978 lines
25 KiB
C
978 lines
25 KiB
C
/* $NetBSD: kern_mutex.c,v 1.92 2020/05/12 21:56:17 ad Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2002, 2006, 2007, 2008, 2019 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe and Andrew Doran.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Kernel mutex implementation, modeled after those found in Solaris,
|
|
* a description of which can be found in:
|
|
*
|
|
* Solaris Internals: Core Kernel Architecture, Jim Mauro and
|
|
* Richard McDougall.
|
|
*/
|
|
|
|
#define __MUTEX_PRIVATE
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_mutex.c,v 1.92 2020/05/12 21:56:17 ad Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sleepq.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/lockdebug.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/intr.h>
|
|
#include <sys/lock.h>
|
|
#include <sys/types.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/pserialize.h>
|
|
|
|
#include <dev/lockstat.h>
|
|
|
|
#include <machine/lock.h>
|
|
|
|
/*
|
|
* When not running a debug kernel, spin mutexes are not much
|
|
* more than an splraiseipl() and splx() pair.
|
|
*/
|
|
|
|
#if defined(DIAGNOSTIC) || defined(MULTIPROCESSOR) || defined(LOCKDEBUG)
|
|
#define FULL
|
|
#endif
|
|
|
|
/*
|
|
* Debugging support.
|
|
*/
|
|
|
|
#define MUTEX_WANTLOCK(mtx) \
|
|
LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
|
|
(uintptr_t)__builtin_return_address(0), 0)
|
|
#define MUTEX_TESTLOCK(mtx) \
|
|
LOCKDEBUG_WANTLOCK(MUTEX_DEBUG_P(mtx), (mtx), \
|
|
(uintptr_t)__builtin_return_address(0), -1)
|
|
#define MUTEX_LOCKED(mtx) \
|
|
LOCKDEBUG_LOCKED(MUTEX_DEBUG_P(mtx), (mtx), NULL, \
|
|
(uintptr_t)__builtin_return_address(0), 0)
|
|
#define MUTEX_UNLOCKED(mtx) \
|
|
LOCKDEBUG_UNLOCKED(MUTEX_DEBUG_P(mtx), (mtx), \
|
|
(uintptr_t)__builtin_return_address(0), 0)
|
|
#define MUTEX_ABORT(mtx, msg) \
|
|
mutex_abort(__func__, __LINE__, mtx, msg)
|
|
|
|
#if defined(LOCKDEBUG)
|
|
|
|
#define MUTEX_DASSERT(mtx, cond) \
|
|
do { \
|
|
if (__predict_false(!(cond))) \
|
|
MUTEX_ABORT(mtx, "assertion failed: " #cond); \
|
|
} while (/* CONSTCOND */ 0)
|
|
|
|
#else /* LOCKDEBUG */
|
|
|
|
#define MUTEX_DASSERT(mtx, cond) /* nothing */
|
|
|
|
#endif /* LOCKDEBUG */
|
|
|
|
#if defined(DIAGNOSTIC)
|
|
|
|
#define MUTEX_ASSERT(mtx, cond) \
|
|
do { \
|
|
if (__predict_false(!(cond))) \
|
|
MUTEX_ABORT(mtx, "assertion failed: " #cond); \
|
|
} while (/* CONSTCOND */ 0)
|
|
|
|
#else /* DIAGNOSTIC */
|
|
|
|
#define MUTEX_ASSERT(mtx, cond) /* nothing */
|
|
|
|
#endif /* DIAGNOSTIC */
|
|
|
|
/*
|
|
* Some architectures can't use __cpu_simple_lock as is so allow a way
|
|
* for them to use an alternate definition.
|
|
*/
|
|
#ifndef MUTEX_SPINBIT_LOCK_INIT
|
|
#define MUTEX_SPINBIT_LOCK_INIT(mtx) __cpu_simple_lock_init(&(mtx)->mtx_lock)
|
|
#endif
|
|
#ifndef MUTEX_SPINBIT_LOCKED_P
|
|
#define MUTEX_SPINBIT_LOCKED_P(mtx) __SIMPLELOCK_LOCKED_P(&(mtx)->mtx_lock)
|
|
#endif
|
|
#ifndef MUTEX_SPINBIT_LOCK_TRY
|
|
#define MUTEX_SPINBIT_LOCK_TRY(mtx) __cpu_simple_lock_try(&(mtx)->mtx_lock)
|
|
#endif
|
|
#ifndef MUTEX_SPINBIT_LOCK_UNLOCK
|
|
#define MUTEX_SPINBIT_LOCK_UNLOCK(mtx) __cpu_simple_unlock(&(mtx)->mtx_lock)
|
|
#endif
|
|
|
|
#ifndef MUTEX_INITIALIZE_SPIN_IPL
|
|
#define MUTEX_INITIALIZE_SPIN_IPL(mtx, ipl) \
|
|
((mtx)->mtx_ipl = makeiplcookie((ipl)))
|
|
#endif
|
|
|
|
/*
|
|
* Spin mutex SPL save / restore.
|
|
*/
|
|
|
|
#define MUTEX_SPIN_SPLRAISE(mtx) \
|
|
do { \
|
|
struct cpu_info *x__ci; \
|
|
int x__cnt, s; \
|
|
s = splraiseipl(MUTEX_SPIN_IPL(mtx)); \
|
|
x__ci = curcpu(); \
|
|
x__cnt = x__ci->ci_mtx_count--; \
|
|
__insn_barrier(); \
|
|
if (x__cnt == 0) \
|
|
x__ci->ci_mtx_oldspl = (s); \
|
|
} while (/* CONSTCOND */ 0)
|
|
|
|
#define MUTEX_SPIN_SPLRESTORE(mtx) \
|
|
do { \
|
|
struct cpu_info *x__ci = curcpu(); \
|
|
int s = x__ci->ci_mtx_oldspl; \
|
|
__insn_barrier(); \
|
|
if (++(x__ci->ci_mtx_count) == 0) \
|
|
splx(s); \
|
|
} while (/* CONSTCOND */ 0)
|
|
|
|
/*
|
|
* Memory barriers.
|
|
*/
|
|
#ifdef __HAVE_ATOMIC_AS_MEMBAR
|
|
#define MUTEX_MEMBAR_ENTER()
|
|
#define MUTEX_MEMBAR_EXIT()
|
|
#else
|
|
#define MUTEX_MEMBAR_ENTER() membar_enter()
|
|
#define MUTEX_MEMBAR_EXIT() membar_exit()
|
|
#endif
|
|
|
|
/*
|
|
* For architectures that provide 'simple' mutexes: they provide a
|
|
* CAS function that is either MP-safe, or does not need to be MP
|
|
* safe. Adaptive mutexes on these architectures do not require an
|
|
* additional interlock.
|
|
*/
|
|
|
|
#ifdef __HAVE_SIMPLE_MUTEXES
|
|
|
|
#define MUTEX_OWNER(owner) \
|
|
(owner & MUTEX_THREAD)
|
|
#define MUTEX_HAS_WAITERS(mtx) \
|
|
(((int)(mtx)->mtx_owner & MUTEX_BIT_WAITERS) != 0)
|
|
|
|
#define MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug) \
|
|
do { \
|
|
if (!dodebug) \
|
|
(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
|
|
} while (/* CONSTCOND */ 0)
|
|
|
|
#define MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl) \
|
|
do { \
|
|
(mtx)->mtx_owner = MUTEX_BIT_SPIN; \
|
|
if (!dodebug) \
|
|
(mtx)->mtx_owner |= MUTEX_BIT_NODEBUG; \
|
|
MUTEX_INITIALIZE_SPIN_IPL((mtx), (ipl)); \
|
|
MUTEX_SPINBIT_LOCK_INIT((mtx)); \
|
|
} while (/* CONSTCOND */ 0)
|
|
|
|
#define MUTEX_DESTROY(mtx) \
|
|
do { \
|
|
(mtx)->mtx_owner = MUTEX_THREAD; \
|
|
} while (/* CONSTCOND */ 0)
|
|
|
|
#define MUTEX_SPIN_P(owner) \
|
|
(((owner) & MUTEX_BIT_SPIN) != 0)
|
|
#define MUTEX_ADAPTIVE_P(owner) \
|
|
(((owner) & MUTEX_BIT_SPIN) == 0)
|
|
|
|
#define MUTEX_DEBUG_P(mtx) (((mtx)->mtx_owner & MUTEX_BIT_NODEBUG) == 0)
|
|
#if defined(LOCKDEBUG)
|
|
#define MUTEX_OWNED(owner) (((owner) & ~MUTEX_BIT_NODEBUG) != 0)
|
|
#define MUTEX_INHERITDEBUG(n, o) (n) |= (o) & MUTEX_BIT_NODEBUG
|
|
#else /* defined(LOCKDEBUG) */
|
|
#define MUTEX_OWNED(owner) ((owner) != 0)
|
|
#define MUTEX_INHERITDEBUG(n, o) /* nothing */
|
|
#endif /* defined(LOCKDEBUG) */
|
|
|
|
static inline int
|
|
MUTEX_ACQUIRE(kmutex_t *mtx, uintptr_t curthread)
|
|
{
|
|
int rv;
|
|
uintptr_t oldown = 0;
|
|
uintptr_t newown = curthread;
|
|
|
|
MUTEX_INHERITDEBUG(oldown, mtx->mtx_owner);
|
|
MUTEX_INHERITDEBUG(newown, oldown);
|
|
rv = MUTEX_CAS(&mtx->mtx_owner, oldown, newown);
|
|
MUTEX_MEMBAR_ENTER();
|
|
return rv;
|
|
}
|
|
|
|
static inline int
|
|
MUTEX_SET_WAITERS(kmutex_t *mtx, uintptr_t owner)
|
|
{
|
|
int rv;
|
|
rv = MUTEX_CAS(&mtx->mtx_owner, owner, owner | MUTEX_BIT_WAITERS);
|
|
MUTEX_MEMBAR_ENTER();
|
|
return rv;
|
|
}
|
|
|
|
static inline void
|
|
MUTEX_RELEASE(kmutex_t *mtx)
|
|
{
|
|
uintptr_t newown;
|
|
|
|
MUTEX_MEMBAR_EXIT();
|
|
newown = 0;
|
|
MUTEX_INHERITDEBUG(newown, mtx->mtx_owner);
|
|
mtx->mtx_owner = newown;
|
|
}
|
|
#endif /* __HAVE_SIMPLE_MUTEXES */
|
|
|
|
/*
|
|
* Patch in stubs via strong alias where they are not available.
|
|
*/
|
|
|
|
#if defined(LOCKDEBUG)
|
|
#undef __HAVE_MUTEX_STUBS
|
|
#undef __HAVE_SPIN_MUTEX_STUBS
|
|
#endif
|
|
|
|
#ifndef __HAVE_MUTEX_STUBS
|
|
__strong_alias(mutex_enter,mutex_vector_enter);
|
|
__strong_alias(mutex_exit,mutex_vector_exit);
|
|
#endif
|
|
|
|
#ifndef __HAVE_SPIN_MUTEX_STUBS
|
|
__strong_alias(mutex_spin_enter,mutex_vector_enter);
|
|
__strong_alias(mutex_spin_exit,mutex_vector_exit);
|
|
#endif
|
|
|
|
static void mutex_abort(const char *, size_t, const kmutex_t *,
|
|
const char *);
|
|
static void mutex_dump(const volatile void *, lockop_printer_t);
|
|
|
|
lockops_t mutex_spin_lockops = {
|
|
.lo_name = "Mutex",
|
|
.lo_type = LOCKOPS_SPIN,
|
|
.lo_dump = mutex_dump,
|
|
};
|
|
|
|
lockops_t mutex_adaptive_lockops = {
|
|
.lo_name = "Mutex",
|
|
.lo_type = LOCKOPS_SLEEP,
|
|
.lo_dump = mutex_dump,
|
|
};
|
|
|
|
syncobj_t mutex_syncobj = {
|
|
.sobj_flag = SOBJ_SLEEPQ_SORTED,
|
|
.sobj_unsleep = turnstile_unsleep,
|
|
.sobj_changepri = turnstile_changepri,
|
|
.sobj_lendpri = sleepq_lendpri,
|
|
.sobj_owner = (void *)mutex_owner,
|
|
};
|
|
|
|
/*
|
|
* mutex_dump:
|
|
*
|
|
* Dump the contents of a mutex structure.
|
|
*/
|
|
static void
|
|
mutex_dump(const volatile void *cookie, lockop_printer_t pr)
|
|
{
|
|
const volatile kmutex_t *mtx = cookie;
|
|
uintptr_t owner = mtx->mtx_owner;
|
|
|
|
pr("owner field : %#018lx wait/spin: %16d/%d\n",
|
|
(long)MUTEX_OWNER(owner), MUTEX_HAS_WAITERS(mtx),
|
|
MUTEX_SPIN_P(owner));
|
|
}
|
|
|
|
/*
|
|
* mutex_abort:
|
|
*
|
|
* Dump information about an error and panic the system. This
|
|
* generates a lot of machine code in the DIAGNOSTIC case, so
|
|
* we ask the compiler to not inline it.
|
|
*/
|
|
static void __noinline
|
|
mutex_abort(const char *func, size_t line, const kmutex_t *mtx, const char *msg)
|
|
{
|
|
|
|
LOCKDEBUG_ABORT(func, line, mtx, (MUTEX_SPIN_P(mtx->mtx_owner) ?
|
|
&mutex_spin_lockops : &mutex_adaptive_lockops), msg);
|
|
}
|
|
|
|
/*
|
|
* mutex_init:
|
|
*
|
|
* Initialize a mutex for use. Note that adaptive mutexes are in
|
|
* essence spin mutexes that can sleep to avoid deadlock and wasting
|
|
* CPU time. We can't easily provide a type of mutex that always
|
|
* sleeps - see comments in mutex_vector_enter() about releasing
|
|
* mutexes unlocked.
|
|
*/
|
|
void _mutex_init(kmutex_t *, kmutex_type_t, int, uintptr_t);
|
|
void
|
|
_mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl,
|
|
uintptr_t return_address)
|
|
{
|
|
lockops_t *lockops __unused;
|
|
bool dodebug;
|
|
|
|
memset(mtx, 0, sizeof(*mtx));
|
|
|
|
if (ipl == IPL_NONE || ipl == IPL_SOFTCLOCK ||
|
|
ipl == IPL_SOFTBIO || ipl == IPL_SOFTNET ||
|
|
ipl == IPL_SOFTSERIAL) {
|
|
lockops = (type == MUTEX_NODEBUG ?
|
|
NULL : &mutex_adaptive_lockops);
|
|
dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
|
|
MUTEX_INITIALIZE_ADAPTIVE(mtx, dodebug);
|
|
} else {
|
|
lockops = (type == MUTEX_NODEBUG ?
|
|
NULL : &mutex_spin_lockops);
|
|
dodebug = LOCKDEBUG_ALLOC(mtx, lockops, return_address);
|
|
MUTEX_INITIALIZE_SPIN(mtx, dodebug, ipl);
|
|
}
|
|
}
|
|
|
|
void
|
|
mutex_init(kmutex_t *mtx, kmutex_type_t type, int ipl)
|
|
{
|
|
|
|
_mutex_init(mtx, type, ipl, (uintptr_t)__builtin_return_address(0));
|
|
}
|
|
|
|
/*
|
|
* mutex_destroy:
|
|
*
|
|
* Tear down a mutex.
|
|
*/
|
|
void
|
|
mutex_destroy(kmutex_t *mtx)
|
|
{
|
|
uintptr_t owner = mtx->mtx_owner;
|
|
|
|
if (MUTEX_ADAPTIVE_P(owner)) {
|
|
MUTEX_ASSERT(mtx, !MUTEX_OWNED(owner));
|
|
MUTEX_ASSERT(mtx, !MUTEX_HAS_WAITERS(mtx));
|
|
} else {
|
|
MUTEX_ASSERT(mtx, !MUTEX_SPINBIT_LOCKED_P(mtx));
|
|
}
|
|
|
|
LOCKDEBUG_FREE(MUTEX_DEBUG_P(mtx), mtx);
|
|
MUTEX_DESTROY(mtx);
|
|
}
|
|
|
|
#ifdef MULTIPROCESSOR
|
|
/*
|
|
* mutex_oncpu:
|
|
*
|
|
* Return true if an adaptive mutex owner is running on a CPU in the
|
|
* system. If the target is waiting on the kernel big lock, then we
|
|
* must release it. This is necessary to avoid deadlock.
|
|
*/
|
|
static bool
|
|
mutex_oncpu(uintptr_t owner)
|
|
{
|
|
struct cpu_info *ci;
|
|
lwp_t *l;
|
|
|
|
KASSERT(kpreempt_disabled());
|
|
|
|
if (!MUTEX_OWNED(owner)) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* See lwp_dtor() why dereference of the LWP pointer is safe.
|
|
* We must have kernel preemption disabled for that.
|
|
*/
|
|
l = (lwp_t *)MUTEX_OWNER(owner);
|
|
ci = l->l_cpu;
|
|
|
|
if (ci && ci->ci_curlwp == l) {
|
|
/* Target is running; do we need to block? */
|
|
return (ci->ci_biglock_wanted != l);
|
|
}
|
|
|
|
/* Not running. It may be safe to block now. */
|
|
return false;
|
|
}
|
|
#endif /* MULTIPROCESSOR */
|
|
|
|
/*
|
|
* mutex_vector_enter:
|
|
*
|
|
* Support routine for mutex_enter() that must handle all cases. In
|
|
* the LOCKDEBUG case, mutex_enter() is always aliased here, even if
|
|
* fast-path stubs are available. If a mutex_spin_enter() stub is
|
|
* not available, then it is also aliased directly here.
|
|
*/
|
|
void
|
|
mutex_vector_enter(kmutex_t *mtx)
|
|
{
|
|
uintptr_t owner, curthread;
|
|
turnstile_t *ts;
|
|
#ifdef MULTIPROCESSOR
|
|
u_int count;
|
|
#endif
|
|
LOCKSTAT_COUNTER(spincnt);
|
|
LOCKSTAT_COUNTER(slpcnt);
|
|
LOCKSTAT_TIMER(spintime);
|
|
LOCKSTAT_TIMER(slptime);
|
|
LOCKSTAT_FLAG(lsflag);
|
|
|
|
/*
|
|
* Handle spin mutexes.
|
|
*/
|
|
KPREEMPT_DISABLE(curlwp);
|
|
owner = mtx->mtx_owner;
|
|
if (MUTEX_SPIN_P(owner)) {
|
|
#if defined(LOCKDEBUG) && defined(MULTIPROCESSOR)
|
|
u_int spins = 0;
|
|
#endif
|
|
KPREEMPT_ENABLE(curlwp);
|
|
MUTEX_SPIN_SPLRAISE(mtx);
|
|
MUTEX_WANTLOCK(mtx);
|
|
#ifdef FULL
|
|
if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
|
|
MUTEX_LOCKED(mtx);
|
|
return;
|
|
}
|
|
#if !defined(MULTIPROCESSOR)
|
|
MUTEX_ABORT(mtx, "locking against myself");
|
|
#else /* !MULTIPROCESSOR */
|
|
|
|
LOCKSTAT_ENTER(lsflag);
|
|
LOCKSTAT_START_TIMER(lsflag, spintime);
|
|
count = SPINLOCK_BACKOFF_MIN;
|
|
|
|
/*
|
|
* Spin testing the lock word and do exponential backoff
|
|
* to reduce cache line ping-ponging between CPUs.
|
|
*/
|
|
do {
|
|
while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
|
|
SPINLOCK_BACKOFF(count);
|
|
#ifdef LOCKDEBUG
|
|
if (SPINLOCK_SPINOUT(spins))
|
|
MUTEX_ABORT(mtx, "spinout");
|
|
#endif /* LOCKDEBUG */
|
|
}
|
|
} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
|
|
|
|
if (count != SPINLOCK_BACKOFF_MIN) {
|
|
LOCKSTAT_STOP_TIMER(lsflag, spintime);
|
|
LOCKSTAT_EVENT(lsflag, mtx,
|
|
LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
|
|
}
|
|
LOCKSTAT_EXIT(lsflag);
|
|
#endif /* !MULTIPROCESSOR */
|
|
#endif /* FULL */
|
|
MUTEX_LOCKED(mtx);
|
|
return;
|
|
}
|
|
|
|
curthread = (uintptr_t)curlwp;
|
|
|
|
MUTEX_DASSERT(mtx, MUTEX_ADAPTIVE_P(owner));
|
|
MUTEX_ASSERT(mtx, curthread != 0);
|
|
MUTEX_ASSERT(mtx, !cpu_intr_p());
|
|
MUTEX_WANTLOCK(mtx);
|
|
|
|
if (panicstr == NULL) {
|
|
KDASSERT(pserialize_not_in_read_section());
|
|
LOCKDEBUG_BARRIER(&kernel_lock, 1);
|
|
}
|
|
|
|
LOCKSTAT_ENTER(lsflag);
|
|
|
|
/*
|
|
* Adaptive mutex; spin trying to acquire the mutex. If we
|
|
* determine that the owner is not running on a processor,
|
|
* then we stop spinning, and sleep instead.
|
|
*/
|
|
for (;;) {
|
|
if (!MUTEX_OWNED(owner)) {
|
|
/*
|
|
* Mutex owner clear could mean two things:
|
|
*
|
|
* * The mutex has been released.
|
|
* * The owner field hasn't been set yet.
|
|
*
|
|
* Try to acquire it again. If that fails,
|
|
* we'll just loop again.
|
|
*/
|
|
if (MUTEX_ACQUIRE(mtx, curthread))
|
|
break;
|
|
owner = mtx->mtx_owner;
|
|
continue;
|
|
}
|
|
if (__predict_false(MUTEX_OWNER(owner) == curthread)) {
|
|
MUTEX_ABORT(mtx, "locking against myself");
|
|
}
|
|
#ifdef MULTIPROCESSOR
|
|
/*
|
|
* Check to see if the owner is running on a processor.
|
|
* If so, then we should just spin, as the owner will
|
|
* likely release the lock very soon.
|
|
*/
|
|
if (mutex_oncpu(owner)) {
|
|
LOCKSTAT_START_TIMER(lsflag, spintime);
|
|
count = SPINLOCK_BACKOFF_MIN;
|
|
do {
|
|
KPREEMPT_ENABLE(curlwp);
|
|
SPINLOCK_BACKOFF(count);
|
|
KPREEMPT_DISABLE(curlwp);
|
|
owner = mtx->mtx_owner;
|
|
} while (mutex_oncpu(owner));
|
|
LOCKSTAT_STOP_TIMER(lsflag, spintime);
|
|
LOCKSTAT_COUNT(spincnt, 1);
|
|
if (!MUTEX_OWNED(owner))
|
|
continue;
|
|
}
|
|
#endif
|
|
|
|
ts = turnstile_lookup(mtx);
|
|
|
|
/*
|
|
* Once we have the turnstile chain interlock, mark the
|
|
* mutex as having waiters. If that fails, spin again:
|
|
* chances are that the mutex has been released.
|
|
*/
|
|
if (!MUTEX_SET_WAITERS(mtx, owner)) {
|
|
turnstile_exit(mtx);
|
|
owner = mtx->mtx_owner;
|
|
continue;
|
|
}
|
|
|
|
#ifdef MULTIPROCESSOR
|
|
/*
|
|
* mutex_exit() is permitted to release the mutex without
|
|
* any interlocking instructions, and the following can
|
|
* occur as a result:
|
|
*
|
|
* CPU 1: MUTEX_SET_WAITERS() CPU2: mutex_exit()
|
|
* ---------------------------- ----------------------------
|
|
* .. acquire cache line
|
|
* .. test for waiters
|
|
* acquire cache line <- lose cache line
|
|
* lock cache line ..
|
|
* verify mutex is held ..
|
|
* set waiters ..
|
|
* unlock cache line ..
|
|
* lose cache line -> acquire cache line
|
|
* .. clear lock word, waiters
|
|
* return success
|
|
*
|
|
* There is another race that can occur: a third CPU could
|
|
* acquire the mutex as soon as it is released. Since
|
|
* adaptive mutexes are primarily spin mutexes, this is not
|
|
* something that we need to worry about too much. What we
|
|
* do need to ensure is that the waiters bit gets set.
|
|
*
|
|
* To allow the unlocked release, we need to make some
|
|
* assumptions here:
|
|
*
|
|
* o Release is the only non-atomic/unlocked operation
|
|
* that can be performed on the mutex. (It must still
|
|
* be atomic on the local CPU, e.g. in case interrupted
|
|
* or preempted).
|
|
*
|
|
* o At any given time, MUTEX_SET_WAITERS() can only ever
|
|
* be in progress on one CPU in the system - guaranteed
|
|
* by the turnstile chain lock.
|
|
*
|
|
* o No other operations other than MUTEX_SET_WAITERS()
|
|
* and release can modify a mutex with a non-zero
|
|
* owner field.
|
|
*
|
|
* o The result of a successful MUTEX_SET_WAITERS() call
|
|
* is an unbuffered write that is immediately visible
|
|
* to all other processors in the system.
|
|
*
|
|
* o If the holding LWP switches away, it posts a store
|
|
* fence before changing curlwp, ensuring that any
|
|
* overwrite of the mutex waiters flag by mutex_exit()
|
|
* completes before the modification of curlwp becomes
|
|
* visible to this CPU.
|
|
*
|
|
* o mi_switch() posts a store fence before setting curlwp
|
|
* and before resuming execution of an LWP.
|
|
*
|
|
* o _kernel_lock() posts a store fence before setting
|
|
* curcpu()->ci_biglock_wanted, and after clearing it.
|
|
* This ensures that any overwrite of the mutex waiters
|
|
* flag by mutex_exit() completes before the modification
|
|
* of ci_biglock_wanted becomes visible.
|
|
*
|
|
* We now post a read memory barrier (after setting the
|
|
* waiters field) and check the lock holder's status again.
|
|
* Some of the possible outcomes (not an exhaustive list):
|
|
*
|
|
* 1. The on-CPU check returns true: the holding LWP is
|
|
* running again. The lock may be released soon and
|
|
* we should spin. Importantly, we can't trust the
|
|
* value of the waiters flag.
|
|
*
|
|
* 2. The on-CPU check returns false: the holding LWP is
|
|
* not running. We now have the opportunity to check
|
|
* if mutex_exit() has blatted the modifications made
|
|
* by MUTEX_SET_WAITERS().
|
|
*
|
|
* 3. The on-CPU check returns false: the holding LWP may
|
|
* or may not be running. It has context switched at
|
|
* some point during our check. Again, we have the
|
|
* chance to see if the waiters bit is still set or
|
|
* has been overwritten.
|
|
*
|
|
* 4. The on-CPU check returns false: the holding LWP is
|
|
* running on a CPU, but wants the big lock. It's OK
|
|
* to check the waiters field in this case.
|
|
*
|
|
* 5. The has-waiters check fails: the mutex has been
|
|
* released, the waiters flag cleared and another LWP
|
|
* now owns the mutex.
|
|
*
|
|
* 6. The has-waiters check fails: the mutex has been
|
|
* released.
|
|
*
|
|
* If the waiters bit is not set it's unsafe to go asleep,
|
|
* as we might never be awoken.
|
|
*/
|
|
membar_consumer();
|
|
if (mutex_oncpu(owner)) {
|
|
turnstile_exit(mtx);
|
|
owner = mtx->mtx_owner;
|
|
continue;
|
|
}
|
|
membar_consumer();
|
|
if (!MUTEX_HAS_WAITERS(mtx)) {
|
|
turnstile_exit(mtx);
|
|
owner = mtx->mtx_owner;
|
|
continue;
|
|
}
|
|
#endif /* MULTIPROCESSOR */
|
|
|
|
LOCKSTAT_START_TIMER(lsflag, slptime);
|
|
|
|
turnstile_block(ts, TS_WRITER_Q, mtx, &mutex_syncobj);
|
|
|
|
LOCKSTAT_STOP_TIMER(lsflag, slptime);
|
|
LOCKSTAT_COUNT(slpcnt, 1);
|
|
|
|
owner = mtx->mtx_owner;
|
|
}
|
|
KPREEMPT_ENABLE(curlwp);
|
|
|
|
LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SLEEP1,
|
|
slpcnt, slptime);
|
|
LOCKSTAT_EVENT(lsflag, mtx, LB_ADAPTIVE_MUTEX | LB_SPIN,
|
|
spincnt, spintime);
|
|
LOCKSTAT_EXIT(lsflag);
|
|
|
|
MUTEX_DASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
|
|
MUTEX_LOCKED(mtx);
|
|
}
|
|
|
|
/*
|
|
* mutex_vector_exit:
|
|
*
|
|
* Support routine for mutex_exit() that handles all cases.
|
|
*/
|
|
void
|
|
mutex_vector_exit(kmutex_t *mtx)
|
|
{
|
|
turnstile_t *ts;
|
|
uintptr_t curthread;
|
|
|
|
if (MUTEX_SPIN_P(mtx->mtx_owner)) {
|
|
#ifdef FULL
|
|
if (__predict_false(!MUTEX_SPINBIT_LOCKED_P(mtx))) {
|
|
MUTEX_ABORT(mtx, "exiting unheld spin mutex");
|
|
}
|
|
MUTEX_UNLOCKED(mtx);
|
|
MUTEX_SPINBIT_LOCK_UNLOCK(mtx);
|
|
#endif
|
|
MUTEX_SPIN_SPLRESTORE(mtx);
|
|
return;
|
|
}
|
|
|
|
#ifndef __HAVE_MUTEX_STUBS
|
|
/*
|
|
* On some architectures without mutex stubs, we can enter here to
|
|
* release mutexes before interrupts and whatnot are up and running.
|
|
* We need this hack to keep them sweet.
|
|
*/
|
|
if (__predict_false(cold)) {
|
|
MUTEX_UNLOCKED(mtx);
|
|
MUTEX_RELEASE(mtx);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
curthread = (uintptr_t)curlwp;
|
|
MUTEX_DASSERT(mtx, curthread != 0);
|
|
MUTEX_ASSERT(mtx, MUTEX_OWNER(mtx->mtx_owner) == curthread);
|
|
MUTEX_UNLOCKED(mtx);
|
|
#if !defined(LOCKDEBUG)
|
|
__USE(curthread);
|
|
#endif
|
|
|
|
#ifdef LOCKDEBUG
|
|
/*
|
|
* Avoid having to take the turnstile chain lock every time
|
|
* around. Raise the priority level to splhigh() in order
|
|
* to disable preemption and so make the following atomic.
|
|
*/
|
|
{
|
|
int s = splhigh();
|
|
if (!MUTEX_HAS_WAITERS(mtx)) {
|
|
MUTEX_RELEASE(mtx);
|
|
splx(s);
|
|
return;
|
|
}
|
|
splx(s);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Get this lock's turnstile. This gets the interlock on
|
|
* the sleep queue. Once we have that, we can clear the
|
|
* lock. If there was no turnstile for the lock, there
|
|
* were no waiters remaining.
|
|
*/
|
|
ts = turnstile_lookup(mtx);
|
|
|
|
if (ts == NULL) {
|
|
MUTEX_RELEASE(mtx);
|
|
turnstile_exit(mtx);
|
|
} else {
|
|
MUTEX_RELEASE(mtx);
|
|
turnstile_wakeup(ts, TS_WRITER_Q,
|
|
TS_WAITERS(ts, TS_WRITER_Q), NULL);
|
|
}
|
|
}
|
|
|
|
#ifndef __HAVE_SIMPLE_MUTEXES
|
|
/*
|
|
* mutex_wakeup:
|
|
*
|
|
* Support routine for mutex_exit() that wakes up all waiters.
|
|
* We assume that the mutex has been released, but it need not
|
|
* be.
|
|
*/
|
|
void
|
|
mutex_wakeup(kmutex_t *mtx)
|
|
{
|
|
turnstile_t *ts;
|
|
|
|
ts = turnstile_lookup(mtx);
|
|
if (ts == NULL) {
|
|
turnstile_exit(mtx);
|
|
return;
|
|
}
|
|
MUTEX_CLEAR_WAITERS(mtx);
|
|
turnstile_wakeup(ts, TS_WRITER_Q, TS_WAITERS(ts, TS_WRITER_Q), NULL);
|
|
}
|
|
#endif /* !__HAVE_SIMPLE_MUTEXES */
|
|
|
|
/*
|
|
* mutex_owned:
|
|
*
|
|
* Return true if the current LWP (adaptive) or CPU (spin)
|
|
* holds the mutex.
|
|
*/
|
|
int
|
|
mutex_owned(const kmutex_t *mtx)
|
|
{
|
|
|
|
if (mtx == NULL)
|
|
return 0;
|
|
if (MUTEX_ADAPTIVE_P(mtx->mtx_owner))
|
|
return MUTEX_OWNER(mtx->mtx_owner) == (uintptr_t)curlwp;
|
|
#ifdef FULL
|
|
return MUTEX_SPINBIT_LOCKED_P(mtx);
|
|
#else
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* mutex_owner:
|
|
*
|
|
* Return the current owner of an adaptive mutex. Used for
|
|
* priority inheritance.
|
|
*/
|
|
lwp_t *
|
|
mutex_owner(const kmutex_t *mtx)
|
|
{
|
|
|
|
MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx->mtx_owner));
|
|
return (struct lwp *)MUTEX_OWNER(mtx->mtx_owner);
|
|
}
|
|
|
|
/*
|
|
* mutex_owner_running:
|
|
*
|
|
* Return true if an adaptive mutex is unheld, or held and the owner is
|
|
* running on a CPU. For the pagedaemon only - do not document or use
|
|
* in other code.
|
|
*/
|
|
bool
|
|
mutex_owner_running(const kmutex_t *mtx)
|
|
{
|
|
#ifdef MULTIPROCESSOR
|
|
uintptr_t owner;
|
|
bool rv;
|
|
|
|
MUTEX_ASSERT(mtx, MUTEX_ADAPTIVE_P(mtx->mtx_owner));
|
|
kpreempt_disable();
|
|
owner = mtx->mtx_owner;
|
|
rv = !MUTEX_OWNED(owner) || mutex_oncpu(MUTEX_OWNER(owner));
|
|
kpreempt_enable();
|
|
return rv;
|
|
#else
|
|
return mutex_owner(mtx) == curlwp;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* mutex_ownable:
|
|
*
|
|
* When compiled with DEBUG and LOCKDEBUG defined, ensure that
|
|
* the mutex is available. We cannot use !mutex_owned() since
|
|
* that won't work correctly for spin mutexes.
|
|
*/
|
|
int
|
|
mutex_ownable(const kmutex_t *mtx)
|
|
{
|
|
|
|
#ifdef LOCKDEBUG
|
|
MUTEX_TESTLOCK(mtx);
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* mutex_tryenter:
|
|
*
|
|
* Try to acquire the mutex; return non-zero if we did.
|
|
*/
|
|
int
|
|
mutex_tryenter(kmutex_t *mtx)
|
|
{
|
|
uintptr_t curthread;
|
|
|
|
/*
|
|
* Handle spin mutexes.
|
|
*/
|
|
if (MUTEX_SPIN_P(mtx->mtx_owner)) {
|
|
MUTEX_SPIN_SPLRAISE(mtx);
|
|
#ifdef FULL
|
|
if (MUTEX_SPINBIT_LOCK_TRY(mtx)) {
|
|
MUTEX_WANTLOCK(mtx);
|
|
MUTEX_LOCKED(mtx);
|
|
return 1;
|
|
}
|
|
MUTEX_SPIN_SPLRESTORE(mtx);
|
|
#else
|
|
MUTEX_WANTLOCK(mtx);
|
|
MUTEX_LOCKED(mtx);
|
|
return 1;
|
|
#endif
|
|
} else {
|
|
curthread = (uintptr_t)curlwp;
|
|
MUTEX_ASSERT(mtx, curthread != 0);
|
|
if (MUTEX_ACQUIRE(mtx, curthread)) {
|
|
MUTEX_WANTLOCK(mtx);
|
|
MUTEX_LOCKED(mtx);
|
|
MUTEX_DASSERT(mtx,
|
|
MUTEX_OWNER(mtx->mtx_owner) == curthread);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL)
|
|
/*
|
|
* mutex_spin_retry:
|
|
*
|
|
* Support routine for mutex_spin_enter(). Assumes that the caller
|
|
* has already raised the SPL, and adjusted counters.
|
|
*/
|
|
void
|
|
mutex_spin_retry(kmutex_t *mtx)
|
|
{
|
|
#ifdef MULTIPROCESSOR
|
|
u_int count;
|
|
LOCKSTAT_TIMER(spintime);
|
|
LOCKSTAT_FLAG(lsflag);
|
|
#ifdef LOCKDEBUG
|
|
u_int spins = 0;
|
|
#endif /* LOCKDEBUG */
|
|
|
|
MUTEX_WANTLOCK(mtx);
|
|
|
|
LOCKSTAT_ENTER(lsflag);
|
|
LOCKSTAT_START_TIMER(lsflag, spintime);
|
|
count = SPINLOCK_BACKOFF_MIN;
|
|
|
|
/*
|
|
* Spin testing the lock word and do exponential backoff
|
|
* to reduce cache line ping-ponging between CPUs.
|
|
*/
|
|
do {
|
|
while (MUTEX_SPINBIT_LOCKED_P(mtx)) {
|
|
SPINLOCK_BACKOFF(count);
|
|
#ifdef LOCKDEBUG
|
|
if (SPINLOCK_SPINOUT(spins))
|
|
MUTEX_ABORT(mtx, "spinout");
|
|
#endif /* LOCKDEBUG */
|
|
}
|
|
} while (!MUTEX_SPINBIT_LOCK_TRY(mtx));
|
|
|
|
LOCKSTAT_STOP_TIMER(lsflag, spintime);
|
|
LOCKSTAT_EVENT(lsflag, mtx, LB_SPIN_MUTEX | LB_SPIN, 1, spintime);
|
|
LOCKSTAT_EXIT(lsflag);
|
|
|
|
MUTEX_LOCKED(mtx);
|
|
#else /* MULTIPROCESSOR */
|
|
MUTEX_ABORT(mtx, "locking against myself");
|
|
#endif /* MULTIPROCESSOR */
|
|
}
|
|
#endif /* defined(__HAVE_SPIN_MUTEX_STUBS) || defined(FULL) */
|