5194905263
with bus_space(9) support. Note clock device name in obio.sun3 is renamed to oclock to use the same MI attribute (intersil7170) with sun3x. Tested on 3/80 and TME emulating 3/120 (but not on 3/4xx VME monsters).
453 lines
13 KiB
C
453 lines
13 KiB
C
/* $NetBSD: clock.c,v 1.32 2006/10/04 15:14:49 tsutsui Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1990, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the Systems Programming Group of the University of Utah Computer
|
|
* Science Department.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: Utah Hdr: clock.c 1.18 91/01/21$
|
|
* from: @(#)clock.c 8.2 (Berkeley) 1/12/94
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1994 Gordon W. Ross
|
|
* Copyright (c) 1993 Adam Glass
|
|
* Copyright (c) 1988 University of Utah.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the Systems Programming Group of the University of Utah Computer
|
|
* Science Department.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: Utah Hdr: clock.c 1.18 91/01/21$
|
|
* from: @(#)clock.c 8.2 (Berkeley) 1/12/94
|
|
*/
|
|
|
|
/*
|
|
* Machine-dependent clock routines. Sun3X machines may have
|
|
* either the Mostek 48T02 or the Intersil 7170 clock.
|
|
*
|
|
* It is tricky to determine which you have, because there is
|
|
* always something responding at the address where the Mostek
|
|
* clock might be found: either a Mostek or plain-old EEPROM.
|
|
* Therefore, we cheat. If we find an Intersil clock, assume
|
|
* that what responds at the end of the EEPROM space is just
|
|
* plain-old EEPROM (not a Mostek clock). Worse, there are
|
|
* H/W problems with probing for an Intersil on the 3/80, so
|
|
* on that machine we "know" there is a Mostek clock.
|
|
*
|
|
* Note that the probing algorithm described above requires
|
|
* that we probe the intersil before we probe the mostek!
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: clock.c,v 1.32 2006/10/04 15:14:49 tsutsui Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <m68k/asm_single.h>
|
|
|
|
#include <machine/autoconf.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/idprom.h>
|
|
#include <machine/leds.h>
|
|
|
|
#include <dev/clock_subr.h>
|
|
#include <dev/ic/intersil7170reg.h>
|
|
#include <dev/ic/intersil7170var.h>
|
|
#include <dev/ic/mk48txxreg.h>
|
|
#include <dev/ic/mk48txxvar.h>
|
|
|
|
#include <sun3/sun3/machdep.h>
|
|
#include <sun3/sun3/interreg.h>
|
|
|
|
extern int intrcnt[];
|
|
|
|
#define SUN3_470 Yes
|
|
|
|
#define CLOCK_PRI 5
|
|
#define IREG_CLK_BITS (IREG_CLOCK_ENAB_7 | IREG_CLOCK_ENAB_5)
|
|
|
|
#define MKCLOCK_REG_OFFSET (MK48T02_CLKOFF + MK48TXX_ICSR)
|
|
|
|
/*
|
|
* Only one of these two variables should be non-zero after
|
|
* autoconfiguration determines which clock we have.
|
|
*/
|
|
static volatile void *intersil_va;
|
|
static volatile void *mostek_clk_va;
|
|
|
|
void _isr_clock(void); /* in locore.s */
|
|
void clock_intr(struct clockframe);
|
|
|
|
|
|
static int clock_match(struct device *, struct cfdata *, void *);
|
|
static void clock_attach(struct device *, struct device *, void *);
|
|
|
|
CFATTACH_DECL(clock, sizeof(struct mk48txx_softc),
|
|
clock_match, clock_attach, NULL, NULL);
|
|
|
|
#ifdef SUN3_470
|
|
|
|
#define intersil_clock ((volatile struct intersil7170 *)intersil_va)
|
|
|
|
#define intersil_clear() (void)intersil_clock->clk_intr_reg
|
|
|
|
static int oclock_match(struct device *, struct cfdata *, void *);
|
|
static void oclock_attach(struct device *, struct device *, void *);
|
|
|
|
CFATTACH_DECL(oclock, sizeof(struct intersil7170_softc),
|
|
oclock_match, oclock_attach, NULL, NULL);
|
|
|
|
|
|
/*
|
|
* Is there an intersil clock?
|
|
*/
|
|
static int
|
|
oclock_match(struct device *parent, struct cfdata *cf, void *aux)
|
|
{
|
|
struct confargs *ca = aux;
|
|
|
|
/* This driver only supports one unit. */
|
|
if (intersil_va)
|
|
return 0;
|
|
|
|
/*
|
|
* The 3/80 can not probe the Intersil absent,
|
|
* but it never has one, so "just say no."
|
|
*/
|
|
if (cpu_machine_id == ID_SUN3X_80)
|
|
return 0;
|
|
|
|
/* OK, really probe for the Intersil. */
|
|
if (bus_peek(ca->ca_bustype, ca->ca_paddr, 1) == -1)
|
|
return 0;
|
|
|
|
/* Default interrupt priority. */
|
|
if (ca->ca_intpri == -1)
|
|
ca->ca_intpri = CLOCK_PRI;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Attach the intersil clock.
|
|
*/
|
|
static void
|
|
oclock_attach(struct device *parent, struct device *self, void *aux)
|
|
{
|
|
struct confargs *ca = aux;
|
|
struct intersil7170_softc *sc = (void *)self;
|
|
|
|
/* Get a mapping for it. */
|
|
sc->sc_bst = ca->ca_bustag;
|
|
if (bus_space_map(sc->sc_bst, ca->ca_paddr, sizeof(struct intersil7170),
|
|
0, &sc->sc_bsh) != 0) {
|
|
printf(": can't map registers\n");
|
|
return;
|
|
}
|
|
|
|
intersil_va = bus_space_vaddr(sc->sc_bst, sc->sc_bsh);
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/* Verify correct probe order... */
|
|
if (mostek_clk_va) {
|
|
mostek_clk_va = NULL;
|
|
printf("%s: warning - mostek found also!\n", self->dv_xname);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Set the clock to the correct interrupt rate, but
|
|
* do not enable the interrupt until cpu_initclocks.
|
|
* XXX: Actually, the interrupt_reg should be zero
|
|
* at this point, so the clock interrupts should not
|
|
* affect us, but we need to set the rate...
|
|
*/
|
|
bus_space_write_1(sc->sc_bst, sc->sc_bsh, INTERSIL_ICMD,
|
|
INTERSIL_COMMAND(INTERSIL_CMD_RUN, INTERSIL_CMD_IDISABLE));
|
|
(void)bus_space_read_1(sc->sc_bst, sc->sc_bsh, INTERSIL_IINTR);
|
|
|
|
/* Set the clock to 100 Hz, but do not enable it yet. */
|
|
bus_space_write_1(sc->sc_bst, sc->sc_bsh,
|
|
INTERSIL_IINTR, INTERSIL_INTER_CSECONDS);
|
|
|
|
sc->sc_year0 = 1968;
|
|
intersil7170_attach(sc);
|
|
|
|
printf("\n");
|
|
|
|
todr_attach(&sc->sc_handle);
|
|
|
|
/*
|
|
* Can not hook up the ISR until cpu_initclocks()
|
|
* because hardclock is not ready until then.
|
|
* For now, the handler is _isr_autovec(), which
|
|
* will complain if it gets clock interrupts.
|
|
*/
|
|
}
|
|
#endif /* SUN3_470 */
|
|
|
|
|
|
/*
|
|
* Is there a Mostek clock? Hard to tell...
|
|
* (See comment at top of this file.)
|
|
*/
|
|
static int
|
|
clock_match(struct device *parent, struct cfdata *cf, void *args)
|
|
{
|
|
struct confargs *ca = args;
|
|
|
|
/* This driver only supports one unit. */
|
|
if (mostek_clk_va)
|
|
return 0;
|
|
|
|
/* If intersil was found, use that. */
|
|
if (intersil_va)
|
|
return 0;
|
|
/* Else assume a Mostek is there... */
|
|
|
|
/* Default interrupt priority. */
|
|
if (ca->ca_intpri == -1)
|
|
ca->ca_intpri = CLOCK_PRI;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Attach the mostek clock.
|
|
*/
|
|
static void
|
|
clock_attach(struct device *parent, struct device *self, void *aux)
|
|
{
|
|
struct mk48txx_softc *sc = (void *)self;
|
|
struct confargs *ca = aux;
|
|
|
|
sc->sc_bst = ca->ca_bustag;
|
|
if (bus_space_map(sc->sc_bst, ca->ca_paddr - MKCLOCK_REG_OFFSET,
|
|
MK48T02_CLKSZ, 0, &sc->sc_bsh) != 0) {
|
|
printf("can't map device space\n");
|
|
return;
|
|
}
|
|
|
|
mostek_clk_va = (void *)(sc->sc_bsh + MKCLOCK_REG_OFFSET); /* XXX */
|
|
|
|
sc->sc_model = "mk48t02";
|
|
sc->sc_year0 = 1968;
|
|
|
|
mk48txx_attach(sc);
|
|
|
|
printf("\n");
|
|
|
|
todr_attach(&sc->sc_handle);
|
|
}
|
|
|
|
/*
|
|
* Set and/or clear the desired clock bits in the interrupt
|
|
* register. We have to be extremely careful that we do it
|
|
* in such a manner that we don't get ourselves lost.
|
|
* XXX: Watch out! It's really easy to break this!
|
|
*/
|
|
void
|
|
set_clk_mode(u_char on, u_char off, int enable_clk)
|
|
{
|
|
u_char interreg;
|
|
|
|
/*
|
|
* If we have not yet mapped the register,
|
|
* then we do not want to do any of this...
|
|
*/
|
|
if (!interrupt_reg)
|
|
return;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/* Assertion: were are at splhigh! */
|
|
if ((getsr() & PSL_IPL) < PSL_IPL7)
|
|
panic("set_clk_mode: bad ipl");
|
|
#endif
|
|
|
|
/*
|
|
* make sure that we are only playing w/
|
|
* clock interrupt register bits
|
|
*/
|
|
on &= IREG_CLK_BITS;
|
|
off &= IREG_CLK_BITS;
|
|
|
|
/* First, turn off the "master" enable bit. */
|
|
single_inst_bclr_b(*interrupt_reg, IREG_ALL_ENAB);
|
|
|
|
/*
|
|
* Save the current interrupt register clock bits,
|
|
* and turn off/on the requested bits in the copy.
|
|
*/
|
|
interreg = *interrupt_reg & IREG_CLK_BITS;
|
|
interreg &= ~off;
|
|
interreg |= on;
|
|
|
|
/* Clear the CLK5 and CLK7 bits to clear the flip-flops. */
|
|
single_inst_bclr_b(*interrupt_reg, IREG_CLK_BITS);
|
|
|
|
#ifdef SUN3_470
|
|
if (intersil_va) {
|
|
/*
|
|
* Then disable clock interrupts, and read the clock's
|
|
* interrupt register to clear any pending signals there.
|
|
*/
|
|
intersil_clock->clk_cmd_reg =
|
|
INTERSIL_COMMAND(INTERSIL_CMD_RUN, INTERSIL_CMD_IDISABLE);
|
|
intersil_clear();
|
|
}
|
|
#endif /* SUN3_470 */
|
|
|
|
/* Set the requested bits in the interrupt register. */
|
|
single_inst_bset_b(*interrupt_reg, interreg);
|
|
|
|
#ifdef SUN3_470
|
|
/* Turn the clock back on (maybe) */
|
|
if (intersil_va && enable_clk)
|
|
intersil_clock->clk_cmd_reg =
|
|
INTERSIL_COMMAND(INTERSIL_CMD_RUN, INTERSIL_CMD_IENABLE);
|
|
#endif /* SUN3_470 */
|
|
|
|
/* Finally, turn the "master" enable back on. */
|
|
single_inst_bset_b(*interrupt_reg, IREG_ALL_ENAB);
|
|
}
|
|
|
|
/*
|
|
* Set up the real-time clock (enable clock interrupts).
|
|
* Leave stathz 0 since there is no secondary clock available.
|
|
* Note that clock interrupts MUST STAY DISABLED until here.
|
|
*/
|
|
void
|
|
cpu_initclocks(void)
|
|
{
|
|
int s;
|
|
|
|
s = splhigh();
|
|
|
|
/* Install isr (in locore.s) that calls clock_intr(). */
|
|
isr_add_custom(CLOCK_PRI, (void *)_isr_clock);
|
|
|
|
/* Now enable the clock at level 5 in the interrupt reg. */
|
|
set_clk_mode(IREG_CLOCK_ENAB_5, 0, 1);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* This doesn't need to do anything, as we have only one timer and
|
|
* profhz==stathz==hz.
|
|
*/
|
|
void
|
|
setstatclockrate(int newhz)
|
|
{
|
|
|
|
/* nothing */
|
|
}
|
|
|
|
/*
|
|
* Clock interrupt handler (for both Intersil and Mostek).
|
|
* XXX - Is it worth the trouble to save a few cycles here
|
|
* by making two separate interrupt handlers?
|
|
*
|
|
* This is is called by the "custom" interrupt handler.
|
|
* Note that we can get ZS interrupts while this runs,
|
|
* and zshard may touch the interrupt_reg, so we must
|
|
* be careful to use the single_inst_* macros to modify
|
|
* the interrupt register atomically.
|
|
*/
|
|
void
|
|
clock_intr(struct clockframe cf)
|
|
{
|
|
extern char _Idle[]; /* locore.s */
|
|
|
|
#ifdef SUN3_470
|
|
if (intersil_va) {
|
|
/* Read the clock interrupt register. */
|
|
intersil_clear();
|
|
}
|
|
#endif /* SUN3_470 */
|
|
|
|
/* Pulse the clock intr. enable low. */
|
|
single_inst_bclr_b(*interrupt_reg, IREG_CLOCK_ENAB_5);
|
|
single_inst_bset_b(*interrupt_reg, IREG_CLOCK_ENAB_5);
|
|
|
|
#ifdef SUN3_470
|
|
if (intersil_va) {
|
|
/* Read the clock intr. reg. AGAIN! */
|
|
intersil_clear();
|
|
}
|
|
#endif /* SUN3_470 */
|
|
|
|
intrcnt[CLOCK_PRI]++;
|
|
uvmexp.intrs++;
|
|
|
|
/* Entertainment! */
|
|
if (cf.cf_pc == (long)_Idle)
|
|
leds_intr();
|
|
|
|
/* Call common clock interrupt handler. */
|
|
hardclock(&cf);
|
|
}
|