NetBSD/usr.sbin/installboot/evboards.c

1965 lines
51 KiB
C

/* $NetBSD: evboards.c,v 1.8 2022/11/01 19:51:46 andvar Exp $ */
/*-
* Copyright (c) 2019 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#if HAVE_NBTOOL_CONFIG_H
#include "nbtool_config.h"
#endif
#include <sys/cdefs.h>
#if !defined(__lint)
__RCSID("$NetBSD: evboards.c,v 1.8 2022/11/01 19:51:46 andvar Exp $");
#endif /* !__lint */
#include <sys/types.h>
#include <sys/param.h> /* for roundup() */
#include <sys/stat.h>
#include <assert.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <fts.h>
#include <inttypes.h>
#include <limits.h>
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#ifdef SUPPORT_FDT
#include "libfdt.h"
#endif
#if !HAVE_NBTOOL_CONFIG_H
#include <sys/utsname.h>
#ifdef SUPPORT_OPENFIRMWARE
#include <sys/ioctl.h>
#include <dev/ofw/openfirmio.h>
#endif
#endif /* ! HAVE_NBTOOL_CONFIG_H */
#include "installboot.h"
#include "evboards.h"
/*
* The board database is implemented as a property list. The base
* system provides a set of known boards, keyed by their "compatible"
* device tree property.
*
* The database provided by the base system is meant to help guide
* the user as to which u-boot package needs to be installed on the
* system in order to write the boot loader to the boot media. The
* base board plist is specific to the $MACHINE (e.g. "evbarm"), and
* is installed along with the build tools, e.g.:
*
* (native location)
* /usr/sbin/installboot
* /usr/share/installboot/evbarm/boards.plist
* /usr/share/installboot/evbmips/boards.plist
*
* (example cross host tool location)
* /usr/local/xnbsd/bin/nbinstallboot
* /usr/local/xnbsd/share/installboot/evbarm/boards.plist
* /usr/local/xnbsd/share/installboot/evbmips/boards.plist
*
* The schema of the base board plist is as follows:
*
* <plist>
* <dict>
* <!--
* -- Key: string matching a "compatible" DT property.
* -- Value: dictionary representing a board object.
* -- (required)
* -->
* <key>example,example-board</key>
* <dict>
* <!--
* -- Key: "description".
* -- Value: string containing the board description.
* -- (required)
* -->
* <key>description</key>
* <string>Example Co. Example Board</string>
*
* <!--
* -- Key: "u-boot-pkg".
* -- Value: string representing the board-specific
* -- portion of the u-boot package name.
* -- In this example, the package's full name
* -- is "u-boot-exampleboard". This is used
* -- to recommend to the user which u-boot
* -- package to install. If not present, then
* -- no package recommendation will be made.
* -- (optional)
* -->
* <key>u-boot-pkg</key>
* <string>exampleboard</string>
* </dict>
* </dict>
* </plist>
*
* Individual u-boot packages install their own overlay property list
* files that installboot(8) then scans for. These overlay files are
* named "installboot.plist", and are installed alongside the u-boot
* binaries by the individual u-boot packages, for example:
*
* /usr/pkg/share/u-boot/exampleboard/installboot.plist
* /usr/pkg/share/u-boot/exampleboard/u-boot-with-spl.bin
*
* installboot(8) scans a set of directories looking for "installboot.plist"
* overlay files one directory deep. For example:
*
* /usr/pkg/share/u-boot/
* exampleboard/installboot.plist
* superarmdeluxe/installboot.plist
* dummy/
*
* In this example, "/usr/pkg/share/u-boot" is scanned, it would identify
* "exampleboard" and "superarmdeluxe" as directories containing overlays
* and load them.
*
* The default path scanned for u-boot packages is:
*
* /usr/pkg/share/u-boot
*
* This can be overridden with either the INSTALLBOOT_UBOOT_PATHS
* environment variable or the command line option -u, which contains
* a colon-separated list of directories, e.g.:
*
* /usr/pkg/share/u-boot:/home/jmcneill/hackityhack/u-boot
*
* The scan only consults the top-level children of the specified directory.
*
* Each overlay includes complete board objects that entirely replace
* the system-provided board objects in memory. Some of the keys in
* overlay board objects are computed at run-time and should not appear
* in the plists loaded from the file system.
*
* The schema of the overlay board plists are as follows:
*
* <plist>
* <dict>
* <!--
* -- Key: string matching a "compatible" DT property.
* -- Value: dictionary representing a board object.
* -- (required)
* -->
* <key>example,example-board</key>
* <dict>
* <!--
* -- Key: "description".
* -- Value: string containing the board description.
* -- (required)
* -->
* <key>description</key>
* <string>Example Co. Example Board</string>
*
* <!--
* -- Key: "u-boot-install".
* -- (and variants; see discussion below)
* -- "u-boot-install-emmc", etc.).
* -- Value: Array of u-boot installation step objects,
* -- as described below.
* -- (required)
* --
* -- At least one of these objects is required. If the
* -- board uses a single set of steps for all boot media
* -- types, then it should provide just "u-boot-install".
* -- Otherwise, it would provide one or more objects
* -- with names reflecting the media type, e.g.:
* --
* -- "u-boot-install-sdmmc" (for SD cards)
* -- "u-boot-install-emmc" (for eMMC modules)
* -- "u-boot-install-usb" (for USB block storage)
* -- "u-boot-install-spi" (for SPI NOR flash)
* --
* -- These installation steps will be selectable using
* -- the "media=..." option to installboot(8).
* -->
* <key>u-boot-install</key>
* <array>
* <!-- see installation object discussion below. -->
* </array>
*
* <!--
* -- Key: "runtime-u-boot-path"
* -- Value: A string representing the path to the u-boot
* -- binary files needed to install the boot loader.
* -- This value is computed at run-time and is the
* -- same directory in which the installboot.plist
* -- file for that u-boot package is located.
* -- This key/value pair should never be included
* -- in an installboot.plist file, and including it
* -- will cause the overlay to be rejected.
* -- (computed at run-time)
* -->
* <key>runtime-u-boot-path</key>
* <string>/usr/pkg/share/u-boot/exampleboard</string>
* </dict>
* </dict>
* </plist>
*
* The installation objects provide a description of the steps needed
* to install u-boot on the boot media. Each installation object it
* itself an array of step object.
*
* A basic installation object has a single step that instructs
* installboot(8) to write a file to a specific offset onto the
* boot media.
*
* <key>u-boot-install</key>
* <!-- installation object -->
* <array>
* <!-- step object -->
* <dict>
* <!--
* -- Key: "file-name".
* -- Value: a string naming the file to be
* -- written to the media.
* -- (required)
* -->
* <key>file-name</key>
* <string>u-boot-with-spl.bin</string>
*
* <!--
* -- Key: "image-offset".
* -- Value: an integer specifying the offset
* -- into the output image or device
* -- where to write the file. Defaults
* -- to 0 if not specified.
* -- (optional)
* -->
* <key>image-offset</key>
* <integer>8192</integer>
* </dict>
* </array>
*
* Some installations require multiple steps with special handling.
*
* <key>u-boot-install</key>
* <array>
* <--
* -- Step 1: Write the initial portion of the boot
* -- loader onto the media. The loader has a "hole"
* -- to leave room for the MBR partition table. Take
* -- care not to scribble over the table.
* -->
* <dict>
* <key>file-name</key>
* <string>u-boot-img.bin</string>
*
* <!--
* -- Key: "file-size".
* -- Value: an integer specifying the amount of
* -- data from the file to be written to the
* -- output. Defaults to "to end of file" if
* -- not specified.
* -- (optional)
* -->
* <!-- Stop short of the MBR partition table. -->
* <key>file-size</key>
* <integer>442</integer>
*
* <!--
* -- Key: "preserve".
* -- Value: a boolean indicating that any partial
* -- output block should preserve any pre-
* -- existing contents of that block for
* -- the portion of the of the block not
* -- overwritten by the input file.
* -- (read-modify-write)
* -- (optional)
* -->
* <!-- Preserve the MBR partition table. -->
* <key>preserve</key>
* <true/>
* </dict>
* <--
* -- Step 2: Write the rest of the loader after the
* -- MBR partition table.
* -->
* <dict>
* <key>file-name</key>
* <string>u-boot-img.bin</string>
*
* <!--
* -- Key: "file-offset".
* -- Value: an integer specifying the offset into
* -- the input file from where to start
* -- copying to the output.
* -- (optional)
* -->
* <key>file-offset</key>
* <integer>512</integer>
*
* <!-- ...just after the MBR partition table. -->
* <key>image-offset</key>
* <integer>512</integer>
* </dict>
* </array>
*
* There are some additional directives for installing on raw flash devices:
*
* <key>u-boot-install-spi</key>
* <array>
* <!-- This board's SPI NOR flash is 16Mbit (2MB) in size,
* -- arranged as 32 512Kbit (64KB) blocks.
* <dict>
* <key>file-name</key>
* <string>u-boot-with-spl.bin</string>
*
* <!-- Key: "input-block-size".
* -- Value: an integer specifying how much file
* -- data to read per input block before
* -- padding. Must be used in conjunction
* -- with "input-pad-size".
* -- (optional)
* -->
* <key>input-block-size</key>
* <integer>2048</integer>
*
* <!-- Key: "input-pad-size".
* -- Value: an integer specifying the amount of
* -- zero padding inserted per input block.
* -- Must be used in conjunction with
* -- "input-block-size".
* -- (optional)
* -->
* <key>input-pad-size</key>
* <integer>2048</integer>
*
* <!-- Key: "output-size".
* -- Value: an integer specifying the total
* -- size to be written to the output
* -- device. This is used when writing
* -- a bootloader to a raw flash memory
* -- device such as a SPI NOR flash.
* -- The boot loader MUST fit within
* -- this size and the output will be
* -- padded to this size with zeros.
* --
* -- If the "output-block-size" key (below)
* -- is also specified, then this value
* -- must be a multiple of the output block
* -- size.
* -- (optional)
* -->
* <key>output-size</key>
* <integer>2097152</integer>
*
* <-- Key: "output-block-size"
* -- Value: an integer specifying the size of
* -- the blocks used to write to the
* -- output device. If the output device
* -- simulates a disk block storage device,
* -- then this value must be a multiple of
* -- the reported sector size.
* -- (optional)
* -->
* <key>output-block-size</key>
* <integer>65536</integer>
* </dict>
* </array>
*
* For boards that require a media specification to be provided, it
* may be the case that two media types have identical steps. It
* could be confusing for users to see a list of media types that does
* not include the media type on which they are installing, so there
* is an alias capability:
*
* <key>u-boot-install-spi</key>
* <array>
* .
* .
* .
* </array>
* <key>u-boot-install-sdmmc</key>
* <array>
* .
* .
* .
* </array>
* <-- Steps for eMMC are identical to SDMMC on this board. -->
* <key>u-boot-install-emmc</key>
* <string>u-boot-install-sdmmc</string>
*/
/*
* make_path --
* Build a path into the given buffer with the specified
* format. Returns NULL if the path won't fit.
*/
static __printflike(3,4) const char *
make_path(char *buf, size_t bufsize, const char *fmt, ...)
{
va_list ap;
int ret;
va_start(ap, fmt);
ret = vsnprintf(buf, bufsize, fmt, ap);
va_end(ap);
if (ret < 0 || (size_t)ret >= bufsize)
return NULL;
return buf;
}
#ifndef EVBOARDS_PLIST_BASE
#define EVBOARDS_PLIST_BASE "/usr"
#endif
static const char evb_db_base_location[] =
EVBOARDS_PLIST_BASE "/share/installboot";
/*
* evb_db_base_path --
* Returns the path to the base board db file.
*/
static const char *
evb_db_base_path(ib_params *params, char *buf, size_t bufsize)
{
return make_path(buf, bufsize, "%s/%s/boards.plist",
evb_db_base_location, params->machine->name);
}
/*
* evb_uboot_pkg_paths --
* Returns an array of u-boot package paths to scan for
* installboot.plist files.
*
* Number of array elements, not including the NULL terminator,
* is returned in *countp.
*
* The working buffer is returned in *bufp so that the caller
* can free it.
*/
static char **
evb_uboot_pkg_paths(ib_params *params, int *countp, void **bufp)
{
char **ret_array = NULL;
char *buf = NULL;
const char *pathspec;
int i, count;
char *cp, *startcp;
pathspec = params->uboot_paths;
assert(pathspec != NULL);
if (strlen(pathspec) == 0)
goto out;
/* Count the path elements. */
for (cp = __UNCONST(pathspec), count = 0;;) {
count++;
cp = strchr(cp, ':');
if (cp == NULL)
break;
cp++;
}
buf = malloc((sizeof(char *) * (count + 1)) +
strlen(pathspec) + 1);
if (buf == NULL)
goto out;
/*
* Because we want to follow the usual "paths are listed in priority
* order" semantics, we reverse the order of the paths when we put
* them into the array we feed to fts. This is because we always
* overwrite existing entries as we find them, thus the last board
* object found one a given key is the one that will be used.
*/
ret_array = (char **)buf;
startcp = buf + (sizeof(char *) * (count + 1));
/* this is a safe strcpy(); don't replace it. */
strcpy(startcp, pathspec);
cp = strrchr(startcp, ':');
if (cp == NULL)
cp = startcp;
for (i = 0;;) {
if (*cp == ':') {
ret_array[i++] = cp+1;
*cp-- = '\0';
} else
ret_array[i++] = cp;
if (cp == startcp)
break;
cp = strrchr(cp, ':');
if (cp == NULL)
cp = startcp;
}
assert(i == count);
ret_array[i] = NULL;
out:
if (ret_array == NULL) {
if (buf != NULL)
free(buf);
} else {
if (countp != NULL)
*countp = count;
if (bufp != NULL)
*bufp = buf;
}
return ret_array;
}
static const char step_file_name_key[] = "file-name";
static const char step_file_offset_key[] = "file-offset";
static const char step_file_size_key[] = "file-size";
static const char step_image_offset_key[] = "image-offset";
static const char step_input_block_size_key[] = "input-block-size";
static const char step_input_pad_size_key[] = "input-pad-size";
static const char step_output_size_key[] = "output-size";
static const char step_output_block_size_key[] = "output-block-size";
static const char step_preserve_key[] = "preserve";
static bool
validate_ubstep_object(evb_ubstep obj)
{
/*
* evb_ubstep is a dictionary with the following keys:
*
* "file-name" (string) (required)
* "file-offset" (number) (optional)
* "file-size" (number) (optional)
* "image-offset" (number) (optional)
* "input-block-size" (number) (optional)
* "input-pad-size" (number) (optional)
* "output-size" (number) (optional)
* "output-block-size" (number) (optional)
* "preserve" (bool) (optional)
*/
if (prop_object_type(obj) != PROP_TYPE_DICTIONARY)
return false;
prop_object_t v;
v = prop_dictionary_get(obj, step_file_name_key);
if (v == NULL ||
prop_object_type(v) != PROP_TYPE_STRING)
return false;
v = prop_dictionary_get(obj, step_file_offset_key);
if (v != NULL &&
prop_object_type(v) != PROP_TYPE_NUMBER)
return false;
v = prop_dictionary_get(obj, step_file_size_key);
if (v != NULL &&
prop_object_type(v) != PROP_TYPE_NUMBER)
return false;
v = prop_dictionary_get(obj, step_image_offset_key);
if (v != NULL &&
prop_object_type(v) != PROP_TYPE_NUMBER)
return false;
bool have_input_block_size = false;
bool have_input_pad_size = false;
v = prop_dictionary_get(obj, step_input_block_size_key);
if (v != NULL) {
have_input_block_size = true;
if (prop_object_type(v) != PROP_TYPE_NUMBER)
return false;
}
v = prop_dictionary_get(obj, step_input_pad_size_key);
if (v != NULL) {
have_input_pad_size = true;
if (prop_object_type(v) != PROP_TYPE_NUMBER)
return false;
}
/* Must have both or neither of input-{block,pad}-size. */
if (have_input_block_size ^ have_input_pad_size)
return false;
v = prop_dictionary_get(obj, step_output_size_key);
if (v != NULL &&
prop_object_type(v) != PROP_TYPE_NUMBER)
return false;
v = prop_dictionary_get(obj, step_output_block_size_key);
if (v != NULL &&
prop_object_type(v) != PROP_TYPE_NUMBER)
return false;
v = prop_dictionary_get(obj, step_preserve_key);
if (v != NULL &&
prop_object_type(v) != PROP_TYPE_BOOL)
return false;
return true;
}
static bool
validate_ubinstall_object(evb_board board, evb_ubinstall obj)
{
/*
* evb_ubinstall is either:
* -- an array with one or more evb_ubstep objects.
* -- a string representing an alias of another evb_ubinstall
* object
*
* (evb_ubsteps is just a convenience type for iterating
* over the steps.)
*/
if (prop_object_type(obj) == PROP_TYPE_STRING) {
evb_ubinstall tobj = prop_dictionary_get(board,
prop_string_value((prop_string_t)obj));
/*
* The target evb_ubinstall object must exist
* and must itself be a proper evb_ubinstall,
* not another alias.
*/
if (tobj == NULL ||
prop_object_type(tobj) != PROP_TYPE_ARRAY) {
return false;
}
return true;
}
if (prop_object_type(obj) != PROP_TYPE_ARRAY)
return false;
if (prop_array_count(obj) < 1)
return false;
prop_object_t v;
prop_object_iterator_t iter = prop_array_iterator(obj);
while ((v = prop_object_iterator_next(iter)) != NULL) {
if (!validate_ubstep_object(v))
break;
}
prop_object_iterator_release(iter);
return v == NULL;
}
static const char board_description_key[] = "description";
static const char board_u_boot_pkg_key[] = "u-boot-pkg";
static const char board_u_boot_path_key[] = "runtime-u-boot-path";
static const char board_u_boot_install_key[] = "u-boot-install";
static bool
validate_board_object(evb_board obj, bool is_overlay)
{
/*
* evb_board is a dictionary with the following keys:
*
* "description" (string) (required)
* "u-boot-pkg" (string) (optional, base only)
* "runtime-u-boot-path" (string) (required, overlay only)
*
* With special consideration for these keys:
*
* Either this key and no other "u-boot-install*" keys:
* "u-boot-install" (string) (required, overlay only)
*
* Or one or more keys of the following pattern:
* "u-boot-install-*" (string) (required, overlay only)
*/
bool has_default_install = false;
bool has_media_install = false;
if (prop_object_type(obj) != PROP_TYPE_DICTIONARY)
return false;
prop_object_t v;
v = prop_dictionary_get(obj, board_description_key);
if (v == NULL ||
prop_object_type(v) != PROP_TYPE_STRING)
return false;
v = prop_dictionary_get(obj, board_u_boot_pkg_key);
if (v != NULL &&
(is_overlay || prop_object_type(v) != PROP_TYPE_STRING))
return false;
/*
* "runtime-u-boot-path" is added to an overlay after we've
* validated the board object, so simply make sure it's not
* present.
*/
v = prop_dictionary_get(obj, board_u_boot_path_key);
if (v != NULL)
return false;
prop_object_iterator_t iter = prop_dictionary_iterator(obj);
prop_dictionary_keysym_t key;
while ((key = prop_object_iterator_next(iter)) != NULL) {
const char *cp = prop_dictionary_keysym_value(key);
if (strcmp(cp, board_u_boot_install_key) == 0) {
has_default_install = true;
} else if (strncmp(cp, board_u_boot_install_key,
sizeof(board_u_boot_install_key) - 1) == 0 &&
cp[sizeof(board_u_boot_install_key) - 1] == '-') {
has_media_install = true;
} else {
continue;
}
v = prop_dictionary_get_keysym(obj, key);
assert(v != NULL);
if (!is_overlay || !validate_ubinstall_object(obj, v))
break;
}
prop_object_iterator_release(iter);
if (key != NULL)
return false;
/*
* Overlays must have only a default install key OR one or more
* media install keys.
*/
if (is_overlay)
return has_default_install ^ has_media_install;
/*
* Base board objects must have neither.
*/
return (has_default_install | has_media_install) == false;
}
/*
* evb_db_load_overlay --
* Load boards from an overlay file into the db.
*/
static void
evb_db_load_overlay(ib_params *params, const char *path,
const char *runtime_uboot_path)
{
prop_dictionary_t overlay;
struct stat sb;
if (params->flags & IB_VERBOSE)
printf("Loading '%s'.\n", path);
if (stat(path, &sb) < 0) {
warn("'%s'", path);
return;
} else {
overlay = prop_dictionary_internalize_from_file(path);
if (overlay == NULL) {
warnx("unable to parse overlay '%s'", path);
return;
}
}
/*
* Validate all of the board objects and add them to the board
* db, replacing any existing entries as we go.
*/
prop_object_iterator_t iter = prop_dictionary_iterator(overlay);
prop_dictionary_keysym_t key;
prop_dictionary_t board;
while ((key = prop_object_iterator_next(iter)) != NULL) {
board = prop_dictionary_get_keysym(overlay, key);
assert(board != NULL);
if (!validate_board_object(board, true)) {
warnx("invalid board object in '%s': '%s'", path,
prop_dictionary_keysym_value(key));
continue;
}
/* Add "runtime-u-boot-path". */
prop_string_t string =
prop_string_create_copy(runtime_uboot_path);
assert(string != NULL);
prop_dictionary_set(board, board_u_boot_path_key, string);
prop_object_release(string);
/* Insert into board db. */
prop_dictionary_set_keysym(params->mach_data, key, board);
}
prop_object_iterator_release(iter);
prop_object_release(overlay);
}
/*
* evb_db_load_overlays --
* Load the overlays from the search path.
*/
static void
evb_db_load_overlays(ib_params *params)
{
char overlay_pathbuf[PATH_MAX+1];
const char *overlay_path;
char **paths;
void *pathsbuf = NULL;
FTS *fts;
FTSENT *chp, *p;
struct stat sb;
paths = evb_uboot_pkg_paths(params, NULL, &pathsbuf);
if (paths == NULL) {
warnx("No u-boot search path?");
return;
}
fts = fts_open(paths, FTS_COMFOLLOW | FTS_LOGICAL | FTS_NOCHDIR, NULL);
if (fts == NULL ||
(chp = fts_children(fts, 0)) == NULL) {
warn("Unable to search u-boot path");
if (fts != NULL)
fts_close(fts);
return;
}
chp = fts_children(fts, 0);
while ((p = fts_read(fts)) != NULL) {
if (p->fts_info != FTS_D)
continue;
overlay_path = make_path(overlay_pathbuf,
sizeof(overlay_pathbuf), "%s/installboot.plist",
p->fts_path);
if (overlay_path == NULL)
continue;
if (stat(overlay_path, &sb) < 0)
continue;
evb_db_load_overlay(params, overlay_path, p->fts_path);
}
fts_close(fts);
/*
* If the user specified a stage1 loader, then consult it last
* for a possible u-boot package location.
*/
if (params->stage1 != NULL) {
overlay_path = make_path(overlay_pathbuf,
sizeof(overlay_pathbuf), "%s/installboot.plist",
params->stage1);
if (overlay_path != NULL) {
if (stat(overlay_path, &sb) == 0) {
evb_db_load_overlay(params, overlay_path,
params->stage1);
}
}
}
}
/*
* evb_db_load_base --
* Load the base board db.
*/
static bool
evb_db_load_base(ib_params *params)
{
char buf[PATH_MAX+1];
const char *path;
prop_dictionary_t board_db;
struct stat sb;
path = evb_db_base_path(params, buf, sizeof(buf));
if (path == NULL)
return false;
if (params->flags & IB_VERBOSE)
printf("Loading '%s'.\n", path);
if (stat(path, &sb) < 0) {
if (errno != ENOENT) {
warn("'%s'", path);
return false;
}
board_db = prop_dictionary_create();
assert(board_db != NULL);
} else {
board_db = prop_dictionary_internalize_from_file(path);
if (board_db == NULL) {
warnx("unable to parse board db '%s'", path);
return false;
}
}
if (prop_dictionary_count(board_db) == 0) {
/*
* Oh well, maybe we'll load some overlays.
*/
goto done;
}
/*
* Validate all of the board objects and remove any bad ones.
*/
prop_array_t all_board_keys = prop_dictionary_all_keys(board_db);
prop_object_iterator_t iter = prop_array_iterator(all_board_keys);
prop_dictionary_keysym_t key;
prop_dictionary_t board;
while ((key = prop_object_iterator_next(iter)) != NULL) {
board = prop_dictionary_get_keysym(board_db, key);
assert(board != NULL);
if (!validate_board_object(board, false)) {
warnx("invalid board object in '%s': '%s'", path,
prop_dictionary_keysym_value(key));
prop_dictionary_remove_keysym(board_db, key);
}
}
prop_object_iterator_release(iter);
prop_object_release(all_board_keys);
done:
params->mach_data = board_db;
return true;
}
/*
* evb_db_load --
* Load the board database.
*/
bool
evb_db_load(ib_params *params)
{
if (!evb_db_load_base(params))
return false;
evb_db_load_overlays(params);
return true;
}
#if !HAVE_NBTOOL_CONFIG_H
/*
* Native board name guessing methods.
*/
#ifdef SUPPORT_OPENFIRMWARE
static int
ofw_fd(void)
{
static const char openfirm_path[] = "/dev/openfirm";
return open(openfirm_path, O_RDONLY);
}
static int
OF_finddevice(const char *name)
{
struct ofiocdesc ofio = {
.of_name = __UNCONST(name),
.of_namelen = strlen(name),
};
int fd = ofw_fd();
if (fd == -1)
return -1;
if (ioctl(fd, OFIOCFINDDEVICE, &ofio) < 0) {
if (errno != ENOENT)
warn("OFIOCFINDDEVICE('%s')", name);
ofio.of_nodeid = -1;
}
(void) close(fd);
return ofio.of_nodeid;
}
static int
OF_getprop(int phandle, const char *prop, void *buf, size_t buflen)
{
struct ofiocdesc ofio = {
.of_nodeid = phandle,
.of_name = __UNCONST(prop),
.of_namelen = strlen(prop),
.of_buf = buf,
.of_buflen = buflen,
};
int fd = ofw_fd();
if (fd == -1)
return -1;
int save_errno = 0;
if (ioctl(fd, OFIOCGET, &ofio) < 0) {
save_errno = errno;
if (errno != ENOMEM && errno != ENOENT) {
save_errno = errno;
warn("OFIOCGET('%s')", prop);
}
ofio.of_buflen = -1;
}
(void) close(fd);
errno = save_errno;
return ofio.of_buflen;
}
static void *
ofw_getprop(int phandle, const char *prop, int *lenp)
{
size_t buflen = 32;
void *buf = NULL;
int len;
for (;;) {
void *newbuf = realloc(buf, buflen);
if (newbuf == NULL) {
free(buf);
return NULL;
}
buf = newbuf;
switch (len = OF_getprop(phandle, prop, buf, buflen)) {
case -1:
if (errno != ENOMEM) {
free(buf);
return NULL;
}
buflen *= 2;
break;
default:
if (lenp)
*lenp = len;
return buf;
}
}
}
static evb_board
evb_db_get_board_from_ofw(ib_params *params, const char **board_namep)
{
int phandle;
int compatible_len = 0;
char *compatible_buf;
const char *sp, *nsp;
evb_board board;
phandle = OF_finddevice("/");
if (phandle == -1) {
/* No OpenFirmware available. */
return NULL;
}
compatible_buf = ofw_getprop(phandle, "compatible", &compatible_len);
/*
* We just leak compatible_buf on success. Not a big deal since
* we are not a long-running process.
*/
sp = compatible_buf;
while (compatible_len &&
(nsp = memchr(sp, 0, compatible_len)) != NULL) {
if (params->flags & IB_VERBOSE)
printf("Checking OFW compatible string '%s'.\n", sp);
board = prop_dictionary_get(params->mach_data, sp);
if (board != NULL) {
if (board_namep)
*board_namep = sp;
return board;
}
nsp++; /* skip over NUL */
compatible_len -= (nsp - sp);
sp = nsp;
}
free(compatible_buf);
return NULL;
}
#endif /* SUPPORT_OPENFIRMWARE */
#endif /* ! HAVE_NBTOOL_CONFIG_H */
/*
* Host-tool and native board name guessing methods.
*/
#ifdef SUPPORT_FDT
static void *
load_dtb(ib_params *params)
{
struct stat sb;
void *buf;
int fd;
if (stat(params->dtb, &sb) < 0) {
warn("%s", params->dtb);
return NULL;
}
buf = malloc((size_t)sb.st_size);
assert(buf != NULL);
if ((fd = open(params->dtb, O_RDONLY)) < 0) {
warn("%s", params->dtb);
free(buf);
return NULL;
}
if (read(fd, buf, (size_t)sb.st_size) != (ssize_t)sb.st_size) {
warn("read '%s'", params->dtb);
free(buf);
buf = NULL;
}
(void) close(fd);
return buf;
}
static evb_board
evb_db_get_board_from_dtb(ib_params *params, const char **board_namep)
{
evb_board board = NULL;
void *fdt = NULL;
int error;
fdt = load_dtb(params);
if (fdt == NULL)
return NULL;
error = fdt_check_header(fdt);
if (error) {
warnx("%s: %s", params->dtb, fdt_strerror(error));
goto bad;
}
const int system_root = fdt_path_offset(fdt, "/");
if (system_root < 0) {
warnx("%s: unable to find node '/'", params->dtb);
goto bad;
}
const int system_ncompat = fdt_stringlist_count(fdt, system_root,
"compatible");
if (system_ncompat <= 0) {
warnx("%s: no 'compatible' property on node '/'", params->dtb);
goto bad;
}
const char *compatible;
int si;
for (si = 0; si < system_ncompat; si++) {
compatible = fdt_stringlist_get(fdt, system_root,
"compatible", si, NULL);
if (compatible == NULL)
continue;
if (params->flags & IB_VERBOSE)
printf("Checking FDT compatible string '%s'.\n",
compatible);
board = prop_dictionary_get(params->mach_data, compatible);
if (board != NULL) {
/*
* We just leak compatible on success. Not a big
* deal since we are not a long-running process.
*/
if (board_namep) {
*board_namep = strdup(compatible);
assert(*board_namep != NULL);
}
free(fdt);
return board;
}
}
bad:
if (fdt != NULL)
free(fdt);
return NULL;
}
#endif /* SUPPORT_FDT */
/*
* evb_db_get_board --
* Return the specified board object from the database.
*/
evb_board
evb_db_get_board(ib_params *params)
{
const char *board_name = NULL;
evb_board board = NULL;
#if !HAVE_NBTOOL_CONFIG_H
/*
* If we're not a host tool, determine if we're running "natively".
*/
bool is_native = false;
struct utsname utsname;
if (uname(&utsname) < 0) {
warn("uname");
} else if (strcmp(utsname.machine, params->machine->name) == 0) {
is_native = true;
}
#endif /* ! HAVE_NBTOOL_CONFIG_H */
/*
* Logic for determing board type that can be shared by host-tool
* and native builds goes here.
*/
/*
* Command-line argument trumps all.
*/
if (params->flags & IB_BOARD) {
board_name = params->board;
}
#ifdef SUPPORT_FDT
if (board_name == NULL && (params->flags & IB_DTB)) {
board = evb_db_get_board_from_dtb(params, &board_name);
if ((params->flags & IB_VERBOSE) && board != NULL)
printf("Found board '%s' from DTB data.\n", board_name);
#if !HAVE_NBTOOL_CONFIG_H
/*
* If the user specified a DTB, then regardless of the
* outcome, this is like specifying the board directly,
* so native checks should be skipped.
*/
is_native = false;
#endif /* ! HAVE_NBTOOL_CONFIG_H */
}
#endif /* SUPPORT_FDT */
#if !HAVE_NBTOOL_CONFIG_H
/*
* Non-host-tool logic for determining the board type goes here.
*/
#ifdef SUPPORT_OPENFIRMWARE
if (board_name == NULL && is_native) {
board = evb_db_get_board_from_ofw(params, &board_name);
if ((params->flags & IB_VERBOSE) && board != NULL)
printf("Found board '%s' from OFW data.\n", board_name);
}
#endif /* SUPPORT_OPENFIRMWARE */
/* Ensure is_native is consumed. */
if (is_native == false)
is_native = false;
#endif /* ! HAVE_NBTOOL_CONFIG_H */
/*
* If all else fails, we can always rely on the user, right?
*/
if (board_name == NULL) {
if (!(params->flags & IB_BOARD)) {
warnx("Must specify board=...");
return NULL;
}
board_name = params->board;
}
assert(board_name != NULL);
if (board == NULL)
board = prop_dictionary_get(params->mach_data, board_name);
if (board == NULL)
warnx("Unknown board '%s'", board_name);
/* Ensure params->board is always valid. */
params->board = board_name;
if (params->flags & IB_VERBOSE) {
printf("Board: %s\n", evb_board_get_description(params, board));
}
return board;
}
/*
* evb_db_list_boards --
* Print the list of known boards to the specified output stream.
*/
void
evb_db_list_boards(ib_params *params, FILE *out)
{
prop_object_iterator_t iter;
prop_dictionary_keysym_t key;
evb_board board;
const char *uboot_pkg;
const char *uboot_path;
/*
* By default, we only list boards that we have a u-boot
* package installed for, or if we know which package you
* need to install. You get the full monty in verbose mode.
*/
iter = prop_dictionary_iterator(params->mach_data);
while ((key = prop_object_iterator_next(iter)) != NULL) {
board = prop_dictionary_get_keysym(params->mach_data, key);
assert(board != NULL);
uboot_pkg = evb_board_get_uboot_pkg(params, board);
uboot_path = evb_board_get_uboot_path(params, board);
if (uboot_pkg == NULL && uboot_path == NULL &&
!(params->flags & IB_VERBOSE))
continue;
fprintf(out, "%-30s %s\n",
prop_dictionary_keysym_value(key),
evb_board_get_description(params, board));
if ((params->flags & IB_VERBOSE) && uboot_path) {
fprintf(out, "\t(u-boot package found at %s)\n",
uboot_path);
} else if ((params->flags & IB_VERBOSE) && uboot_pkg) {
fprintf(out,
"\t(install the sysutils/u-boot-%s package)\n",
uboot_pkg);
}
}
prop_object_iterator_release(iter);
}
/*
* evb_board_get_description --
* Return the description for the specified board.
*/
const char *
evb_board_get_description(ib_params *params, evb_board board)
{
prop_string_t string;
string = prop_dictionary_get(board, board_description_key);
return prop_string_value(string);
}
/*
* evb_board_get_uboot_pkg --
* Return the u-boot package name for the specified board.
*/
const char *
evb_board_get_uboot_pkg(ib_params *params, evb_board board)
{
prop_string_t string;
string = prop_dictionary_get(board, board_u_boot_pkg_key);
if (string == NULL)
return NULL;
return prop_string_value(string);
}
/*
* evb_board_get_uboot_path --
* Return the u-boot installed package path for the specified board.
*/
const char *
evb_board_get_uboot_path(ib_params *params, evb_board board)
{
prop_string_t string;
string = prop_dictionary_get(board, board_u_boot_path_key);
if (string == NULL)
return NULL;
return prop_string_value(string);
}
/*
* evb_board_get_uboot_install --
* Return the u-boot install object for the specified board,
* corresponding to the media specified by the user.
*/
evb_ubinstall
evb_board_get_uboot_install(ib_params *params, evb_board board)
{
evb_ubinstall install;
install = prop_dictionary_get(board, board_u_boot_install_key);
if (!(params->flags & IB_MEDIA)) {
if (install == NULL) {
warnx("Must specify media=... for board '%s'",
params->board);
goto list_media;
}
return install;
}
/* media=... was specified by the user. */
if (install) {
warnx("media=... is not a valid option for board '%s'",
params->board);
return NULL;
}
char install_key[128];
int n = snprintf(install_key, sizeof(install_key), "%s-%s",
board_u_boot_install_key, params->media);
if (n < 0 || (size_t)n >= sizeof(install_key))
goto invalid_media;
install = prop_dictionary_get(board, install_key);
if (install != NULL) {
if (prop_object_type(install) == PROP_TYPE_STRING) {
/*
* This is an alias. Fetch the target. We
* have already validated that the target
* exists.
*/
install = prop_dictionary_get(board,
prop_string_value((prop_string_t)install));
}
return install;
}
invalid_media:
warnx("invalid media specification: '%s'", params->media);
list_media:
fprintf(stderr, "Valid media types:");
prop_array_t array = evb_board_copy_uboot_media(params, board);
assert(array != NULL);
prop_object_iterator_t iter = prop_array_iterator(array);
prop_string_t string;
while ((string = prop_object_iterator_next(iter)) != NULL)
fprintf(stderr, " %s", prop_string_value(string));
fprintf(stderr, "\n");
prop_object_iterator_release(iter);
prop_object_release(array);
return NULL;
}
/*
* evb_board_copy_uboot_media --
* Return the valid media types for the given board as an array
* of strings.
*
* Follows the create rule; caller is responsible for releasing
* the array.
*/
prop_array_t
evb_board_copy_uboot_media(ib_params *params, evb_board board)
{
prop_array_t array = prop_array_create();
prop_object_iterator_t iter = prop_dictionary_iterator(board);
prop_string_t string;
prop_dictionary_keysym_t key;
const char *cp;
assert(array != NULL);
assert(iter != NULL);
while ((key = prop_object_iterator_next(iter)) != NULL) {
cp = prop_dictionary_keysym_value(key);
if (strcmp(cp, board_u_boot_install_key) == 0 ||
strncmp(cp, board_u_boot_install_key,
sizeof(board_u_boot_install_key) - 1) != 0)
continue;
string = prop_string_create_copy(strrchr(cp, '-')+1);
assert(string != NULL);
prop_array_add(array, string);
prop_object_release(string);
}
prop_object_iterator_release(iter);
return array;
}
/*
* evb_ubinstall_get_steps --
* Get the install steps for a given install object.
*/
evb_ubsteps
evb_ubinstall_get_steps(ib_params *params, evb_ubinstall install)
{
return prop_array_iterator(install);
}
/*
* evb_ubsteps_next_step --
* Return the next step in the install object.
*
* N.B. The iterator is released upon termination.
*/
evb_ubstep
evb_ubsteps_next_step(ib_params *params, evb_ubsteps steps)
{
prop_dictionary_t step = prop_object_iterator_next(steps);
/* If we are out of steps, release the iterator. */
if (step == NULL)
prop_object_iterator_release(steps);
return step;
}
/*
* evb_ubstep_get_file_name --
* Returns the input file name for the step.
*/
const char *
evb_ubstep_get_file_name(ib_params *params, evb_ubstep step)
{
prop_string_t string = prop_dictionary_get(step, step_file_name_key);
return prop_string_value(string);
}
/*
* evb_ubstep_get_file_offset --
* Returns the input file offset for the step.
*/
uint64_t
evb_ubstep_get_file_offset(ib_params *params, evb_ubstep step)
{
prop_number_t number = prop_dictionary_get(step, step_file_offset_key);
if (number != NULL)
return prop_number_unsigned_value(number);
return 0;
}
/*
* evb_ubstep_get_file_size --
* Returns the size of the input file to copy for this step, or
* zero if the remainder of the file should be copied.
*/
uint64_t
evb_ubstep_get_file_size(ib_params *params, evb_ubstep step)
{
prop_number_t number = prop_dictionary_get(step, step_file_size_key);
if (number != NULL)
return prop_number_unsigned_value(number);
return 0;
}
/*
* evb_ubstep_get_image_offset --
* Returns the offset into the destination image / device to
* copy the input file.
*/
uint64_t
evb_ubstep_get_image_offset(ib_params *params, evb_ubstep step)
{
prop_number_t number = prop_dictionary_get(step, step_image_offset_key);
if (number != NULL)
return prop_number_unsigned_value(number);
return 0;
}
/*
* evb_ubstep_get_input_block_size --
* Returns the input block size to use when reading the boot loader
* file.
*/
uint64_t
evb_ubstep_get_input_block_size(ib_params *params, evb_ubstep step)
{
prop_number_t number = prop_dictionary_get(step,
step_input_block_size_key);
if (number != NULL)
return prop_number_unsigned_value(number);
return 0;
}
/*
* evb_ubstep_get_input_pad_size --
* Returns the input pad size to use when reading the boot loader
* file.
*/
uint64_t
evb_ubstep_get_input_pad_size(ib_params *params, evb_ubstep step)
{
prop_number_t number = prop_dictionary_get(step,
step_input_pad_size_key);
if (number != NULL)
return prop_number_unsigned_value(number);
return 0;
}
/*
* evb_ubstep_get_output_size --
* Returns the total output size that will be written to the
* output device.
*/
uint64_t
evb_ubstep_get_output_size(ib_params *params, evb_ubstep step)
{
prop_number_t number = prop_dictionary_get(step, step_output_size_key);
if (number != NULL)
return prop_number_unsigned_value(number);
return 0;
}
/*
* evb_ubstep_get_output_block_size --
* Returns the block size that must be written to the output device.
*/
uint64_t
evb_ubstep_get_output_block_size(ib_params *params, evb_ubstep step)
{
prop_number_t number = prop_dictionary_get(step,
step_output_block_size_key);
if (number != NULL)
return prop_number_unsigned_value(number);
return 0;
}
/*
* evb_ubstep_preserves_partial_block --
* Returns true if the step preserves a partial block.
*/
bool
evb_ubstep_preserves_partial_block(ib_params *params, evb_ubstep step)
{
prop_bool_t val = prop_dictionary_get(step, step_preserve_key);
if (val != NULL)
return prop_bool_true(val);
return false;
}
/*
* evb_uboot_file_path --
* Build a file path from the u-boot base path in the board object
* and the file name in the step object.
*/
static const char *
evb_uboot_file_path(ib_params *params, evb_board board, evb_ubstep step,
char *buf, size_t bufsize)
{
const char *base_path = evb_board_get_uboot_path(params, board);
const char *file_name = evb_ubstep_get_file_name(params, step);
if (base_path == NULL || file_name == NULL)
return NULL;
return make_path(buf, bufsize, "%s/%s", base_path, file_name);
}
/*
* evb_uboot_do_step --
* Given a evb_ubstep, do the deed.
*/
static int
evb_uboot_do_step(ib_params *params, const char *uboot_file, evb_ubstep step)
{
struct stat sb;
int ifd = -1;
char *blockbuf = NULL;
off_t curoffset;
off_t file_remaining;
bool rv = false;
uint64_t file_size = evb_ubstep_get_file_size(params, step);
uint64_t file_offset = evb_ubstep_get_file_offset(params, step);
uint64_t image_offset = evb_ubstep_get_image_offset(params, step);
uint64_t output_size = evb_ubstep_get_output_size(params, step);
size_t output_block_size =
(size_t)evb_ubstep_get_output_block_size(params, step);
size_t input_block_size =
(size_t)evb_ubstep_get_input_block_size(params, step);
size_t input_pad_size =
(size_t)evb_ubstep_get_input_pad_size(params, step);
bool preserves_partial_block =
evb_ubstep_preserves_partial_block(params, step);
const char *uboot_file_name =
evb_ubstep_get_file_name(params, step);
if (input_block_size == 0 && output_block_size == 0) {
if (params->flags & IB_VERBOSE) {
printf("Defaulting input-block-size and "
"output-block-size to sectorsize "
"(%" PRIu32 ")\n", params->sectorsize);
}
input_block_size = output_block_size = params->sectorsize;
} else if (input_block_size != 0 && output_block_size == 0) {
if (params->flags & IB_VERBOSE) {
printf("Defaulting output-block-size to "
"input-block-size (%zu)\n",
input_block_size);
}
output_block_size = input_block_size;
} else if (output_block_size != 0 && input_block_size == 0) {
if (params->flags & IB_VERBOSE) {
printf("Defaulting input-block-size to "
"output-block-size (%zu)\n",
output_block_size);
}
input_block_size = output_block_size;
}
if (output_block_size % params->sectorsize) {
warnx("output-block-size (%zu) is not a multiple of "
"device sector size (%" PRIu32 ")",
output_block_size, params->sectorsize);
goto out;
}
if ((input_block_size + input_pad_size) > output_block_size) {
warnx("input-{block+pad}-size (%zu) is larger than "
"output-block-size (%zu)",
input_block_size + input_pad_size,
output_block_size);
goto out;
}
if (output_block_size % (input_block_size + input_pad_size)) {
warnx("output-block-size (%zu) it not a multiple of "
"input-{block+pad}-size (%zu)",
output_block_size,
input_block_size + input_pad_size);
goto out;
}
blockbuf = malloc(output_block_size);
if (blockbuf == NULL)
goto out;
ifd = open(uboot_file, O_RDONLY);
if (ifd < 0) {
warn("open '%s'", uboot_file);
goto out;
}
if (fstat(ifd, &sb) < 0) {
warn("fstat '%s'", uboot_file);
goto out;
}
if (file_size)
file_remaining = (off_t)file_size;
else
file_remaining = sb.st_size - (off_t)file_offset;
if (output_size == 0) {
output_size = roundup(file_remaining, output_block_size);
} else if ((uint64_t)file_remaining > output_size) {
warnx("file size (%lld) is larger than output-size (%" PRIu64
")", (long long)file_remaining, output_size);
goto out;
}
if (params->flags & IB_VERBOSE) {
if (file_offset) {
printf("Writing '%s' %lld @ %" PRIu64
"to '%s' @ %" PRIu64 "\n",
uboot_file_name, (long long)file_remaining,
file_offset, params->filesystem, image_offset);
} else {
printf("Writing '%s' %lld to '%s' @ %" PRIu64 "\n",
uboot_file_name, (long long)file_remaining,
params->filesystem, image_offset);
}
}
if (lseek(ifd, (off_t)file_offset, SEEK_SET) < 0) {
warn("lseek '%s' @ %" PRIu64, uboot_file,
file_offset);
goto out;
}
for (curoffset = (off_t)image_offset;
output_size != 0;
curoffset += output_block_size, output_size -= output_block_size) {
size_t outblock_remaining;
size_t this_inblock;
char *fill;
/*
* Initialize the output buffer. We're either
* filling it with zeros, or we're preserving
* device contents that we don't overwrite.
*/
memset(blockbuf, 0, output_block_size);
if (preserves_partial_block) {
if (params->flags & IB_VERBOSE) {
printf("(Reading '%s' -- %zu @ %lld)\n",
params->filesystem,
output_block_size,
(long long)curoffset);
}
if (pread(params->fsfd, blockbuf,
output_block_size, curoffset) < 0) {
warn("pread '%s'", params->filesystem);
goto out;
}
}
/*
* Fill the output buffer with the file contents,
* interleaved with padding as necessary. (If
* there is no file left, we're going to be left
* with padding to cover the output-size.)
*/
for (outblock_remaining = output_block_size, fill = blockbuf;
outblock_remaining != 0;
fill += input_block_size + input_pad_size,
outblock_remaining -= input_block_size + input_pad_size) {
this_inblock = input_block_size;
if ((off_t)this_inblock > file_remaining) {
this_inblock = file_remaining;
}
if (this_inblock) {
if (params->flags & IB_VERBOSE) {
printf("(Reading '%s' -- %zu @ %lld)\n",
uboot_file_name,
this_inblock,
(long long)lseek(ifd, 0,
SEEK_CUR));
}
if (read(ifd, fill, this_inblock)
!= (ssize_t)this_inblock) {
warn("read '%s'", uboot_file);
goto out;
}
file_remaining -= this_inblock;
}
}
if (params->flags & IB_VERBOSE) {
printf("(Writing '%s' -- %zu @ %lld)\n",
params->filesystem,
output_block_size, (long long)curoffset);
}
if (!(params->flags & IB_NOWRITE) &&
pwrite(params->fsfd, blockbuf, output_block_size,
curoffset) != (ssize_t)output_block_size) {
warn("pwrite '%s'", params->filesystem);
goto out;
}
}
/* Success! */
rv = true;
out:
if (ifd != -1 && close(ifd) == -1)
warn("close '%s'", uboot_file);
if (blockbuf)
free(blockbuf);
return rv;
}
int
evb_uboot_setboot(ib_params *params, evb_board board)
{
char uboot_filebuf[PATH_MAX+1];
const char *uboot_file;
struct stat sb;
off_t max_offset = 0;
/*
* If we don't have a u-boot path for this board, it means
* that a u-boot package wasn't found. Prompt the user to
* install it.
*/
if (evb_board_get_uboot_path(params, board) == NULL) {
warnx("No u-boot package found for board '%s'",
params->board);
uboot_file = evb_board_get_uboot_pkg(params, board);
if (uboot_file != NULL)
warnx("Please install the sysutils/u-boot-%s package.",
uboot_file);
return 0;
}
evb_ubinstall install = evb_board_get_uboot_install(params, board);
evb_ubsteps steps;
evb_ubstep step;
if (install == NULL)
return 0;
/*
* First, make sure the files are all there. While we're
* at it, calculate the largest byte offset that we will
* be writing.
*/
steps = evb_ubinstall_get_steps(params, install);
while ((step = evb_ubsteps_next_step(params, steps)) != NULL) {
uint64_t file_offset = evb_ubstep_get_file_offset(params, step);
uint64_t file_size = evb_ubstep_get_file_size(params, step);
uint64_t image_offset =
evb_ubstep_get_image_offset(params, step);
uboot_file = evb_uboot_file_path(params, board, step,
uboot_filebuf, sizeof(uboot_filebuf));
if (uboot_file == NULL)
return 0;
if (stat(uboot_file, &sb) < 0) {
warn("%s", uboot_file);
return 0;
}
if (!S_ISREG(sb.st_mode)) {
warnx("%s: %s", uboot_file, strerror(EFTYPE));
return 0;
}
off_t this_max;
if (file_size)
this_max = file_size;
else
this_max = sb.st_size - file_offset;
this_max += image_offset;
if (max_offset < this_max)
max_offset = this_max;
}
/*
* Ok, we've verified that all of the files are there, and now
* max_offset points to the first byte that's available for a
* partition containing a file system.
*/
off_t rounded_max_offset = (off_t)(max_offset / params->sectorsize) *
params->sectorsize;
if (rounded_max_offset != max_offset)
rounded_max_offset += params->sectorsize;
if (params->flags & IB_VERBOSE) {
printf("Max u-boot offset (rounded): %lld (%lld)\n",
(long long)max_offset, (long long)rounded_max_offset);
printf("First free block available for file systems: "
"%lld (0x%llx)\n",
(long long)rounded_max_offset / params->sectorsize,
(long long)rounded_max_offset / params->sectorsize);
}
/* XXX Check MBR table for overlapping partitions. */
/*
* Now write each binary component to the appropriate location
* on disk.
*/
steps = evb_ubinstall_get_steps(params, install);
while ((step = evb_ubsteps_next_step(params, steps)) != NULL) {
uboot_file = evb_uboot_file_path(params, board, step,
uboot_filebuf, sizeof(uboot_filebuf));
if (uboot_file == NULL)
return 0;
if (!evb_uboot_do_step(params, uboot_file, step))
return 0;
}
return 1;
}