *sc;
{
struct buf *dp, *bp;
char *data;
int sz;
#ifdef FDDEBUG
printf("fddone: unit %d\n", sc->hwunit);
#endif
/*
* check to see if unit is just flushing the cache,
* that is we have no io queued.
*/
if (sc->flags & FDF_MOTOROFF)
goto nobuf;
dp = &sc->bufq;
if ((bp = dp->b_actf) == NULL)
panic ("fddone");
/*
* check for an error that may have occured
* while getting the track.
*/
if (sc->cachetrk == -1) {
sc->retried = 0;
bp->b_flags |= B_ERROR;
bp->b_error = EIO;
} else if ((bp->b_flags & B_ERROR) == 0) {
data = sc->cachep;
/*
* get offset of data in track cache and limit
* the copy size to not exceed the cache's end.
*/
data += (dp->b_blkno % sc->nsectors) * FDSECSIZE;
sz = sc->nsectors - dp->b_blkno % sc->nsectors;
sz *= FDSECSIZE;
sz = min(dp->b_bcount, sz);
if (bp->b_flags & B_READ)
bcopy(data, dp->b_data, sz);
else {
bcopy(dp->b_data, data, sz);
sc->flags |= FDF_DIRTY;
}
bp->b_resid = dp->b_bcount - sz;
if (bp->b_resid == 0) {
bp->b_error = 0;
} else {
/*
* not done yet need to read next track
*/
fdcont(sc);
return;
}
}
/*
* remove from queue.
*/
dp->b_actf = bp->b_actf;
disk_unbusy(&sc->dkdev, (bp->b_bcount - bp->b_resid));
biodone(bp);
nobuf:
fdfindwork(sc->sc_dv.dv_unit);
}
void
fdfindwork(unit)
int unit;
{
struct fd_softc *ssc, *sc;
int i, last;
/*
* first see if we have any fdopen()'s waiting
*/
if (fdc_wantwakeup) {
wakeup(fdopen);
fdc_wantwakeup--;
return;
}
/*
* start next available unit, linear search from the next unit
* wrapping and finally this unit.
*/
last = 0;
ssc = NULL;
for (i = unit + 1; last == 0; i++) {
if (i == unit)
last = 1;
if (i >= fd_cd.cd_ndevs) {
i = -1;
continue;
}
if ((sc = fd_cd.cd_devs[i]) == NULL)
continue;
/*
* if unit has requested to be turned off
* and it has no buf's queued do it now
*/
if (sc->flags & FDF_MOTOROFF) {
if (sc->bufq.b_actf == NULL)
fdmotoroff(sc);
else {
/*
* we gained a buf request while
* we waited, forget the motoroff
*/
sc->flags &= ~FDF_MOTOROFF;
}
/*
* if we now have dma unit must have needed
* flushing, quit
*/
if (fdc_indma)
return;
}
/*
* if we have no start unit and the current unit has
* io waiting choose this unit to start.
*/
if (ssc == NULL && sc->bufq.b_actf)
ssc = sc;
}
if (ssc)
fdstart(ssc);
}
/*
* min byte count to whats left of the track in question
*/
void
fdminphys(bp)
struct buf *bp;
{
struct fd_softc *sc;
int trk, sec, toff, tsz;
if ((sc = getsoftc(fd_cd, FDUNIT(bp->b_dev))) == NULL)
panic("fdminphys: couldn't get softc");
trk = bp->b_blkno / sc->nsectors;
sec = bp->b_blkno % sc->nsectors;
toff = sec * FDSECSIZE;
tsz = sc->nsectors * FDSECSIZE;
#ifdef FDDEBUG
printf("fdminphys: before %d", bp->b_bcount);
#endif
bp->b_bcount = min(bp->b_bcount, tsz - toff);
#ifdef FDDEBUG
printf(" after %d\n", bp->b_bcount);
#endif
minphys(bp);
}
/*
* encode the track cache into raw MFM ready for dma
* when we go to multiple disk formats, this will call type dependent
* functions
*/
void fdcachetoraw(sc)
struct fd_softc *sc;
{
if (sc->openpart == FDMSDOSPART)
mscachetoraw(sc);
else
amcachetoraw(sc);
}
/*
* decode raw MFM from dma into units track cache.
* when we go to multiple disk formats, this will call type dependent
* functions
*/
int
fdrawtocache(sc)
struct fd_softc *sc;
{
if (sc->openpart == FDMSDOSPART)
return(msrawtocache(sc));
else
return(amrawtocache(sc));
}
void
amcachetoraw(sc)
struct fd_softc *sc;
{
static u_long mfmnull[4];
u_long *rp, *crp, *dp, hcksum, dcksum, info, zero;
int sec, i;
rp = fdc_dmap;
/*
* not yet one sector (- 1 long) gap.
* for now use previous drivers values
*/
for (i = 0; i < sc->type->gap; i++)
*rp++ = 0xaaaaaaaa;
/*
* process sectors
*/
dp = sc->cachep;
zero = 0;
info = 0xff000000 | (sc->cachetrk << 16) | sc->nsectors;
for (sec = 0; sec < sc->nsectors; sec++, info += (1 << 8) - 1) {
hcksum = dcksum = 0;
/*
* sector format
* offset description
*-----------------------------------
* 0 null
* 1 sync
* oddbits evenbits
*----------------------
* 2 3 [0xff]b [trk]b [sec]b [togap]b
* 4-7 8-11 null
* 12 13 header cksum [2-11]
* 14 15 data cksum [16-271]
* 16-143 144-271 data
*/
*rp = 0xaaaaaaaa;
if (*(rp - 1) & 0x1)
*rp &= 0x7fffffff; /* clock bit correction */
rp++;
*rp++ = (FDMFMSYNC << 16) | FDMFMSYNC;
rp = mfmblkencode(&info, rp, &hcksum, 1);
rp = mfmblkencode(mfmnull, rp, &hcksum, 4);
rp = mfmblkencode(&hcksum, rp, NULL, 1);
crp = rp;
rp = mfmblkencode(dp, rp + 2, &dcksum, FDSECLWORDS);
dp += FDSECLWORDS;
crp = mfmblkencode(&dcksum, crp, NULL, 1);
if (*(crp - 1) & 0x1)
*crp &= 0x7fffffff; /* clock bit correction */
else if ((*crp & 0x40000000) == 0)
*crp |= 0x80000000;
}
*rp = 0xaaa80000;
if (*(rp - 1) & 0x1)
*rp &= 0x7fffffff;
}
u_long *
fdfindsync(rp, ep)
u_long *rp, *ep;
{
u_short *sp;
sp = (u_short *)rp;
while ((u_long *)sp < ep && *sp != FDMFMSYNC)
sp++;
while ((u_long *)sp < ep && *sp == FDMFMSYNC)
sp++;
if ((u_long *)sp < ep)
return((u_long *)sp);
return(NULL);
}
int
amrawtocache(sc)
struct fd_softc *sc;
{
u_long mfmnull[4];
u_long *dp, *rp, *erp, *crp, *srp, hcksum, dcksum, info, cktmp;
int cnt, doagain;
doagain = 1;
srp = rp = fdc_dmap;
erp = (u_long *)((u_short *)rp + sc->type->nreadw);
cnt = 0;
again:
if (doagain == 0 || (rp = srp = fdfindsync(srp, erp)) == NULL) {
#ifdef DIAGNOSTIC
printf("%s: corrupted track (%d) data.\n",
sc->sc_dv.dv_xname, sc->cachetrk);
#endif
return(-1);
}
/*
* process sectors
*/
for (; cnt < sc->nsectors; cnt++) {
hcksum = dcksum = 0;
rp = mfmblkdecode(rp, &info, &hcksum, 1);
rp = mfmblkdecode(rp, mfmnull, &hcksum, 4);
rp = mfmblkdecode(rp, &cktmp, NULL, 1);
if (cktmp != hcksum) {
#ifdef FDDEBUG
printf(" info 0x%x hchksum 0x%x trkhcksum 0x%x\n",
info, hcksum, cktmp);
#endif
goto again;
}
if (((info >> 16) & 0xff) != sc->cachetrk) {
#ifdef DEBUG
printf("%s: incorrect track found: 0x%lx %d\n",
sc->sc_dv.dv_xname, info, sc->cachetrk);
#endif
goto again;
}
#ifdef FDDEBUG
printf(" info 0x%x\n", info);
#endif
rp = mfmblkdecode(rp, &cktmp, NULL, 1);
dp = sc->cachep;
dp += FDSECLWORDS * ((info >> 8) & 0xff);
crp = mfmblkdecode(rp, dp, &dcksum, FDSECLWORDS);
if (cktmp != dcksum) {
#ifdef FDDEBUG
printf(" info 0x%x dchksum 0x%x trkdcksum 0x%x\n",
info, dcksum, cktmp);
#endif
goto again;
}
/*
* if we are at gap then we can no longer be sure
* of correct sync marks
*/
if ((info && 0xff) == 1)
doagain = 1;
else
doagain = 0;
srp = rp = fdfindsync(crp, erp);
}
return(0);
}
void
mscachetoraw(sc)
struct fd_softc *sc;
{
u_short *rp, *erp, crc;
u_char *cp, tb[5];
int sec, i;
rp = (u_short *)fdc_dmap;
erp = rp + sc->type->nwritew;
cp = sc->cachep;
/*
* initial track filler (828 * GAP1)
*/
for (i = 0; i < sc->type->gap; i++) {
*rp++ = FDMFMGAP1;
*rp++ = FDMFMGAP1;
}
for (sec = 0; sec < sc->nsectors; sec++) {
/*
* leading sector gap
* (12 * GAP2) + (3 * SYNC)
*/
for (i = 0; i < 12; i++)
*rp++ = FDMFMGAP2;
*rp++ = FDMFMSYNC;
*rp++ = FDMFMSYNC;
*rp++ = FDMFMSYNC;
/*
* sector information
* (ID) + track + side + sector + sector size + CRC16
*/
*rp++ = FDMFMID;
tb[0] = sc->cachetrk / FDNHEADS;
tb[1] = sc->cachetrk % FDNHEADS;
tb[2] = sec + 1;
i = sc->bytespersec;
tb[3] = i < 256 ? 0 : (i < 512 ? 1 : (i < 1024 ? 2 : 3));
rp = msblkencode(rp, tb, 4, &crc);
tb[0] = crc >> 8;
tb[1] = crc & 0xff;
tb[2] = 0x4e; /* GAP1 decoded */
rp = msblkencode(rp, tb, 3, 0);
/*
* sector info/data gap
* (22 * GAP1) + (12 * GAP2) + (3 * SYNC)
*/
for (i = 0; i < 21; i++)
*rp++ = FDMFMGAP1;
for (i = 0; i < 12; i++)
*rp++ = FDMFMGAP2;
*rp++ = FDMFMSYNC;
*rp++ = FDMFMSYNC;
*rp++ = FDMFMSYNC;
/*
* sector data
* (DATA) + ...data... + CRC16
*/
*rp++ = FDMFMDATA;
rp = msblkencode(rp, cp, sc->bytespersec, &crc);
cp += sc->bytespersec;
tb[0] = crc >> 8;
tb[1] = crc & 0xff;
tb[2] = 0x4e; /* GAP3 decoded */
rp = msblkencode(rp, tb, 3, 0);
/*
* trailing sector gap
* (80 * GAP3)
*/
for (i = 0; i < 79; i++)
*rp++ = FDMFMGAP3;
}
/*
* fill rest of track with GAP3
*/
while (rp != erp)
*rp++ = FDMFMGAP3;
}
int
msrawtocache(sc)
struct fd_softc *sc;
{
u_short *rp, *srp, *erp;
u_char tb[5], *cp;
int ct, sec, retry;
srp = rp = (u_short *)fdc_dmap;
erp = rp + sc->type->nreadw;
cp = sc->cachep;
for (ct = 0; ct < sc->nsectors; ct++) {
retry = 1;
do {
/*
* skip leading gap to sync
*/
if ((rp = (u_short *)fdfindsync((u_long *)rp, (u_long *)erp)) == NULL) {
#ifdef DIAGNOSTIC
printf("%s: corrupted track (%d) data.\n",
sc->sc_dv.dv_xname, sc->cachetrk);
#endif
return(-1);
}
/*
* Grab sector info
*/
if (*rp++ != FDMFMID)
continue;
rp = msblkdecode(rp, tb, 4);
#ifdef FDDEBUG
printf("sector id: sector %d, track %d, side %d,"
"bps %d\n", tb[2], tb[0], tb[1], 128 << tb[3]);
#endif
if ((tb[0] * FDNHEADS + tb[1]) != sc->cachetrk ||
tb[2] > sc->nsectors)
continue;
sec = tb[2];
sc->bytespersec = 128 << tb[3];
rp += 2; /* skip CRC-16 */
/*
* skip gap and read in data
*/
if ((rp = (u_short *)fdfindsync((u_long *)rp, (u_long *)erp)) == NULL)
return(-1);
if (*rp++ != FDMFMDATA)
continue;
rp = msblkdecode(rp, cp + ((sec-1) * sc->bytespersec),
sc->bytespersec);
rp += 2; /* skip CRC-16 */
retry = 0;
} while (retry);
}
return(0);
}
/*
* encode len longwords of `dp' data in amiga mfm block format (`rp')
* this format specified that the odd bits are at current pos and even
* bits at len + current pos
*/
u_long *
mfmblkencode(dp, rp, cp, len)
u_long *dp, *rp, *cp;
int len;
{
u_long *sdp, *edp, d, dtmp, correct;
sdp = dp;
edp = dp + len;
if (*(rp - 1) & 0x1)
correct = 1;
else
correct = 0;
/*
* do odd bits
*/
while (dp < edp) {
d = (*dp >> 1) & 0x55555555; /* remove clock bits */
dtmp = d ^ 0x55555555;
d |= ((dtmp >> 1) | 0x80000000) & (dtmp << 1);
/*
* correct upper clock bit if needed
*/
if (correct)
d &= 0x7fffffff;
if (d & 0x1)
correct = 1;
else
correct = 0;
/*
* do checksums and store in raw buffer
*/
if (cp)
*cp ^= d;
*rp++ = d;
dp++;
}
/*
* do even bits
*/
dp = sdp;
while (dp < edp) {
d = *dp & 0x55555555; /* remove clock bits */
dtmp = d ^ 0x55555555;
d |= ((dtmp >> 1) | 0x80000000) & (dtmp << 1);
/*
* correct upper clock bit if needed
*/
if (correct)
d &= 0x7fffffff;
if (d & 0x1)
correct = 1;
else
correct = 0;
/*
* do checksums and store in raw buffer
*/
if (cp)
*cp ^= d;
*rp++ = d;
dp++;
}
if (cp)
*cp &= 0x55555555;
return(rp);
}
/*
* decode len longwords of `dp' data in amiga mfm block format (`rp')
* this format specified that the odd bits are at current pos and even
* bits at len + current pos
*/
u_long *
mfmblkdecode(rp, dp, cp, len)
u_long *rp, *dp, *cp;
int len;
{
u_long o, e;
int cnt;
cnt = len;
while (cnt--) {
o = *rp;
e = *(rp + len);
if (cp) {
*cp ^= o;
*cp ^= e;
}
o &= 0x55555555;
e &= 0x55555555;
*dp++ = (o << 1) | e;
rp++;
}
if (cp)
*cp &= 0x55555555;
return(rp + len);
}
/*
* decode len words in standard MFM format to len bytes
* of data.
*/
u_short *
msblkdecode(rp, cp, len)
u_short *rp;
u_char *cp;
int len;
{
while (len--) {
*cp++ = msdecode[*rp & 0x7f] |
(msdecode[(*rp >> 8) & 0x7f] << 4);
rp++;
}
return(rp);
}
/*
* encode len bytes of data into len words in standard MFM format.
* If a pointer is supplied for crc, calculate the CRC-16 of the data
* as well.
*/
u_short *
msblkencode(rp, cp, len, crc)
u_short *rp;
u_char *cp;
int len;
u_short *crc;
{
u_short td;
u_short mycrc;
/* preload crc for header (4 bytes)
* or data (anything else)
*/
mycrc = (len == 4) ? 0xb230 : 0xe295;
while (len--) {
td = (msencode[*cp >> 4] << 8) | msencode[*cp & 0x0f];
/* Check for zeros in top bit of encode and bottom
* bit of previous encode. if so, slap a one in betweem
* them.
*/
if ((td & 0x140) == 0)
td |= 0x80;
if ((td & 0x4000) == 0 && (rp[-1] & 1) == 0)
td |= 0x8000;
*rp++ = td;
/*
* calc crc if requested
*/
if (crc)
mycrc = (mycrc << 8) ^ mscrctab[*cp ^ (mycrc >> 8)];
cp++;
}
if (crc)
*crc = mycrc;
return(rp);
}
int
fddump(dev, blkno, va, size)
dev_t dev;
daddr_t blkno;
caddr_t va;
size_t size;
{
return (EINVAL);
}