NetBSD/sys/arch/sun3/sun3x/pmap.c

2893 lines
81 KiB
C

/* $NetBSD: pmap.c,v 1.6 1997/02/02 08:41:10 thorpej Exp $ */
/*-
* Copyright (c) 1996 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jeremy Cooper.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* XXX These comments aren't quite accurate. Need to change.
* The sun3x uses the MC68851 Memory Management Unit, which is built
* into the CPU. The 68851 maps virtual to physical addresses using
* a multi-level table lookup, which is stored in the very memory that
* it maps. The number of levels of lookup is configurable from one
* to four. In this implementation, we use three, named 'A' through 'C'.
*
* The MMU translates virtual addresses into physical addresses by
* traversing these tables in a proccess called a 'table walk'. The most
* significant 7 bits of the Virtual Address ('VA') being translated are
* used as an index into the level A table, whose base in physical memory
* is stored in a special MMU register, the 'CPU Root Pointer' or CRP. The
* address found at that index in the A table is used as the base
* address for the next table, the B table. The next six bits of the VA are
* used as an index into the B table, which in turn gives the base address
* of the third and final C table.
*
* The next six bits of the VA are used as an index into the C table to
* locate a Page Table Entry (PTE). The PTE is a physical address in memory
* to which the remaining 13 bits of the VA are added, producing the
* mapped physical address.
*
* To map the entire memory space in this manner would require 2114296 bytes
* of page tables per process - quite expensive. Instead we will
* allocate a fixed but considerably smaller space for the page tables at
* the time the VM system is initialized. When the pmap code is asked by
* the kernel to map a VA to a PA, it allocates tables as needed from this
* pool. When there are no more tables in the pool, tables are stolen
* from the oldest mapped entries in the tree. This is only possible
* because all memory mappings are stored in the kernel memory map
* structures, independent of the pmap structures. A VA which references
* one of these invalidated maps will cause a page fault. The kernel
* will determine that the page fault was caused by a task using a valid
* VA, but for some reason (which does not concern it), that address was
* not mapped. It will ask the pmap code to re-map the entry and then
* it will resume executing the faulting task.
*
* In this manner the most efficient use of the page table space is
* achieved. Tasks which do not execute often will have their tables
* stolen and reused by tasks which execute more frequently. The best
* size for the page table pool will probably be determined by
* experimentation.
*
* You read all of the comments so far. Good for you.
* Now go play!
*/
/*** A Note About the 68851 Address Translation Cache
* The MC68851 has a 64 entry cache, called the Address Translation Cache
* or 'ATC'. This cache stores the most recently used page descriptors
* accessed by the MMU when it does translations. Using a marker called a
* 'task alias' the MMU can store the descriptors from 8 different table
* spaces concurrently. The task alias is associated with the base
* address of the level A table of that address space. When an address
* space is currently active (the CRP currently points to its A table)
* the only cached descriptors that will be obeyed are ones which have a
* matching task alias of the current space associated with them.
*
* Since the cache is always consulted before any table lookups are done,
* it is important that it accurately reflect the state of the MMU tables.
* Whenever a change has been made to a table that has been loaded into
* the MMU, the code must be sure to flush any cached entries that are
* affected by the change. These instances are documented in the code at
* various points.
*/
/*** A Note About the Note About the 68851 Address Translation Cache
* 4 months into this code I discovered that the sun3x does not have
* a MC68851 chip. Instead, it has a version of this MMU that is part of the
* the 68030 CPU.
* All though it behaves very similarly to the 68851, it only has 1 task
* alias and a 22 entry cache. So sadly (or happily), the previous note
* does not apply to the sun3x pmap.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/user.h>
#include <sys/queue.h>
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <machine/cpu.h>
#include <machine/pmap.h>
#include <machine/pte.h>
#include <machine/machdep.h>
#include <machine/mon.h>
#include "pmap_pvt.h"
/* XXX - What headers declare these? */
extern struct pcb *curpcb;
extern int physmem;
/* Defined in locore.s */
extern char kernel_text[];
/* Defined by the linker */
extern char etext[], edata[], end[];
extern char *esym; /* DDB */
/*
* I think it might be cleaner to have one of these in each of
* the a_tmgr_t structures... -gwr
*/
struct mmu_rootptr proc0crp;
/* This is set by locore.s with the monitor's root ptr. */
extern struct mmu_rootptr mon_crp;
/*** Management Structure - Memory Layout
* For every MMU table in the sun3x pmap system there must be a way to
* manage it; we must know which process is using it, what other tables
* depend on it, and whether or not it contains any locked pages. This
* is solved by the creation of 'table management' or 'tmgr'
* structures. One for each MMU table in the system.
*
* MAP OF MEMORY USED BY THE PMAP SYSTEM
*
* towards lower memory
* kernAbase -> +-------------------------------------------------------+
* | Kernel MMU A level table |
* kernBbase -> +-------------------------------------------------------+
* | Kernel MMU B level tables |
* kernCbase -> +-------------------------------------------------------+
* | |
* | Kernel MMU C level tables |
* | |
* mmuAbase -> +-------------------------------------------------------+
* | |
* | User MMU A level tables |
* | |
* mmuBbase -> +-------------------------------------------------------+
* | User MMU B level tables |
* mmuCbase -> +-------------------------------------------------------+
* | User MMU C level tables |
* tmgrAbase -> +-------------------------------------------------------+
* | TMGR A level table structures |
* tmgrBbase -> +-------------------------------------------------------+
* | TMGR B level table structures |
* tmgrCbase -> +-------------------------------------------------------+
* | TMGR C level table structures |
* pvbase -> +-------------------------------------------------------+
* | Physical to Virtual mapping table (list heads) |
* pvebase -> +-------------------------------------------------------+
* | Physical to Virtual mapping table (list elements) |
* | |
* +-------------------------------------------------------+
* towards higher memory
*
* For every A table in the MMU A area, there will be a corresponding
* a_tmgr structure in the TMGR A area. The same will be true for
* the B and C tables. This arrangement will make it easy to find the
* controling tmgr structure for any table in the system by use of
* (relatively) simple macros.
*/
/* Global variables for storing the base addresses for the areas
* labeled above.
*/
static mmu_long_dte_t *kernAbase;
static mmu_short_dte_t *kernBbase;
static mmu_short_pte_t *kernCbase;
static mmu_long_dte_t *mmuAbase;
static mmu_short_dte_t *mmuBbase;
static mmu_short_pte_t *mmuCbase;
static a_tmgr_t *Atmgrbase;
static b_tmgr_t *Btmgrbase;
static c_tmgr_t *Ctmgrbase;
static pv_t *pvbase;
static pv_elem_t *pvebase;
/* Just all around global variables.
*/
static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;
struct pmap kernel_pmap;
static a_tmgr_t *proc0Atmgr;
a_tmgr_t *curatbl;
static boolean_t pv_initialized = 0;
static vm_offset_t last_mapped = 0;
int tmp_vpages_inuse = 0;
/*
* XXX: For now, retain the traditional variables that were
* used in the old pmap/vm interface (without NONCONTIG).
*/
/* Kernel virtual address space available: */
vm_offset_t virtual_avail, virtual_end;
/* Physical address space available: */
vm_offset_t avail_start, avail_end;
vm_offset_t tmp_vpages[2];
/* The 3/80 is the only member of the sun3x family that has non-contiguous
* physical memory. Memory is divided into 4 banks which are physically
* locatable on the system board. Although the size of these banks varies
* with the size of memory they contain, their base addresses are
* permenently fixed. The following structure, which describes these
* banks, is initialized by pmap_bootstrap() after it reads from a similar
* structure provided by the ROM Monitor.
*
* For the other machines in the sun3x architecture which do have contiguous
* RAM, this list will have only one entry, which will describe the entire
* range of available memory.
*/
struct pmap_physmem_struct avail_mem[SUN3X_80_MEM_BANKS];
u_int total_phys_mem;
/* These macros map MMU tables to their corresponding manager structures.
* They are needed quite often because many of the pointers in the pmap
* system reference MMU tables and not the structures that control them.
* There needs to be a way to find one when given the other and these
* macros do so by taking advantage of the memory layout described above.
* Here's a quick step through the first macro, mmuA2tmgr():
*
* 1) find the offset of the given MMU A table from the base of its table
* pool (table - mmuAbase).
* 2) convert this offset into a table index by dividing it by the
* size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
* 3) use this index to select the corresponding 'A' table manager
* structure from the 'A' table manager pool (Atmgrbase[index]).
*/
#define mmuA2tmgr(table) \
(&Atmgrbase[\
((mmu_long_dte_t *)(table) - mmuAbase)\
/ MMU_A_TBL_SIZE\
])
#define mmuB2tmgr(table) \
(&Btmgrbase[\
((mmu_short_dte_t *)(table) - mmuBbase)\
/ MMU_B_TBL_SIZE\
])
#define mmuC2tmgr(table) \
(&Ctmgrbase[\
((mmu_short_pte_t *)(table) - mmuCbase)\
/ MMU_C_TBL_SIZE\
])
#define pte2pve(pte) \
(&pvebase[\
((mmu_short_pte_t *)(pte) - mmuCbase)\
])
/* I don't think this is actually used.
* #define pte2pv(pte) \
* (pa2pv(\
* (pte)->attr.raw & MMU_SHORT_PTE_BASEADDR\
* ))
*/
/* This is now a function call
* #define pa2pv(pa) \
* (&pvbase[(unsigned long)\
* sun3x_btop(pa)\
* ])
*/
#define pve2pte(pve) \
(&mmuCbase[(unsigned long)\
(((pv_elem_t *)(pve)) - pvebase)\
/ sizeof(mmu_short_pte_t)\
])
/*************************** TEMPORARY STATMENTS *************************
* These statements will disappear once this code is integrated into the *
* system. They are here only to make the code `stand alone'. *
*************************************************************************/
#define mmu_ptov(pa) ((unsigned long) KERNBASE + (unsigned long) (pa))
#define mmu_vtop(va) ((unsigned long) (va) - (unsigned long) KERNBASE)
#define NULL 0
#define NUM_A_TABLES 20
#define NUM_B_TABLES 60
#define NUM_C_TABLES 60
/*************************** MISCELANEOUS MACROS *************************/
#define PMAP_LOCK() ; /* Nothing, for now */
#define PMAP_UNLOCK() ; /* same. */
/*************************** FUNCTION DEFINITIONS ************************
* These appear here merely for the compiler to enforce type checking on *
* all function calls. *
*************************************************************************
*/
/** External functions
** - functions used within this module but written elsewhere.
** both of these functions are in locore.s
*/
void mmu_seturp __P((vm_offset_t));
void mmu_flush __P((int, vm_offset_t));
void mmu_flusha __P((void));
/** Internal functions
** - all functions used only within this module are defined in
** pmap_pvt.h
**/
/** Interface functions
** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
** defined.
**/
#ifdef INCLUDED_IN_PMAP_H
void pmap_bootstrap __P((void));
void *pmap_bootstrap_alloc __P((int));
void pmap_enter __P((pmap_t, vm_offset_t, vm_offset_t, vm_prot_t, boolean_t));
pmap_t pmap_create __P((vm_size_t));
void pmap_destroy __P((pmap_t));
void pmap_reference __P((pmap_t));
boolean_t pmap_is_referenced __P((vm_offset_t));
boolean_t pmap_is_modified __P((vm_offset_t));
void pmap_clear_modify __P((vm_offset_t));
vm_offset_t pmap_extract __P((pmap_t, vm_offset_t));
void pmap_activate __P((pmap_t, struct pcb *));
int pmap_page_index __P((vm_offset_t));
u_int pmap_free_pages __P((void));
#endif /* INCLUDED_IN_PMAP_H */
/********************************** CODE ********************************
* Functions that are called from other parts of the kernel are labeled *
* as 'INTERFACE' functions. Functions that are only called from *
* within the pmap module are labeled as 'INTERNAL' functions. *
* Functions that are internal, but are not (currently) used at all are *
* labeled 'INTERNAL_X'. *
************************************************************************/
/* pmap_bootstrap INTERNAL
**
* Initializes the pmap system. Called at boot time from sun3x_vm_init()
* in _startup.c.
*
* Reminder: having a pmap_bootstrap_alloc() and also having the VM
* system implement pmap_steal_memory() is redundant.
* Don't release this code without removing one or the other!
*/
void
pmap_bootstrap(nextva)
vm_offset_t nextva;
{
struct physmemory *membank;
struct pmap_physmem_struct *pmap_membank;
vm_offset_t va, pa, eva;
int b, c, i, j; /* running table counts */
int size;
/*
* This function is called by __bootstrap after it has
* determined the type of machine and made the appropriate
* patches to the ROM vectors (XXX- I don't quite know what I meant
* by that.) It allocates and sets up enough of the pmap system
* to manage the kernel's address space.
*/
/* XXX - Attention: moved stuff. */
/*
* Determine the range of kernel virtual space available.
*/
virtual_avail = sun3x_round_page(nextva);
virtual_end = VM_MAX_KERNEL_ADDRESS;
/*
* Determine the range of physical memory available and
* relay this information to the pmap via the avail_mem[]
* array of physical memory segment structures.
*
* Avail_end is set to the first byte of physical memory
* outside the last bank.
*/
avail_start = virtual_avail - KERNBASE;
/*
* This is a somewhat unwrapped loop to deal with
* copying the PROM's 'phsymem' banks into the pmap's
* banks. The following is always assumed:
* 1. There is always at least one bank of memory.
* 2. There is always a last bank of memory, and its
* pmem_next member must be set to NULL.
* XXX - Use: do { ... } while (membank->next) instead?
* XXX - Why copy this stuff at all? -gwr
*/
membank = romVectorPtr->v_physmemory;
pmap_membank = avail_mem;
total_phys_mem = 0;
while (membank->next) {
pmap_membank->pmem_start = membank->address;
pmap_membank->pmem_end = membank->address + membank->size;
total_phys_mem += membank->size;
/* This silly syntax arises because pmap_membank
* is really a pre-allocated array, but it is put into
* use as a linked list.
*/
pmap_membank->pmem_next = pmap_membank + 1;
pmap_membank = pmap_membank->pmem_next;
membank = membank->next;
}
/*
* XXX The last bank of memory should be reduced to exclude the
* physical pages needed by the PROM monitor from being used
* in the VM system. XXX - See below - Fix!
*/
pmap_membank->pmem_start = membank->address;
pmap_membank->pmem_end = membank->address + membank->size;
pmap_membank->pmem_next = NULL;
#if 0 /* XXX - Need to integrate this! */
/*
* The last few pages of physical memory are "owned" by
* the PROM. The total amount of memory we are allowed
* to use is given by the romvec pointer. -gwr
*
* We should dedicate different variables for 'useable'
* and 'physically available'. Most users are used to the
* kernel reporting the amount of memory 'physically available'
* as opposed to 'useable by the kernel' at boot time. -j
*/
total_phys_mem = *romVectorPtr->memoryAvail;
#endif /* XXX */
total_phys_mem += membank->size; /* XXX see above */
physmem = btoc(total_phys_mem);
avail_end = pmap_membank->pmem_end;
avail_end = sun3x_trunc_page(avail_end);
/* XXX - End moved stuff. */
/*
* The first step is to allocate MMU tables.
* Note: All must be aligned on 256 byte boundaries.
*
* Start with the top level, or 'A' table.
*/
kernAbase = (mmu_long_dte_t *) virtual_avail;
size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
bzero(kernAbase, size);
avail_start += size;
virtual_avail += size;
/* Allocate enough B tables to map from KERNBASE to
* the end of VM.
*/
kernBbase = (mmu_short_dte_t *) virtual_avail;
size = sizeof(mmu_short_dte_t) *
(MMU_A_TBL_SIZE - MMU_TIA(KERNBASE)) * MMU_B_TBL_SIZE;
bzero(kernBbase, size);
avail_start += size;
virtual_avail += size;
/* Allocate enough C tables. */
kernCbase = (mmu_short_pte_t *) virtual_avail;
size = sizeof (mmu_short_pte_t) *
(MMU_A_TBL_SIZE - MMU_TIA(KERNBASE))
* MMU_B_TBL_SIZE * MMU_C_TBL_SIZE;
bzero(kernCbase, size);
avail_start += size;
virtual_avail += size;
/* For simplicity, the kernel's mappings will be editable as a
* flat array of page table entries at kernCbase. The
* higher level 'A' and 'B' tables must be initialized to point
* to this lower one.
*/
b = c = 0;
/* Invalidate all mappings below KERNBASE in the A table.
* This area has already been zeroed out, but it is good
* practice to explicitly show that we are interpreting
* it as a list of A table descriptors.
*/
for (i = 0; i < MMU_TIA(KERNBASE); i++) {
kernAbase[i].addr.raw = 0;
}
/* Set up the kernel A and B tables so that they will reference the
* correct spots in the contiguous table of PTEs allocated for the
* kernel's virtual memory space.
*/
for (i = MMU_TIA(KERNBASE); i < MMU_A_TBL_SIZE; i++) {
kernAbase[i].attr.raw =
MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
kernAbase[i].addr.raw = (unsigned long) mmu_vtop(&kernBbase[b]);
for (j=0; j < MMU_B_TBL_SIZE; j++) {
kernBbase[b + j].attr.raw =
(unsigned long) mmu_vtop(&kernCbase[c])
| MMU_DT_SHORT;
c += MMU_C_TBL_SIZE;
}
b += MMU_B_TBL_SIZE;
}
/*
* Now pmap_enter_kernel() may be used safely and will be
* the main interface used by _startup.c and other various
* modules to modify kernel mappings.
*
* Note: Our tables will NOT have the default linear mappings!
*/
va = (vm_offset_t) KERNBASE;
pa = mmu_vtop(KERNBASE);
/*
* The first page is the msgbuf page (data, non-cached).
* Just fixup the mapping here; setup is in cpu_startup().
* XXX - Make it non-cached?
*/
pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
va += NBPG; pa += NBPG;
/* The tmporary stack page. */
pmap_enter_kernel(va, pa, VM_PROT_ALL);
va += NBPG; pa += NBPG;
/*
* Map all of the kernel's text segment as read-only and cacheable.
* (Cacheable is implied by default). Unfortunately, the last bytes
* of kernel text and the first bytes of kernel data will often be
* sharing the same page. Therefore, the last page of kernel text
* has to be mapped as read/write, to accomodate the data.
*/
eva = sun3x_trunc_page((vm_offset_t)etext);
for (; va < eva; pa += NBPG, va += NBPG)
pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);
/* Map all of the kernel's data (including BSS) segment as read/write
* and cacheable.
*/
for (; va < (vm_offset_t) esym; pa += NBPG, va += NBPG)
pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
/* Map all of the data we have allocated since the start of this
* function.
*/
for (; va < virtual_avail; va += NBPG, pa += NBPG)
pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);
/* Set 'last_mapped' to the address of the last physical page
* that was mapped in the kernel. This variable is used by
* pmap_bootstrap_alloc() to determine when it needs to map
* a new page.
*
* XXX - This can be a lot simpler. We already know that the
* first 4MB of memory (at least) is mapped PA=VA-KERNBASE,
* so we should never need to creat any new mappings. -gwr
*
* True, but it only remains so as long as we are using the
* ROM's CRP. Unless, of course, we copy these mappings into
* our table. -j
*/
last_mapped = sun3x_trunc_page(pa - (NBPG - 1));
/* It is now safe to use pmap_bootstrap_alloc(). */
pmap_alloc_usermmu(); /* Allocate user MMU tables. */
pmap_alloc_usertmgr(); /* Allocate user MMU table managers.*/
pmap_alloc_pv(); /* Allocate physical->virtual map. */
pmap_alloc_etc(); /* Allocate miscelaneous things. */
/* Notify the VM system of our page size. */
PAGE_SIZE = NBPG;
vm_set_page_size();
/* XXX - Attention: moved stuff. */
/*
* XXX - Make sure avail_start is within the low 4M range
* that the Sun PROM guarantees will be mapped in?
* Make sure it is below avail_end as well?
*/
/*
* Now steal some virtual addresses, but
* not the physical pages behind them.
*/
/*
* vpages array: just some virtual addresses for
* temporary mappings in the pmap module (two pages)
*/
pmap_bootstrap_aalign(NBPG);
tmp_vpages[0] = virtual_avail;
virtual_avail += NBPG;
tmp_vpages[1] = virtual_avail;
virtual_avail += NBPG;
/* XXX - End moved stuff. */
/* It should be noted that none of these mappings take
* effect until the MMU's root pointer is
* is changed from the PROM map, to our own.
*/
pmap_bootstrap_copyprom();
pmap_takeover_mmu();
}
/* pmap_alloc_usermmu INTERNAL
**
* Called from pmap_bootstrap() to allocate MMU tables that will
* eventually be used for user mappings.
*/
void
pmap_alloc_usermmu()
{
/* Allocate user MMU tables.
* These must be aligned on 256 byte boundaries.
*/
pmap_bootstrap_aalign(256);
mmuAbase = (mmu_long_dte_t *)
pmap_bootstrap_alloc(sizeof(mmu_long_dte_t)
* MMU_A_TBL_SIZE
* NUM_A_TABLES);
mmuBbase = (mmu_short_dte_t *)
pmap_bootstrap_alloc(sizeof(mmu_short_dte_t)
* MMU_B_TBL_SIZE
* NUM_B_TABLES);
mmuCbase = (mmu_short_pte_t *)
pmap_bootstrap_alloc(sizeof(mmu_short_pte_t)
* MMU_C_TBL_SIZE
* NUM_C_TABLES);
}
/* pmap_alloc_pv INTERNAL
**
* Called from pmap_bootstrap() to allocate the physical
* to virtual mapping list. Each physical page of memory
* in the system has a corresponding element in this list.
*/
void
pmap_alloc_pv()
{
int i;
unsigned int total_mem;
/* Allocate a pv_head structure for every page of physical
* memory that will be managed by the system. Since memory on
* the 3/80 is non-contiguous, we cannot arrive at a total page
* count by subtraction of the lowest available address from the
* highest, but rather we have to step through each memory
* bank and add the number of pages in each to the total.
*
* At this time we also initialize the offset of each bank's
* starting pv_head within the pv_head list so that the physical
* memory state routines (pmap_is_referenced(),
* pmap_is_modified(), et al.) can quickly find coresponding
* pv_heads in spite of the non-contiguity.
*/
total_mem = 0;
for (i = 0; i < SUN3X_80_MEM_BANKS; i++) {
avail_mem[i].pmem_pvbase = sun3x_btop(total_mem);
total_mem += avail_mem[i].pmem_end -
avail_mem[i].pmem_start;
if (avail_mem[i].pmem_next == NULL)
break;
}
#ifdef PMAP_DEBUG
if (total_mem != total_phys_mem)
panic("pmap_alloc_pv did not arrive at correct page count");
#endif
pvbase = (pv_t *) pmap_bootstrap_alloc(sizeof(pv_t) *
sun3x_btop(total_phys_mem));
}
/* pmap_alloc_usertmgr INTERNAL
**
* Called from pmap_bootstrap() to allocate the structures which
* facilitate management of user MMU tables. Each user MMU table
* in the system has one such structure associated with it.
*/
void
pmap_alloc_usertmgr()
{
/* Allocate user MMU table managers */
/* XXX - It would be a lot simpler to just make these BSS. -gwr */
Atmgrbase = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t)
* NUM_A_TABLES);
Btmgrbase = (b_tmgr_t *) pmap_bootstrap_alloc(sizeof(b_tmgr_t)
* NUM_B_TABLES);
Ctmgrbase = (c_tmgr_t *) pmap_bootstrap_alloc(sizeof(c_tmgr_t)
* NUM_C_TABLES);
/* Allocate PV list elements for the physical to virtual
* mapping system.
*/
pvebase = (pv_elem_t *) pmap_bootstrap_alloc(
sizeof(struct pv_elem_struct)
* MMU_C_TBL_SIZE
* NUM_C_TABLES );
}
/* pmap_alloc_etc INTERNAL
**
* Called from pmap_bootstrap() to allocate any remaining pieces
* that didn't fit neatly into any of the other pmap_alloc
* functions.
*/
void
pmap_alloc_etc()
{
/* Allocate an A table manager for the kernel_pmap */
proc0Atmgr = (a_tmgr_t *) pmap_bootstrap_alloc(sizeof(a_tmgr_t));
}
/* pmap_bootstrap_copyprom() INTERNAL
**
* Copy the PROM mappings into our own tables. Note, we
* can use physical addresses until __bootstrap returns.
*/
void
pmap_bootstrap_copyprom()
{
MachMonRomVector *romp;
int *mon_ctbl;
mmu_short_pte_t *kpte;
int i, len;
romp = romVectorPtr;
/*
* Copy the mappings in MON_KDB_START...MONEND
* Note: mon_ctbl[0] maps MON_KDB_START
*/
mon_ctbl = *romp->monptaddr;
i = sun3x_btop(MON_KDB_START - KERNBASE);
kpte = &kernCbase[i];
len = sun3x_btop(MONEND - MON_KDB_START);
for (i = 0; i < len; i++) {
kpte[i].attr.raw = mon_ctbl[i];
}
/*
* Copy the mappings at MON_DVMA_BASE (to the end).
* Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
* XXX - This does not appear to be necessary, but
* I'm not sure yet if it is or not. -gwr
*/
mon_ctbl = *romp->shadowpteaddr;
i = sun3x_btop(MON_DVMA_BASE - KERNBASE);
kpte = &kernCbase[i];
len = sun3x_btop(MON_DVMA_SIZE);
for (i = 0; i < len; i++) {
kpte[i].attr.raw = mon_ctbl[i];
}
}
/* pmap_takeover_mmu INTERNAL
**
* Called from pmap_bootstrap() after it has copied enough of the
* PROM mappings into the kernel map so that we can use our own
* MMU table.
*/
void
pmap_takeover_mmu()
{
vm_offset_t tbladdr;
tbladdr = mmu_vtop((vm_offset_t) kernAbase);
/* Initialize the CPU Root Pointer (CRP) for proc0. */
/* XXX: I'd prefer per-process CRP storage. -gwr */
proc0crp.limit = 0x80000003; /* limit and type */
proc0crp.paddr = tbladdr; /* phys. addr. */
curpcb->pcb_mmucrp = &proc0crp;
/* mon_printf("pmap_takeover_mmu: loadcrp...\n"); */
loadcrp(curpcb->pcb_mmucrp);
/* mon_printf("pmap_takeover_mmu: survived!\n"); */
}
/* pmap_init INTERFACE
**
* Called at the end of vm_init() to set up the pmap system to go
* into full time operation.
*/
void
pmap_init()
{
/** Initialize the manager pools **/
TAILQ_INIT(&a_pool);
TAILQ_INIT(&b_pool);
TAILQ_INIT(&c_pool);
/** Initialize the PV system **/
pmap_init_pv();
/** Zero out the kernel's pmap **/
bzero(&kernel_pmap, sizeof(struct pmap));
/* Initialize the A table manager that is used in pmaps which
* do not have an A table of their own. This table uses the
* kernel, or 'proc0' level A MMU table, which contains no valid
* user space mappings. Any user process that attempts to execute
* using this A table will fault. At which point the VM system will
* call pmap_enter, which will then allocate it an A table of its own
* from the pool.
*/
proc0Atmgr->at_dtbl = kernAbase;
proc0Atmgr->at_parent = &kernel_pmap;
kernel_pmap.pm_a_tbl = proc0Atmgr;
/**************************************************************
* Initialize all tmgr structures and MMU tables they manage. *
**************************************************************/
/** Initialize A tables **/
pmap_init_a_tables();
/** Initialize B tables **/
pmap_init_b_tables();
/** Initialize C tables **/
pmap_init_c_tables();
}
/* pmap_init_a_tables() INTERNAL
**
* Initializes all A managers, their MMU A tables, and inserts
* them into the A manager pool for use by the system.
*/
void
pmap_init_a_tables()
{
int i;
a_tmgr_t *a_tbl;
for (i=0; i < NUM_A_TABLES; i++) {
/* Select the next available A manager from the pool */
a_tbl = &Atmgrbase[i];
/* Clear its parent entry. Set its wired and valid
* entry count to zero.
*/
a_tbl->at_parent = NULL;
a_tbl->at_wcnt = a_tbl->at_ecnt = 0;
/* Assign it the next available MMU A table from the pool */
a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];
/* Initialize the MMU A table with the table in the `proc0',
* or kernel, mapping. This ensures that every process has
* the kernel mapped in the top part of its address space.
*/
bcopy(kernAbase, a_tbl->at_dtbl, MMU_A_TBL_SIZE *
sizeof(mmu_long_dte_t));
/* Finally, insert the manager into the A pool,
* making it ready to be used by the system.
*/
TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
}
}
/* pmap_init_b_tables() INTERNAL
**
* Initializes all B table managers, their MMU B tables, and
* inserts them into the B manager pool for use by the system.
*/
void
pmap_init_b_tables()
{
int i,j;
b_tmgr_t *b_tbl;
for (i=0; i < NUM_B_TABLES; i++) {
/* Select the next available B manager from the pool */
b_tbl = &Btmgrbase[i];
b_tbl->bt_parent = NULL; /* clear its parent, */
b_tbl->bt_pidx = 0; /* parent index, */
b_tbl->bt_wcnt = 0; /* wired entry count, */
b_tbl->bt_ecnt = 0; /* valid entry count. */
/* Assign it the next available MMU B table from the pool */
b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];
/* Invalidate every descriptor in the table */
for (j=0; j < MMU_B_TBL_SIZE; j++)
b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;
/* Insert the manager into the B pool */
TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
}
}
/* pmap_init_c_tables() INTERNAL
**
* Initializes all C table managers, their MMU C tables, and
* inserts them into the C manager pool for use by the system.
*/
void
pmap_init_c_tables()
{
int i,j;
c_tmgr_t *c_tbl;
for (i=0; i < NUM_C_TABLES; i++) {
/* Select the next available C manager from the pool */
c_tbl = &Ctmgrbase[i];
c_tbl->ct_parent = NULL; /* clear its parent, */
c_tbl->ct_pidx = 0; /* parent index, */
c_tbl->ct_wcnt = 0; /* wired entry count, */
c_tbl->ct_ecnt = 0; /* valid entry count. */
/* Assign it the next available MMU C table from the pool */
c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];
for (j=0; j < MMU_C_TBL_SIZE; j++)
c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;
TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
}
}
/* pmap_init_pv() INTERNAL
**
* Initializes the Physical to Virtual mapping system.
*/
void
pmap_init_pv()
{
bzero(pvbase, sizeof(pv_t) * sun3x_btop(total_phys_mem));
pv_initialized = TRUE;
}
/* get_a_table INTERNAL
**
* Retrieve and return a level A table for use in a user map.
*/
a_tmgr_t *
get_a_table()
{
a_tmgr_t *tbl;
/* Get the top A table in the pool */
tbl = a_pool.tqh_first;
if (tbl == NULL)
panic("get_a_table: out of A tables.");
TAILQ_REMOVE(&a_pool, tbl, at_link);
/* If the table has a non-null parent pointer then it is in use.
* Forcibly abduct it from its parent and clear its entries.
* No re-entrancy worries here. This table would not be in the
* table pool unless it was available for use.
*/
if (tbl->at_parent) {
tbl->at_parent->pm_stats.resident_count -= free_a_table(tbl);
tbl->at_parent->pm_a_tbl = proc0Atmgr;
}
#ifdef NON_REENTRANT
/* If the table isn't to be wired down, re-insert it at the
* end of the pool.
*/
if (!wired)
/* Quandary - XXX
* Would it be better to let the calling function insert this
* table into the queue? By inserting it here, we are allowing
* it to be stolen immediately. The calling function is
* probably not expecting to use a table that it is not
* assured full control of.
* Answer - In the intrest of re-entrancy, it is best to let
* the calling function determine when a table is available
* for use. Therefore this code block is not used.
*/
TAILQ_INSERT_TAIL(&a_pool, tbl, at_link);
#endif /* NON_REENTRANT */
return tbl;
}
/* get_b_table INTERNAL
**
* Return a level B table for use.
*/
b_tmgr_t *
get_b_table()
{
b_tmgr_t *tbl;
/* See 'get_a_table' for comments. */
tbl = b_pool.tqh_first;
if (tbl == NULL)
panic("get_b_table: out of B tables.");
TAILQ_REMOVE(&b_pool, tbl, bt_link);
if (tbl->bt_parent) {
tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
tbl->bt_parent->at_ecnt--;
tbl->bt_parent->at_parent->pm_stats.resident_count -=
free_b_table(tbl);
}
#ifdef NON_REENTRANT
if (!wired)
/* XXX see quandary in get_b_table */
/* XXX start lock */
TAILQ_INSERT_TAIL(&b_pool, tbl, bt_link);
/* XXX end lock */
#endif /* NON_REENTRANT */
return tbl;
}
/* get_c_table INTERNAL
**
* Return a level C table for use.
*/
c_tmgr_t *
get_c_table()
{
c_tmgr_t *tbl;
/* See 'get_a_table' for comments */
tbl = c_pool.tqh_first;
if (tbl == NULL)
panic("get_c_table: out of C tables.");
TAILQ_REMOVE(&c_pool, tbl, ct_link);
if (tbl->ct_parent) {
tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
tbl->ct_parent->bt_ecnt--;
tbl->ct_parent->bt_parent->at_parent->pm_stats.resident_count
-= free_c_table(tbl);
}
#ifdef NON_REENTRANT
if (!wired)
/* XXX See quandary in get_a_table */
/* XXX start lock */
TAILQ_INSERT_TAIL(&c_pool, tbl, c_link);
/* XXX end lock */
#endif /* NON_REENTRANT */
return tbl;
}
/* The following 'free_table' and 'steal_table' functions are called to
* detach tables from their current obligations (parents and children) and
* prepare them for reuse in another mapping.
*
* Free_table is used when the calling function will handle the fate
* of the parent table, such as returning it to the free pool when it has
* no valid entries. Functions that do not want to handle this should
* call steal_table, in which the parent table's descriptors and entry
* count are automatically modified when this table is removed.
*/
/* free_a_table INTERNAL
**
* Unmaps the given A table and all child tables from their current
* mappings. Returns the number of pages that were invalidated.
*
* Cache note: The MC68851 will automatically flush all
* descriptors derived from a given A table from its
* Automatic Translation Cache (ATC) if we issue a
* 'PFLUSHR' instruction with the base address of the
* table. This function should do, and does so.
* Note note: We are using an MC68030 - there is no
* PFLUSHR.
*/
int
free_a_table(a_tbl)
a_tmgr_t *a_tbl;
{
int i, removed_cnt;
mmu_long_dte_t *dte;
mmu_short_dte_t *dtbl;
b_tmgr_t *tmgr;
/* Flush the ATC cache of all cached descriptors derived
* from this table.
* XXX - Sun3x does not use 68851's cached table feature
* flush_atc_crp(mmu_vtop(a_tbl->dte));
*/
/* Remove any pending cache flushes that were designated
* for the pmap this A table belongs to.
* a_tbl->parent->atc_flushq[0] = 0;
* XXX - Not implemented in sun3x.
*/
/* All A tables in the system should retain a map for the
* kernel. If the table contains any valid descriptors
* (other than those for the kernel area), invalidate them all,
* stopping short of the kernel's entries.
*/
removed_cnt = 0;
if (a_tbl->at_ecnt) {
dte = a_tbl->at_dtbl;
for (i=0; i < MMU_TIA(KERNBASE); i++)
/* If a table entry points to a valid B table, free
* it and its children.
*/
if (MMU_VALID_DT(dte[i])) {
/* The following block does several things,
* from innermost expression to the
* outermost:
* 1) It extracts the base (cc 1996)
* address of the B table pointed
* to in the A table entry dte[i].
* 2) It converts this base address into
* the virtual address it can be
* accessed with. (all MMU tables point
* to physical addresses.)
* 3) It finds the corresponding manager
* structure which manages this MMU table.
* 4) It frees the manager structure.
* (This frees the MMU table and all
* child tables. See 'free_b_table' for
* details.)
*/
dtbl = (mmu_short_dte_t *) MMU_DTE_PA(dte[i]);
dtbl = (mmu_short_dte_t *) mmu_ptov(dtbl);
tmgr = mmuB2tmgr(dtbl);
removed_cnt += free_b_table(tmgr);
}
}
a_tbl->at_ecnt = 0;
return removed_cnt;
}
/* free_b_table INTERNAL
**
* Unmaps the given B table and all its children from their current
* mappings. Returns the number of pages that were invalidated.
* (For comments, see 'free_a_table()').
*/
int
free_b_table(b_tbl)
b_tmgr_t *b_tbl;
{
int i, removed_cnt;
mmu_short_dte_t *dte;
mmu_short_pte_t *dtbl;
c_tmgr_t *tmgr;
removed_cnt = 0;
if (b_tbl->bt_ecnt) {
dte = b_tbl->bt_dtbl;
for (i=0; i < MMU_B_TBL_SIZE; i++)
if (MMU_VALID_DT(dte[i])) {
dtbl = (mmu_short_pte_t *) MMU_DTE_PA(dte[i]);
dtbl = (mmu_short_pte_t *) mmu_ptov(dtbl);
tmgr = mmuC2tmgr(dtbl);
removed_cnt += free_c_table(tmgr);
}
}
b_tbl->bt_ecnt = 0;
return removed_cnt;
}
/* free_c_table INTERNAL
**
* Unmaps the given C table from use and returns it to the pool for
* re-use. Returns the number of pages that were invalidated.
*
* This function preserves any physical page modification information
* contained in the page descriptors within the C table by calling
* 'pmap_remove_pte().'
*/
int
free_c_table(c_tbl)
c_tmgr_t *c_tbl;
{
int i, removed_cnt;
removed_cnt = 0;
if (c_tbl->ct_ecnt)
for (i=0; i < MMU_C_TBL_SIZE; i++)
if (MMU_VALID_DT(c_tbl->ct_dtbl[i])) {
pmap_remove_pte(&c_tbl->ct_dtbl[i]);
removed_cnt++;
}
c_tbl->ct_ecnt = 0;
return removed_cnt;
}
/* free_c_table_novalid INTERNAL
**
* Frees the given C table manager without checking to see whether
* or not it contains any valid page descriptors as it is assumed
* that it does not.
*/
void
free_c_table_novalid(c_tbl)
c_tmgr_t *c_tbl;
{
TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
c_tbl->ct_parent->bt_dtbl[c_tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
}
/* pmap_remove_pte INTERNAL
**
* Unmap the given pte and preserve any page modification
* information by transfering it to the pv head of the
* physical page it maps to. This function does not update
* any reference counts because it is assumed that the calling
* function will do so. If the calling function does not have the
* ability to do so, the function pmap_dereference_pte() exists
* for this purpose.
*/
void
pmap_remove_pte(pte)
mmu_short_pte_t *pte;
{
vm_offset_t pa;
pv_t *pv;
pv_elem_t *pve;
pa = MMU_PTE_PA(*pte);
if (is_managed(pa)) {
pv = pa2pv(pa);
/* Save the mod/ref bits of the pte by simply
* ORing the entire pte onto the pv_flags member
* of the pv structure.
* There is no need to use a separate bit pattern
* for usage information on the pv head than that
* which is used on the MMU ptes.
*/
pv->pv_flags |= pte->attr.raw;
pve = pte2pve(pte);
if (pve == pv->pv_head.lh_first)
pv->pv_head.lh_first = pve->pve_link.le_next;
LIST_REMOVE(pve, pve_link);
}
pte->attr.raw = MMU_DT_INVALID;
}
/* pmap_dereference_pte INTERNAL
**
* Update the necessary reference counts in any tables and pmaps to
* reflect the removal of the given pte. Only called when no knowledge of
* the pte's associated pmap is unknown. This only occurs in the PV call
* 'pmap_page_protect()' with a protection of VM_PROT_NONE, which means
* that all references to a given physical page must be removed.
*/
void
pmap_dereference_pte(pte)
mmu_short_pte_t *pte;
{
c_tmgr_t *c_tbl;
c_tbl = pmap_find_c_tmgr(pte);
c_tbl->ct_parent->bt_parent->at_parent->pm_stats.resident_count--;
if (--c_tbl->ct_ecnt == 0)
free_c_table_novalid(c_tbl);
}
/* pmap_stroll INTERNAL
**
* Retrieve the addresses of all table managers involved in the mapping of
* the given virtual address. If the table walk completed sucessfully,
* return TRUE. If it was only partial sucessful, return FALSE.
* The table walk performed by this function is important to many other
* functions in this module.
*/
boolean_t
pmap_stroll(pmap, va, a_tbl, b_tbl, c_tbl, pte, a_idx, b_idx, pte_idx)
pmap_t pmap;
vm_offset_t va;
a_tmgr_t **a_tbl;
b_tmgr_t **b_tbl;
c_tmgr_t **c_tbl;
mmu_short_pte_t **pte;
int *a_idx, *b_idx, *pte_idx;
{
mmu_long_dte_t *a_dte; /* A: long descriptor table */
mmu_short_dte_t *b_dte; /* B: short descriptor table */
if (pmap == pmap_kernel())
return FALSE;
/* Does the given pmap have an A table? */
*a_tbl = pmap->pm_a_tbl;
if (*a_tbl == NULL)
return FALSE; /* No. Return unknown. */
/* Does the A table have a valid B table
* under the corresponding table entry?
*/
*a_idx = MMU_TIA(va);
a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
if (!MMU_VALID_DT(*a_dte))
return FALSE; /* No. Return unknown. */
/* Yes. Extract B table from the A table. */
*b_tbl = pmap_find_b_tmgr(
(mmu_short_dte_t *) mmu_ptov(
MMU_DTE_PA(*a_dte)
)
);
/* Does the B table have a valid C table
* under the corresponding table entry?
*/
*b_idx = MMU_TIB(va);
b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
if (!MMU_VALID_DT(*b_dte))
return FALSE; /* No. Return unknown. */
/* Yes. Extract C table from the B table. */
*c_tbl = pmap_find_c_tmgr(
(mmu_short_pte_t *) mmu_ptov(
MMU_DTE_PA(*b_dte)
)
);
*pte_idx = MMU_TIC(va);
*pte = &((*c_tbl)->ct_dtbl[*pte_idx]);
return TRUE;
}
/* pmap_enter INTERFACE
**
* Called by the kernel to map a virtual address
* to a physical address in the given process map.
*
* Note: this function should apply an exclusive lock
* on the pmap system for its duration. (it certainly
* would save my hair!!)
*/
void
pmap_enter(pmap, va, pa, prot, wired)
pmap_t pmap;
vm_offset_t va;
vm_offset_t pa;
vm_prot_t prot;
boolean_t wired;
{
u_int a_idx, b_idx, pte_idx; /* table indexes (fix grammar) */
a_tmgr_t *a_tbl; /* A: long descriptor table manager */
b_tmgr_t *b_tbl; /* B: short descriptor table manager */
c_tmgr_t *c_tbl; /* C: short page table manager */
mmu_long_dte_t *a_dte; /* A: long descriptor table */
mmu_short_dte_t *b_dte; /* B: short descriptor table */
mmu_short_pte_t *c_pte; /* C: short page descriptor table */
pv_t *pv; /* pv list head */
pv_elem_t *pve; /* pv element */
enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end */
if (pmap == NULL)
return;
if (pmap == pmap_kernel()) {
pmap_enter_kernel(va, pa, prot);
return;
}
/* For user mappings we walk along the MMU tables of the given
* pmap, reaching a PTE which describes the virtual page being
* mapped or changed. If any level of the walk ends in an invalid
* entry, a table must be allocated and the entry must be updated
* to point to it.
* There is a bit of confusion as to whether this code must be
* re-entrant. For now we will assume it is. To support
* re-entrancy we must unlink tables from the table pool before
* we assume we may use them. Tables are re-linked into the pool
* when we are finished with them at the end of the function.
* But I don't feel like doing that until we have proof that this
* needs to be re-entrant.
* 'llevel' records which tables need to be relinked.
*/
llevel = NONE;
/* Step 1 - Retrieve the A table from the pmap. If it is the default
* A table (commonly known as the 'proc0' A table), allocate a new one.
*/
a_tbl = pmap->pm_a_tbl;
if (a_tbl == proc0Atmgr) {
pmap->pm_a_tbl = a_tbl = get_a_table();
if (!wired)
llevel = NEWA;
} else {
/* Use the A table already allocated for this pmap.
* Unlink it from the A table pool if necessary.
*/
if (wired && !a_tbl->at_wcnt)
TAILQ_REMOVE(&a_pool, a_tbl, at_link);
}
/* Step 2 - Walk into the B table. If there is no valid B table,
* allocate one.
*/
a_idx = MMU_TIA(va); /* Calculate the TIA of the VA. */
a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
if (MMU_VALID_DT(*a_dte)) { /* Is the descriptor valid? */
/* Yes, it points to a valid B table. Use it. */
/*************************************
* a_idx *
* v *
* a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
* | | | | | | | | | | | | *
* +-+-+-+-+-+-+-+-+-+-+-+- *
* | *
* \- b_tbl -> +-+- *
* | | *
* +-+- *
*************************************/
b_dte = (mmu_short_dte_t *) mmu_ptov(a_dte->addr.raw);
b_tbl = mmuB2tmgr(b_dte);
if (wired && !b_tbl->bt_wcnt) {
/* If mapping is wired and table is not */
TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
a_tbl->at_wcnt++; /* Update parent table's wired
* entry count. */
}
} else {
b_tbl = get_b_table(); /* No, need to allocate a new B table */
/* Point the parent A table descriptor to this new B table. */
a_dte->addr.raw = (unsigned long) mmu_vtop(b_tbl->bt_dtbl);
a_dte->attr.attr_struct.dt = MMU_DT_SHORT;
/* Create the necessary back references to the parent table */
b_tbl->bt_parent = a_tbl;
b_tbl->bt_pidx = a_idx;
/* If this table is to be wired, make sure the parent A table
* wired count is updated to reflect that it has another wired
* entry.
*/
a_tbl->at_ecnt++; /* Update parent's valid entry count */
if (wired)
a_tbl->at_wcnt++;
else if (llevel == NONE)
llevel = NEWB;
}
/* Step 3 - Walk into the C table, if there is no valid C table,
* allocate one.
*/
b_idx = MMU_TIB(va); /* Calculate the TIB of the VA */
b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
if (MMU_VALID_DT(*b_dte)) { /* Is the descriptor valid? */
/* Yes, it points to a valid C table. Use it. */
/**************************************
* c_idx *
* | v *
* \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
* | | | | | | | | | | | *
* +-+-+-+-+-+-+-+-+-+-+- *
* | *
* \- c_tbl -> +-+-- *
* | | | *
* +-+-- *
**************************************/
c_pte = (mmu_short_pte_t *) MMU_PTE_PA(*b_dte);
c_pte = (mmu_short_pte_t *) mmu_ptov(c_pte);
c_tbl = mmuC2tmgr(c_pte);
if (wired && !c_tbl->ct_wcnt) {
/* If mapping is wired and table is not */
TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
b_tbl->bt_wcnt++;
}
} else {
c_tbl = get_c_table(); /* No, need to allocate a new C table */
/* Point the parent B table descriptor to this new C table. */
b_dte->attr.raw = (unsigned long) mmu_vtop(c_tbl->ct_dtbl);
b_dte->attr.attr_struct.dt = MMU_DT_SHORT;
/* Create the necessary back references to the parent table */
c_tbl->ct_parent = b_tbl;
c_tbl->ct_pidx = b_idx;
/* If this table is to be wired, make sure the parent B table
* wired count is updated to reflect that it has another wired
* entry.
*/
b_tbl->bt_ecnt++; /* Update parent's valid entry count */
if (wired)
b_tbl->bt_wcnt++;
else if (llevel == NONE)
llevel = NEWC;
}
/* Step 4 - Deposit a page descriptor (PTE) into the appropriate
* slot of the C table, describing the PA to which the VA is mapped.
*/
pte_idx = MMU_TIC(va);
c_pte = &c_tbl->ct_dtbl[pte_idx];
if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
/* If the PTE is currently valid, then this function call
* is just a synonym for one (or more) of the following
* operations:
* change protections on a page
* change wiring status of a page
* remove the mapping of a page
*/
/* Is the new address the same as the old? */
if (MMU_PTE_PA(*c_pte) == pa) {
/* Yes, do nothing. */
} else {
/* No, remove the old entry */
pmap_remove_pte(c_pte);
}
} else {
/* No, update the valid entry count in the C table */
c_tbl->ct_ecnt++;
/* and in pmap */
pmap->pm_stats.resident_count++;
}
/* Map the page. */
c_pte->attr.raw = ((unsigned long) pa | MMU_DT_PAGE);
if (wired) /* Does the entry need to be wired? */ {
c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
}
/* If the physical address being mapped is managed by the PV
* system then link the pte into the list of pages mapped to that
* address.
*/
if (is_managed(pa)) {
pv = pa2pv(pa);
pve = pte2pve(c_pte);
LIST_INSERT_HEAD(&pv->pv_head, pve, pve_link);
}
/* Move any allocated tables back into the active pool. */
switch (llevel) {
case NEWA:
TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
/* FALLTHROUGH */
case NEWB:
TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
/* FALLTHROUGH */
case NEWC:
TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
/* FALLTHROUGH */
default:
break;
}
}
/* pmap_enter_kernel INTERNAL
**
* Map the given virtual address to the given physical address within the
* kernel address space. This function exists because the kernel map does
* not do dynamic table allocation. It consists of a contiguous array of ptes
* and can be edited directly without the need to walk through any tables.
*
* XXX: "Danger, Will Robinson!"
* Note that the kernel should never take a fault on any page
* between [ KERNBASE .. virtual_avail ] and this is checked in
* trap.c for kernel-mode MMU faults. This means that mappings
* created in that range must be implicily wired. -gwr
*/
void
pmap_enter_kernel(va, pa, prot)
vm_offset_t va;
vm_offset_t pa;
vm_prot_t prot;
{
boolean_t was_valid = FALSE;
mmu_short_pte_t *pte;
/* XXX - This array is traditionally named "Sysmap" */
pte = &kernCbase[(unsigned long) sun3x_btop(va - KERNBASE)];
if (MMU_VALID_DT(*pte))
was_valid = TRUE;
pte->attr.raw = (pa | MMU_DT_PAGE);
if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
pte->attr.raw |= MMU_SHORT_PTE_WP;
if (pa & PMAP_NC)
pte->attr.raw |= MMU_SHORT_PTE_CI;
if (was_valid) {
/* mmu_flusha(FC_SUPERD, va); */
/* mmu_flusha(); */
TBIA();
}
}
/* pmap_protect INTERFACE
**
* Apply the given protection to the given virtual address within
* the given map.
*
* It is ok for the protection applied to be stronger than what is
* specified. We use this to our advantage when the given map has no
* mapping for the virtual address. By returning immediately when this
* is discovered, we are effectively applying a protection of VM_PROT_NONE,
* and therefore do not need to map the page just to apply a protection
* code. Only pmap_enter() needs to create new mappings if they do not exist.
*/
void
pmap_protect(pmap, va, pa, prot)
pmap_t pmap;
vm_offset_t va, pa;
vm_prot_t prot;
{
int a_idx, b_idx, c_idx;
a_tmgr_t *a_tbl;
b_tmgr_t *b_tbl;
c_tmgr_t *c_tbl;
mmu_short_pte_t *pte;
if (pmap == NULL)
return;
if (pmap == pmap_kernel()) {
pmap_protect_kernel(va, pa, prot);
return;
}
/* Retrieve the mapping from the given pmap. If it does
* not exist then we need not do anything more.
*/
if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte,
&a_idx, &b_idx, &c_idx) == FALSE) {
return;
}
switch (prot) {
case VM_PROT_ALL:
/* this should never happen in a sane system */
break;
case VM_PROT_READ:
case VM_PROT_READ|VM_PROT_EXECUTE:
/* make the mapping read-only */
pte->attr.raw |= MMU_SHORT_PTE_WP;
break;
case VM_PROT_NONE:
/* this is an alias for 'pmap_remove' */
pmap_dereference_pte(pte);
break;
default:
break;
}
}
/* pmap_protect_kernel INTERNAL
**
* Apply the given protection code to a kernel address mapping.
*/
void
pmap_protect_kernel(va, pa, prot)
vm_offset_t va, pa;
vm_prot_t prot;
{
mmu_short_pte_t *pte;
pte = &kernCbase[(unsigned long) sun3x_btop(va - KERNBASE)];
if (MMU_VALID_DT(*pte)) {
switch (prot) {
case VM_PROT_ALL:
break;
case VM_PROT_READ:
case VM_PROT_READ|VM_PROT_EXECUTE:
pte->attr.raw |= MMU_SHORT_PTE_WP;
break;
case VM_PROT_NONE:
/* this is an alias for 'pmap_remove_kernel' */
pte->attr.raw = MMU_DT_INVALID;
break;
default:
break;
}
}
/* since this is the kernel, immediately flush any cached
* descriptors for this address.
*/
/* mmu_flush(FC_SUPERD, va); */
TBIS(va);
}
/* pmap_change_wiring INTERFACE
**
* Changes the wiring of the specified page.
*
* This function is called from vm_fault.c to unwire
* a mapping. It really should be called 'pmap_unwire'
* because it is never asked to do anything but remove
* wirings.
*/
void
pmap_change_wiring(pmap, va, wire)
pmap_t pmap;
vm_offset_t va;
boolean_t wire;
{
int a_idx, b_idx, c_idx;
a_tmgr_t *a_tbl;
b_tmgr_t *b_tbl;
c_tmgr_t *c_tbl;
mmu_short_pte_t *pte;
/* Kernel mappings always remain wired. */
if (pmap == pmap_kernel())
return;
#ifdef PMAP_DEBUG
if (wire == TRUE)
panic("pmap_change_wiring: wire requested.");
#endif
/* Walk through the tables. If the walk terminates without
* a valid PTE then the address wasn't wired in the first place.
* Return immediately.
*/
if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
&b_idx, &c_idx) == FALSE)
return;
/* Is the PTE wired? If not, return. */
if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
return;
/* Remove the wiring bit. */
pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);
/* Decrement the wired entry count in the C table.
* If it reaches zero the following things happen:
* 1. The table no longer has any wired entries and is considered
* unwired.
* 2. It is placed on the available queue.
* 3. The parent table's wired entry count is decremented.
* 4. If it reaches zero, this process repeats at step 1 and
* stops at after reaching the A table.
*/
if (c_tbl->ct_wcnt-- == 0) {
TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
if (b_tbl->bt_wcnt-- == 0) {
TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
if (a_tbl->at_wcnt-- == 0) {
TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
}
}
}
pmap->pm_stats.wired_count--;
}
/* pmap_pageable INTERFACE
**
* Make the specified range of addresses within the given pmap,
* 'pageable' or 'not-pageable'. A pageable page must not cause
* any faults when referenced. A non-pageable page may.
*
* This routine is only advisory. The VM system will call pmap_enter()
* to wire or unwire pages that are going to be made pageable before calling
* this function. By the time this routine is called, everything that needs
* to be done has already been done.
*/
void
pmap_pageable(pmap, start, end, pageable)
pmap_t pmap;
vm_offset_t start, end;
boolean_t pageable;
{
/* not implemented. */
}
/* pmap_copy INTERFACE
**
* Copy the mappings of a range of addresses in one pmap, into
* the destination address of another.
*
* This routine is advisory. Should we one day decide that MMU tables
* may be shared by more than one pmap, this function should be used to
* link them together. Until that day however, we do nothing.
*/
void
pmap_copy(pmap_a, pmap_b, dst, len, src)
pmap_t pmap_a, pmap_b;
vm_offset_t dst;
vm_size_t len;
vm_offset_t src;
{
/* not implemented. */
}
/* pmap_copy_page INTERFACE
**
* Copy the contents of one physical page into another.
*
* This function makes use of two virtual pages allocated in sun3x_vm_init()
* (found in _startup.c) to map the two specified physical pages into the
* kernel address space. It then uses bcopy() to copy one into the other.
*/
void
pmap_copy_page(src, dst)
vm_offset_t src, dst;
{
PMAP_LOCK();
if (tmp_vpages_inuse)
panic("pmap_copy_page: temporary vpages are in use.");
tmp_vpages_inuse++;
pmap_enter_kernel(tmp_vpages[0], src, VM_PROT_READ);
pmap_enter_kernel(tmp_vpages[1], dst, VM_PROT_READ|VM_PROT_WRITE);
copypage((char *) tmp_vpages[1], (char *) tmp_vpages[0]);
/* xxx - there's no real need to unmap the mappings is there? */
tmp_vpages_inuse--;
PMAP_UNLOCK();
}
/* pmap_zero_page INTERFACE
**
* Zero the contents of the specified physical page.
*
* Uses one of the virtual pages allocated in sun3x_vm_init() (_startup.c)
* to map the specified page into the kernel address space. Then uses
* bzero() to zero out the page.
*/
void
pmap_zero_page(pa)
vm_offset_t pa;
{
PMAP_LOCK();
if (tmp_vpages_inuse)
panic("pmap_zero_page: temporary vpages are in use.");
tmp_vpages_inuse++;
pmap_enter_kernel(tmp_vpages[0], pa, VM_PROT_READ|VM_PROT_WRITE);
zeropage((char *) tmp_vpages[0]);
/* xxx - there's no real need to unmap the mapping is there? */
tmp_vpages_inuse--;
PMAP_UNLOCK();
}
/* pmap_collect INTERFACE
**
* Called from the VM system to collect unused pages in the given
* pmap.
*
* No one implements it, so I'm not even sure how it is supposed to
* 'collect' anything anyways. There's nothing to do but do what everyone
* else does..
*/
void
pmap_collect(pmap)
pmap_t pmap;
{
/* not implemented. */
}
/* pmap_create INTERFACE
**
* Create and return a pmap structure.
*/
pmap_t
pmap_create(size)
vm_size_t size;
{
pmap_t pmap;
if (size)
return NULL;
pmap = (pmap_t) malloc(sizeof(struct pmap), M_VMPMAP, M_WAITOK);
pmap_pinit(pmap);
return pmap;
}
/* pmap_pinit INTERNAL
**
* Initialize a pmap structure.
*/
void
pmap_pinit(pmap)
pmap_t pmap;
{
bzero(pmap, sizeof(struct pmap));
pmap->pm_a_tbl = proc0Atmgr;
}
/* pmap_release INTERFACE
**
* Release any resources held by the given pmap.
*
* This is the reverse analog to pmap_pinit. It does not
* necessarily mean for the pmap structure to be deallocated,
* as in pmap_destroy.
*/
void
pmap_release(pmap)
pmap_t pmap;
{
/* As long as the pmap contains no mappings,
* which always should be the case whenever
* this function is called, there really should
* be nothing to do.
*/
#ifdef PMAP_DEBUG
if (pmap == NULL)
return;
if (pmap == pmap_kernel())
panic("pmap_release: kernel pmap release requested.");
if (pmap->pm_a_tbl != proc0Atmgr)
panic("pmap_release: pmap not empty.");
#endif
}
/* pmap_reference INTERFACE
**
* Increment the reference count of a pmap.
*/
void
pmap_reference(pmap)
pmap_t pmap;
{
if (pmap == NULL)
return;
/* pmap_lock(pmap); */
pmap->pm_refcount++;
/* pmap_unlock(pmap); */
}
/* pmap_dereference INTERNAL
**
* Decrease the reference count on the given pmap
* by one and return the current count.
*/
int
pmap_dereference(pmap)
pmap_t pmap;
{
int rtn;
if (pmap == NULL)
return 0;
/* pmap_lock(pmap); */
rtn = --pmap->pm_refcount;
/* pmap_unlock(pmap); */
return rtn;
}
/* pmap_destroy INTERFACE
**
* Decrement a pmap's reference count and delete
* the pmap if it becomes zero. Will be called
* only after all mappings have been removed.
*/
void
pmap_destroy(pmap)
pmap_t pmap;
{
if (pmap == NULL)
return;
if (pmap == &kernel_pmap)
panic("pmap_destroy: kernel_pmap!");
if (pmap_dereference(pmap) == 0) {
pmap_release(pmap);
free(pmap, M_VMPMAP);
}
}
/* pmap_is_referenced INTERFACE
**
* Determine if the given physical page has been
* referenced (read from [or written to.])
*/
boolean_t
pmap_is_referenced(pa)
vm_offset_t pa;
{
pv_t *pv;
pv_elem_t *pve;
struct mmu_short_pte_struct *pte;
if (!pv_initialized)
return FALSE;
if (!is_managed(pa))
return FALSE;
pv = pa2pv(pa);
/* Check the flags on the pv head. If they are set,
* return immediately. Otherwise a search must be done.
*/
if (pv->pv_flags & PV_FLAGS_USED)
return TRUE;
else
/* Search through all pv elements pointing
* to this page and query their reference bits
*/
for (pve = pv->pv_head.lh_first;
pve != NULL;
pve = pve->pve_link.le_next) {
pte = pve2pte(pve);
if (MMU_PTE_USED(*pte))
return TRUE;
}
return FALSE;
}
/* pmap_is_modified INTERFACE
**
* Determine if the given physical page has been
* modified (written to.)
*/
boolean_t
pmap_is_modified(pa)
vm_offset_t pa;
{
pv_t *pv;
pv_elem_t *pve;
if (!pv_initialized)
return FALSE;
if (!is_managed(pa))
return FALSE;
/* see comments in pmap_is_referenced() */
pv = pa2pv(pa);
if (pv->pv_flags & PV_FLAGS_MDFY)
return TRUE;
else
for (pve = pv->pv_head.lh_first; pve != NULL;
pve = pve->pve_link.le_next) {
struct mmu_short_pte_struct *pte;
pte = pve2pte(pve);
if (MMU_PTE_MODIFIED(*pte))
return TRUE;
}
return FALSE;
}
/* pmap_page_protect INTERFACE
**
* Applies the given protection to all mappings to the given
* physical page.
*/
void
pmap_page_protect(pa, prot)
vm_offset_t pa;
vm_prot_t prot;
{
pv_t *pv;
pv_elem_t *pve;
struct mmu_short_pte_struct *pte;
if (!is_managed(pa))
return;
pv = pa2pv(pa);
for (pve = pv->pv_head.lh_first; pve != NULL;
pve = pve->pve_link.le_next) {
pte = pve2pte(pve);
switch (prot) {
case VM_PROT_ALL:
/* do nothing */
break;
case VM_PROT_READ:
case VM_PROT_READ|VM_PROT_EXECUTE:
pte->attr.raw |= MMU_SHORT_PTE_WP;
break;
case VM_PROT_NONE:
pmap_dereference_pte(pte);
break;
default:
break;
}
}
}
/* pmap_who_owns_pte INTERNAL
**
* Called internally to find which pmap the given pte is
* a member of.
*/
pmap_t
pmap_who_owns_pte(pte)
mmu_short_pte_t *pte;
{
c_tmgr_t *c_tbl;
c_tbl = pmap_find_c_tmgr(pte);
return c_tbl->ct_parent->bt_parent->at_parent;
}
/* pmap_find_va INTERNAL_X
**
* Called internally to find the virtual address that the
* given pte maps.
*
* Note: I don't know if this function will ever be used, but I've
* implemented it just in case.
*/
vm_offset_t
pmap_find_va(pte)
mmu_short_pte_t *pte;
{
a_tmgr_t *a_tbl;
b_tmgr_t *b_tbl;
c_tmgr_t *c_tbl;
vm_offset_t va = 0;
/* Find the virtual address by decoding table indexes.
* Each successive decode will reveal the address from
* least to most significant bit fashion.
*
* 31 0
* +-------------------------------+
* |AAAAAAABBBBBBCCCCCCxxxxxxxxxxxx|
* +-------------------------------+
*
* Start with the 'C' bits.
*/
va |= (pmap_find_tic(pte) << MMU_TIC_SHIFT);
c_tbl = pmap_find_c_tmgr(pte);
b_tbl = c_tbl->ct_parent;
/* Add the 'B' bits. */
va |= (c_tbl->ct_pidx << MMU_TIB_SHIFT);
a_tbl = b_tbl->bt_parent;
/* Add the 'A' bits. */
va |= (b_tbl->bt_pidx << MMU_TIA_SHIFT);
return va;
}
/**** These functions should be removed. Structures have changed, making ****
**** them uneccessary. ****/
/* pmap_find_tic INTERNAL
**
* Given the address of a pte, find the TIC (level 'C' table index) for
* the pte within its C table.
*/
char
pmap_find_tic(pte)
mmu_short_pte_t *pte;
{
return ((mmuCbase - pte) % MMU_C_TBL_SIZE);
}
/* pmap_find_tib INTERNAL
**
* Given the address of dte known to belong to a B table, find the TIB
* (level 'B' table index) for the dte within its table.
*/
char
pmap_find_tib(dte)
mmu_short_dte_t *dte;
{
return ((mmuBbase - dte) % MMU_B_TBL_SIZE);
}
/* pmap_find_tia INTERNAL
**
* Given the address of a dte known to belong to an A table, find the
* TIA (level 'C' table index) for the dte withing its table.
*/
char
pmap_find_tia(dte)
mmu_long_dte_t *dte;
{
return ((mmuAbase - dte) % MMU_A_TBL_SIZE);
}
/**** This one should stay ****/
/* pmap_find_c_tmgr INTERNAL
**
* Given a pte known to belong to a C table, return the address of that
* table's management structure.
*/
c_tmgr_t *
pmap_find_c_tmgr(pte)
mmu_short_pte_t *pte;
{
return &Ctmgrbase[
((mmuCbase - pte) / sizeof(*pte) / MMU_C_TBL_SIZE)
];
}
/* pmap_find_b_tmgr INTERNAL
**
* Given a dte known to belong to a B table, return the address of that
* table's management structure.
*/
b_tmgr_t *
pmap_find_b_tmgr(dte)
mmu_short_dte_t *dte;
{
return &Btmgrbase[
((mmuBbase - dte) / sizeof(*dte) / MMU_B_TBL_SIZE)
];
}
/* pmap_find_a_tmgr INTERNAL
**
* Given a dte known to belong to an A table, return the address of that
* table's management structure.
*/
a_tmgr_t *
pmap_find_a_tmgr(dte)
mmu_long_dte_t *dte;
{
return &Atmgrbase[
((mmuAbase - dte) / sizeof(*dte) / MMU_A_TBL_SIZE)
];
}
/**** End of functions that should be removed. ****
**** ****/
/* pmap_clear_modify INTERFACE
**
* Clear the modification bit on the page at the specified
* physical address.
*
*/
void
pmap_clear_modify(pa)
vm_offset_t pa;
{
pmap_clear_pv(pa, PV_FLAGS_MDFY);
}
/* pmap_clear_reference INTERFACE
**
* Clear the referenced bit on the page at the specified
* physical address.
*/
void
pmap_clear_reference(pa)
vm_offset_t pa;
{
pmap_clear_pv(pa, PV_FLAGS_USED);
}
/* pmap_clear_pv INTERNAL
**
* Clears the specified flag from the specified physical address.
* (Used by pmap_clear_modify() and pmap_clear_reference().)
*
* Flag is one of:
* PV_FLAGS_MDFY - Page modified bit.
* PV_FLAGS_USED - Page used (referenced) bit.
*
* This routine must not only clear the flag on the pv list
* head. It must also clear the bit on every pte in the pv
* list associated with the address.
*/
void
pmap_clear_pv(pa, flag)
vm_offset_t pa;
int flag;
{
pv_t *pv;
pv_elem_t *pve;
mmu_short_pte_t *pte;
pv = pa2pv(pa);
pv->pv_flags &= ~(flag);
for (pve = pv->pv_head.lh_first; pve != NULL;
pve = pve->pve_link.le_next) {
pte = pve2pte(pve);
pte->attr.raw &= ~(flag);
}
}
/* pmap_extract INTERFACE
**
* Return the physical address mapped by the virtual address
* in the specified pmap or 0 if it is not known.
*
* Note: this function should also apply an exclusive lock
* on the pmap system during its duration.
*/
vm_offset_t
pmap_extract(pmap, va)
pmap_t pmap;
vm_offset_t va;
{
int a_idx, b_idx, pte_idx;
a_tmgr_t *a_tbl;
b_tmgr_t *b_tbl;
c_tmgr_t *c_tbl;
mmu_short_pte_t *c_pte;
if (pmap == pmap_kernel())
return pmap_extract_kernel(va);
if (pmap == NULL)
return 0;
if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
&c_pte, &a_idx, &b_idx, &pte_idx) == FALSE);
return 0;
if (MMU_VALID_DT(*c_pte))
return MMU_PTE_PA(*c_pte);
else
return 0;
}
/* pmap_extract_kernel INTERNAL
**
* Extract a traslation from the kernel address space.
*/
vm_offset_t
pmap_extract_kernel(va)
vm_offset_t va;
{
mmu_short_pte_t *pte;
pte = &kernCbase[(unsigned long) sun3x_btop(va - KERNBASE)];
return MMU_PTE_PA(*pte);
}
/* pmap_remove_kernel INTERNAL
**
* Remove the mapping of a range of virtual addresses from the kernel map.
*/
void
pmap_remove_kernel(start, end)
vm_offset_t start;
vm_offset_t end;
{
start -= KERNBASE;
end -= KERNBASE;
start = sun3x_round_page(start); /* round down */
start = sun3x_btop(start);
end += MMU_PAGE_SIZE - 1; /* next round operation will be up */
end = sun3x_round_page(end); /* round */
end = sun3x_btop(end);
while (start < end)
kernCbase[start++].attr.raw = MMU_DT_INVALID;
}
/* pmap_remove INTERFACE
**
* Remove the mapping of a range of virtual addresses from the given pmap.
*/
void
pmap_remove(pmap, start, end)
pmap_t pmap;
vm_offset_t start;
vm_offset_t end;
{
if (pmap == pmap_kernel()) {
pmap_remove_kernel(start, end);
return;
}
pmap_remove_a(pmap->pm_a_tbl, start, end);
/* If we just modified the current address space,
* make sure to flush the MMU cache.
*/
if (curatbl == pmap->pm_a_tbl) {
/* mmu_flusha(); */
TBIA();
}
}
/* pmap_remove_a INTERNAL
**
* This is function number one in a set of three that removes a range
* of memory in the most efficient manner by removing the highest possible
* tables from the memory space. This particular function attempts to remove
* as many B tables as it can, delegating the remaining fragmented ranges to
* pmap_remove_b().
*
* It's ugly but will do for now.
*/
void
pmap_remove_a(a_tbl, start, end)
a_tmgr_t *a_tbl;
vm_offset_t start;
vm_offset_t end;
{
int idx;
vm_offset_t nstart, nend, rstart;
b_tmgr_t *b_tbl;
mmu_long_dte_t *a_dte;
mmu_short_dte_t *b_dte;
if (a_tbl == proc0Atmgr) /* If the pmap has no A table, return */
return;
nstart = MMU_ROUND_UP_A(start);
nend = MMU_ROUND_A(end);
if (start < nstart) {
idx = MMU_TIA(start);
a_dte = &a_tbl->at_dtbl[idx];
if (MMU_VALID_DT(*a_dte)) {
b_dte = (mmu_short_dte_t *) MMU_DTE_PA(*a_dte);
b_dte = (mmu_short_dte_t *) mmu_ptov(b_dte);
b_tbl = mmuB2tmgr(b_dte);
if (end < nstart) {
pmap_remove_b(b_tbl, start, end);
return;
} else {
pmap_remove_b(b_tbl, start, nstart);
}
} else if (end < nstart) {
return;
}
}
if (nstart < nend) {
idx = MMU_TIA(nstart);
a_dte = &a_tbl->at_dtbl[idx];
rstart = nstart;
while (rstart < nend) {
if (MMU_VALID_DT(*a_dte)) {
b_dte = (mmu_short_dte_t *) MMU_DTE_PA(*a_dte);
b_dte = (mmu_short_dte_t *) mmu_ptov(b_dte);
b_tbl = mmuB2tmgr(b_dte);
a_dte->attr.raw = MMU_DT_INVALID;
a_tbl->at_ecnt--;
free_b_table(b_tbl);
TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
}
a_dte++;
rstart += MMU_TIA_RANGE;
}
}
if (nend < end) {
idx = MMU_TIA(nend);
a_dte = &a_tbl->at_dtbl[idx];
if (MMU_VALID_DT(*a_dte)) {
b_dte = (mmu_short_dte_t *) MMU_DTE_PA(*a_dte);
b_dte = (mmu_short_dte_t *) mmu_ptov(b_dte);
b_tbl = mmuB2tmgr(b_dte);
pmap_remove_b(b_tbl, nend, end);
}
}
}
/* pmap_remove_b INTERNAL
**
* Remove a range of addresses from an address space, trying to remove entire
* C tables if possible.
*/
void
pmap_remove_b(b_tbl, start, end)
b_tmgr_t *b_tbl;
vm_offset_t start;
vm_offset_t end;
{
int idx;
vm_offset_t nstart, nend, rstart;
c_tmgr_t *c_tbl;
mmu_short_dte_t *b_dte;
mmu_short_pte_t *c_dte;
nstart = MMU_ROUND_UP_B(start);
nend = MMU_ROUND_B(end);
if (start < nstart) {
idx = MMU_TIB(start);
b_dte = &b_tbl->bt_dtbl[idx];
if (MMU_VALID_DT(*b_dte)) {
c_dte = (mmu_short_pte_t *) MMU_DTE_PA(*b_dte);
c_dte = (mmu_short_pte_t *) mmu_ptov(c_dte);
c_tbl = mmuC2tmgr(c_dte);
if (end < nstart) {
pmap_remove_c(c_tbl, start, end);
return;
} else {
pmap_remove_c(c_tbl, start, nstart);
}
} else if (end < nstart) {
return;
}
}
if (nstart < nend) {
idx = MMU_TIB(nstart);
b_dte = &b_tbl->bt_dtbl[idx];
rstart = nstart;
while (rstart < nend) {
if (MMU_VALID_DT(*b_dte)) {
c_dte = (mmu_short_pte_t *) MMU_DTE_PA(*b_dte);
c_dte = (mmu_short_pte_t *) mmu_ptov(c_dte);
c_tbl = mmuC2tmgr(c_dte);
b_dte->attr.raw = MMU_DT_INVALID;
b_tbl->bt_ecnt--;
free_c_table(c_tbl);
TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
}
b_dte++;
rstart += MMU_TIB_RANGE;
}
}
if (nend < end) {
idx = MMU_TIB(nend);
b_dte = &b_tbl->bt_dtbl[idx];
if (MMU_VALID_DT(*b_dte)) {
c_dte = (mmu_short_pte_t *) MMU_DTE_PA(*b_dte);
c_dte = (mmu_short_pte_t *) mmu_ptov(c_dte);
c_tbl = mmuC2tmgr(c_dte);
pmap_remove_c(c_tbl, nend, end);
}
}
}
/* pmap_remove_c INTERNAL
**
* Remove a range of addresses from the given C table.
*/
void
pmap_remove_c(c_tbl, start, end)
c_tmgr_t *c_tbl;
vm_offset_t start;
vm_offset_t end;
{
int idx;
mmu_short_pte_t *c_pte;
idx = MMU_TIC(start);
c_pte = &c_tbl->ct_dtbl[idx];
while (start < end) {
if (MMU_VALID_DT(*c_pte))
pmap_remove_pte(c_pte);
c_tbl->ct_ecnt--;
start += MMU_PAGE_SIZE;
c_pte++;
}
}
/* is_managed INTERNAL
**
* Determine if the given physical address is managed by the PV system.
* Note that this logic assumes that no one will ask for the status of
* addresses which lie in-between the memory banks on the 3/80. If they
* do so, it will falsely report that it is managed.
*/
boolean_t
is_managed(pa)
vm_offset_t pa;
{
if (pa >= avail_start && pa < avail_end)
return TRUE;
else
return FALSE;
}
/* pa2pv INTERNAL
**
* Return the pv_list_head element which manages the given physical
* address.
*/
pv_t *
pa2pv(pa)
vm_offset_t pa;
{
struct pmap_physmem_struct *bank = &avail_mem[0];
while (pa >= bank->pmem_end)
bank = bank->pmem_next;
pa -= bank->pmem_start;
return &pvbase[bank->pmem_pvbase + sun3x_btop(pa)];
}
/* pmap_bootstrap_alloc INTERNAL
**
* Used internally for memory allocation at startup when malloc is not
* available. This code will fail once it crosses the first memory
* bank boundary on the 3/80. Hopefully by then however, the VM system
* will be in charge of allocation.
*/
void *
pmap_bootstrap_alloc(size)
int size;
{
void *rtn;
rtn = (void *) virtual_avail;
/* While the size is greater than a page, map single pages,
* decreasing size until it is less than a page.
*/
while (size > NBPG) {
(void) pmap_bootstrap_alloc(NBPG);
/* If the above code is ok, let's keep it.
* It looks cooler than:
* virtual_avail += NBPG;
* avail_start += NBPG;
* last_mapped = sun3x_trunc_page(avail_start);
* pmap_enter_kernel(last_mapped, last_mapped + KERNBASE,
* VM_PROT_READ|VM_PROT_WRITE);
*/
size -= NBPG;
}
avail_start += size;
virtual_avail += size;
/* did the allocation cross a page boundary? */
if (last_mapped != sun3x_trunc_page(avail_start)) {
last_mapped = sun3x_trunc_page(avail_start);
pmap_enter_kernel(last_mapped + KERNBASE, last_mapped,
VM_PROT_READ|VM_PROT_WRITE);
}
return rtn;
}
/* pmap_bootstap_aalign INTERNAL
**
* Used to insure that the next call to pmap_bootstrap_alloc() will return
* a chunk of memory aligned to the specified size.
*/
void
pmap_bootstrap_aalign(size)
int size;
{
if (((unsigned int) avail_start % size) != 0) {
(void) pmap_bootstrap_alloc(size -
((unsigned int) (avail_start % size)));
}
}
#if 0
/* pmap_activate INTERFACE
**
* Make the virtual to physical mappings contained in the given
* pmap the current map used by the system.
*/
void
pmap_activate(pmap, pcbp)
pmap_t pmap;
struct pcb *pcbp;
{
vm_offset_t pa;
/* Save the A table being loaded in 'curatbl'.
* pmap_remove() uses this variable to determine if a given A
* table is currently being used as the system map. If so, it
* will issue an MMU cache flush whenever mappings are removed.
*/
curatbl = pmap->pm_a_tbl;
/* call the locore routine to set the user root pointer table */
pa = mmu_vtop(pmap->pm_a_tbl->at_dtbl);
mmu_seturp(pa);
}
#endif
/* pmap_pa_exists
**
* Used by the /dev/mem driver to see if a given PA is memory
* that can be mapped. (The PA is not in a hole.)
*/
int
pmap_pa_exists(pa)
vm_offset_t pa;
{
/* XXX - NOTYET */
return (0);
}
/* pmap_update
**
* Apply any delayed changes scheduled for all pmaps immediately.
*
* No delayed operations are currently done in this pmap.
*/
void
pmap_update()
{
/* not implemented. */
}
/* pmap_virtual_space INTERFACE
**
* Return the current available range of virtual addresses in the
* arguuments provided. Only really called once.
*/
void
pmap_virtual_space(vstart, vend)
vm_offset_t *vstart, *vend;
{
*vstart = virtual_avail;
*vend = virtual_end;
}
/* pmap_free_pages INTERFACE
**
* Return the number of physical pages still available.
*
* This is probably going to be a mess, but it's only called
* once and it's the only function left that I have to implement!
*/
u_int
pmap_free_pages()
{
int i;
u_int left;
vm_offset_t avail;
avail = sun3x_round_up_page(avail_start);
left = 0;
i = 0;
while (avail >= avail_mem[i].pmem_end) {
if (avail_mem[i].pmem_next == NULL)
return 0;
i++;
}
while (i < SUN3X_80_MEM_BANKS) {
if (avail < avail_mem[i].pmem_start) {
/* Avail is inside a hole, march it
* up to the next bank.
*/
avail = avail_mem[i].pmem_start;
}
left += sun3x_btop(avail_mem[i].pmem_end - avail);
if (avail_mem[i].pmem_next == NULL)
break;
i++;
}
return left;
}
/* pmap_page_index INTERFACE
**
* Return the index of the given physical page in a list of useable
* physical pages in the system. Holes in physical memory may be counted
* if so desired. As long as pmap_free_pages() and pmap_page_index()
* agree as to whether holes in memory do or do not count as valid pages,
* it really doesn't matter. However, if you like to save a little
* memory, don't count holes as valid pages. This is even more true when
* the holes are large.
*
* We will not count holes as valid pages. We can generate page indexes
* that conform to this by using the memory bank structures initialized
* in pmap_alloc_pv().
*/
int
pmap_page_index(pa)
vm_offset_t pa;
{
struct pmap_physmem_struct *bank = avail_mem;
while (pa > bank->pmem_end)
bank = bank->pmem_next;
pa -= bank->pmem_start;
return (bank->pmem_pvbase + sun3x_btop(pa));
}
/* pmap_next_page INTERFACE
**
* Place the physical address of the next available page in the
* argument given. Returns FALSE if there are no more pages left.
*
* This function must jump over any holes in physical memory.
* Once this function is used, any use of pmap_bootstrap_alloc()
* is a sin. Sinners will be punished with erratic behavior.
*/
boolean_t
pmap_next_page(pa)
vm_offset_t *pa;
{
static boolean_t initialized = FALSE;
static struct pmap_physmem_struct *curbank = avail_mem;
if (!initialized) {
pmap_bootstrap_aalign(NBPG);
initialized = TRUE;
}
if (avail_start >= curbank->pmem_end)
if (curbank->pmem_next == NULL)
return FALSE;
else {
curbank = curbank->pmem_next;
avail_start = curbank->pmem_start;
}
*pa = avail_start;
avail_start += NBPG;
return TRUE;
}
/************************ SUN3 COMPATIBILITY ROUTINES ********************
* The following routines are only used by DDB for tricky kernel text *
* text operations in db_memrw.c. They are provided for sun3 *
* compatibility. *
*************************************************************************/
/* get_pte INTERNAL
**
* Return the page descriptor the describes the kernel mapping
* of the given virtual address.
*
* XXX - It might be nice if this worked outside of the MMU
* structures we manage. (Could do it with ptest). -gwr
*/
vm_offset_t
get_pte(va)
vm_offset_t va;
{
u_long idx;
idx = (unsigned long) sun3x_btop(mmu_vtop(va));
return (kernCbase[idx].attr.raw);
}
/* set_pte INTERNAL
**
* Set the page descriptor that describes the kernel mapping
* of the given virtual address.
*/
void
set_pte(va, pte)
vm_offset_t va;
vm_offset_t pte;
{
u_long idx;
idx = (unsigned long) sun3x_btop(mmu_vtop(va));
kernCbase[idx].attr.raw = pte;
}
#ifdef NOT_YET
/* and maybe not ever */
/************************** LOW-LEVEL ROUTINES **************************
* These routines will eventualy be re-written into assembly and placed *
* in locore.s. They are here now as stubs so that the pmap module can *
* be linked as a standalone user program for testing. *
************************************************************************/
/* flush_atc_crp INTERNAL
**
* Flush all page descriptors derived from the given CPU Root Pointer
* (CRP), or 'A' table as it is known here, from the 68851's automatic
* cache.
*/
void
flush_atc_crp(a_tbl)
{
mmu_long_rp_t rp;
/* Create a temporary root table pointer that points to the
* given A table.
*/
rp.attr.raw = ~MMU_LONG_RP_LU;
rp.addr.raw = (unsigned int) a_tbl;
mmu_pflushr(&rp);
/* mmu_pflushr:
* movel sp(4)@,a0
* pflushr a0@
* rts
*/
}
#endif /* NOT_YET */