NetBSD/sys/compat/linux/common/linux_misc.c

1516 lines
39 KiB
C

/* $NetBSD: linux_misc.c,v 1.192 2007/12/24 14:17:18 njoly Exp $ */
/*-
* Copyright (c) 1995, 1998, 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Frank van der Linden and Eric Haszlakiewicz; by Jason R. Thorpe
* of the Numerical Aerospace Simulation Facility, NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Linux compatibility module. Try to deal with various Linux system calls.
*/
/*
* These functions have been moved to multiarch to allow
* selection of which machines include them to be
* determined by the individual files.linux_<arch> files.
*
* Function in multiarch:
* linux_sys_break : linux_break.c
* linux_sys_alarm : linux_misc_notalpha.c
* linux_sys_getresgid : linux_misc_notalpha.c
* linux_sys_nice : linux_misc_notalpha.c
* linux_sys_readdir : linux_misc_notalpha.c
* linux_sys_setresgid : linux_misc_notalpha.c
* linux_sys_time : linux_misc_notalpha.c
* linux_sys_utime : linux_misc_notalpha.c
* linux_sys_waitpid : linux_misc_notalpha.c
* linux_sys_old_mmap : linux_oldmmap.c
* linux_sys_oldolduname : linux_oldolduname.c
* linux_sys_oldselect : linux_oldselect.c
* linux_sys_olduname : linux_olduname.c
* linux_sys_pipe : linux_pipe.c
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: linux_misc.c,v 1.192 2007/12/24 14:17:18 njoly Exp $");
#if defined(_KERNEL_OPT)
#include "opt_ptrace.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/dirent.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/filedesc.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/prot.h>
#include <sys/reboot.h>
#include <sys/resource.h>
#include <sys/resourcevar.h>
#include <sys/select.h>
#include <sys/signal.h>
#include <sys/signalvar.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/times.h>
#include <sys/vnode.h>
#include <sys/uio.h>
#include <sys/wait.h>
#include <sys/utsname.h>
#include <sys/unistd.h>
#include <sys/vfs_syscalls.h>
#include <sys/swap.h> /* for SWAP_ON */
#include <sys/sysctl.h> /* for KERN_DOMAINNAME */
#include <sys/kauth.h>
#include <sys/ptrace.h>
#include <machine/ptrace.h>
#include <sys/syscall.h>
#include <sys/syscallargs.h>
#include <compat/linux/common/linux_machdep.h>
#include <compat/linux/common/linux_types.h>
#include <compat/linux/common/linux_signal.h>
#include <compat/linux/common/linux_ipc.h>
#include <compat/linux/common/linux_sem.h>
#include <compat/linux/linux_syscallargs.h>
#include <compat/linux/common/linux_fcntl.h>
#include <compat/linux/common/linux_mmap.h>
#include <compat/linux/common/linux_dirent.h>
#include <compat/linux/common/linux_util.h>
#include <compat/linux/common/linux_misc.h>
#ifndef COMPAT_LINUX32
#include <compat/linux/common/linux_statfs.h>
#include <compat/linux/common/linux_limit.h>
#endif
#include <compat/linux/common/linux_ptrace.h>
#include <compat/linux/common/linux_reboot.h>
#include <compat/linux/common/linux_emuldata.h>
#ifndef COMPAT_LINUX32
const int linux_ptrace_request_map[] = {
LINUX_PTRACE_TRACEME, PT_TRACE_ME,
LINUX_PTRACE_PEEKTEXT, PT_READ_I,
LINUX_PTRACE_PEEKDATA, PT_READ_D,
LINUX_PTRACE_POKETEXT, PT_WRITE_I,
LINUX_PTRACE_POKEDATA, PT_WRITE_D,
LINUX_PTRACE_CONT, PT_CONTINUE,
LINUX_PTRACE_KILL, PT_KILL,
LINUX_PTRACE_ATTACH, PT_ATTACH,
LINUX_PTRACE_DETACH, PT_DETACH,
# ifdef PT_STEP
LINUX_PTRACE_SINGLESTEP, PT_STEP,
# endif
LINUX_PTRACE_SYSCALL, PT_SYSCALL,
-1
};
const struct linux_mnttypes linux_fstypes[] = {
{ MOUNT_FFS, LINUX_DEFAULT_SUPER_MAGIC },
{ MOUNT_NFS, LINUX_NFS_SUPER_MAGIC },
{ MOUNT_MFS, LINUX_DEFAULT_SUPER_MAGIC },
{ MOUNT_MSDOS, LINUX_MSDOS_SUPER_MAGIC },
{ MOUNT_LFS, LINUX_DEFAULT_SUPER_MAGIC },
{ MOUNT_FDESC, LINUX_DEFAULT_SUPER_MAGIC },
{ MOUNT_PORTAL, LINUX_DEFAULT_SUPER_MAGIC },
{ MOUNT_NULL, LINUX_DEFAULT_SUPER_MAGIC },
{ MOUNT_OVERLAY, LINUX_DEFAULT_SUPER_MAGIC },
{ MOUNT_UMAP, LINUX_DEFAULT_SUPER_MAGIC },
{ MOUNT_KERNFS, LINUX_DEFAULT_SUPER_MAGIC },
{ MOUNT_PROCFS, LINUX_PROC_SUPER_MAGIC },
{ MOUNT_AFS, LINUX_DEFAULT_SUPER_MAGIC },
{ MOUNT_CD9660, LINUX_ISOFS_SUPER_MAGIC },
{ MOUNT_UNION, LINUX_DEFAULT_SUPER_MAGIC },
{ MOUNT_ADOSFS, LINUX_ADFS_SUPER_MAGIC },
{ MOUNT_EXT2FS, LINUX_EXT2_SUPER_MAGIC },
{ MOUNT_CFS, LINUX_DEFAULT_SUPER_MAGIC },
{ MOUNT_CODA, LINUX_CODA_SUPER_MAGIC },
{ MOUNT_FILECORE, LINUX_DEFAULT_SUPER_MAGIC },
{ MOUNT_NTFS, LINUX_DEFAULT_SUPER_MAGIC },
{ MOUNT_SMBFS, LINUX_SMB_SUPER_MAGIC },
{ MOUNT_PTYFS, LINUX_DEVPTS_SUPER_MAGIC },
{ MOUNT_TMPFS, LINUX_DEFAULT_SUPER_MAGIC }
};
const int linux_fstypes_cnt = sizeof(linux_fstypes) / sizeof(linux_fstypes[0]);
# ifdef DEBUG_LINUX
#define DPRINTF(a) uprintf a
# else
#define DPRINTF(a)
# endif
/* Local linux_misc.c functions: */
static void linux_to_bsd_mmap_args(struct sys_mmap_args *,
const struct linux_sys_mmap_args *);
static int linux_mmap(struct lwp *, const struct linux_sys_mmap_args *,
register_t *, off_t);
/*
* The information on a terminated (or stopped) process needs
* to be converted in order for Linux binaries to get a valid signal
* number out of it.
*/
int
bsd_to_linux_wstat(int st)
{
int sig;
if (WIFSIGNALED(st)) {
sig = WTERMSIG(st);
if (sig >= 0 && sig < NSIG)
st= (st & ~0177) | native_to_linux_signo[sig];
} else if (WIFSTOPPED(st)) {
sig = WSTOPSIG(st);
if (sig >= 0 && sig < NSIG)
st = (st & ~0xff00) |
(native_to_linux_signo[sig] << 8);
}
return st;
}
/*
* wait4(2). Passed on to the NetBSD call, surrounded by code to
* reserve some space for a NetBSD-style wait status, and converting
* it to what Linux wants.
*/
int
linux_sys_wait4(struct lwp *l, const struct linux_sys_wait4_args *uap, register_t *retval)
{
/* {
syscallarg(int) pid;
syscallarg(int *) status;
syscallarg(int) options;
syscallarg(struct rusage *) rusage;
} */
int error, status, options, linux_options, was_zombie;
struct rusage ru;
int pid = SCARG(uap, pid);
linux_options = SCARG(uap, options);
options = WOPTSCHECKED;
if (linux_options & ~(LINUX_WAIT4_KNOWNFLAGS))
return (EINVAL);
if (linux_options & LINUX_WAIT4_WNOHANG)
options |= WNOHANG;
if (linux_options & LINUX_WAIT4_WUNTRACED)
options |= WUNTRACED;
if (linux_options & LINUX_WAIT4_WALL)
options |= WALLSIG;
if (linux_options & LINUX_WAIT4_WCLONE)
options |= WALTSIG;
# ifdef DIAGNOSTIC
if (linux_options & LINUX_WAIT4_WNOTHREAD)
printf("WARNING: %s: linux process %d.%d called "
"waitpid with __WNOTHREAD set!",
__FILE__, l->l_proc->p_pid, l->l_lid);
# endif
error = do_sys_wait(l, &pid, &status, options,
SCARG(uap, rusage) != NULL ? &ru : NULL, &was_zombie);
retval[0] = pid;
if (pid == 0)
return error;
sigdelset(&l->l_proc->p_sigpend.sp_set, SIGCHLD); /* XXXAD ksiginfo leak */
if (SCARG(uap, rusage) != NULL)
error = copyout(&ru, SCARG(uap, rusage), sizeof(ru));
if (error == 0 && SCARG(uap, status) != NULL) {
status = bsd_to_linux_wstat(status);
error = copyout(&status, SCARG(uap, status), sizeof status);
}
return error;
}
/*
* Linux brk(2). The check if the new address is >= the old one is
* done in the kernel in Linux. NetBSD does it in the library.
*/
int
linux_sys_brk(struct lwp *l, const struct linux_sys_brk_args *uap, register_t *retval)
{
/* {
syscallarg(char *) nsize;
} */
struct proc *p = l->l_proc;
char *nbrk = SCARG(uap, nsize);
struct sys_obreak_args oba;
struct vmspace *vm = p->p_vmspace;
struct linux_emuldata *ed = (struct linux_emuldata*)p->p_emuldata;
SCARG(&oba, nsize) = nbrk;
if ((void *) nbrk > vm->vm_daddr && sys_obreak(l, &oba, retval) == 0)
ed->s->p_break = (char*)nbrk;
else
nbrk = ed->s->p_break;
retval[0] = (register_t)nbrk;
return 0;
}
/*
* Implement the fs stat functions. Straightforward.
*/
int
linux_sys_statfs(struct lwp *l, const struct linux_sys_statfs_args *uap, register_t *retval)
{
/* {
syscallarg(const char *) path;
syscallarg(struct linux_statfs *) sp;
} */
struct statvfs *sb;
struct linux_statfs ltmp;
int error;
sb = STATVFSBUF_GET();
error = do_sys_pstatvfs(l, SCARG(uap, path), ST_WAIT, sb);
if (error == 0) {
bsd_to_linux_statfs(sb, &ltmp);
error = copyout(&ltmp, SCARG(uap, sp), sizeof ltmp);
}
STATVFSBUF_PUT(sb);
return error;
}
int
linux_sys_fstatfs(struct lwp *l, const struct linux_sys_fstatfs_args *uap, register_t *retval)
{
/* {
syscallarg(int) fd;
syscallarg(struct linux_statfs *) sp;
} */
struct statvfs *sb;
struct linux_statfs ltmp;
int error;
sb = STATVFSBUF_GET();
error = do_sys_fstatvfs(l, SCARG(uap, fd), ST_WAIT, sb);
if (error == 0) {
bsd_to_linux_statfs(sb, &ltmp);
error = copyout(&ltmp, SCARG(uap, sp), sizeof ltmp);
}
STATVFSBUF_PUT(sb);
return error;
}
/*
* uname(). Just copy the info from the various strings stored in the
* kernel, and put it in the Linux utsname structure. That structure
* is almost the same as the NetBSD one, only it has fields 65 characters
* long, and an extra domainname field.
*/
int
linux_sys_uname(struct lwp *l, const struct linux_sys_uname_args *uap, register_t *retval)
{
/* {
syscallarg(struct linux_utsname *) up;
} */
struct linux_utsname luts;
strlcpy(luts.l_sysname, linux_sysname, sizeof(luts.l_sysname));
strlcpy(luts.l_nodename, hostname, sizeof(luts.l_nodename));
strlcpy(luts.l_release, linux_release, sizeof(luts.l_release));
strlcpy(luts.l_version, linux_version, sizeof(luts.l_version));
strlcpy(luts.l_machine, LINUX_UNAME_ARCH, sizeof(luts.l_machine));
strlcpy(luts.l_domainname, domainname, sizeof(luts.l_domainname));
return copyout(&luts, SCARG(uap, up), sizeof(luts));
}
/* Used directly on: alpha, mips, ppc, sparc, sparc64 */
/* Used indirectly on: arm, i386, m68k */
/*
* New type Linux mmap call.
* Only called directly on machines with >= 6 free regs.
*/
int
linux_sys_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval)
{
/* {
syscallarg(unsigned long) addr;
syscallarg(size_t) len;
syscallarg(int) prot;
syscallarg(int) flags;
syscallarg(int) fd;
syscallarg(linux_off_t) offset;
} */
if (SCARG(uap, offset) & PAGE_MASK)
return EINVAL;
return linux_mmap(l, uap, retval, SCARG(uap, offset));
}
/*
* Guts of most architectures' mmap64() implementations. This shares
* its list of arguments with linux_sys_mmap().
*
* The difference in linux_sys_mmap2() is that "offset" is actually
* (offset / pagesize), not an absolute byte count. This translation
* to pagesize offsets is done inside glibc between the mmap64() call
* point, and the actual syscall.
*/
int
linux_sys_mmap2(struct lwp *l, const struct linux_sys_mmap2_args *uap, register_t *retval)
{
/* {
syscallarg(unsigned long) addr;
syscallarg(size_t) len;
syscallarg(int) prot;
syscallarg(int) flags;
syscallarg(int) fd;
syscallarg(linux_off_t) offset;
} */
return linux_mmap(l, uap, retval,
((off_t)SCARG(uap, offset)) << PAGE_SHIFT);
}
/*
* Massage arguments and call system mmap(2).
*/
static int
linux_mmap(struct lwp *l, const struct linux_sys_mmap_args *uap, register_t *retval, off_t offset)
{
struct sys_mmap_args cma;
int error;
size_t mmoff=0;
linux_to_bsd_mmap_args(&cma, uap);
SCARG(&cma, pos) = offset;
if (SCARG(uap, flags) & LINUX_MAP_GROWSDOWN) {
/*
* Request for stack-like memory segment. On linux, this
* works by mmap()ping (small) segment, which is automatically
* extended when page fault happens below the currently
* allocated area. We emulate this by allocating (typically
* bigger) segment sized at current stack size limit, and
* offsetting the requested and returned address accordingly.
* Since physical pages are only allocated on-demand, this
* is effectively identical.
*/
rlim_t ssl = l->l_proc->p_rlimit[RLIMIT_STACK].rlim_cur;
if (SCARG(&cma, len) < ssl) {
/* Compute the address offset */
mmoff = round_page(ssl) - SCARG(uap, len);
if (SCARG(&cma, addr))
SCARG(&cma, addr) = (char *)SCARG(&cma, addr) - mmoff;
SCARG(&cma, len) = (size_t) ssl;
}
}
error = sys_mmap(l, &cma, retval);
if (error)
return (error);
/* Shift the returned address for stack-like segment if necessary */
retval[0] += mmoff;
return (0);
}
static void
linux_to_bsd_mmap_args(struct sys_mmap_args *cma, const struct linux_sys_mmap_args *uap)
{
int flags = MAP_TRYFIXED, fl = SCARG(uap, flags);
flags |= cvtto_bsd_mask(fl, LINUX_MAP_SHARED, MAP_SHARED);
flags |= cvtto_bsd_mask(fl, LINUX_MAP_PRIVATE, MAP_PRIVATE);
flags |= cvtto_bsd_mask(fl, LINUX_MAP_FIXED, MAP_FIXED);
flags |= cvtto_bsd_mask(fl, LINUX_MAP_ANON, MAP_ANON);
/* XXX XAX ERH: Any other flags here? There are more defined... */
SCARG(cma, addr) = (void *)SCARG(uap, addr);
SCARG(cma, len) = SCARG(uap, len);
SCARG(cma, prot) = SCARG(uap, prot);
if (SCARG(cma, prot) & VM_PROT_WRITE) /* XXX */
SCARG(cma, prot) |= VM_PROT_READ;
SCARG(cma, flags) = flags;
SCARG(cma, fd) = flags & MAP_ANON ? -1 : SCARG(uap, fd);
SCARG(cma, pad) = 0;
}
#define LINUX_MREMAP_MAYMOVE 1
#define LINUX_MREMAP_FIXED 2
int
linux_sys_mremap(struct lwp *l, const struct linux_sys_mremap_args *uap, register_t *retval)
{
/* {
syscallarg(void *) old_address;
syscallarg(size_t) old_size;
syscallarg(size_t) new_size;
syscallarg(u_long) flags;
} */
struct proc *p;
struct vm_map *map;
vaddr_t oldva;
vaddr_t newva;
size_t oldsize;
size_t newsize;
int flags;
int uvmflags;
int error;
flags = SCARG(uap, flags);
oldva = (vaddr_t)SCARG(uap, old_address);
oldsize = round_page(SCARG(uap, old_size));
newsize = round_page(SCARG(uap, new_size));
if ((flags & ~(LINUX_MREMAP_FIXED|LINUX_MREMAP_MAYMOVE)) != 0) {
error = EINVAL;
goto done;
}
if ((flags & LINUX_MREMAP_FIXED) != 0) {
if ((flags & LINUX_MREMAP_MAYMOVE) == 0) {
error = EINVAL;
goto done;
}
#if 0 /* notyet */
newva = SCARG(uap, new_address);
uvmflags = MAP_FIXED;
#else /* notyet */
error = EOPNOTSUPP;
goto done;
#endif /* notyet */
} else if ((flags & LINUX_MREMAP_MAYMOVE) != 0) {
uvmflags = 0;
} else {
newva = oldva;
uvmflags = MAP_FIXED;
}
p = l->l_proc;
map = &p->p_vmspace->vm_map;
error = uvm_mremap(map, oldva, oldsize, map, &newva, newsize, p,
uvmflags);
done:
*retval = (error != 0) ? 0 : (register_t)newva;
return error;
}
int
linux_sys_msync(struct lwp *l, const struct linux_sys_msync_args *uap, register_t *retval)
{
/* {
syscallarg(void *) addr;
syscallarg(int) len;
syscallarg(int) fl;
} */
struct sys___msync13_args bma;
/* flags are ignored */
SCARG(&bma, addr) = SCARG(uap, addr);
SCARG(&bma, len) = SCARG(uap, len);
SCARG(&bma, flags) = SCARG(uap, fl);
return sys___msync13(l, &bma, retval);
}
int
linux_sys_mprotect(struct lwp *l, const struct linux_sys_mprotect_args *uap, register_t *retval)
{
/* {
syscallarg(const void *) start;
syscallarg(unsigned long) len;
syscallarg(int) prot;
} */
struct vm_map_entry *entry;
struct vm_map *map;
struct proc *p;
vaddr_t end, start, len, stacklim;
int prot, grows;
start = (vaddr_t)SCARG(uap, start);
len = round_page(SCARG(uap, len));
prot = SCARG(uap, prot);
grows = prot & (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP);
prot &= ~grows;
end = start + len;
if (start & PAGE_MASK)
return EINVAL;
if (end < start)
return EINVAL;
if (end == start)
return 0;
if (prot & ~(PROT_READ | PROT_WRITE | PROT_EXEC))
return EINVAL;
if (grows == (LINUX_PROT_GROWSDOWN | LINUX_PROT_GROWSUP))
return EINVAL;
p = l->l_proc;
map = &p->p_vmspace->vm_map;
vm_map_lock(map);
# ifdef notdef
VM_MAP_RANGE_CHECK(map, start, end);
# endif
if (!uvm_map_lookup_entry(map, start, &entry) || entry->start > start) {
vm_map_unlock(map);
return ENOMEM;
}
/*
* Approximate the behaviour of PROT_GROWS{DOWN,UP}.
*/
stacklim = (vaddr_t)p->p_limit->pl_rlimit[RLIMIT_STACK].rlim_cur;
if (grows & LINUX_PROT_GROWSDOWN) {
if (USRSTACK - stacklim <= start && start < USRSTACK) {
start = USRSTACK - stacklim;
} else {
start = entry->start;
}
} else if (grows & LINUX_PROT_GROWSUP) {
if (USRSTACK <= end && end < USRSTACK + stacklim) {
end = USRSTACK + stacklim;
} else {
end = entry->end;
}
}
vm_map_unlock(map);
return uvm_map_protect(map, start, end, prot, FALSE);
}
/*
* This code is partly stolen from src/lib/libc/compat-43/times.c
*/
#define CONVTCK(r) (r.tv_sec * hz + r.tv_usec / (1000000 / hz))
int
linux_sys_times(struct lwp *l, const struct linux_sys_times_args *uap, register_t *retval)
{
/* {
syscallarg(struct times *) tms;
} */
struct proc *p = l->l_proc;
struct timeval t;
int error;
if (SCARG(uap, tms)) {
struct linux_tms ltms;
struct rusage ru;
mutex_enter(&p->p_smutex);
calcru(p, &ru.ru_utime, &ru.ru_stime, NULL, NULL);
ltms.ltms_utime = CONVTCK(ru.ru_utime);
ltms.ltms_stime = CONVTCK(ru.ru_stime);
ltms.ltms_cutime = CONVTCK(p->p_stats->p_cru.ru_utime);
ltms.ltms_cstime = CONVTCK(p->p_stats->p_cru.ru_stime);
mutex_exit(&p->p_smutex);
if ((error = copyout(&ltms, SCARG(uap, tms), sizeof ltms)))
return error;
}
getmicrouptime(&t);
retval[0] = ((linux_clock_t)(CONVTCK(t)));
return 0;
}
#undef CONVTCK
/*
* Linux 'readdir' call. This code is mostly taken from the
* SunOS getdents call (see compat/sunos/sunos_misc.c), though
* an attempt has been made to keep it a little cleaner (failing
* miserably, because of the cruft needed if count 1 is passed).
*
* The d_off field should contain the offset of the next valid entry,
* but in Linux it has the offset of the entry itself. We emulate
* that bug here.
*
* Read in BSD-style entries, convert them, and copy them out.
*
* Note that this doesn't handle union-mounted filesystems.
*/
int
linux_sys_getdents(struct lwp *l, const struct linux_sys_getdents_args *uap, register_t *retval)
{
/* {
syscallarg(int) fd;
syscallarg(struct linux_dirent *) dent;
syscallarg(unsigned int) count;
} */
struct dirent *bdp;
struct vnode *vp;
char *inp, *tbuf; /* BSD-format */
int len, reclen; /* BSD-format */
char *outp; /* Linux-format */
int resid, linux_reclen = 0; /* Linux-format */
struct file *fp;
struct uio auio;
struct iovec aiov;
struct linux_dirent idb;
off_t off; /* true file offset */
int buflen, error, eofflag, nbytes, oldcall;
struct vattr va;
off_t *cookiebuf = NULL, *cookie;
int ncookies;
/* getvnode() will use the descriptor for us */
if ((error = getvnode(l->l_proc->p_fd, SCARG(uap, fd), &fp)) != 0)
return (error);
if ((fp->f_flag & FREAD) == 0) {
error = EBADF;
goto out1;
}
vp = (struct vnode *)fp->f_data;
if (vp->v_type != VDIR) {
error = EINVAL;
goto out1;
}
if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
goto out1;
nbytes = SCARG(uap, count);
if (nbytes == 1) { /* emulating old, broken behaviour */
nbytes = sizeof (idb);
buflen = max(va.va_blocksize, nbytes);
oldcall = 1;
} else {
buflen = min(MAXBSIZE, nbytes);
if (buflen < va.va_blocksize)
buflen = va.va_blocksize;
oldcall = 0;
}
tbuf = malloc(buflen, M_TEMP, M_WAITOK);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
off = fp->f_offset;
again:
aiov.iov_base = tbuf;
aiov.iov_len = buflen;
auio.uio_iov = &aiov;
auio.uio_iovcnt = 1;
auio.uio_rw = UIO_READ;
auio.uio_resid = buflen;
auio.uio_offset = off;
UIO_SETUP_SYSSPACE(&auio);
/*
* First we read into the malloc'ed buffer, then
* we massage it into user space, one record at a time.
*/
error = VOP_READDIR(vp, &auio, fp->f_cred, &eofflag, &cookiebuf,
&ncookies);
if (error)
goto out;
inp = tbuf;
outp = (void *)SCARG(uap, dent);
resid = nbytes;
if ((len = buflen - auio.uio_resid) == 0)
goto eof;
for (cookie = cookiebuf; len > 0; len -= reclen) {
bdp = (struct dirent *)inp;
reclen = bdp->d_reclen;
if (reclen & 3)
panic("linux_readdir");
if (bdp->d_fileno == 0) {
inp += reclen; /* it is a hole; squish it out */
if (cookie)
off = *cookie++;
else
off += reclen;
continue;
}
linux_reclen = LINUX_RECLEN(&idb, bdp->d_namlen);
if (reclen > len || resid < linux_reclen) {
/* entry too big for buffer, so just stop */
outp++;
break;
}
/*
* Massage in place to make a Linux-shaped dirent (otherwise
* we have to worry about touching user memory outside of
* the copyout() call).
*/
idb.d_ino = bdp->d_fileno;
/*
* The old readdir() call misuses the offset and reclen fields.
*/
if (oldcall) {
idb.d_off = (linux_off_t)linux_reclen;
idb.d_reclen = (u_short)bdp->d_namlen;
} else {
if (sizeof (idb.d_off) <= 4 && (off >> 32) != 0) {
compat_offseterr(vp, "linux_getdents");
error = EINVAL;
goto out;
}
idb.d_off = (linux_off_t)off;
idb.d_reclen = (u_short)linux_reclen;
}
strcpy(idb.d_name, bdp->d_name);
if ((error = copyout((void *)&idb, outp, linux_reclen)))
goto out;
/* advance past this real entry */
inp += reclen;
if (cookie)
off = *cookie++; /* each entry points to itself */
else
off += reclen;
/* advance output past Linux-shaped entry */
outp += linux_reclen;
resid -= linux_reclen;
if (oldcall)
break;
}
/* if we squished out the whole block, try again */
if (outp == (void *)SCARG(uap, dent))
goto again;
fp->f_offset = off; /* update the vnode offset */
if (oldcall)
nbytes = resid + linux_reclen;
eof:
*retval = nbytes - resid;
out:
VOP_UNLOCK(vp, 0);
if (cookiebuf)
free(cookiebuf, M_TEMP);
free(tbuf, M_TEMP);
out1:
FILE_UNUSE(fp, l);
return error;
}
/*
* Even when just using registers to pass arguments to syscalls you can
* have 5 of them on the i386. So this newer version of select() does
* this.
*/
int
linux_sys_select(struct lwp *l, const struct linux_sys_select_args *uap, register_t *retval)
{
/* {
syscallarg(int) nfds;
syscallarg(fd_set *) readfds;
syscallarg(fd_set *) writefds;
syscallarg(fd_set *) exceptfds;
syscallarg(struct timeval *) timeout;
} */
return linux_select1(l, retval, SCARG(uap, nfds), SCARG(uap, readfds),
SCARG(uap, writefds), SCARG(uap, exceptfds), SCARG(uap, timeout));
}
/*
* Common code for the old and new versions of select(). A couple of
* things are important:
* 1) return the amount of time left in the 'timeout' parameter
* 2) select never returns ERESTART on Linux, always return EINTR
*/
int
linux_select1(l, retval, nfds, readfds, writefds, exceptfds, timeout)
struct lwp *l;
register_t *retval;
int nfds;
fd_set *readfds, *writefds, *exceptfds;
struct timeval *timeout;
{
struct timeval tv0, tv1, utv, *tv = NULL;
int error;
/*
* Store current time for computation of the amount of
* time left.
*/
if (timeout) {
if ((error = copyin(timeout, &utv, sizeof(utv))))
return error;
if (itimerfix(&utv)) {
/*
* The timeval was invalid. Convert it to something
* valid that will act as it does under Linux.
*/
utv.tv_sec += utv.tv_usec / 1000000;
utv.tv_usec %= 1000000;
if (utv.tv_usec < 0) {
utv.tv_sec -= 1;
utv.tv_usec += 1000000;
}
if (utv.tv_sec < 0)
timerclear(&utv);
}
tv = &utv;
microtime(&tv0);
}
error = selcommon(l, retval, nfds, readfds, writefds, exceptfds,
tv, NULL);
if (error) {
/*
* See fs/select.c in the Linux kernel. Without this,
* Maelstrom doesn't work.
*/
if (error == ERESTART)
error = EINTR;
return error;
}
if (timeout) {
if (*retval) {
/*
* Compute how much time was left of the timeout,
* by subtracting the current time and the time
* before we started the call, and subtracting
* that result from the user-supplied value.
*/
microtime(&tv1);
timersub(&tv1, &tv0, &tv1);
timersub(&utv, &tv1, &utv);
if (utv.tv_sec < 0)
timerclear(&utv);
} else
timerclear(&utv);
if ((error = copyout(&utv, timeout, sizeof(utv))))
return error;
}
return 0;
}
/*
* Set the 'personality' (emulation mode) for the current process. Only
* accept the Linux personality here (0). This call is needed because
* the Linux ELF crt0 issues it in an ugly kludge to make sure that
* ELF binaries run in Linux mode, not SVR4 mode.
*/
int
linux_sys_personality(struct lwp *l, const struct linux_sys_personality_args *uap, register_t *retval)
{
/* {
syscallarg(int) per;
} */
if (SCARG(uap, per) != 0)
return EINVAL;
retval[0] = 0;
return 0;
}
#endif /* !COMPAT_LINUX32 */
#if defined(__i386__) || defined(__m68k__) || defined(COMPAT_LINUX32)
/*
* The calls are here because of type conversions.
*/
#ifndef COMPAT_LINUX32
int
linux_sys_setreuid16(struct lwp *l, const struct linux_sys_setreuid16_args *uap, register_t *retval)
{
/* {
syscallarg(int) ruid;
syscallarg(int) euid;
} */
struct sys_setreuid_args bsa;
SCARG(&bsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
(uid_t)-1 : SCARG(uap, ruid);
SCARG(&bsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
(uid_t)-1 : SCARG(uap, euid);
return sys_setreuid(l, &bsa, retval);
}
int
linux_sys_setregid16(struct lwp *l, const struct linux_sys_setregid16_args *uap, register_t *retval)
{
/* {
syscallarg(int) rgid;
syscallarg(int) egid;
} */
struct sys_setregid_args bsa;
SCARG(&bsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
(uid_t)-1 : SCARG(uap, rgid);
SCARG(&bsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
(uid_t)-1 : SCARG(uap, egid);
return sys_setregid(l, &bsa, retval);
}
int
linux_sys_setresuid16(struct lwp *l, const struct linux_sys_setresuid16_args *uap, register_t *retval)
{
/* {
syscallarg(uid_t) ruid;
syscallarg(uid_t) euid;
syscallarg(uid_t) suid;
} */
struct linux_sys_setresuid_args lsa;
SCARG(&lsa, ruid) = ((linux_uid_t)SCARG(uap, ruid) == (linux_uid_t)-1) ?
(uid_t)-1 : SCARG(uap, ruid);
SCARG(&lsa, euid) = ((linux_uid_t)SCARG(uap, euid) == (linux_uid_t)-1) ?
(uid_t)-1 : SCARG(uap, euid);
SCARG(&lsa, suid) = ((linux_uid_t)SCARG(uap, suid) == (linux_uid_t)-1) ?
(uid_t)-1 : SCARG(uap, suid);
return linux_sys_setresuid(l, &lsa, retval);
}
int
linux_sys_setresgid16(struct lwp *l, const struct linux_sys_setresgid16_args *uap, register_t *retval)
{
/* {
syscallarg(gid_t) rgid;
syscallarg(gid_t) egid;
syscallarg(gid_t) sgid;
} */
struct linux_sys_setresgid_args lsa;
SCARG(&lsa, rgid) = ((linux_gid_t)SCARG(uap, rgid) == (linux_gid_t)-1) ?
(gid_t)-1 : SCARG(uap, rgid);
SCARG(&lsa, egid) = ((linux_gid_t)SCARG(uap, egid) == (linux_gid_t)-1) ?
(gid_t)-1 : SCARG(uap, egid);
SCARG(&lsa, sgid) = ((linux_gid_t)SCARG(uap, sgid) == (linux_gid_t)-1) ?
(gid_t)-1 : SCARG(uap, sgid);
return linux_sys_setresgid(l, &lsa, retval);
}
#endif /* COMPAT_LINUX32 */
int
linux_sys_getgroups16(struct lwp *l, const struct linux_sys_getgroups16_args *uap, register_t *retval)
{
/* {
syscallarg(int) gidsetsize;
syscallarg(linux_gid_t *) gidset;
} */
linux_gid_t lset[16];
linux_gid_t *gidset;
unsigned int ngrps;
int i, n, j;
int error;
ngrps = kauth_cred_ngroups(l->l_cred);
*retval = ngrps;
if (SCARG(uap, gidsetsize) == 0)
return 0;
if (SCARG(uap, gidsetsize) < ngrps)
return EINVAL;
gidset = SCARG(uap, gidset);
for (i = 0; i < (n = ngrps); i += n, gidset += n) {
n -= i;
if (n > __arraycount(lset))
n = __arraycount(lset);
for (j = 0; j < n; j++)
lset[j] = kauth_cred_group(l->l_cred, i + j);
error = copyout(lset, gidset, n * sizeof(lset[0]));
if (error != 0)
return error;
}
return 0;
}
/*
* It is very unlikly that any problem using 16bit groups is written
* to allow for more than 16 of them, so don't bother trying to
* support that.
*/
#define COMPAT_NGROUPS16 16
int
linux_sys_setgroups16(struct lwp *l, const struct linux_sys_setgroups16_args *uap, register_t *retval)
{
/* {
syscallarg(int) gidsetsize;
syscallarg(linux_gid_t *) gidset;
} */
linux_gid_t lset[COMPAT_NGROUPS16];
kauth_cred_t ncred;
int error;
gid_t grbuf[COMPAT_NGROUPS16];
unsigned int i, ngroups = SCARG(uap, gidsetsize);
if (ngroups > COMPAT_NGROUPS16)
return EINVAL;
error = copyin(SCARG(uap, gidset), lset, ngroups);
if (error != 0)
return error;
for (i = 0; i < ngroups; i++)
grbuf[i] = lset[i];
ncred = kauth_cred_alloc();
error = kauth_cred_setgroups(ncred, grbuf, SCARG(uap, gidsetsize),
-1, UIO_SYSSPACE);
if (error != 0) {
kauth_cred_free(ncred);
return error;
}
return kauth_proc_setgroups(l, ncred);
}
#endif /* __i386__ || __m68k__ || COMPAT_LINUX32 */
#ifndef COMPAT_LINUX32
/*
* We have nonexistent fsuid equal to uid.
* If modification is requested, refuse.
*/
int
linux_sys_setfsuid(struct lwp *l, const struct linux_sys_setfsuid_args *uap, register_t *retval)
{
/* {
syscallarg(uid_t) uid;
} */
uid_t uid;
uid = SCARG(uap, uid);
if (kauth_cred_getuid(l->l_cred) != uid)
return sys_nosys(l, uap, retval);
*retval = uid;
return 0;
}
int
linux_sys_setfsgid(struct lwp *l, const struct linux_sys_setfsgid_args *uap, register_t *retval)
{
/* {
syscallarg(gid_t) gid;
} */
gid_t gid;
gid = SCARG(uap, gid);
if (kauth_cred_getgid(l->l_cred) != gid)
return sys_nosys(l, uap, retval);
*retval = gid;
return 0;
}
int
linux_sys_setresuid(struct lwp *l, const struct linux_sys_setresuid_args *uap, register_t *retval)
{
/* {
syscallarg(uid_t) ruid;
syscallarg(uid_t) euid;
syscallarg(uid_t) suid;
} */
/*
* Note: These checks are a little different than the NetBSD
* setreuid(2) call performs. This precisely follows the
* behavior of the Linux kernel.
*/
return do_setresuid(l, SCARG(uap, ruid), SCARG(uap, euid),
SCARG(uap, suid),
ID_R_EQ_R | ID_R_EQ_E | ID_R_EQ_S |
ID_E_EQ_R | ID_E_EQ_E | ID_E_EQ_S |
ID_S_EQ_R | ID_S_EQ_E | ID_S_EQ_S );
}
int
linux_sys_getresuid(struct lwp *l, const struct linux_sys_getresuid_args *uap, register_t *retval)
{
/* {
syscallarg(uid_t *) ruid;
syscallarg(uid_t *) euid;
syscallarg(uid_t *) suid;
} */
kauth_cred_t pc = l->l_cred;
int error;
uid_t uid;
/*
* Linux copies these values out to userspace like so:
*
* 1. Copy out ruid.
* 2. If that succeeds, copy out euid.
* 3. If both of those succeed, copy out suid.
*/
uid = kauth_cred_getuid(pc);
if ((error = copyout(&uid, SCARG(uap, ruid), sizeof(uid_t))) != 0)
return (error);
uid = kauth_cred_geteuid(pc);
if ((error = copyout(&uid, SCARG(uap, euid), sizeof(uid_t))) != 0)
return (error);
uid = kauth_cred_getsvuid(pc);
return (copyout(&uid, SCARG(uap, suid), sizeof(uid_t)));
}
int
linux_sys_ptrace(struct lwp *l, const struct linux_sys_ptrace_args *uap, register_t *retval)
{
/* {
i386, m68k, powerpc: T=int
alpha, amd64: T=long
syscallarg(T) request;
syscallarg(T) pid;
syscallarg(T) addr;
syscallarg(T) data;
} */
#if defined(PTRACE) || defined(_LKM)
const int *ptr;
int request;
int error;
#ifdef _LKM
#define sys_ptrace (*sysent[SYS_ptrace].sy_call)
#endif
ptr = linux_ptrace_request_map;
request = SCARG(uap, request);
while (*ptr != -1)
if (*ptr++ == request) {
struct sys_ptrace_args pta;
SCARG(&pta, req) = *ptr;
SCARG(&pta, pid) = SCARG(uap, pid);
SCARG(&pta, addr) = (void *)SCARG(uap, addr);
SCARG(&pta, data) = SCARG(uap, data);
/*
* Linux ptrace(PTRACE_CONT, pid, 0, 0) means actually
* to continue where the process left off previously.
* The same thing is achieved by addr == (void *) 1
* on NetBSD, so rewrite 'addr' appropriately.
*/
if (request == LINUX_PTRACE_CONT && SCARG(uap, addr)==0)
SCARG(&pta, addr) = (void *) 1;
error = sys_ptrace(l, &pta, retval);
if (error)
return error;
switch (request) {
case LINUX_PTRACE_PEEKTEXT:
case LINUX_PTRACE_PEEKDATA:
error = copyout (retval,
(void *)SCARG(uap, data),
sizeof *retval);
*retval = SCARG(uap, data);
break;
default:
break;
}
return error;
}
else
ptr++;
return LINUX_SYS_PTRACE_ARCH(l, uap, retval);
#else
return ENOSYS;
#endif /* PTRACE || _LKM */
}
int
linux_sys_reboot(struct lwp *l, const struct linux_sys_reboot_args *uap, register_t *retval)
{
/* {
syscallarg(int) magic1;
syscallarg(int) magic2;
syscallarg(int) cmd;
syscallarg(void *) arg;
} */
struct sys_reboot_args /* {
syscallarg(int) opt;
syscallarg(char *) bootstr;
} */ sra;
int error;
if ((error = kauth_authorize_system(l->l_cred,
KAUTH_SYSTEM_REBOOT, 0, NULL, NULL, NULL)) != 0)
return(error);
if (SCARG(uap, magic1) != LINUX_REBOOT_MAGIC1)
return(EINVAL);
if (SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2 &&
SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2A &&
SCARG(uap, magic2) != LINUX_REBOOT_MAGIC2B)
return(EINVAL);
switch (SCARG(uap, cmd)) {
case LINUX_REBOOT_CMD_RESTART:
SCARG(&sra, opt) = RB_AUTOBOOT;
break;
case LINUX_REBOOT_CMD_HALT:
SCARG(&sra, opt) = RB_HALT;
break;
case LINUX_REBOOT_CMD_POWER_OFF:
SCARG(&sra, opt) = RB_HALT|RB_POWERDOWN;
break;
case LINUX_REBOOT_CMD_RESTART2:
/* Reboot with an argument. */
SCARG(&sra, opt) = RB_AUTOBOOT|RB_STRING;
SCARG(&sra, bootstr) = SCARG(uap, arg);
break;
case LINUX_REBOOT_CMD_CAD_ON:
return(EINVAL); /* We don't implement ctrl-alt-delete */
case LINUX_REBOOT_CMD_CAD_OFF:
return(0);
default:
return(EINVAL);
}
return(sys_reboot(l, &sra, retval));
}
/*
* Copy of compat_12_sys_swapon().
*/
int
linux_sys_swapon(struct lwp *l, const struct linux_sys_swapon_args *uap, register_t *retval)
{
/* {
syscallarg(const char *) name;
} */
struct sys_swapctl_args ua;
SCARG(&ua, cmd) = SWAP_ON;
SCARG(&ua, arg) = (void *)__UNCONST(SCARG(uap, name));
SCARG(&ua, misc) = 0; /* priority */
return (sys_swapctl(l, &ua, retval));
}
/*
* Stop swapping to the file or block device specified by path.
*/
int
linux_sys_swapoff(struct lwp *l, const struct linux_sys_swapoff_args *uap, register_t *retval)
{
/* {
syscallarg(const char *) path;
} */
struct sys_swapctl_args ua;
SCARG(&ua, cmd) = SWAP_OFF;
SCARG(&ua, arg) = __UNCONST(SCARG(uap, path)); /*XXXUNCONST*/
return (sys_swapctl(l, &ua, retval));
}
/*
* Copy of compat_09_sys_setdomainname()
*/
/* ARGSUSED */
int
linux_sys_setdomainname(struct lwp *l, const struct linux_sys_setdomainname_args *uap, register_t *retval)
{
/* {
syscallarg(char *) domainname;
syscallarg(int) len;
} */
int name[2];
name[0] = CTL_KERN;
name[1] = KERN_DOMAINNAME;
return (old_sysctl(&name[0], 2, 0, 0, SCARG(uap, domainname),
SCARG(uap, len), l));
}
/*
* sysinfo()
*/
/* ARGSUSED */
int
linux_sys_sysinfo(struct lwp *l, const struct linux_sys_sysinfo_args *uap, register_t *retval)
{
/* {
syscallarg(struct linux_sysinfo *) arg;
} */
struct linux_sysinfo si;
struct loadavg *la;
si.uptime = time_uptime;
la = &averunnable;
si.loads[0] = la->ldavg[0] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
si.loads[1] = la->ldavg[1] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
si.loads[2] = la->ldavg[2] * LINUX_SYSINFO_LOADS_SCALE / la->fscale;
si.totalram = ctob((u_long)physmem);
si.freeram = (u_long)uvmexp.free * uvmexp.pagesize;
si.sharedram = 0; /* XXX */
si.bufferram = (u_long)uvmexp.filepages * uvmexp.pagesize;
si.totalswap = (u_long)uvmexp.swpages * uvmexp.pagesize;
si.freeswap =
(u_long)(uvmexp.swpages - uvmexp.swpginuse) * uvmexp.pagesize;
si.procs = nprocs;
/* The following are only present in newer Linux kernels. */
si.totalbig = 0;
si.freebig = 0;
si.mem_unit = 1;
return (copyout(&si, SCARG(uap, arg), sizeof si));
}
int
linux_sys_getrlimit(struct lwp *l, const struct linux_sys_getrlimit_args *uap, register_t *retval)
{
/* {
syscallarg(int) which;
# ifdef LINUX_LARGEFILE64
syscallarg(struct rlimit *) rlp;
# else
syscallarg(struct orlimit *) rlp;
# endif
} */
# ifdef LINUX_LARGEFILE64
struct rlimit orl;
# else
struct orlimit orl;
# endif
int which;
which = linux_to_bsd_limit(SCARG(uap, which));
if (which < 0)
return -which;
bsd_to_linux_rlimit(&orl, &l->l_proc->p_rlimit[which]);
return copyout(&orl, SCARG(uap, rlp), sizeof(orl));
}
int
linux_sys_setrlimit(struct lwp *l, const struct linux_sys_setrlimit_args *uap, register_t *retval)
{
/* {
syscallarg(int) which;
# ifdef LINUX_LARGEFILE64
syscallarg(struct rlimit *) rlp;
# else
syscallarg(struct orlimit *) rlp;
# endif
} */
struct rlimit rl;
# ifdef LINUX_LARGEFILE64
struct rlimit orl;
# else
struct orlimit orl;
# endif
int error;
int which;
if ((error = copyin(SCARG(uap, rlp), &orl, sizeof(orl))) != 0)
return error;
which = linux_to_bsd_limit(SCARG(uap, which));
if (which < 0)
return -which;
linux_to_bsd_rlimit(&rl, &orl);
return dosetrlimit(l, l->l_proc, which, &rl);
}
# if !defined(__mips__) && !defined(__amd64__)
/* XXX: this doesn't look 100% common, at least mips doesn't have it */
int
linux_sys_ugetrlimit(struct lwp *l, const struct linux_sys_ugetrlimit_args *uap, register_t *retval)
{
return linux_sys_getrlimit(l, (const void *)uap, retval);
}
# endif
/*
* This gets called for unsupported syscalls. The difference to sys_nosys()
* is that process does not get SIGSYS, the call just returns with ENOSYS.
* This is the way Linux does it and glibc depends on this behaviour.
*/
int
linux_sys_nosys(struct lwp *l, const void *v, register_t *retval)
{
return (ENOSYS);
}
int
linux_sys_getpriority(struct lwp *l, const struct linux_sys_getpriority_args *uap, register_t *retval)
{
/* {
syscallarg(int) which;
syscallarg(int) who;
} */
struct sys_getpriority_args bsa;
int error;
SCARG(&bsa, which) = SCARG(uap, which);
SCARG(&bsa, who) = SCARG(uap, who);
if ((error = sys_getpriority(l, &bsa, retval)))
return error;
*retval = NZERO - *retval;
return 0;
}
#endif /* !COMPAT_LINUX32 */