6f3bab1f59
(currently only CD-ROM drives on i386). The sys/dev/scsipi system provides 2 busses to which devices can attach (scsibus and atapibus). This needed to change some include files and structure names in the low level scsi drivers.
401 lines
12 KiB
C
401 lines
12 KiB
C
/* $NetBSD: scsi_changer.h,v 1.8 1997/08/27 11:26:36 bouyer Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1996 Jason R. Thorpe <thorpej@and.com>
|
|
* All rights reserved.
|
|
*
|
|
* Partially based on an autochanger driver written by Stefan Grefen
|
|
* and on an autochanger driver written by the Systems Programming Group
|
|
* at the University of Utah Computer Science Department.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgements:
|
|
* This product includes software developed by Jason R. Thorpe
|
|
* for And Communications, http://www.and.com/
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
|
|
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* SCSI changer interface description
|
|
*/
|
|
|
|
/*
|
|
* Partially derived from software written by Stefan Grefen
|
|
* (grefen@goofy.zdv.uni-mainz.de soon grefen@convex.com)
|
|
* based on the SCSI System by written Julian Elischer (julian@tfs.com)
|
|
* for TRW Financial Systems.
|
|
*
|
|
* TRW Financial Systems, in accordance with their agreement with Carnegie
|
|
* Mellon University, makes this software available to CMU to distribute
|
|
* or use in any manner that they see fit as long as this message is kept with
|
|
* the software. For this reason TFS also grants any other persons or
|
|
* organisations permission to use or modify this software.
|
|
*
|
|
* TFS supplies this software to be publicly redistributed
|
|
* on the understanding that TFS is not responsible for the correct
|
|
* functioning of this software in any circumstances.
|
|
*
|
|
* Ported to run under 386BSD by Julian Elischer (julian@tfs.com) Sept 1992
|
|
*/
|
|
|
|
#ifndef _SCSI_SCSI_CHANGER_H
|
|
#define _SCSI_SCSI_CHANGER_H 1
|
|
|
|
/*
|
|
* SCSI command format
|
|
*/
|
|
|
|
/*
|
|
* Exchange the medium in the source element with the medium
|
|
* located at the destination element.
|
|
*/
|
|
struct scsi_exchange_medium {
|
|
u_int8_t opcode;
|
|
#define EXCHANGE_MEDIUM 0xa6
|
|
u_int8_t byte2;
|
|
u_int8_t tea[2]; /* transport element address */
|
|
u_int8_t src[2]; /* source address */
|
|
u_int8_t fdst[2]; /* first destination address */
|
|
u_int8_t sdst[2]; /* second destination address */
|
|
u_int8_t flags;
|
|
#define EXCHANGE_MEDIUM_INV1 0x01
|
|
#define EXCHANGE_MEDIUM_INV2 0x02
|
|
u_int8_t control;
|
|
};
|
|
|
|
/*
|
|
* Cause the medium changer to check all elements for medium and any
|
|
* other status relevant to the element.
|
|
*/
|
|
struct scsi_initialize_elememt_status {
|
|
u_int8_t opcode;
|
|
#define INITIALIZE_ELEMENT_STATUS 0x07
|
|
u_int8_t byte2;
|
|
u_int8_t reserved[3];
|
|
u_int8_t control;
|
|
};
|
|
|
|
/*
|
|
* Request the changer to move a unit of media from the source element
|
|
* to the destination element.
|
|
*/
|
|
struct scsi_move_medium {
|
|
u_int8_t opcode;
|
|
#define MOVE_MEDIUM 0xa5
|
|
u_int8_t byte2;
|
|
u_int8_t tea[2]; /* transport element address */
|
|
u_int8_t src[2]; /* source element address */
|
|
u_int8_t dst[2]; /* destination element address */
|
|
u_int8_t reserved[2];
|
|
u_int8_t flags;
|
|
#define MOVE_MEDIUM_INVERT 0x01
|
|
u_int8_t control;
|
|
};
|
|
|
|
/*
|
|
* Position the specified transport element (picker) in front of
|
|
* the destination element specified.
|
|
*/
|
|
struct scsi_position_to_element {
|
|
u_int8_t opcode;
|
|
#define POSITION_TO_ELEMENT 0x2b
|
|
u_int8_t byte2;
|
|
u_int8_t tea[2]; /* transport element address */
|
|
u_int8_t dst[2]; /* destination element address */
|
|
u_int8_t reserved[2];
|
|
u_int8_t flags;
|
|
#define POSITION_TO_ELEMENT_INVERT 0x01
|
|
u_int8_t control;
|
|
};
|
|
|
|
/*
|
|
* Request that the changer report the status of its internal elements.
|
|
*/
|
|
struct scsi_read_element_status {
|
|
u_int8_t opcode;
|
|
#define READ_ELEMENT_STATUS 0xb8
|
|
u_int8_t byte2;
|
|
#define READ_ELEMENT_STATUS_VOLTAG 0x10 /* report volume tag info */
|
|
/* ...next 4 bits are an element type code... */
|
|
u_int8_t sea[2]; /* starting element address */
|
|
u_int8_t count[2]; /* number of elements */
|
|
u_int8_t reserved0;
|
|
u_int8_t len[3]; /* length of data buffer */
|
|
u_int8_t reserved1;
|
|
u_int8_t control;
|
|
};
|
|
|
|
struct scsi_request_volume_element_address {
|
|
u_int8_t opcode;
|
|
#define REQUEST_VOLUME_ELEMENT_ADDRESS 0xb5
|
|
u_int8_t byte2;
|
|
#define REQUEST_VOLUME_ELEMENT_ADDRESS_VOLTAG 0x10
|
|
/* ...next 4 bits are an element type code... */
|
|
u_int8_t eaddr[2]; /* element address */
|
|
u_int8_t count[2]; /* number of elements */
|
|
u_int8_t reserved0;
|
|
u_int8_t len[3]; /* length of data buffer */
|
|
u_int8_t reserved1;
|
|
u_int8_t control;
|
|
};
|
|
|
|
/* XXX scsi_release */
|
|
|
|
/*
|
|
* Data returned by READ ELEMENT STATUS consists of an 8-byte header
|
|
* followed by one or more read_element_status_pages.
|
|
*/
|
|
struct read_element_status_header {
|
|
u_int8_t fear[2]; /* first element address reported */
|
|
u_int8_t count[2]; /* number of elements available */
|
|
u_int8_t reserved;
|
|
u_int8_t nbytes[3]; /* byte count of all pages */
|
|
};
|
|
|
|
struct read_element_status_page_header {
|
|
u_int8_t type; /* element type code; see type codes below */
|
|
u_int8_t flags;
|
|
#define READ_ELEMENT_STATUS_AVOLTAG 0x40
|
|
#define READ_ELEMENT_STATUS_PVOLTAG 0x80
|
|
u_int8_t edl[2]; /* element descriptor length */
|
|
u_int8_t reserved;
|
|
u_int8_t nbytes[3]; /* byte count of all descriptors */
|
|
};
|
|
|
|
struct read_element_status_descriptor {
|
|
u_int8_t eaddr[2]; /* element address */
|
|
u_int8_t flags1;
|
|
|
|
#define READ_ELEMENT_STATUS_FULL 0x01
|
|
#define READ_ELEMENT_STATUS_IMPEXP 0x02
|
|
#define READ_ELEMENT_STATUS_EXCEPT 0x04
|
|
#define READ_ELEMENT_STATUS_ACCESS 0x08
|
|
#define READ_ELEMENT_STATUS_EXENAB 0x10
|
|
#define READ_ELEMENT_STATUS_INENAB 0x20
|
|
|
|
#define READ_ELEMENT_STATUS_MT_MASK1 0x05
|
|
#define READ_ELEMENT_STATUS_ST_MASK1 0x0c
|
|
#define READ_ELEMENT_STATUS_IE_MASK1 0x3f
|
|
#define READ_ELEMENT_STATUS_DT_MASK1 0x0c
|
|
|
|
u_int8_t reserved0;
|
|
u_int8_t sense_code;
|
|
u_int8_t sense_qual;
|
|
|
|
/*
|
|
* dt_scsi_flags and dt_scsi_addr are valid only on data transport
|
|
* elements. These bytes are undefined for all other element types.
|
|
*/
|
|
u_int8_t dt_scsi_flags;
|
|
|
|
#define READ_ELEMENT_STATUS_DT_LUNMASK 0x07
|
|
#define READ_ELEMENT_STATUS_DT_LUVALID 0x10
|
|
#define READ_ELEMENT_STATUS_DT_IDVALID 0x20
|
|
#define READ_ELEMENT_STATUS_DT_NOTBUS 0x80
|
|
|
|
u_int8_t dt_scsi_addr;
|
|
|
|
u_int8_t reserved1;
|
|
|
|
u_int8_t flags2;
|
|
#define READ_ELEMENT_STATUS_INVERT 0x40
|
|
#define READ_ELEMENT_STATUS_SVALID 0x80
|
|
u_int8_t ssea[2]; /* source storage element address */
|
|
|
|
/*
|
|
* bytes 12-47: Primary volume tag information.
|
|
* (field omitted if PVOLTAG = 0)
|
|
*
|
|
* bytes 48-83: Alternate volume tag information.
|
|
* (field omitted if AVOLTAG = 0)
|
|
*
|
|
* bytes 84-87: Reserved (moved up if either of the above fields
|
|
* are omitted)
|
|
*
|
|
* bytes 88-end: Vendor-specific: (moved up if either of the
|
|
* above fields are missing)
|
|
*/
|
|
};
|
|
|
|
/* XXX add data returned by REQUEST VOLUME ELEMENT ADDRESS */
|
|
|
|
/* Element type codes */
|
|
#define ELEMENT_TYPE_MASK 0x0f /* Note: these aren't bits */
|
|
#define ELEMENT_TYPE_ALL 0x00
|
|
#define ELEMENT_TYPE_MT 0x01
|
|
#define ELEMENT_TYPE_ST 0x02
|
|
#define ELEMENT_TYPE_IE 0x03
|
|
#define ELEMENT_TYPE_DT 0x04
|
|
|
|
/*
|
|
* XXX The following definitions should be common to all SCSI device types.
|
|
*/
|
|
#define PGCODE_MASK 0x3f /* valid page number bits in pg_code */
|
|
#define PGCODE_PS 0x80 /* indicates page is savable */
|
|
|
|
/*
|
|
* Device capabilities page.
|
|
*
|
|
* This page defines characteristics of the elemenet types in the
|
|
* medium changer device.
|
|
*
|
|
* Note in the definitions below, the following abbreviations are
|
|
* used:
|
|
* MT Medium transport element (picker)
|
|
* ST Storage transport element (slot)
|
|
* IE Import/export element (portal)
|
|
* DT Data tranfer element (tape/disk drive)
|
|
*/
|
|
struct page_device_capabilities {
|
|
u_int8_t pg_code; /* page code (0x1f) */
|
|
u_int8_t pg_length; /* page length (0x12) */
|
|
|
|
/*
|
|
* The STOR_xx bits indicate that an element of a given
|
|
* type may provide independent storage for a unit of
|
|
* media. The top four bits of this value are reserved.
|
|
*/
|
|
u_int8_t stor;
|
|
#define STOR_MT 0x01
|
|
#define STOR_ST 0x02
|
|
#define STOR_IE 0x04
|
|
#define STOR_DT 0x08
|
|
|
|
u_int8_t reserved0;
|
|
|
|
/*
|
|
* The MOVE_TO_yy bits indicate the changer supports
|
|
* moving a unit of medium from an element of a given type to an
|
|
* element of type yy. This is used to determine if a given
|
|
* MOVE MEDIUM command is legal. The top four bits of each
|
|
* of these values are reserved.
|
|
*/
|
|
u_int8_t move_from_mt;
|
|
u_int8_t move_from_st;
|
|
u_int8_t move_from_ie;
|
|
u_int8_t move_from_dt;
|
|
#define MOVE_TO_MT 0x01
|
|
#define MOVE_TO_ST 0x02
|
|
#define MOVE_TO_IE 0x04
|
|
#define MOVE_TO_DT 0x08
|
|
|
|
u_int8_t reserved1[2];
|
|
|
|
/*
|
|
* Similar to above, but for EXCHANGE MEDIUM.
|
|
*/
|
|
u_int8_t exchange_with_mt;
|
|
u_int8_t exchange_with_st;
|
|
u_int8_t exchange_with_ie;
|
|
u_int8_t exchange_with_dt;
|
|
#define EXCHANGE_WITH_MT 0x01
|
|
#define EXCHANGE_WITH_ST 0x02
|
|
#define EXCHANGE_WITH_IE 0x04
|
|
#define EXCHANGE_WITH_DT 0x08
|
|
};
|
|
|
|
/*
|
|
* Medium changer elemement address assignment page.
|
|
*
|
|
* Some of these fields can be a little confusing, so an explanation
|
|
* is in order.
|
|
*
|
|
* Each component within a a medium changer apparatus is called an
|
|
* "element".
|
|
*
|
|
* The "medium transport element address" is the address of the first
|
|
* picker (robotic arm). "Number of medium transport elements" tells
|
|
* us how many pickers exist in the changer.
|
|
*
|
|
* The "first storage element address" is the address of the first
|
|
* slot in the tape or disk magazine. "Number of storage elements" tells
|
|
* us how many slots exist in the changer.
|
|
*
|
|
* The "first import/export element address" is the address of the first
|
|
* medium portal accessible both by the medium changer and an outside
|
|
* human operator. This is where the changer might deposit tapes destined
|
|
* for some vault. The "number of import/export elements" tells us
|
|
* not many of these portals exist in the changer. NOTE: this number may
|
|
* be 0.
|
|
*
|
|
* The "first data transfer element address" is the address of the first
|
|
* tape or disk drive in the changer. "Number of data transfer elements"
|
|
* tells us how many drives exist in the changer.
|
|
*/
|
|
struct page_element_address_assignment {
|
|
u_int8_t pg_code; /* page code (0x1d) */
|
|
u_int8_t pg_length; /* page length (0x12) */
|
|
|
|
/* Medium transport element address */
|
|
u_int8_t mtea[2];
|
|
|
|
/* Number of medium transport elements */
|
|
u_int8_t nmte[2];
|
|
|
|
/* First storage element address */
|
|
u_int8_t fsea[2];
|
|
|
|
/* Number of storage elements */
|
|
u_int8_t nse[2];
|
|
|
|
/* First import/export element address */
|
|
u_int8_t fieea[2];
|
|
|
|
/* Number of import/export elements */
|
|
u_int8_t niee[2];
|
|
|
|
/* First data transfer element address */
|
|
u_int8_t fdtea[2];
|
|
|
|
/* Number of data trafer elements */
|
|
u_int8_t ndte[2];
|
|
|
|
u_int8_t reserved[2];
|
|
};
|
|
|
|
/*
|
|
* Transport geometry parameters page.
|
|
*
|
|
* Defines whether each medium transport element is a member of a set of
|
|
* elements that share a common robotics subsystem and whether the element
|
|
* is capable of media rotation. One transport geometry descriptor is
|
|
* transferred for each medium transport element, beginning with the first
|
|
* medium transport element (other than the default transport element address
|
|
* of 0).
|
|
*/
|
|
struct page_transport_geometry_parameters {
|
|
u_int8_t pg_code; /* page code (0x1e) */
|
|
u_int8_t pg_length; /* page length; variable */
|
|
|
|
/* Transport geometry descriptor(s) are here. */
|
|
|
|
u_int8_t misc;
|
|
#define CAN_ROTATE 0x01
|
|
|
|
/* Member number in transport element set. */
|
|
u_int8_t member;
|
|
};
|
|
|
|
#endif /* _SCSI_SCSI_CHANGER_H */
|