NetBSD/sys/arch/mac68k/dev/adb_direct.c

2425 lines
68 KiB
C

/* $NetBSD: adb_direct.c,v 1.6 1997/08/11 22:53:27 scottr Exp $ */
/* From: adb_direct.c 2.02 4/18/97 jpw */
/*
* Copyright (C) 1996, 1997 John P. Wittkoski
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by John P. Wittkoski.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* This code is rather messy, but I don't have time right now
* to clean it up as much as I would like.
* But it works, so I'm happy. :-) jpw */
#ifdef __NetBSD__
#include "opt_mrg_adb.h"
#include <sys/param.h>
#include <sys/cdefs.h>
#include <sys/systm.h>
#include <machine/viareg.h>
#include <machine/param.h>
#include <machine/cpu.h>
#include <machine/adbsys.h> /* required for adbvar.h */
#include <mac68k/mac68k/macrom.h>
#include <mac68k/dev/adb_direct.h>
#include <mac68k/dev/adbvar.h>
#define printf_intr printf
#else
#include "via.h" /* for macos based testing */
typedef unsigned char u_char;
#endif
/* more verbose for testing */
/*#define DEBUG*/
/* some misc. leftovers */
#define vPB 0x0000
#define vPB3 0x08
#define vPB4 0x10
#define vPB5 0x20
#define vSR_INT 0x04
#define vSR_OUT 0x10
/* types of adb hardware that we (will eventually) support */
#define ADB_HW_UNKNOWN 0x01 /* don't know */
#define ADB_HW_II 0x02 /* Mac II series */
#define ADB_HW_IISI 0x03 /* Mac IIsi series */
#define ADB_HW_PB 0x04 /* PowerBook series */
#define ADB_HW_CUDA 0x05 /* Machines with a Cuda chip */
/* the type of ADB action that we are currently preforming */
#define ADB_ACTION_NOTREADY 0x01 /* has not been initialized yet */
#define ADB_ACTION_IDLE 0x02 /* the bus is currently idle */
#define ADB_ACTION_OUT 0x03 /* sending out a command */
#define ADB_ACTION_IN 0x04 /* receiving data */
/*
* These describe the state of the ADB bus itself, although they
* don't necessarily correspond directly to ADB states.
* Note: these are not really used in the IIsi code.
*/
#define ADB_BUS_UNKNOWN 0x01 /* we don't know yet - all models */
#define ADB_BUS_IDLE 0x02 /* bus is idle - all models */
#define ADB_BUS_CMD 0x03 /* starting a command - II models */
#define ADB_BUS_ODD 0x04 /* the "odd" state - II models */
#define ADB_BUS_EVEN 0x05 /* the "even" state - II models */
#define ADB_BUS_ACTIVE 0x06 /* active state - IIsi models */
#define ADB_BUS_ACK 0x07 /* currently ACKing - IIsi models */
/*
* Shortcuts for setting or testing the VIA bit states.
* Not all shortcuts are used for every type of ADB hardware.
*/
#define ADB_SET_STATE_IDLE_II() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
#define ADB_SET_STATE_IDLE_IISI() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
#define ADB_SET_STATE_IDLE_CUDA() via_reg(VIA1, vBufB) |= (vPB4 | vPB5)
#define ADB_SET_STATE_CMD() via_reg(VIA1, vBufB) &= ~(vPB4 | vPB5)
#define ADB_SET_STATE_EVEN() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
vBufB) | vPB4) & ~vPB5)
#define ADB_SET_STATE_ODD() via_reg(VIA1, vBufB) = ((via_reg(VIA1, \
vBufB) | vPB5) & ~vPB4 )
#define ADB_SET_STATE_ACTIVE() via_reg(VIA1, vBufB) |= vPB5
#define ADB_SET_STATE_INACTIVE() via_reg(VIA1, vBufB) &= ~vPB5
#define ADB_SET_STATE_TIP() via_reg(VIA1, vBufB) &= ~vPB5
#define ADB_CLR_STATE_TIP() via_reg(VIA1, vBufB) |= vPB5
#define ADB_SET_STATE_ACKON() via_reg(VIA1, vBufB) |= vPB4
#define ADB_SET_STATE_ACKOFF() via_reg(VIA1, vBufB) &= ~vPB4
#define ADB_TOGGLE_STATE_ACK_CUDA() via_reg(VIA1, vBufB) ^= vPB4
#define ADB_SET_STATE_ACKON_CUDA() via_reg(VIA1, vBufB) &= ~vPB4
#define ADB_SET_STATE_ACKOFF_CUDA() via_reg(VIA1, vBufB) |= vPB4
#define ADB_SET_SR_INPUT() via_reg(VIA1, vACR) &= ~vSR_OUT
#define ADB_SET_SR_OUTPUT() via_reg(VIA1, vACR) |= vSR_OUT
#define ADB_SR() via_reg(VIA1, vSR)
#define ADB_VIA_INTR_ENABLE() via_reg(VIA1, vIER) = 0x84
#define ADB_VIA_INTR_DISABLE() via_reg(VIA1, vIER) = 0x04
#define ADB_VIA_CLR_INTR() via_reg(VIA1, vIFR) = 0x04
#define ADB_INTR_IS_OFF (vPB3 == (via_reg(VIA1, vBufB) & vPB3))
#define ADB_INTR_IS_ON (0 == (via_reg(VIA1, vBufB) & vPB3))
#define ADB_SR_INTR_IS_OFF (0 == (via_reg(VIA1, vIFR) & vSR_INT))
#define ADB_SR_INTR_IS_ON (vSR_INT == (via_reg(VIA1, \
vIFR) & vSR_INT))
/*
* This is the delay that is required (in uS) between certain
* ADB transactions. The actual timing delay for for each uS is
* calculated at boot time to account for differences in machine speed.
*/
#define ADB_DELAY 150
/*
* Maximum ADB message length; includes space for data, result, and
* device code - plus a little for safety.
*/
#define MAX_ADB_MSG_LENGTH 20
/*
* A structure for storing information about each ADB device.
*/
struct ADBDevEntry {
void (*ServiceRtPtr) __P((void));
void *DataAreaAddr;
char devType;
char origAddr;
char currentAddr;
};
/*
* Used to hold ADB commands that are waiting to be sent out.
*/
struct adbCmdHoldEntry {
u_char outBuf[MAX_ADB_MSG_LENGTH]; /* our message */
u_char *saveBuf; /* buffer to know where to save result */
u_char *compRout; /* completion routine pointer */
u_char *data; /* completion routine data pointer */
};
/*
* A few variables that we need and their initial values.
*/
int adbHardware = ADB_HW_UNKNOWN;
int adbActionState = ADB_ACTION_NOTREADY;
int adbBusState = ADB_BUS_UNKNOWN;
int adbWaiting = 0; /* waiting for return data from the device */
int adbWriteDelay = 0; /* working on (or waiting to do) a write */
int adbOutQueueHasData = 0; /* something in the queue waiting to go out */
int adbNextEnd = 0; /* the next incoming bute is the last (II) */
int adbWaitingCmd = 0; /* ADB command we are waiting for */
u_char *adbBuffer = (long) 0; /* pointer to user data area */
void *adbCompRout = (long) 0; /* pointer to the completion routine */
void *adbCompData = (long) 0; /* pointer to the completion routine data */
long adbFakeInts = 0; /* keeps track of fake ADB interrupts for
* timeouts (II) */
int adbStarting = 1; /* doing ADBReInit so do polling differently */
int adbSendTalk = 0; /* the intr routine is sending the talk, not
* the user (II) */
int adbPolling = 0; /* we are polling for service request */
int adbPollCmd = 0; /* the last poll command we sent */
u_char adbInputBuffer[MAX_ADB_MSG_LENGTH]; /* data input buffer */
u_char adbOutputBuffer[MAX_ADB_MSG_LENGTH]; /* data output buffer */
struct adbCmdHoldEntry adbOutQueue; /* our 1 entry output queue */
int adbSentChars = 0; /* how many characters we have sent */
int adbLastDevice = 0; /* last ADB dev we heard from (II ONLY) */
int adbLastDevIndex = 0; /* last ADB dev loc in dev table (II ONLY) */
int adbLastCommand = 0; /* the last ADB command we sent (II) */
struct ADBDevEntry ADBDevTable[16]; /* our ADB device table */
int ADBNumDevices; /* num. of ADB devices found with ADBReInit */
extern struct mac68k_machine_S mac68k_machine;
int zshard __P((int));
void pm_setup_adb __P((void));
void pm_check_adb_devices __P((int));
void pm_intr __P((void));
int pm_adb_op __P((u_char *, void *, void *, int));
void pm_init_adb_device __P((void));
/*
* The following are private routines.
*/
void print_single __P((u_char *));
void adb_intr __P((void));
void adb_intr_II __P((void));
void adb_intr_IIsi __P((void));
void adb_intr_cuda __P((void));
int send_adb_II __P((u_char *, u_char *, void *, void *, int));
int send_adb_IIsi __P((u_char *, u_char *, void *, void *, int));
int send_adb_cuda __P((u_char *, u_char *, void *, void *, int));
void adb_intr_cuda_test __P((void));
void adb_handle_unsol __P((u_char *));
void adb_op_comprout __P((void));
void adb_reinit __P((void));
int count_adbs __P((void));
int get_ind_adb_info __P((ADBDataBlock *, int));
int get_adb_info __P((ADBDataBlock *, int));
int set_adb_info __P((ADBSetInfoBlock *, int));
void adb_setup_hw_type __P((void));
int adb_op __P((Ptr, Ptr, Ptr, short));
void adb_handle_unsol __P((u_char *));
int adb_op_sync __P((Ptr, Ptr, Ptr, short));
void adb_read_II __P((u_char *));
void adb_cleanup __P((u_char *));
void adb_cleanup_IIsi __P((u_char *));
void adb_comp_exec __P((void));
int adb_cmd_result __P((u_char *));
int adb_cmd_extra __P((u_char *));
int adb_guess_next_device __P((void));
int adb_prog_switch_enable __P((void));
int adb_prog_switch_disable __P((void));
/* we should create this and it will be the public version */
int send_adb __P((u_char *, void *, void *));
/*
* print_single
* Diagnostic display routine. Displays the hex values of the
* specified elements of the u_char. The length of the "string"
* is in [0].
*/
void
print_single(thestring)
u_char *thestring;
{
int x;
if ((int) (thestring[0]) == 0) {
printf_intr("nothing returned\n");
return;
}
if (thestring == 0) {
printf_intr("no data - null pointer\n");
return;
}
if (thestring[0] > 20) {
printf_intr("ADB: ACK > 20 no way!\n");
thestring[0] = 20;
}
printf_intr("(length=0x%x):", thestring[0]);
for (x = 0; x < thestring[0]; x++)
printf_intr(" 0x%02x", thestring[x + 1]);
printf_intr("\n");
}
/*
* called when when an adb interrupt happens
*
* Cuda version of adb_intr
* TO DO: do we want to add some zshard calls in here?
*/
void
adb_intr_cuda(void)
{
int i, ending, len;
unsigned int s;
s = splhigh(); /* can't be too careful - might be called */
/* from a routine, NOT an interrupt */
ADB_VIA_CLR_INTR(); /* clear interrupt */
ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
switch_start:
switch (adbActionState) {
case ADB_ACTION_IDLE:
/* This is an unexpected packet, so grab the first (dummy)
* byte, set up the proper vars, and tell the chip we are
* starting to receive the packet by setting the TIP bit. */
adbInputBuffer[1] = ADB_SR();
ADB_SET_STATE_TIP();
ADB_SET_SR_INPUT();
delay(ADB_DELAY); /* required delay */
#ifdef DEBUG
printf_intr("idle 0x%02x ", adbInputBuffer[1]);
#endif
adbInputBuffer[0] = 1;
adbActionState = ADB_ACTION_IN;
break;
case ADB_ACTION_IN:
adbInputBuffer[++adbInputBuffer[0]] = ADB_SR();
/* intr off means this is the last byte (end of frame) */
if (ADB_INTR_IS_OFF)
ending = 1;
else
ending = 0;
/* if the second byte is 0xff, it's a "dummy" packet */
if (adbInputBuffer[2] == 0xff)
ending = 1;
if (1 == ending) { /* end of message? */
#ifdef DEBUG
printf_intr("in end 0x%02x ",
adbInputBuffer[adbInputBuffer[0]]);
print_single(adbInputBuffer);
#endif
/* Are we waiting AND does this packet match what we
* are waiting for AND is it coming from either the
* ADB or RTC/PRAM sub-device? This section _should_
* recognize all ADB and RTC/PRAM type commands, but
* there may be more... NOTE: commands are always at
* [4], even for RTC/PRAM commands. */
if ((adbWaiting == 1) &&
(adbInputBuffer[4] == adbWaitingCmd) &&
((adbInputBuffer[2] == 0x00) ||
(adbInputBuffer[2] == 0x01))) {
if (adbBuffer != (long) 0) {
/* if valid return data pointer */
/* get return length minus extras */
len = adbInputBuffer[0] - 4;
/*
* If adb_op is ever made to be called
* from a user routine, we should use
* a copyout or copyin here to be sure
* we're in the correct context
*/
for (i = 1; i <= len; i++)
adbBuffer[i] = adbInputBuffer[4 + i];
if (len < 0)
len = 0;
adbBuffer[0] = len;
}
/* call completion routine and clean up */
adb_comp_exec();
adbWaitingCmd = 0;
adbWaiting = 0;
adbBuffer = (long) 0;
adbCompRout = (long) 0;
adbCompData = (long) 0;
} else {
/*
* This was an unsolicited packet, so
* pass the data off to the handler for
* this device if we are NOT doing this
* during a ADBReInit.
* This section IGNORES all data that is not
* from the ADB sub-device. That is, not from
* RTC or PRAM. Maybe we should fix later,
* but do the other devices every send things
* without being asked?
*/
if (adbStarting == 0)
if (adbInputBuffer[2] == 0x00)
adb_handle_unsol(adbInputBuffer);
}
/* reset vars and signal the end of this frame */
adbActionState = ADB_ACTION_IDLE;
adbInputBuffer[0] = 0;
ADB_SET_STATE_IDLE_CUDA();
/*
* If there is something waiting to be sent out,
* the set everything up and send the first byte.
*/
if (adbWriteDelay == 1) {
delay(ADB_DELAY); /* required */
adbSentChars = 0;
adbActionState = ADB_ACTION_OUT;
/* TO DO: don't we need to set up adbWaiting vars here??? */
/*
* If the interrupt is on, we were too slow
* and the chip has already started to send
* something to us, so back out of the write
* and start a read cycle.
*/
if (ADB_INTR_IS_ON) {
ADB_SET_STATE_IDLE_CUDA();
ADB_SET_SR_INPUT();
adbSentChars = 0;
adbActionState = ADB_ACTION_IDLE;
adbInputBuffer[0] = 0;
break;
}
/*
* If we got here, it's ok to start sending
* so load the first byte and tell the chip
* we want to send.
*/
ADB_SET_SR_OUTPUT();
ADB_SR() = adbOutputBuffer[adbSentChars + 1];
ADB_SET_STATE_TIP();
}
} else {
ADB_TOGGLE_STATE_ACK_CUDA();
#ifdef DEBUG
printf_intr("in 0x%02x ",
adbInputBuffer[adbInputBuffer[0]]);
#endif
}
break;
case ADB_ACTION_OUT:
i = ADB_SR(); /* reset SR-intr in IFR */
#ifdef DEBUG
printf_intr("intr out 0x%02x ", i);
#endif
ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
adbSentChars++;
if (ADB_INTR_IS_ON) { /* ADB intr low during write */
#ifdef DEBUG
printf_intr("intr was on ");
#endif
ADB_SET_STATE_IDLE_CUDA();
ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
adbSentChars = 0; /* must start all over */
adbActionState = ADB_ACTION_IDLE; /* new state */
adbInputBuffer[0] = 0;
adbWriteDelay = 1; /* must retry when done with
* read */
delay(ADB_DELAY);
goto switch_start; /* process next state right
* now */
break;
}
if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
* back? */
adbWaiting = 1; /* signal waiting for return */
adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
} else {/* no talk, so done */
adb_comp_exec(); /* call completion
* routine */
adbWaitingCmd = 0; /* reset "waiting" vars,
* just in case */
adbBuffer = (long) 0;
adbCompRout = (long) 0;
adbCompData = (long) 0;
}
adbWriteDelay = 0; /* done writing */
adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
ADB_SET_STATE_IDLE_CUDA();
#ifdef DEBUG
printf_intr("write done ");
#endif
} else {
ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
ADB_TOGGLE_STATE_ACK_CUDA(); /* signal byte ready to
* shift */
#ifdef DEBUG
printf_intr("toggle ");
#endif
}
break;
case ADB_ACTION_NOTREADY:
printf_intr("adb: not yet initialized\n");
break;
default:
printf_intr("intr: unknown ADB state\n");
}
ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
splx(s); /* restore */
return;
} /* end adb_intr_IIsi */
int
send_adb_cuda(u_char * in, u_char * buffer, void *compRout, void *data, int
command)
{
int i, s, len;
#ifdef DEBUG
printf_intr("SEND\n");
#endif
if (adbActionState == ADB_ACTION_NOTREADY)
return 1;
s = splhigh(); /* don't interrupt while we are messing with
* the ADB */
if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
(ADB_INTR_IS_OFF)) { /* and no incoming interrupt? */
} else
if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
adbWriteDelay = 1; /* if no, then we'll "queue"
* it up */
else {
splx(s);
return 1; /* really busy! */
}
#ifdef DEBUG
printf_intr("QUEUE\n");
#endif
if ((long) in == (long) 0) { /* need to convert? */
/* don't need to use adb_cmd_extra here because this section
* will be called */
/* ONLY when it is an ADB command (no RTC or PRAM) */
if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
* doing a listen! */
len = buffer[0]; /* length of additional data */
else
len = 0;/* no additional data */
adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
* data */
adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
adbOutputBuffer[2] = (u_char) command; /* load command */
for (i = 1; i <= len; i++) /* copy additional output
* data, if any */
adbOutputBuffer[2 + i] = buffer[i];
} else
for (i = 0; i <= (adbOutputBuffer[0] + 1); i++)
adbOutputBuffer[i] = in[i];
adbSentChars = 0; /* nothing sent yet */
adbBuffer = buffer; /* save buffer to know where to save result */
adbCompRout = compRout; /* save completion routine pointer */
adbCompData = data; /* save completion routine data pointer */
adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
if (adbWriteDelay != 1) { /* start command now? */
#ifdef DEBUG
printf_intr("out start NOW");
#endif
delay(ADB_DELAY);
adbActionState = ADB_ACTION_OUT; /* set next state */
ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
ADB_SET_STATE_ACKOFF_CUDA();
ADB_SET_STATE_TIP(); /* tell ADB that we want to send */
}
adbWriteDelay = 1; /* something in the write "queue" */
splx(s);
if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */
/* poll until byte done */
while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
|| (adbWaiting == 1))
if (ADB_SR_INTR_IS_ON) /* wait for "interrupt" */
adb_intr_cuda(); /* go process
* "interrupt" */
return 0;
} /* send_adb_cuda */
/* TO DO: add one or two zshard calls in here */
void
adb_intr_II(void)
{
int i, len, intr_on = 0;
int send = 0, do_srq = 0;
unsigned int s;
s = splhigh(); /* can't be too careful - might be called */
/* from a routine, NOT an interrupt */
ADB_VIA_CLR_INTR(); /* clear interrupt */
ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
/*if (ADB_INTR_IS_ON)*/
/* printf_intr("INTR ON ");*/
if (ADB_INTR_IS_ON)
intr_on = 1; /* save for later */
switch (adbActionState) {
case ADB_ACTION_IDLE:
if (!intr_on) {
/* printf_intr("FAKE DROPPED \n"); */
/* printf_intr(" XX "); */
i = ADB_SR();
break;
}
adbNextEnd = 0;
/* printf_intr("idle "); */
adbInputBuffer[0] = 1;
adbInputBuffer[1] = ADB_SR(); /* get first byte */
/* printf_intr("0x%02x ", adbInputBuffer[1]); */
ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
adbActionState = ADB_ACTION_IN; /* set next state */
ADB_SET_STATE_EVEN(); /* set bus state to even */
adbBusState = ADB_BUS_EVEN;
break;
case ADB_ACTION_IN:
adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
/* printf_intr("in 0x%02x ",
* adbInputBuffer[adbInputBuffer[0]]); */
ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
/*
* Check for an unsolicited Service Request (SRQ).
* An empty SRQ packet NEVER ends, so we must manually
* check for the following condition.
*/
if (adbInputBuffer[0] == 4 && adbInputBuffer[2] == 0xff &&
adbInputBuffer[3] == 0xff && adbInputBuffer[4] == 0xff &&
intr_on && !adbNextEnd)
do_srq = 1;
if (adbNextEnd == 1) { /* process last byte of packet */
adbNextEnd = 0;
/* printf_intr("done: "); */
/* If the following conditions are true (4 byte
* message, last 3 bytes are 0xff) then we basically
* got a "no response" from the ADB chip, so change
* the message to an empty one. We also clear intr_on
* to stop the SRQ send later on because these packets
* normally have the SRQ bit set even when there is
* NOT a pending SRQ. */
if (adbInputBuffer[0] == 4 && adbInputBuffer[2] == 0xff &&
adbInputBuffer[3] == 0xff && adbInputBuffer[4] == 0xff) {
/* printf_intr("NO RESP "); */
intr_on = 0;
adbInputBuffer[0] = 0;
}
adbLastDevice = (adbInputBuffer[1] & 0xf0) >> 4;
if ((!adbWaiting || adbPolling)
&& (adbInputBuffer[0] != 0)) {
/* unsolicided - ignore if starting */
if (!adbStarting)
adb_handle_unsol(adbInputBuffer);
} else
if (!adbPolling) { /* someone asked for it */
/* printf_intr("SOL: "); */
/* print_single(adbInputBuffer); */
if (adbBuffer != (long) 0) { /* if valid return data
* pointer */
/* get return length minus
* extras */
len = adbInputBuffer[0] - 1;
/* if adb_op is ever made to
* be called from a user
* routine, we should use a
* copyout or copyin here to
* be sure we're in the
* correct context. */
for (i = 1; i <= len; i++)
adbBuffer[i] = adbInputBuffer[i + 1];
if (len < 0)
len = 0;
adbBuffer[0] = len;
}
adb_comp_exec();
}
adbWaiting = 0;
adbPolling = 0;
adbInputBuffer[0] = 0;
adbBuffer = (long) 0;
adbCompRout = (long) 0;
adbCompData = (long) 0;
/*
* Since we are done, check whether there is any data
* waiting to do out. If so, start the sending the data.
*/
if (adbOutQueueHasData == 1) {
/* printf_intr("XXX: DOING OUT QUEUE\n"); */
/* copy over data */
for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
adbOutputBuffer[i] = adbOutQueue.outBuf[i];
adbBuffer = adbOutQueue.saveBuf; /* user data area */
adbCompRout = adbOutQueue.compRout; /* completion routine */
adbCompData = adbOutQueue.data; /* comp. rout. data */
adbOutQueueHasData = 0; /* currently processing
* "queue" entry */
adbPolling = 0;
send = 1;
/* if intr_on is true, then it's a SRQ so poll
* other devices. */
} else
if (intr_on) {
/* printf_intr("starting POLL "); */
do_srq = 1;
adbPolling = 1;
} else
if ((adbInputBuffer[1] & 0x0f) != 0x0c) {
/* printf_intr("xC HACK "); */
adbPolling = 1;
send = 1;
adbOutputBuffer[0] = 1;
adbOutputBuffer[1] = (adbInputBuffer[1] & 0xf0) | 0x0c;
} else {
/* printf_intr("ending "); */
adbBusState = ADB_BUS_IDLE;
adbActionState = ADB_ACTION_IDLE;
ADB_SET_STATE_IDLE_II();
break;
}
}
/*
* If do_srq is true then something above determined that
* the message has ended and some device is sending a
* service request. So we need to determine the next device
* and send a poll to it. (If the device we send to isn't the
* one that sent the SRQ, that ok as it will be caught
* the next time though.)
*/
if (do_srq) {
/* printf_intr("SRQ! "); */
adbPolling = 1;
adb_guess_next_device();
adbOutputBuffer[0] = 1;
adbOutputBuffer[1] = ((adbLastDevice & 0x0f) << 4) | 0x0c;
send = 1;
}
/*
* If send is true then something above determined that
* the message has ended and we need to start sending out
* a new message immediately. This could be because there
* is data waiting to go out or because an SRQ was seen.
*/
if (send) {
adbNextEnd = 0;
adbSentChars = 0; /* nothing sent yet */
adbActionState = ADB_ACTION_OUT; /* set next state */
ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
ADB_SET_STATE_CMD(); /* tell ADB that we want to
* send */
break;
}
/* We only get this far if the message hasn't ended yet. */
if (!intr_on) /* if adb intr. on then the */
adbNextEnd = 1; /* NEXT byte is the last */
switch (adbBusState) { /* set to next state */
case ADB_BUS_EVEN:
ADB_SET_STATE_ODD(); /* set state to odd */
adbBusState = ADB_BUS_ODD;
break;
case ADB_BUS_ODD:
ADB_SET_STATE_EVEN(); /* set state to even */
adbBusState = ADB_BUS_EVEN;
break;
default:
printf_intr("strange state!!!\n"); /* huh? */
break;
}
break;
case ADB_ACTION_OUT:
adbNextEnd = 0;
if (!adbPolling)
adbWaiting = 1; /* not unsolicited */
i = ADB_SR(); /* clear interrupt */
adbSentChars++;
/*
* If the outgoing data was a TALK, we must
* switch to input mode to get the result.
*/
if ((adbOutputBuffer[1] & 0x0c) == 0x0c) {
adbInputBuffer[0] = 1;
adbInputBuffer[1] = i;
adbActionState = ADB_ACTION_IN;
ADB_SET_SR_INPUT();
adbBusState = ADB_BUS_EVEN;
ADB_SET_STATE_EVEN();
/* printf_intr("talk out 0x%02x ", i); */
break;
}
/* If it's not a TALK, check whether all data has been sent.
* If so, call the completion routine and clean up. If not,
* advance to the next state. */
/* printf_intr("non-talk out 0x%0x ", i); */
ADB_SET_SR_OUTPUT();
if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
/* printf_intr("done \n"); */
adb_comp_exec();
adbBuffer = (long) 0;
adbCompRout = (long) 0;
adbCompData = (long) 0;
if (adbOutQueueHasData == 1) {
/* copy over data */
for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
adbOutputBuffer[i] = adbOutQueue.outBuf[i];
adbBuffer = adbOutQueue.saveBuf; /* user data area */
adbCompRout = adbOutQueue.compRout; /* completion routine */
adbCompData = adbOutQueue.data; /* comp. rout. data */
adbOutQueueHasData = 0; /* currently processing
* "queue" entry */
adbPolling = 0;
} else {
adbOutputBuffer[0] = 1;
adbOutputBuffer[1] = (adbOutputBuffer[1] & 0xf0) | 0x0c;
adbPolling = 1; /* non-user poll */
}
adbNextEnd = 0;
adbSentChars = 0; /* nothing sent yet */
adbActionState = ADB_ACTION_OUT; /* set next state */
ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
ADB_SR() = adbOutputBuffer[1]; /* load byte for output */
adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
ADB_SET_STATE_CMD(); /* tell ADB that we want to
* send */
break;
}
ADB_SR() = adbOutputBuffer[adbSentChars + 1];
switch (adbBusState) { /* advance to next state */
case ADB_BUS_EVEN:
ADB_SET_STATE_ODD(); /* set state to odd */
adbBusState = ADB_BUS_ODD;
break;
case ADB_BUS_CMD:
case ADB_BUS_ODD:
ADB_SET_STATE_EVEN(); /* set state to even */
adbBusState = ADB_BUS_EVEN;
break;
default:
printf_intr("strange state!!! (0x%x)\n", adbBusState);
break;
}
break;
default:
printf_intr("adb: unknown ADB state (during intr)\n");
}
ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
splx(s); /* restore */
return;
}
/*
* send_adb version for II series machines
*/
int
send_adb_II(u_char * in, u_char * buffer, void *compRout, void *data, int command)
{
int i, s, len;
if (adbActionState == ADB_ACTION_NOTREADY) /* return if ADB not
* available */
return 1;
s = splhigh(); /* don't interrupt while we are messing with
* the ADB */
if (0 != adbOutQueueHasData) { /* right now, "has data" means "full" */
splx(s); /* sorry, try again later */
return 1;
}
if ((long) in == (long) 0) { /* need to convert? */
/*
* Don't need to use adb_cmd_extra here because this section
* will be called ONLY when it is an ADB command (no RTC or
* PRAM), especially on II series!
*/
if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
* doing a listen! */
len = buffer[0]; /* length of additional data */
else
len = 0;/* no additional data */
adbOutQueue.outBuf[0] = 1 + len; /* command + addl. data */
adbOutQueue.outBuf[1] = (u_char) command; /* load command */
for (i = 1; i <= len; i++) /* copy additional output
* data, if any */
adbOutQueue.outBuf[1 + i] = buffer[i];
} else
/* if data ready, just copy over */
for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++)
adbOutQueue.outBuf[i] = in[i];
adbOutQueue.saveBuf = buffer; /* save buffer to know where to save
* result */
adbOutQueue.compRout = compRout; /* save completion routine
* pointer */
adbOutQueue.data = data;/* save completion routine data pointer */
if ((adbActionState == ADB_ACTION_IDLE) && /* is ADB available? */
(ADB_INTR_IS_OFF) &&/* and no incoming interrupts? */
(adbPolling == 0)) {/* and we are not currently polling */
/* then start command now */
for (i = 0; i <= (adbOutQueue.outBuf[0] + 1); i++) /* copy over data */
adbOutputBuffer[i] = adbOutQueue.outBuf[i];
adbBuffer = adbOutQueue.saveBuf; /* pointer to user data
* area */
adbCompRout = adbOutQueue.compRout; /* pointer to the
* completion routine */
adbCompData = adbOutQueue.data; /* pointer to the completion
* routine data */
adbSentChars = 0; /* nothing sent yet */
adbActionState = ADB_ACTION_OUT; /* set next state */
adbBusState = ADB_BUS_CMD; /* set bus to cmd state */
ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
ADB_SET_STATE_CMD(); /* tell ADB that we want to send */
adbOutQueueHasData = 0; /* currently processing "queue" entry */
} else
adbOutQueueHasData = 1; /* something in the write "queue" */
splx(s);
if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */
/* poll until message done */
while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
|| (adbWaiting == 1) || (adbPolling == 1))
if (ADB_SR_INTR_IS_ON) /* wait for "interrupt" */
adb_intr_II(); /* go process "interrupt" */
return 0;
}
/*
* This routine is called from the II series interrupt routine
* to determine what the "next" device is that should be polled.
*/
int
adb_guess_next_device(void)
{
int last, i, dummy;
if (adbStarting) {
/* start polling EVERY device, since we can't be sure there is
* anything in the device table yet */
if (adbLastDevice < 1 || adbLastDevice > 15)
adbLastDevice = 1;
if (++adbLastDevice > 15) /* point to next one */
adbLastDevice = 1;
} else {
/* find the next device using the device table */
if (adbLastDevice < 1 || adbLastDevice > 15) /* let's be parinoid */
adbLastDevice = 2;
last = 1; /* default index location */
for (i = 1; i < 16; i++) /* find index entry */
if (ADBDevTable[i].currentAddr == adbLastDevice) { /* look for device */
last = i; /* found it */
break;
}
dummy = last; /* index to start at */
for (;;) { /* find next device in index */
if (++dummy > 15) /* wrap around if needed */
dummy = 1;
if (dummy == last) { /* didn't find any other
* device! This can happen if
* there are no devices on the
* bus */
dummy = 2;
break;
}
/* found the next device */
if (ADBDevTable[dummy].devType != 0)
break;
}
adbLastDevice = ADBDevTable[dummy].currentAddr;
}
return adbLastDevice;
}
/*
* Called when when an adb interrupt happens.
* This routine simply transfers control over to the appropriate
* code for the machine we are running on.
*/
void
adb_intr(void)
{
switch (adbHardware) {
case ADB_HW_II:
adb_intr_II();
break;
case ADB_HW_IISI:
adb_intr_IIsi();
break;
case ADB_HW_PB:
break;
case ADB_HW_CUDA:
adb_intr_cuda();
break;
case ADB_HW_UNKNOWN:
break;
}
}
/*
* called when when an adb interrupt happens
*
* IIsi version of adb_intr
*
*/
void
adb_intr_IIsi(void)
{
int i, ending, len;
unsigned int s;
s = splhigh(); /* can't be too careful - might be called */
/* from a routine, NOT an interrupt */
ADB_VIA_CLR_INTR(); /* clear interrupt */
ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
switch_start:
switch (adbActionState) {
case ADB_ACTION_IDLE:
delay(ADB_DELAY); /* short delay is required before the
* first byte */
ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
adbInputBuffer[1] = ADB_SR(); /* get byte */
adbInputBuffer[0] = 1;
adbActionState = ADB_ACTION_IN; /* set next state */
ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
delay(ADB_DELAY); /* delay */
ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
zshard(0); /* grab any serial interrupts */
break;
case ADB_ACTION_IN:
ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
adbInputBuffer[++adbInputBuffer[0]] = ADB_SR(); /* get byte */
if (ADB_INTR_IS_OFF) /* check for end of frame */
ending = 1;
else
ending = 0;
ADB_SET_STATE_ACKON(); /* start ACK to ADB chip */
delay(ADB_DELAY); /* delay */
ADB_SET_STATE_ACKOFF(); /* end ACK to ADB chip */
zshard(0); /* grab any serial interrupts */
if (1 == ending) { /* end of message? */
ADB_SET_STATE_INACTIVE(); /* signal end of frame */
/* this section _should_ handle all ADB and RTC/PRAM
* type commands, */
/* but there may be more... */
/* note: commands are always at [4], even for rtc/pram
* commands */
if ((adbWaiting == 1) && /* are we waiting AND */
(adbInputBuffer[4] == adbWaitingCmd) && /* the cmd we sent AND */
((adbInputBuffer[2] == 0x00) || /* it's from the ADB
* device OR */
(adbInputBuffer[2] == 0x01))) { /* it's from the
* PRAM/RTC device */
/* is this data we are waiting for? */
if (adbBuffer != (long) 0) { /* if valid return data
* pointer */
/* get return length minus extras */
len = adbInputBuffer[0] - 4;
/* if adb_op is ever made to be called
* from a user routine, we should use
* a copyout or copyin here to be sure
* we're in the correct context */
for (i = 1; i <= len; i++)
adbBuffer[i] = adbInputBuffer[4 + i];
if (len < 0)
len = 0;
adbBuffer[0] = len;
}
adb_comp_exec(); /* call completion
* routine */
adbWaitingCmd = 0; /* reset "waiting" vars */
adbWaiting = 0;
adbBuffer = (long) 0;
adbCompRout = (long) 0;
adbCompData = (long) 0;
} else {
/* pass the data off to the handler */
/* This section IGNORES all data that is not
* from the ADB sub-device. That is, not from
* rtc or pram. Maybe we should fix later,
* but do the other devices every send things
* without being asked? */
if (adbStarting == 0) /* ignore if during
* adbreinit */
if (adbInputBuffer[2] == 0x00)
adb_handle_unsol(adbInputBuffer);
}
adbActionState = ADB_ACTION_IDLE;
adbInputBuffer[0] = 0; /* reset length */
if (adbWriteDelay == 1) { /* were we waiting to
* write? */
adbSentChars = 0; /* nothing sent yet */
adbActionState = ADB_ACTION_OUT; /* set next state */
delay(ADB_DELAY); /* delay */
zshard(0); /* grab any serial interrupts */
if (ADB_INTR_IS_ON) { /* ADB intr low during
* write */
ADB_SET_STATE_IDLE_IISI(); /* reset */
ADB_SET_SR_INPUT(); /* make sure SR is set
* to IN */
adbSentChars = 0; /* must start all over */
adbActionState = ADB_ACTION_IDLE; /* new state */
adbInputBuffer[0] = 0;
/* may be able to take this out later */
delay(ADB_DELAY); /* delay */
break;
}
ADB_SET_STATE_ACTIVE(); /* tell ADB that we want
* to send */
ADB_SET_STATE_ACKOFF(); /* make sure */
ADB_SET_SR_OUTPUT(); /* set shift register
* for OUT */
ADB_SR() = adbOutputBuffer[adbSentChars + 1];
ADB_SET_STATE_ACKON(); /* tell ADB byte ready
* to shift */
}
}
break;
case ADB_ACTION_OUT:
i = ADB_SR(); /* reset SR-intr in IFR */
ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
ADB_SET_STATE_ACKOFF(); /* finish ACK */
adbSentChars++;
if (ADB_INTR_IS_ON) { /* ADB intr low during write */
ADB_SET_STATE_IDLE_IISI(); /* reset */
ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
adbSentChars = 0; /* must start all over */
adbActionState = ADB_ACTION_IDLE; /* new state */
adbInputBuffer[0] = 0;
adbWriteDelay = 1; /* must retry when done with
* read */
delay(ADB_DELAY); /* delay */
zshard(0); /* grab any serial interrupts */
goto switch_start; /* process next state right
* now */
break;
}
delay(ADB_DELAY); /* required delay */
zshard(0); /* grab any serial interrupts */
if (adbOutputBuffer[0] == adbSentChars) { /* check for done */
if (0 == adb_cmd_result(adbOutputBuffer)) { /* do we expect data
* back? */
adbWaiting = 1; /* signal waiting for return */
adbWaitingCmd = adbOutputBuffer[2]; /* save waiting command */
} else {/* no talk, so done */
adb_comp_exec(); /* call completion
* routine */
adbWaitingCmd = 0; /* reset "waiting" vars,
* just in case */
adbBuffer = (long) 0;
adbCompRout = (long) 0;
adbCompData = (long) 0;
}
adbWriteDelay = 0; /* done writing */
adbActionState = ADB_ACTION_IDLE; /* signal bus is idle */
ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
ADB_SET_STATE_INACTIVE(); /* end of frame */
} else {
ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* send next byte */
ADB_SET_STATE_ACKON(); /* signal byte ready to shift */
}
break;
case ADB_ACTION_NOTREADY:
printf_intr("adb: not yet initialized\n");
break;
default:
printf_intr("intr: unknown ADB state\n");
}
ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
splx(s); /* restore */
return;
} /* end adb_intr_IIsi */
/*****************************************************************************
* if the device is currently busy, and there is no data waiting to go out, then
* the data is "queued" in the outgoing buffer. If we are already waiting, then
* we return.
* in: if (in==0) then the command string is built from command and buffer
* if (in!=0) then in is used as the command string
* buffer: additional data to be sent (used only if in==0)
* this is also where return data is stored
* compRout: the completion routine that is called when then return value
* is received (if a return value is expected)
* data: a data pointer that can be used by the completion routine
* command: an ADB command to be sent (used only if in==0)
*
*/
int
send_adb_IIsi(u_char * in, u_char * buffer, void *compRout, void *data, int
command)
{
int i, s, len;
if (adbActionState == ADB_ACTION_NOTREADY)
return 1;
s = splhigh(); /* don't interrupt while we are messing with
* the ADB */
if ((adbActionState == ADB_ACTION_IDLE) && /* ADB available? */
(ADB_INTR_IS_OFF)) {/* and no incoming interrupt? */
} else
if (adbWriteDelay == 0) /* it's busy, but is anything waiting? */
adbWriteDelay = 1; /* if no, then we'll "queue"
* it up */
else {
splx(s);
return 1; /* really busy! */
}
if ((long) in == (long) 0) { /* need to convert? */
/* don't need to use adb_cmd_extra here because this section
* will be called */
/* ONLY when it is an ADB command (no RTC or PRAM) */
if ((command & 0x0c) == 0x08) /* copy addl data ONLY if
* doing a listen! */
len = buffer[0]; /* length of additional data */
else
len = 0;/* no additional data */
adbOutputBuffer[0] = 2 + len; /* dev. type + command + addl.
* data */
adbOutputBuffer[1] = 0x00; /* mark as an ADB command */
adbOutputBuffer[2] = (u_char) command; /* load command */
for (i = 1; i <= len; i++) /* copy additional output
* data, if any */
adbOutputBuffer[2 + i] = buffer[i];
} else
for (i = 0; i <= (adbOutputBuffer[0] + 1); i++)
adbOutputBuffer[i] = in[i];
adbSentChars = 0; /* nothing sent yet */
adbBuffer = buffer; /* save buffer to know where to save result */
adbCompRout = compRout; /* save completion routine pointer */
adbCompData = data; /* save completion routine data pointer */
adbWaitingCmd = adbOutputBuffer[2]; /* save wait command */
if (adbWriteDelay != 1) { /* start command now? */
adbActionState = ADB_ACTION_OUT; /* set next state */
ADB_SET_STATE_ACTIVE(); /* tell ADB that we want to send */
ADB_SET_STATE_ACKOFF(); /* make sure */
ADB_SET_SR_OUTPUT(); /* set shift register for OUT */
ADB_SR() = adbOutputBuffer[adbSentChars + 1]; /* load byte for output */
ADB_SET_STATE_ACKON(); /* tell ADB byte ready to shift */
}
adbWriteDelay = 1; /* something in the write "queue" */
splx(s);
if (0x0100 <= (s & 0x0700)) /* were VIA1 interrupts blocked ? */
/* poll until byte done */
while ((adbActionState != ADB_ACTION_IDLE) || (ADB_INTR_IS_ON)
|| (adbWaiting == 1))
if (ADB_SR_INTR_IS_ON) /* wait for "interrupt" */
adb_intr_IIsi(); /* go process
* "interrupt" */
return 0;
} /* send_adb_IIsi */
/*
* adb_comp_exec
* This is a general routine that calls the completion routine if there is one.
*/
void
adb_comp_exec(void)
{
if ((long) 0 != adbCompRout) /* don't call if empty return location */
#ifdef __NetBSD__
asm("
movml #0xffff, sp@- | save all registers
movl %0, a2 | adbCompData
movl %1, a1 | adbCompRout
movl %2, a0 | adbBuffer
movl %3, d0 | adbWaitingCmd
jbsr a1@ | go call the routine
movml sp@+, #0xffff | restore all registers"
:
:"g"(adbCompData), "g"(adbCompRout),
"g"(adbBuffer), "g"(adbWaitingCmd)
:"d0", "a0", "a1", "a2");
#else /* for macos based testing */
asm {
movem.l a0/a1/a2/d0, -(a7)
move.l adbCompData, a2
move.l adbCompRout, a1
move.l adbBuffer, a0
move.w adbWaitingCmd, d0
jsr(a1)
movem.l(a7) +, d0/a2/a1/a0
}
#endif
}
/*
* This routine handles what needs to be done after an unsolicited
* message is read from the ADB device. 'in' points to the raw
* data received from the device, including device number
* (on IIsi) and result code.
*
* Note that the service (completion) routine for an unsolicited
* message is whatever is set in the ADB device table. This is
* different than for a device responding to a specific request,
* where the completion routine is defined by the caller.
*/
void
adb_handle_unsol(u_char * in)
{
int i, cmd = 0;
u_char data[MAX_ADB_MSG_LENGTH];
u_char *buffer = 0;
ADBDataBlock block;
/* make local copy so we don't destroy the real one - it may be needed
* later. */
for (i = 0; i <= (in[0] + 1); i++)
data[i] = in[i];
switch (adbHardware) {
case ADB_HW_II:
/* adjust the "length" byte */
cmd = data[1];
if (data[0] < 2)
data[1] = 0;
else
data[1] = data[0] - 1;
buffer = (data + 1);
break;
case ADB_HW_IISI:
case ADB_HW_CUDA:
/* only handles ADB for now */
if (0 != *(data + 2))
return;
/* adjust the "length" byte */
cmd = data[4];
if (data[0] < 5)
data[4] = 0;
else
data[4] = data[0] - 4;
buffer = (data + 4);
break;
case ADB_HW_PB:
return; /* how does PM handle "unsolicited" messages? */
case ADB_HW_UNKNOWN:
return;
}
if (-1 == get_adb_info(&block, ((cmd & 0xf0) >> 4)))
return;
/* call default completion routine if it's valid */
/* TO DO: This section of code is somewhat redundant with
* adb_comp_exec (above). Some day we may want to generalize it and
* make it a single function. */
if ((long) 0 != (long) block.dbServiceRtPtr) {
#ifdef __NetBSD__
asm("
movml #0xffff, sp@- | save all registers
movl %0, a2 | block.dbDataAreaAddr
movl %1, a1 | block.dbServiceRtPtr
movl %2, a0 | buffer
movl %3, d0 | cmd
jbsr a1@ | go call the routine
movml sp@+, #0xffff | restore all registers"
:
: "g"(block.dbDataAreaAddr),
"g"(block.dbServiceRtPtr), "g"(buffer), "g"(cmd)
: "d0", "a0", "a1", "a2");
#else /* for macos based testing */
asm
{
movem.l a0/a1/a2/d0, -(a7)
move.l block.dbDataAreaAddr, a2
move.l block.dbServiceRtPtr, a1
move.l buffer, a0
move.w cmd, d0
jsr(a1)
movem.l(a7) +, d0/a2/a1/a0
}
#endif
}
return;
}
/*
* This is my version of the ADBOp routine. It mainly just calls the hardware-specific
* routine.
*
* data : pointer to data area to be used by compRout
* compRout : completion routine
* buffer : for LISTEN: points to data to send - MAX 8 data bytes,
* byte 0 = # of bytes
* : for TALK: points to place to save return data
* command : the adb command to send
* result : 0 = success
* : -1 = could not complete
*/
int
adb_op(Ptr buffer, Ptr compRout, Ptr data, short command)
{
int result;
switch (adbHardware) {
case ADB_HW_II:
result = send_adb_II((u_char *) 0,
(u_char *) buffer, (void *) compRout,
(void *) data, (int) command);
if (result == 0)
return 0;
else
return -1;
break;
case ADB_HW_IISI:
result = send_adb_IIsi((u_char *) 0,
(u_char *) buffer, (void *) compRout,
(void *) data, (int) command);
/*
* I wish I knew why this delay is needed. It usually needs to
* be here when several commands are sent in close succession,
* especially early in device probes when doing collision
* detection. It must be some race condition. Sigh. - jpw
*/
delay(100);
if (result == 0)
return 0;
else
return -1;
break;
case ADB_HW_PB:
result = pm_adb_op((u_char *)buffer, (void *)compRout,
(void *)data, (int)command);
if (result == 0)
return 0;
else
return -1;
break;
case ADB_HW_CUDA:
result = send_adb_cuda((u_char *) 0,
(u_char *) buffer, (void *) compRout,
(void *) data, (int) command);
if (result == 0)
return 0;
else
return -1;
break;
case ADB_HW_UNKNOWN:
default:
return -1;
}
}
/*
* adb_cleanup
* This routine simply calls the appropriate version of the adb_cleanup routine.
*/
void
adb_cleanup(u_char * in)
{
volatile int i;
switch (adbHardware) {
case ADB_HW_II:
ADB_VIA_CLR_INTR(); /* clear interrupt */
break;
case ADB_HW_IISI:
/* get those pesky clock ticks we missed while booting */
adb_cleanup_IIsi(in);
break;
case ADB_HW_PB:
/*
* XXX - really PM_VIA_CLR_INTR - should we put it in
* pm_direct.h?
*/
via_reg(VIA1, vIFR) = 0x90; /* clear interrupt */
break;
case ADB_HW_CUDA:
i = ADB_SR(); /* clear interrupt */
ADB_VIA_INTR_DISABLE(); /* no interrupts while clearing */
ADB_SET_STATE_IDLE_CUDA(); /* reset state to idle */
delay(ADB_DELAY);
ADB_SET_STATE_TIP(); /* signal start of frame */
delay(ADB_DELAY);
ADB_TOGGLE_STATE_ACK_CUDA();
delay(ADB_DELAY);
ADB_CLR_STATE_TIP();
delay(ADB_DELAY);
ADB_SET_STATE_IDLE_CUDA(); /* back to idle state */
i = ADB_SR(); /* clear interrupt */
ADB_VIA_INTR_ENABLE(); /* ints ok now */
break;
case ADB_HW_UNKNOWN:
return;
}
}
/*
* adb_cleanup_IIsi
* This is sort of a "read" routine that forces the adb hardware through a read cycle
* if there is something waiting. This helps "clean up" any commands that may have gotten
* stuck or stopped during the boot process.
*
*/
void
adb_cleanup_IIsi(u_char * buffer)
{
int i;
int dummy;
int s;
long my_time;
int endofframe;
delay(ADB_DELAY);
i = 1; /* skip over [0] */
s = splhigh(); /* block ALL interrupts while we are working */
ADB_SET_SR_INPUT(); /* make sure SR is set to IN */
ADB_VIA_INTR_DISABLE(); /* disable ADB interrupt on IIs. */
/* this is required, especially on faster machines */
delay(ADB_DELAY);
if (ADB_INTR_IS_ON) {
ADB_SET_STATE_ACTIVE(); /* signal start of data frame */
endofframe = 0;
while (0 == endofframe) {
/* poll for ADB interrupt and watch for timeout */
/* if time out, keep going in hopes of not hanging the
* ADB chip - I think */
my_time = ADB_DELAY * 5;
while ((ADB_SR_INTR_IS_OFF) && (my_time-- > 0))
dummy = via_reg(VIA1, vBufB);
buffer[i++] = ADB_SR(); /* reset interrupt flag by
* reading vSR */
/* perhaps put in a check here that ignores all data
* after the first MAX_ADB_MSG_LENGTH bytes ??? */
if (ADB_INTR_IS_OFF) /* check for end of frame */
endofframe = 1;
ADB_SET_STATE_ACKON(); /* send ACK to ADB chip */
delay(ADB_DELAY); /* delay */
ADB_SET_STATE_ACKOFF(); /* send ACK to ADB chip */
}
ADB_SET_STATE_INACTIVE(); /* signal end of frame and
* delay */
/* probably don't need to delay this long */
delay(ADB_DELAY);
}
buffer[0] = --i; /* [0] is length of message */
ADB_VIA_INTR_ENABLE(); /* enable ADB interrupt on IIs. */
splx(s); /* restore interrupts */
return;
} /* adb_cleanup_IIsi */
/*
* adb_reinit sets up the adb stuff
*
*/
void
adb_reinit(void)
{
u_char send_string[MAX_ADB_MSG_LENGTH];
int s = 0;
volatile int i, x;
int command;
int result;
int saveptr; /* point to next free relocation address */
int device;
int nonewtimes; /* times thru loop w/o any new devices */
ADBDataBlock data; /* temp. holder for getting device info */
(void)(&s); /* work around lame GCC bug */
/* Make sure we are not interrupted while building the table. */
if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
s = splhigh();
ADBNumDevices = 0; /* no devices yet */
/* Let intr routines know we are running reinit */
adbStarting = 1;
/* Initialize the ADB table. For now, we'll always use the same table
* that is defined at the beginning of this file - no mallocs. */
for (i = 0; i < 16; i++)
ADBDevTable[i].devType = 0;
adb_setup_hw_type(); /* setup hardware type */
/* Set up all the VIA bits we need to do the ADB stuff. */
switch (adbHardware) {
case ADB_HW_II:
via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
* outputs */
via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
* to IN (II, IIsi) */
adbActionState = ADB_ACTION_IDLE; /* used by all types of
* hardware (II, IIsi) */
adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
* code only */
via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
* are on (II, IIsi) */
ADB_SET_STATE_IDLE_II(); /* set ADB bus state to idle */
break;
case ADB_HW_IISI:
via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
* outputs */
via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
* to IN (II, IIsi) */
adbActionState = ADB_ACTION_IDLE; /* used by all types of
* hardware (II, IIsi) */
adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
* code only */
via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
* are on (II, IIsi) */
ADB_SET_STATE_IDLE_IISI(); /* set ADB bus state to idle */
break;
case ADB_HW_PB:
break; /* there has to be more than this? */
case ADB_HW_CUDA:
via_reg(VIA1, vDirB) |= 0x30; /* register B bits 4 and 5:
* outputs */
via_reg(VIA1, vDirB) &= 0xf7; /* register B bit 3: input */
via_reg(VIA1, vACR) &= ~vSR_OUT; /* make sure SR is set
* to IN */
via_reg(VIA1, vACR) = (via_reg(VIA1, vACR) | 0x0c) & ~0x10;
adbActionState = ADB_ACTION_IDLE; /* used by all types of
* hardware */
adbBusState = ADB_BUS_IDLE; /* this var. used in II-series
* code only */
via_reg(VIA1, vIER) = 0x84; /* make sure VIA interrupts
* are on */
ADB_SET_STATE_IDLE_CUDA(); /* set ADB bus state to idle */
break;
case ADB_HW_UNKNOWN: /* if type unknown then skip out */
default:
via_reg(VIA1, vIER) = 0x04; /* turn interrupts off - TO
* DO: turn PB ints off? */
return;
break;
}
/*
* Clear out any "leftover" commands. Remember that up until this
* point, the interrupt routine will be either off or it should be
* able to ignore inputs until the device table is built.
*/
for (i = 0; i < 30; i++) {
delay(ADB_DELAY);
adb_cleanup(send_string);
printf_intr("adb: cleanup: ");
print_single(send_string);
delay(ADB_DELAY);
if (ADB_INTR_IS_OFF)
break;
}
/* send an ADB reset first */
adb_op_sync((Ptr) 0, (Ptr) 0, (Ptr) 0, (short) 0x00);
/* Probe for ADB devices. Probe devices 1-15 quickly to determine
* which device addresses are in use and which are free. For each
* address that is in use, move the device at that address to a higher
* free address. Continue doing this at that address until no device
* responds at that address. Then move the last device that was moved
* back to the original address. Do this for the remaining addresses
* that we determined were in use.
*
* When finished, do this entire process over again with the updated list
* of in use addresses. Do this until no new devices have been found
* in 20 passes though the in use address list. (This probably seems
* long and complicated, but it's the best way to detect multiple
* devices at the same address - sometimes it takes a couple of tries
* before the collision is detected.) */
/* initial scan through the devices */
for (i = 1; i < 16; i++) {
command = (int) (0x0f | ((int) (i & 0x000f) << 4)); /* talk R3 */
result = adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command);
if (0x00 != send_string[0]) { /* anything come back ?? */
ADBDevTable[++ADBNumDevices].devType = (u_char) send_string[2];
ADBDevTable[ADBNumDevices].origAddr = i;
ADBDevTable[ADBNumDevices].currentAddr = i;
ADBDevTable[ADBNumDevices].DataAreaAddr = (long) 0;
ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *) 0;
/* printf_intr("initial device found (at index %i)\n",
* ADBNumDevices); */
pm_check_adb_devices(i); /* tell pm driver device
* is here */
}
}
/* find highest unused address */
for (saveptr = 15; saveptr > 0; saveptr--)
if (-1 == get_adb_info(&data, saveptr))
break;
if (saveptr == 0) /* no free addresses??? */
saveptr = 15;
/* printf_intr("first free is: 0x%02x\n", saveptr); */
/* printf_intr("devices: %i\n", ADBNumDevices); */
nonewtimes = 0; /* no loops w/o new devices */
while (nonewtimes++ < 11) {
for (i = 1; i <= ADBNumDevices; i++) {
device = ADBDevTable[i].currentAddr;
/* printf_intr("moving device 0x%02x to 0x%02x (index
* 0x%02x) ", device, saveptr, i); */
/* send TALK R3 to address */
command = (int) (0x0f | ((int) (device & 0x000f) << 4));
adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command);
/* move device to higher address */
command = (int) (0x0b | ((int) (device & 0x000f) << 4));
send_string[0] = 2;
send_string[1] = (u_char) (saveptr | 0x60);
send_string[2] = 0xfe;
adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command);
/* send TALK R3 - anything at old address? */
command = (int) (0x0f | ((int) (device & 0x000f) << 4));
result = adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command);
if (send_string[0] != 0) {
/* new device found */
/* update data for previously moved device */
ADBDevTable[i].currentAddr = saveptr;
/* printf_intr("old device at index %i\n",i); */
/* add new device in table */
/* printf_intr("new device found\n"); */
ADBDevTable[++ADBNumDevices].devType = (u_char) send_string[2];
ADBDevTable[ADBNumDevices].origAddr = device;
ADBDevTable[ADBNumDevices].currentAddr = device;
/* These will be set correctly in adbsys.c */
/* Until then, unsol. data will be ignored. */
ADBDevTable[ADBNumDevices].DataAreaAddr = (long) 0;
ADBDevTable[ADBNumDevices].ServiceRtPtr = (void *) 0;
/* find next unused address */
for (x = saveptr; x > 0; x--)
if (-1 == get_adb_info(&data, x)) {
saveptr = x;
break;
}
/* printf_intr("new free is 0x%02x\n",
* saveptr); */
nonewtimes = 0;
/* tell pm driver device is here */
pm_check_adb_devices(device);
} else {
/* printf_intr("moving back...\n"); */
/* move old device back */
command = (int) (0x0b | ((int) (saveptr & 0x000f) << 4));
send_string[0] = 2;
send_string[1] = (u_char) (device | 0x60);
send_string[2] = 0xfe;
adb_op_sync((Ptr) send_string, (Ptr) 0, (Ptr) 0, (short) command);
}
}
}
#ifdef DEBUG
for (i = 1; i <= ADBNumDevices; i++) {
x = get_ind_adb_info(&data, i);
if (x != -1)
printf_intr("index 0x%x, addr 0x%x, type 0x%x\n", i, x, data.devType);
}
#endif
adb_prog_switch_enable(); /* enable the programmer's switch, if
* we have one */
if (0 == ADBNumDevices) /* tell user if no devices found */
printf_intr("adb: no devices found\n");
adbStarting = 0; /* not starting anymore */
printf_intr("adb: ADBReInit complete\n");
if (adbHardware != ADB_HW_PB) /* ints must be on for PB? */
splx(s);
return;
}
/* adb_cmd_result
* This routine lets the caller know whether the specified adb command string should
* expect a returned result, such as a TALK command.
* returns: 0 if a result should be expected
* 1 if a result should NOT be expected
*/
int
adb_cmd_result(u_char * in)
{
switch (adbHardware) {
case ADB_HW_II:
/* was it an ADB talk command? */
if ((in[1] & 0x0c) == 0x0c)
return 0;
else
return 1;
break;
case ADB_HW_IISI:
case ADB_HW_CUDA:
/* was is an ADB talk command? */
if ((in[1] == 0x00) && ((in[2] & 0x0c) == 0x0c))
return 0;
/* was is an RTC/PRAM read date/time? */
else
if ((in[1] == 0x01) && (in[2] == 0x03))
return 0;
else
return 1;
break;
case ADB_HW_PB:
return 1;
break;
case ADB_HW_UNKNOWN:
default:
return 1;
}
}
/* adb_cmd_extra
* This routine lets the caller know whether the specified adb command string may have
* extra data appended to the end of it, such as a LISTEN command.
* returns: 0 if extra data is allowed
* 1 if extra data is NOT allowed
*/
int
adb_cmd_extra(u_char * in)
{
switch (adbHardware) {
case ADB_HW_II:
if ((in[1] & 0x0c) == 0x08) /* was it a listen command? */
return 0;
else
return 1;
break;
case ADB_HW_IISI:
case ADB_HW_CUDA:
/* TO DO: support needs to be added to recognize RTC and PRAM
* commands */
if ((in[2] & 0x0c) == 0x08) /* was it a listen command? */
return 0;
else /* add others later */
return 1;
break;
case ADB_HW_PB:
return 1;
break;
case ADB_HW_UNKNOWN:
default:
return 1;
}
}
/* adb_op_sync
* This routine does exactly what the adb_op routine does, except that after the
* adb_op is called, it waits until the return value is present before returning
*/
int
adb_op_sync(Ptr buffer, Ptr compRout, Ptr data, short command)
{
int result;
volatile int flag = 0;
result = adb_op(buffer, (void *) adb_op_comprout,
(void *) &flag, command); /* send command */
if (result == 0) { /* send ok? */
while (0 == flag); /* wait for compl. routine */
return 0;
} else
return result;
}
/* adb_op_comprout
* This function is used by the adb_op_sync routine so it knows when the function is
* done.
*/
void
adb_op_comprout(void)
{
#ifdef __NetBSD__
asm("movw #1,a2@ | update flag value");
#else /* for macos based testing */
asm {
move.w #1,(a2) } /* update flag value */
#endif
}
void
adb_setup_hw_type(void)
{
long response;
response = mac68k_machine.machineid;
switch (response) {
case 6: /* II */
case 7: /* IIx */
case 8: /* IIcx */
case 9: /* SE/30 */
case 11: /* IIci */
case 22: /* Quadra 700 */
case 30: /* Centris 650 */
case 35: /* Quadra 800 */
case 36: /* Quadra 650 */
case 52: /* Centris 610 */
case 53: /* Quadra 610 */
adbHardware = ADB_HW_II;
printf_intr("adb: using II series hardware support\n");
break;
case 18: /* IIsi */
case 20: /* Quadra 900 - not sure if IIsi or not */
case 23: /* Classic II */
case 26: /* Quadra 950 - not sure if IIsi or not */
case 27: /* LC III, Performa 450 */
case 37: /* LC II, Performa 400/405/430 */
case 44: /* IIvi */
case 45: /* Performa 600 */
case 48: /* IIvx */
case 49: /* Color Classic - not sure if IIsi or not */
case 62: /* Performa 460/465/467 */
case 83: /* Color Classic II - not sure if IIsi or not */
adbHardware = ADB_HW_IISI;
printf_intr("adb: using IIsi series hardware support\n");
break;
case 21: /* PowerBook 170 */
case 25: /* PowerBook 140 */
case 54: /* PowerBook 145 */
case 34: /* PowerBook 160 */
case 84: /* PowerBook 165 */
case 50: /* PowerBook 165c */
case 33: /* PowerBook 180 */
case 71: /* PowerBook 180c */
case 115: /* PowerBook 150 */
adbHardware = ADB_HW_PB;
pm_setup_adb();
printf_intr("adb: using PowerBook 100-series hardware support\n");
break;
case 29: /* PowerBook Duo 210 */
case 32: /* PowerBook Duo 230 */
case 38: /* PowerBook Duo 250 */
case 72: /* PowerBook 500 series */
case 77: /* PowerBook Duo 270 */
case 102: /* PowerBook Duo 280 */
case 103: /* PowerBook Duo 280c */
adbHardware = ADB_HW_PB;
pm_setup_adb();
printf_intr("adb: using PowerBook Duo-series and PowerBook 500-series hardware support\n");
break;
case 56: /* LC 520 */
case 60: /* Centris 660AV */
case 78: /* Quadra 840AV */
case 80: /* LC 550, Performa 550 */
case 89: /* LC 475, Performa 475/476 */
case 92: /* LC 575, Performa 575/577/578 */
case 94: /* Quadra 605 */
case 98: /* LC 630, Performa 630, Quadra 630 */
adbHardware = ADB_HW_CUDA;
printf_intr("adb: using Cuda series hardware support\n");
break;
default:
adbHardware = ADB_HW_UNKNOWN;
printf_intr("adb: hardware type unknown for this machine\n");
printf_intr("adb: ADB support is disabled\n");
break;
}
}
int
count_adbs(void)
{
int i;
int found;
found = 0;
for (i = 1; i < 16; i++)
if (0 != ADBDevTable[i].devType)
found++;
return found;
}
int
get_ind_adb_info(ADBDataBlock * info, int index)
{
if ((index < 1) || (index > 15)) /* check range 1-15 */
return (-1);
/* printf_intr("index 0x%x devType is: 0x%x\n", index,
ADBDevTable[index].devType); */
if (0 == ADBDevTable[index].devType) /* make sure it's a valid entry */
return (-1);
info->devType = ADBDevTable[index].devType;
info->origADBAddr = ADBDevTable[index].origAddr;
info->dbServiceRtPtr = (Ptr) ADBDevTable[index].ServiceRtPtr;
info->dbDataAreaAddr = (Ptr) ADBDevTable[index].DataAreaAddr;
return (ADBDevTable[index].currentAddr);
}
int
get_adb_info(ADBDataBlock * info, int adbAddr)
{
int i;
if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
return (-1);
for (i = 1; i < 15; i++)
if (ADBDevTable[i].currentAddr == adbAddr) {
info->devType = ADBDevTable[i].devType;
info->origADBAddr = ADBDevTable[i].origAddr;
info->dbServiceRtPtr = (Ptr)ADBDevTable[i].ServiceRtPtr;
info->dbDataAreaAddr = ADBDevTable[i].DataAreaAddr;
return 0; /* found */
}
return (-1); /* not found */
}
int
set_adb_info(ADBSetInfoBlock * info, int adbAddr)
{
int i;
if ((adbAddr < 1) || (adbAddr > 15)) /* check range 1-15 */
return (-1);
for (i = 1; i < 15; i++)
if (ADBDevTable[i].currentAddr == adbAddr) {
ADBDevTable[i].ServiceRtPtr =
(void *)(info->siServiceRtPtr);
ADBDevTable[i].DataAreaAddr = info->siDataAreaAddr;
return 0; /* found */
}
return (-1); /* not found */
}
#ifndef MRG_ADB
long
mrg_adbintr(void)
{
adb_intr();
return 1; /* mimic mrg_adbintr in macrom.h just in case */
}
long
mrg_pmintr(void) /* we don't do this yet */
{
pm_intr();
return 1; /* mimic mrg_pmintr in macrom.h just in case */
}
#endif
/* caller should really use machine-independant version: getPramTime */
/* this version does pseudo-adb access only */
int
adb_read_date_time(unsigned long *time)
{
u_char output[MAX_ADB_MSG_LENGTH];
int result;
volatile int flag = 0;
switch (adbHardware) {
case ADB_HW_II:
return -1;
case ADB_HW_IISI:
output[0] = 0x02; /* 2 byte message */
output[1] = 0x01; /* to pram/rtc device */
output[2] = 0x03; /* read date/time */
result = send_adb_IIsi((u_char *) output,
(u_char *) output, (void *) adb_op_comprout,
(int *) &flag, (int) 0);
if (result != 0) /* exit if not sent */
return -1;
while (0 == flag) /* wait for result */
;
*time = (long) (*(long *) (output + 1));
return 0;
case ADB_HW_PB:
return -1;
case ADB_HW_CUDA:
output[0] = 0x02; /* 2 byte message */
output[1] = 0x01; /* to pram/rtc device */
output[2] = 0x03; /* read date/time */
result = send_adb_cuda((u_char *) output,
(u_char *) output, (void *) adb_op_comprout,
(void *) &flag, (int) 0);
if (result != 0) /* exit if not sent */
return -1;
while (0 == flag) /* wait for result */
;
*time = (long) (*(long *) (output + 1));
return 0;
case ADB_HW_UNKNOWN:
default:
return -1;
}
}
/* caller should really use machine-independant version: setPramTime */
/* this version does pseudo-adb access only */
int
adb_set_date_time(unsigned long time)
{
u_char output[MAX_ADB_MSG_LENGTH];
int result;
volatile int flag = 0;
switch (adbHardware) {
case ADB_HW_II:
return -1;
case ADB_HW_IISI:
output[0] = 0x06; /* 6 byte message */
output[1] = 0x01; /* to pram/rtc device */
output[2] = 0x09; /* set date/time */
output[3] = (u_char) (time >> 24);
output[4] = (u_char) (time >> 16);
output[5] = (u_char) (time >> 8);
output[6] = (u_char) (time);
result = send_adb_IIsi((u_char *) output,
(u_char *) 0, (void *) adb_op_comprout,
(void *) &flag, (int) 0);
if (result != 0) /* exit if not sent */
return -1;
while (0 == flag) /* wait for send to finish */
;
return 0;
case ADB_HW_PB:
return -1;
case ADB_HW_CUDA:
output[0] = 0x06; /* 6 byte message */
output[1] = 0x01; /* to pram/rtc device */
output[2] = 0x09; /* set date/time */
output[3] = (u_char) (time >> 24);
output[4] = (u_char) (time >> 16);
output[5] = (u_char) (time >> 8);
output[6] = (u_char) (time);
result = send_adb_cuda((u_char *) output,
(u_char *) 0, (void *) adb_op_comprout,
(void *) &flag, (int) 0);
if (result != 0) /* exit if not sent */
return -1;
while (0 == flag) /* wait for send to finish */
;
return 0;
case ADB_HW_UNKNOWN:
default:
return -1;
}
}
int
adb_poweroff(void)
{
u_char output[MAX_ADB_MSG_LENGTH];
int result;
switch (adbHardware) {
case ADB_HW_IISI:
output[0] = 0x02; /* 2 byte message */
output[1] = 0x01; /* to pram/rtc/soft-power device */
output[2] = 0x0a; /* set date/time */
result = send_adb_IIsi((u_char *) output,
(u_char *) 0, (void *) 0, (void *) 0, (int) 0);
if (result != 0) /* exit if not sent */
return -1;
for (;;); /* wait for power off */
return 0;
case ADB_HW_PB:
return -1;
/* TO DO: some cuda models claim to do soft power - check out */
case ADB_HW_II: /* II models don't do soft power */
case ADB_HW_CUDA: /* cuda doesn't do soft power */
case ADB_HW_UNKNOWN:
default:
return -1;
}
}
int
adb_prog_switch_enable(void)
{
u_char output[MAX_ADB_MSG_LENGTH];
int result;
volatile int flag = 0;
switch (adbHardware) {
case ADB_HW_IISI:
output[0] = 0x03; /* 3 byte message */
output[1] = 0x01; /* to pram/rtc/soft-power device */
output[2] = 0x1c; /* prog. switch control */
output[3] = 0x01; /* enable */
result = send_adb_IIsi((u_char *) output,
(u_char *) 0, (void *) adb_op_comprout,
(void *) &flag, (int) 0);
if (result != 0) /* exit if not sent */
return -1;
while (0 == flag) /* wait for send to finish */
;
return 0;
case ADB_HW_PB:
return -1;
case ADB_HW_II: /* II models don't do prog. switch */
case ADB_HW_CUDA: /* cuda doesn't do prog. switch TO DO: verify this */
case ADB_HW_UNKNOWN:
default:
return -1;
}
}
int
adb_prog_switch_disable(void)
{
u_char output[MAX_ADB_MSG_LENGTH];
int result;
volatile int flag = 0;
switch (adbHardware) {
case ADB_HW_IISI:
output[0] = 0x03; /* 3 byte message */
output[1] = 0x01; /* to pram/rtc/soft-power device */
output[2] = 0x1c; /* prog. switch control */
output[3] = 0x01; /* disable */
result = send_adb_IIsi((u_char *) output,
(u_char *) 0, (void *) adb_op_comprout,
(void *) &flag, (int) 0);
if (result != 0) /* exit if not sent */
return -1;
while (0 == flag) /* wait for send to finish */
;
return 0;
case ADB_HW_PB:
return -1;
case ADB_HW_II: /* II models don't do prog. switch */
case ADB_HW_CUDA: /* cuda doesn't do prog. switch */
case ADB_HW_UNKNOWN:
default:
return -1;
}
}
#ifndef MRG_ADB
int
CountADBs(void)
{
return (count_adbs());
}
void
ADBReInit(void)
{
adb_reinit();
}
int
GetIndADB(ADBDataBlock * info, int index)
{
return (get_ind_adb_info(info, index));
}
int
GetADBInfo(ADBDataBlock * info, int adbAddr)
{
return (get_adb_info(info, adbAddr));
}
int
SetADBInfo(ADBSetInfoBlock * info, int adbAddr)
{
return (set_adb_info(info, adbAddr));
}
int
ADBOp(Ptr buffer, Ptr compRout, Ptr data, short commandNum)
{
return (adb_op(buffer, compRout, data, commandNum));
}
#endif