480 lines
12 KiB
C
480 lines
12 KiB
C
/* $NetBSD: clock.c,v 1.13 1996/10/13 04:10:51 christos Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1988 University of Utah.
|
|
* Copyright (c) 1982, 1990 The Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* the Systems Programming Group of the University of Utah Computer
|
|
* Science Department.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: Utah $Hdr: clock.c 1.18 91/01/21$
|
|
*
|
|
* @(#)clock.c 7.6 (Berkeley) 5/7/91
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/device.h>
|
|
#include <machine/psl.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/iomap.h>
|
|
#include <machine/mfp.h>
|
|
#include <atari/dev/clockreg.h>
|
|
|
|
#if defined(GPROF) && defined(PROFTIMER)
|
|
#include <machine/profile.h>
|
|
#endif
|
|
|
|
/*
|
|
* The MFP clock runs at 2457600Hz. We use a {system,stat,prof}clock divider
|
|
* of 200. Therefore the timer runs at an effective rate of:
|
|
* 2457600/200 = 12288Hz.
|
|
*/
|
|
#define CLOCK_HZ 12288
|
|
|
|
/*
|
|
* Machine-dependent clock routines.
|
|
*
|
|
* Inittodr initializes the time of day hardware which provides
|
|
* date functions.
|
|
*
|
|
* Resettodr restores the time of day hardware after a time change.
|
|
*/
|
|
|
|
int clockmatch __P((struct device *, void *, void *));
|
|
void clockattach __P((struct device *, struct device *, void *));
|
|
|
|
struct cfattach clock_ca = {
|
|
sizeof(struct device), clockmatch, clockattach
|
|
};
|
|
|
|
struct cfdriver clock_cd = {
|
|
NULL, "clock", DV_DULL, NULL, 0
|
|
};
|
|
|
|
void statintr __P((struct clockframe *));
|
|
|
|
static u_long gettod __P((void));
|
|
static int settod __P((u_long));
|
|
|
|
static int divisor; /* Systemclock divisor */
|
|
|
|
/*
|
|
* Statistics and profile clock intervals and variances. Variance must
|
|
* be a power of 2. Since this gives us an even number, not an odd number,
|
|
* we discard one case and compensate. That is, a variance of 64 would
|
|
* give us offsets in [0..63]. Instead, we take offsets in [1..63].
|
|
* This is symetric around the point 32, or statvar/2, and thus averages
|
|
* to that value (assuming uniform random numbers).
|
|
*/
|
|
#ifdef STATCLOCK
|
|
static int statvar = 32; /* {stat,prof}clock variance */
|
|
static int statmin; /* statclock divisor - variance/2 */
|
|
static int profmin; /* profclock divisor - variance/2 */
|
|
static int clk2min; /* current, from above choises */
|
|
#endif
|
|
|
|
int
|
|
clockmatch(pdp, match, auxp)
|
|
struct device *pdp;
|
|
void *match, *auxp;
|
|
{
|
|
if(!strcmp("clock", auxp))
|
|
return(1);
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Start the real-time clock.
|
|
*/
|
|
void clockattach(pdp, dp, auxp)
|
|
struct device *pdp, *dp;
|
|
void *auxp;
|
|
{
|
|
/*
|
|
* Initialize Timer-A in the ST-MFP. We use a divisor of 200.
|
|
* The MFP clock runs at 2457600Hz. Therefore the timer runs
|
|
* at an effective rate of: 2457600/200 = 12288Hz. The
|
|
* following expression works for 48, 64 or 96 hz.
|
|
*/
|
|
divisor = CLOCK_HZ/hz;
|
|
MFP->mf_tacr = 0; /* Stop timer */
|
|
MFP->mf_iera &= ~IA_TIMA; /* Disable timer interrupts */
|
|
MFP->mf_tadr = divisor; /* Set divisor */
|
|
|
|
if (hz != 48 && hz != 64 && hz != 96) { /* XXX */
|
|
printf (": illegal value %d for systemclock, reset to %d\n\t",
|
|
hz, 64);
|
|
hz = 64;
|
|
}
|
|
printf(": system hz %d timer-A divisor 200/%d\n", hz, divisor);
|
|
|
|
#ifdef STATCLOCK
|
|
if ((stathz == 0) || (stathz > hz) || (CLOCK_HZ % stathz))
|
|
stathz = hz;
|
|
if ((profhz == 0) || (profhz > (hz << 1)) || (CLOCK_HZ % profhz))
|
|
profhz = hz << 1;
|
|
|
|
MFP->mf_tcdcr &= 0x7; /* Stop timer */
|
|
MFP->mf_ierb &= ~IB_TIMC; /* Disable timer inter. */
|
|
MFP->mf_tcdr = CLOCK_HZ/stathz; /* Set divisor */
|
|
|
|
statmin = (CLOCK_HZ/stathz) - (statvar >> 1);
|
|
profmin = (CLOCK_HZ/profhz) - (statvar >> 1);
|
|
clk2min = statmin;
|
|
#endif /* STATCLOCK */
|
|
|
|
/*
|
|
* Initialize Timer-B in the ST-MFP. This timer is used by the 'delay'
|
|
* function below. This time is setup to be continueously counting from
|
|
* 255 back to zero at a frequency of 614400Hz.
|
|
*/
|
|
MFP->mf_tbcr = 0; /* Stop timer */
|
|
MFP->mf_iera &= ~IA_TIMB; /* Disable timer interrupts */
|
|
MFP->mf_tbdr = 0;
|
|
MFP->mf_tbcr = T_Q004; /* Start timer */
|
|
|
|
}
|
|
|
|
void cpu_initclocks()
|
|
{
|
|
MFP->mf_tacr = T_Q200; /* Start timer */
|
|
MFP->mf_ipra &= ~IA_TIMA; /* Clear pending interrupts */
|
|
MFP->mf_iera |= IA_TIMA; /* Enable timer interrupts */
|
|
MFP->mf_imra |= IA_TIMA; /* ..... */
|
|
|
|
#ifdef STATCLOCK
|
|
MFP->mf_tcdcr = (MFP->mf_tcdcr & 0x7) | (T_Q200<<4); /* Start */
|
|
MFP->mf_iprb &= ~IB_TIMC; /* Clear pending interrupts */
|
|
MFP->mf_ierb |= IB_TIMC; /* Enable timer interrupts */
|
|
MFP->mf_imrb |= IB_TIMC; /* ..... */
|
|
#endif /* STATCLOCK */
|
|
}
|
|
|
|
void
|
|
setstatclockrate(newhz)
|
|
int newhz;
|
|
{
|
|
#ifdef STATCLOCK
|
|
if (newhz == stathz)
|
|
clk2min = statmin;
|
|
else clk2min = profmin;
|
|
#endif /* STATCLOCK */
|
|
}
|
|
|
|
#ifdef STATCLOCK
|
|
void
|
|
statintr(frame)
|
|
register struct clockframe *frame;
|
|
{
|
|
register int var, r;
|
|
|
|
var = statvar - 1;
|
|
do {
|
|
r = random() & var;
|
|
} while(r == 0);
|
|
|
|
/*
|
|
* Note that we are always lagging behind as the new divisor
|
|
* value will not be loaded until the next interrupt. This
|
|
* shouldn't disturb the median frequency (I think ;-) ) as
|
|
* only the value used when switching frequencies is used
|
|
* twice. This shouldn't happen very often.
|
|
*/
|
|
MFP->mf_tcdr = clk2min + r;
|
|
|
|
statclock(frame);
|
|
}
|
|
#endif /* STATCLOCK */
|
|
|
|
/*
|
|
* Returns number of usec since last recorded clock "tick"
|
|
* (i.e. clock interrupt).
|
|
*/
|
|
long
|
|
clkread()
|
|
{
|
|
u_int delta;
|
|
|
|
delta = ((divisor - MFP->mf_tadr) * tick) / divisor;
|
|
/*
|
|
* Account for pending clock interrupts
|
|
*/
|
|
if(MFP->mf_iera & IA_TIMA)
|
|
return(delta + tick);
|
|
return(delta);
|
|
}
|
|
|
|
#define TIMB_FREQ 614400
|
|
#define TIMB_LIMIT 256
|
|
|
|
/*
|
|
* Wait "n" microseconds.
|
|
* Relies on MFP-Timer B counting down from TIMB_LIMIT at TIMB_FREQ Hz.
|
|
* Note: timer had better have been programmed before this is first used!
|
|
*/
|
|
void delay(n)
|
|
int n;
|
|
{
|
|
int tick, otick;
|
|
|
|
/*
|
|
* Read the counter first, so that the rest of the setup overhead is
|
|
* counted.
|
|
*/
|
|
otick = MFP->mf_tbdr;
|
|
|
|
/*
|
|
* Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
|
|
* we can take advantage of the intermediate 64-bit quantity to prevent
|
|
* loss of significance.
|
|
*/
|
|
n -= 5;
|
|
if(n < 0)
|
|
return;
|
|
{
|
|
u_int temp;
|
|
|
|
__asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
|
|
: "d" (TIMB_FREQ));
|
|
__asm __volatile ("divul %1,%2:%0" : "=d" (n)
|
|
: "d"(1000000),"d"(temp),"0"(n));
|
|
}
|
|
|
|
while(n > 0) {
|
|
tick = MFP->mf_tbdr;
|
|
if(tick > otick)
|
|
n -= TIMB_LIMIT - (tick - otick);
|
|
else n -= otick - tick;
|
|
otick = tick;
|
|
}
|
|
}
|
|
|
|
#ifdef GPROF
|
|
/*
|
|
* profclock() is expanded in line in lev6intr() unless profiling kernel.
|
|
* Assumes it is called with clock interrupts blocked.
|
|
*/
|
|
profclock(pc, ps)
|
|
caddr_t pc;
|
|
int ps;
|
|
{
|
|
/*
|
|
* Came from user mode.
|
|
* If this process is being profiled record the tick.
|
|
*/
|
|
if (USERMODE(ps)) {
|
|
if (p->p_stats.p_prof.pr_scale)
|
|
addupc(pc, &curproc->p_stats.p_prof, 1);
|
|
}
|
|
/*
|
|
* Came from kernel (supervisor) mode.
|
|
* If we are profiling the kernel, record the tick.
|
|
*/
|
|
else if (profiling < 2) {
|
|
register int s = pc - s_lowpc;
|
|
|
|
if (s < s_textsize)
|
|
kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
|
|
}
|
|
/*
|
|
* Kernel profiling was on but has been disabled.
|
|
* Mark as no longer profiling kernel and if all profiling done,
|
|
* disable the clock.
|
|
*/
|
|
if (profiling && (profon & PRF_KERNEL)) {
|
|
profon &= ~PRF_KERNEL;
|
|
if (profon == PRF_NONE)
|
|
stopprofclock();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/***********************************************************************
|
|
* Real Time Clock support *
|
|
***********************************************************************/
|
|
|
|
u_int mc146818_read(rtc, regno)
|
|
void *rtc;
|
|
u_int regno;
|
|
{
|
|
((struct rtc *)rtc)->rtc_regno = regno;
|
|
return(((struct rtc *)rtc)->rtc_data & 0377);
|
|
}
|
|
|
|
void mc146818_write(rtc, regno, value)
|
|
void *rtc;
|
|
u_int regno, value;
|
|
{
|
|
((struct rtc *)rtc)->rtc_regno = regno;
|
|
((struct rtc *)rtc)->rtc_data = value;
|
|
}
|
|
|
|
/*
|
|
* Initialize the time of day register, based on the time base which is, e.g.
|
|
* from a filesystem.
|
|
*/
|
|
void
|
|
inittodr(base)
|
|
time_t base;
|
|
{
|
|
u_long timbuf = base; /* assume no battery clock exists */
|
|
|
|
timbuf = gettod();
|
|
|
|
if(timbuf < base) {
|
|
printf("WARNING: bad date in battery clock\n");
|
|
timbuf = base;
|
|
}
|
|
|
|
/* Battery clock does not store usec's, so forget about it. */
|
|
time.tv_sec = timbuf;
|
|
time.tv_usec = 0;
|
|
}
|
|
|
|
void
|
|
resettodr()
|
|
{
|
|
if(settod(time.tv_sec) == 1)
|
|
return;
|
|
printf("Cannot set battery backed clock\n");
|
|
}
|
|
|
|
static char dmsize[12] =
|
|
{
|
|
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
|
|
};
|
|
|
|
static char ldmsize[12] =
|
|
{
|
|
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
|
|
};
|
|
|
|
static u_long
|
|
gettod()
|
|
{
|
|
int i, sps;
|
|
u_long new_time = 0;
|
|
char *msize;
|
|
mc_todregs clkregs;
|
|
|
|
sps = splhigh();
|
|
MC146818_GETTOD(RTC, &clkregs);
|
|
splx(sps);
|
|
|
|
if(clkregs[MC_SEC] > 59)
|
|
return(0);
|
|
if(clkregs[MC_MIN] > 59)
|
|
return(0);
|
|
if(clkregs[MC_HOUR] > 23)
|
|
return(0);
|
|
if(range_test(clkregs[MC_DOM], 1, 31))
|
|
return(0);
|
|
if (range_test(clkregs[MC_MONTH], 1, 12))
|
|
return(0);
|
|
if(clkregs[MC_YEAR] > (2000 - GEMSTARTOFTIME))
|
|
return(0);
|
|
clkregs[MC_YEAR] += GEMSTARTOFTIME;
|
|
|
|
for(i = BSDSTARTOFTIME; i < clkregs[MC_YEAR]; i++) {
|
|
if(is_leap(i))
|
|
new_time += 366;
|
|
else new_time += 365;
|
|
}
|
|
|
|
msize = is_leap(clkregs[MC_YEAR]) ? ldmsize : dmsize;
|
|
for(i = 0; i < (clkregs[MC_MONTH] - 1); i++)
|
|
new_time += msize[i];
|
|
new_time += clkregs[MC_DOM] - 1;
|
|
new_time *= SECS_DAY;
|
|
new_time += (clkregs[MC_HOUR] * 3600) + (clkregs[MC_MIN] * 60);
|
|
return(new_time + clkregs[MC_SEC]);
|
|
}
|
|
|
|
static int
|
|
settod(newtime)
|
|
u_long newtime;
|
|
{
|
|
register long days, rem, year;
|
|
register char *ml;
|
|
int sps, sec, min, hour, month;
|
|
mc_todregs clkregs;
|
|
|
|
/* Number of days since Jan. 1 'BSDSTARTOFTIME' */
|
|
days = newtime / SECS_DAY;
|
|
rem = newtime % SECS_DAY;
|
|
|
|
/*
|
|
* Calculate sec, min, hour
|
|
*/
|
|
hour = rem / SECS_HOUR;
|
|
rem %= SECS_HOUR;
|
|
min = rem / 60;
|
|
sec = rem % 60;
|
|
|
|
/*
|
|
* Figure out the year. Day in year is left in 'days'.
|
|
*/
|
|
year = BSDSTARTOFTIME;
|
|
while(days >= (rem = is_leap(year) ? 366 : 365)) {
|
|
++year;
|
|
days -= rem;
|
|
}
|
|
|
|
/*
|
|
* Determine the month
|
|
*/
|
|
ml = is_leap(year) ? ldmsize : dmsize;
|
|
for(month = 0; days >= ml[month]; ++month)
|
|
days -= ml[month];
|
|
|
|
/*
|
|
* Now that everything is calculated, program the RTC
|
|
*/
|
|
mc146818_write(RTC, MC_REGA, MC_BASE_32_KHz);
|
|
mc146818_write(RTC, MC_REGB, MC_REGB_24HR | MC_REGB_BINARY);
|
|
sps = splhigh();
|
|
MC146818_GETTOD(RTC, &clkregs);
|
|
clkregs[MC_SEC] = sec;
|
|
clkregs[MC_MIN] = min;
|
|
clkregs[MC_HOUR] = hour;
|
|
clkregs[MC_DOM] = days+1;
|
|
clkregs[MC_MONTH] = month+1;
|
|
clkregs[MC_YEAR] = year - GEMSTARTOFTIME;
|
|
MC146818_PUTTOD(RTC, &clkregs);
|
|
splx(sps);
|
|
|
|
return(1);
|
|
}
|