NetBSD/common/lib/libprop/prop_array.c
thorpej 3e69f1b2a5 - Add prop_array_equals(), prop_dictionary_equals(), and
prop_dictionary_keysym_equals(), and prop_object_equals() functions.
- Use realloc() where it makes sense.  There will be more changes in this
  area.
- Add a _prop_object_type structure that is used internally to keep
  information about the object types.  Decreases the footprint of the
  objects slightly by replacing several pointers with just one.
2006-05-18 03:05:19 +00:00

584 lines
14 KiB
C

/* $NetBSD: prop_array.c,v 1.2 2006/05/18 03:05:19 thorpej Exp $ */
/*-
* Copyright (c) 2006 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <prop/prop_array.h>
#include "prop_object_impl.h"
struct _prop_array {
struct _prop_object pa_obj;
prop_object_t * pa_array;
unsigned int pa_capacity;
unsigned int pa_count;
int pa_flags;
uint32_t pa_version;
};
#define PA_F_IMMUTABLE 0x01 /* array is immutable */
_PROP_POOL_INIT(_prop_array_pool, sizeof(struct _prop_array), "proparay")
_PROP_MALLOC_DEFINE(M_PROP_ARRAY, "prop array",
"property array container object")
static void _prop_array_free(void *);
static boolean_t _prop_array_externalize(
struct _prop_object_externalize_context *,
void *);
static boolean_t _prop_array_equals(void *, void *);
static const struct _prop_object_type _prop_object_type_array = {
.pot_type = PROP_TYPE_ARRAY,
.pot_free = _prop_array_free,
.pot_extern = _prop_array_externalize,
.pot_equals = _prop_array_equals,
};
#define prop_object_is_array(x) \
((x)->pa_obj.po_type == &_prop_object_type_array)
#define prop_array_is_immutable(x) (((x)->pa_flags & PA_F_IMMUTABLE) != 0)
struct _prop_array_iterator {
struct _prop_object_iterator pai_base;
unsigned int pai_index;
};
#define EXPAND_STEP 16
static void
_prop_array_free(void *v)
{
prop_array_t pa = v;
prop_object_t po;
unsigned int idx;
_PROP_ASSERT(pa->pa_count <= pa->pa_capacity);
_PROP_ASSERT((pa->pa_capacity == 0 && pa->pa_array == NULL) ||
(pa->pa_capacity != 0 && pa->pa_array != NULL));
for (idx = 0; idx < pa->pa_count; idx++) {
po = pa->pa_array[idx];
_PROP_ASSERT(po != NULL);
prop_object_release(po);
}
if (pa->pa_array != NULL)
_PROP_FREE(pa->pa_array, M_PROP_ARRAY);
_PROP_POOL_PUT(_prop_array_pool, pa);
}
static boolean_t
_prop_array_externalize(struct _prop_object_externalize_context *ctx,
void *v)
{
prop_array_t pa = v;
struct _prop_object *po;
prop_object_iterator_t pi;
unsigned int i;
if (pa->pa_count == 0)
return (_prop_object_externalize_empty_tag(ctx, "array"));
/* XXXJRT Hint "count" for the internalize step? */
if (_prop_object_externalize_start_tag(ctx, "array") == FALSE ||
_prop_object_externalize_append_char(ctx, '\n') == FALSE)
return (FALSE);
pi = prop_array_iterator(pa);
if (pi == NULL)
return (FALSE);
ctx->poec_depth++;
_PROP_ASSERT(ctx->poec_depth != 0);
while ((po = prop_object_iterator_next(pi)) != NULL) {
if ((*po->po_type->pot_extern)(ctx, po) == FALSE) {
prop_object_iterator_release(pi);
return (FALSE);
}
}
prop_object_iterator_release(pi);
ctx->poec_depth--;
for (i = 0; i < ctx->poec_depth; i++) {
if (_prop_object_externalize_append_char(ctx, '\t') == FALSE)
return (FALSE);
}
if (_prop_object_externalize_end_tag(ctx, "array") == FALSE)
return (FALSE);
return (TRUE);
}
static boolean_t
_prop_array_equals(void *v1, void *v2)
{
prop_array_t array1 = v1;
prop_array_t array2 = v2;
unsigned int idx;
_PROP_ASSERT(prop_object_is_array(array1));
_PROP_ASSERT(prop_object_is_array(array2));
if (array1 == array2)
return (TRUE);
if (array1->pa_count != array2->pa_count)
return (FALSE);
for (idx = 0; idx < array1->pa_count; idx++) {
if (prop_object_equals(array1->pa_array[idx],
array2->pa_array[idx]) == FALSE)
return (FALSE);
}
return (TRUE);
}
static prop_array_t
_prop_array_alloc(unsigned int capacity)
{
prop_array_t pa;
prop_object_t *array;
if (capacity != 0) {
array = _PROP_CALLOC(capacity * sizeof(prop_object_t),
M_PROP_ARRAY);
if (array == NULL)
return (NULL);
} else
array = NULL;
pa = _PROP_POOL_GET(_prop_array_pool);
if (pa != NULL) {
_prop_object_init(&pa->pa_obj, &_prop_object_type_array);
pa->pa_obj.po_type = &_prop_object_type_array;
pa->pa_array = array;
pa->pa_capacity = capacity;
pa->pa_count = 0;
pa->pa_flags = 0;
pa->pa_version = 0;
} else if (array != NULL)
_PROP_FREE(array, M_PROP_ARRAY);
return (pa);
}
static boolean_t
_prop_array_expand(prop_array_t pa, unsigned int capacity)
{
prop_object_t *array, *oarray;
oarray = pa->pa_array;
array = _PROP_CALLOC(capacity * sizeof(prop_object_t), M_PROP_ARRAY);
if (array == NULL)
return (FALSE);
if (oarray != NULL)
memcpy(array, oarray, pa->pa_capacity * sizeof(prop_object_t));
pa->pa_array = array;
pa->pa_capacity = capacity;
if (oarray != NULL)
_PROP_FREE(oarray, M_PROP_ARRAY);
return (TRUE);
}
static prop_object_t
_prop_array_iterator_next_object(void *v)
{
struct _prop_array_iterator *pai = v;
prop_array_t pa = pai->pai_base.pi_obj;
prop_object_t po;
_PROP_ASSERT(prop_object_is_array(pa));
if (pa->pa_version != pai->pai_base.pi_version)
return (NULL); /* array changed during iteration */
_PROP_ASSERT(pai->pai_index <= pa->pa_count);
if (pai->pai_index == pa->pa_count)
return (NULL); /* we've iterated all objects */
po = pa->pa_array[pai->pai_index];
pai->pai_index++;
return (po);
}
static void
_prop_array_iterator_reset(void *v)
{
struct _prop_array_iterator *pai = v;
prop_array_t pa = pai->pai_base.pi_obj;
_PROP_ASSERT(prop_object_is_array(pa));
pai->pai_index = 0;
pai->pai_base.pi_version = pa->pa_version;
}
/*
* prop_array_create --
* Create an empty array.
*/
prop_array_t
prop_array_create(void)
{
return (_prop_array_alloc(0));
}
/*
* prop_array_create_with_capacity --
* Create an array with the capacity to store N objects.
*/
prop_array_t
prop_array_create_with_capacity(unsigned int capacity)
{
return (_prop_array_alloc(capacity));
}
/*
* prop_array_copy --
* Copy an array. The new array has an initial capacity equal to
* the number of objects stored in the original array. The new
* array contains references to the original array's objects, not
* copies of those objects (i.e. a shallow copy).
*/
prop_array_t
prop_array_copy(prop_array_t opa)
{
prop_array_t pa;
prop_object_t po;
unsigned int idx;
_PROP_ASSERT(prop_object_is_array(opa));
pa = _prop_array_alloc(opa->pa_count);
if (pa != NULL) {
for (idx = 0; idx < opa->pa_count; idx++) {
po = opa->pa_array[idx];
prop_object_retain(po);
pa->pa_array[idx] = po;
}
pa->pa_count = opa->pa_count;
pa->pa_flags = opa->pa_flags;
}
return (pa);
}
/*
* prop_array_copy_mutable --
* Like prop_array_copy(), but the resulting array is mutable.
*/
prop_array_t
prop_array_copy_mutable(prop_array_t opa)
{
prop_array_t pa;
pa = prop_array_copy(opa);
if (pa != NULL)
pa->pa_flags &= ~PA_F_IMMUTABLE;
return (pa);
}
/*
* prop_array_capacity --
* Return the capacity of the array.
*/
unsigned int
prop_array_capacity(prop_array_t pa)
{
_PROP_ASSERT(prop_object_is_array(pa));
return (pa->pa_capacity);
}
/*
* prop_array_count --
* Return the number of objects stored in the array.
*/
unsigned int
prop_array_count(prop_array_t pa)
{
_PROP_ASSERT(prop_object_is_array(pa));
return (pa->pa_count);
}
/*
* prop_array_ensure_capacity --
* Ensure that the array has the capacity to store the specified
* total number of objects (inluding the objects already stored
* in the array).
*/
boolean_t
prop_array_ensure_capacity(prop_array_t pa, unsigned int capacity)
{
_PROP_ASSERT(prop_object_is_array(pa));
if (capacity > pa->pa_capacity)
return (_prop_array_expand(pa, capacity - pa->pa_capacity));
return (TRUE);
}
/*
* prop_array_iterator --
* Return an iterator for the array. The array is retained by
* the iterator.
*/
prop_object_iterator_t
prop_array_iterator(prop_array_t pa)
{
struct _prop_array_iterator *pai;
_PROP_ASSERT(prop_object_is_array(pa));
pai = _PROP_CALLOC(sizeof(*pai), M_TEMP);
if (pai == NULL)
return (NULL);
pai->pai_base.pi_next_object = _prop_array_iterator_next_object;
pai->pai_base.pi_reset = _prop_array_iterator_reset;
prop_object_retain(pa);
pai->pai_base.pi_obj = pa;
pai->pai_base.pi_version = pa->pa_version;
_prop_array_iterator_reset(pai);
return (&pai->pai_base);
}
/*
* prop_array_make_immutable --
* Make the array immutable.
*/
void
prop_array_make_immutable(prop_array_t pa)
{
if (prop_array_is_immutable(pa) == FALSE)
pa->pa_flags |= PA_F_IMMUTABLE;
}
/*
* prop_array_mutable --
* Returns TRUE if the array is mutable.
*/
boolean_t
prop_array_mutable(prop_array_t pa)
{
return (prop_array_is_immutable(pa) == FALSE);
}
/*
* prop_array_get --
* Return the object stored at the specified array index.
*/
prop_object_t
prop_array_get(prop_array_t pa, unsigned int idx)
{
prop_object_t po;
_PROP_ASSERT(prop_object_is_array(pa));
if (idx >= pa->pa_count)
return (NULL);
po = pa->pa_array[idx];
_PROP_ASSERT(po != NULL);
return (po);
}
/*
* prop_array_set --
* Store a reference to an object at the specified array index.
* This method is not allowed to create holes in the array; the
* caller must either be setting the object just beyond the existing
* count or replacing an already existing object reference.
*/
boolean_t
prop_array_set(prop_array_t pa, unsigned int idx, prop_object_t po)
{
prop_object_t opo;
_PROP_ASSERT(prop_object_is_array(pa));
if (prop_array_is_immutable(pa))
return (FALSE);
if (idx == pa->pa_count)
return (prop_array_add(pa, po));
_PROP_ASSERT(idx < pa->pa_count);
opo = pa->pa_array[idx];
_PROP_ASSERT(opo != NULL);
prop_object_retain(po);
pa->pa_array[idx] = po;
pa->pa_version++;
prop_object_release(opo);
return (TRUE);
}
/*
* prop_array_add --
* Add a refrerence to an object to the specified array, appending
* to the end and growing the array's capacity, if necessary.
*/
boolean_t
prop_array_add(prop_array_t pa, prop_object_t po)
{
_PROP_ASSERT(prop_object_is_array(pa));
_PROP_ASSERT(pa->pa_count <= pa->pa_capacity);
if (prop_array_is_immutable(pa) ||
(pa->pa_count == pa->pa_capacity &&
_prop_array_expand(pa, pa->pa_capacity + EXPAND_STEP) == FALSE))
return (FALSE);
prop_object_retain(po);
pa->pa_array[pa->pa_count++] = po;
pa->pa_version++;
return (TRUE);
}
/*
* prop_array_remove --
* Remove the reference to an object from an array at the specified
* index. The array will be compacted following the removal.
*/
void
prop_array_remove(prop_array_t pa, unsigned int idx)
{
prop_object_t po;
_PROP_ASSERT(prop_object_is_array(pa));
_PROP_ASSERT(idx < pa->pa_count);
/* XXX Should this be a _PROP_ASSERT()? */
if (prop_array_is_immutable(pa))
return;
po = pa->pa_array[idx];
_PROP_ASSERT(po != NULL);
for (++idx; idx < pa->pa_count; idx++)
pa->pa_array[idx - 1] = pa->pa_array[idx];
pa->pa_count--;
pa->pa_version++;
prop_object_release(po);
}
/*
* prop_array_equals --
* Return TRUE if the two arrays are equivalent. Note we do a
* by-value comparison of the objects in the array.
*/
boolean_t
prop_array_equals(prop_array_t array1, prop_array_t array2)
{
return (_prop_array_equals(array1, array2));
}
/*
* _prop_array_internalize --
* Parse an <array>...</array> and return the object created from the
* external representation.
*/
prop_object_t
_prop_array_internalize(struct _prop_object_internalize_context *ctx)
{
prop_array_t array;
prop_object_t obj;
/* We don't currently understand any attributes. */
if (ctx->poic_tagattr != NULL)
return (NULL);
array = prop_array_create();
if (array == NULL)
return (NULL);
if (ctx->poic_is_empty_element)
return (array);
for (;;) {
/* Fetch the next tag. */
if (_prop_object_internalize_find_tag(ctx, NULL,
_PROP_TAG_TYPE_EITHER) == FALSE)
goto bad;
/* Check to see if this is the end of the array. */
if (_PROP_TAG_MATCH(ctx, "array") &&
ctx->poic_tag_type == _PROP_TAG_TYPE_END)
break;
/* Fetch the object. */
obj = _prop_object_internalize_by_tag(ctx);
if (obj == NULL)
goto bad;
if (prop_array_add(array, obj) == FALSE) {
prop_object_release(obj);
goto bad;
}
prop_object_release(obj);
}
return (array);
bad:
prop_object_release(array);
return (NULL);
}