NetBSD/sys/dev/ic/adwlib.c

2420 lines
66 KiB
C

/* $NetBSD: adwlib.c,v 1.31 2003/11/02 11:07:44 wiz Exp $ */
/*
* Low level routines for the Advanced Systems Inc. SCSI controllers chips
*
* Copyright (c) 1998, 1999, 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* Author: Baldassare Dante Profeta <dante@mclink.it>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Ported from:
*/
/*
* advansys.c - Linux Host Driver for AdvanSys SCSI Adapters
*
* Copyright (c) 1995-2000 Advanced System Products, Inc.
* All Rights Reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that redistributions of source
* code retain the above copyright notice and this comment without
* modification.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: adwlib.c,v 1.31 2003/11/02 11:07:44 wiz Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/queue.h>
#include <sys/device.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/pci/pcidevs.h>
#include <uvm/uvm_extern.h>
#include <dev/ic/adwlib.h>
#include <dev/ic/adwmcode.h>
#include <dev/ic/adw.h>
/* Static Functions */
int AdwRamSelfTest __P((bus_space_tag_t, bus_space_handle_t, u_int8_t));
int AdwLoadMCode __P((bus_space_tag_t, bus_space_handle_t, u_int16_t *,
u_int8_t));
int AdwASC3550Cabling __P((bus_space_tag_t, bus_space_handle_t, ADW_DVC_CFG *));
int AdwASC38C0800Cabling __P((bus_space_tag_t, bus_space_handle_t,
ADW_DVC_CFG *));
int AdwASC38C1600Cabling __P((bus_space_tag_t, bus_space_handle_t,
ADW_DVC_CFG *));
static u_int16_t AdwGetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
ADW_EEPROM *));
static void AdwSetEEPROMConfig __P((bus_space_tag_t, bus_space_handle_t,
ADW_EEPROM *));
static u_int16_t AdwReadEEPWord __P((bus_space_tag_t, bus_space_handle_t, int));
static void AdwWaitEEPCmd __P((bus_space_tag_t, bus_space_handle_t));
static void AdwInquiryHandling __P((ADW_SOFTC *, ADW_SCSI_REQ_Q *));
static void AdwSleepMilliSecond __P((u_int32_t));
static void AdwDelayMicroSecond __P((u_int32_t));
/*
* EEPROM Configuration.
*
* All drivers should use this structure to set the default EEPROM
* configuration. The BIOS now uses this structure when it is built.
* Additional structure information can be found in adwlib.h where
* the structure is defined.
*/
const static ADW_EEPROM adw_3550_Default_EEPROM = {
ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
0x0000, /* 01 cfg_msw */
0xFFFF, /* 02 disc_enable */
0xFFFF, /* 03 wdtr_able */
{ 0xFFFF }, /* 04 sdtr_able */
0xFFFF, /* 05 start_motor */
0xFFFF, /* 06 tagqng_able */
0xFFFF, /* 07 bios_scan */
0, /* 08 scam_tolerant */
7, /* 09 adapter_scsi_id */
0, /* bios_boot_delay */
3, /* 10 scsi_reset_delay */
0, /* bios_id_lun */
0, /* 11 termination */
0, /* reserved1 */
0xFFE7, /* 12 bios_ctrl */
{ 0xFFFF }, /* 13 ultra_able */
{ 0 }, /* 14 reserved2 */
ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
0, /* 16 dvc_cntl */
{ 0 }, /* 17 bug_fix */
{ 0,0,0 }, /* 18-20 serial_number[3] */
0, /* 21 check_sum */
{ /* 22-29 oem_name[16] */
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0
},
0, /* 30 dvc_err_code */
0, /* 31 adv_err_code */
0, /* 32 adv_err_addr */
0, /* 33 saved_dvc_err_code */
0, /* 34 saved_adv_err_code */
0 /* 35 saved_adv_err_addr */
};
const static ADW_EEPROM adw_38C0800_Default_EEPROM = {
ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
0x0000, /* 01 cfg_msw */
0xFFFF, /* 02 disc_enable */
0xFFFF, /* 03 wdtr_able */
{ 0x4444 }, /* 04 sdtr_speed1 */
0xFFFF, /* 05 start_motor */
0xFFFF, /* 06 tagqng_able */
0xFFFF, /* 07 bios_scan */
0, /* 08 scam_tolerant */
7, /* 09 adapter_scsi_id */
0, /* bios_boot_delay */
3, /* 10 scsi_reset_delay */
0, /* bios_id_lun */
0, /* 11 termination_se */
0, /* termination_lvd */
0xFFE7, /* 12 bios_ctrl */
{ 0x4444 }, /* 13 sdtr_speed2 */
{ 0x4444 }, /* 14 sdtr_speed3 */
ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
0, /* 16 dvc_cntl */
{ 0x4444 }, /* 17 sdtr_speed4 */
{ 0,0,0 }, /* 18-20 serial_number[3] */
0, /* 21 check_sum */
{ /* 22-29 oem_name[16] */
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0
},
0, /* 30 dvc_err_code */
0, /* 31 adv_err_code */
0, /* 32 adv_err_addr */
0, /* 33 saved_dvc_err_code */
0, /* 34 saved_adv_err_code */
0, /* 35 saved_adv_err_addr */
{ /* 36-55 reserved1[16] */
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
0, /* 56 cisptr_lsw */
0, /* 57 cisprt_msw */
PCI_VENDOR_ADVSYS, /* 58 subsysvid */
PCI_PRODUCT_ADVSYS_U2W, /* 59 subsysid */
{ 0,0,0,0 } /* 60-63 reserved2[4] */
};
const static ADW_EEPROM adw_38C1600_Default_EEPROM = {
ADW_EEPROM_BIOS_ENABLE, /* 00 cfg_lsw */
0x0000, /* 01 cfg_msw */
0xFFFF, /* 02 disc_enable */
0xFFFF, /* 03 wdtr_able */
{ 0x5555 }, /* 04 sdtr_speed1 */
0xFFFF, /* 05 start_motor */
0xFFFF, /* 06 tagqng_able */
0xFFFF, /* 07 bios_scan */
0, /* 08 scam_tolerant */
7, /* 09 adapter_scsi_id */
0, /* bios_boot_delay */
3, /* 10 scsi_reset_delay */
0, /* bios_id_lun */
0, /* 11 termination_se */
0, /* termination_lvd */
0xFFE7, /* 12 bios_ctrl */
{ 0x5555 }, /* 13 sdtr_speed2 */
{ 0x5555 }, /* 14 sdtr_speed3 */
ADW_DEF_MAX_HOST_QNG, /* 15 max_host_qng */
ADW_DEF_MAX_DVC_QNG, /* max_dvc_qng */
0, /* 16 dvc_cntl */
{ 0x5555 }, /* 17 sdtr_speed4 */
{ 0,0,0 }, /* 18-20 serial_number[3] */
0, /* 21 check_sum */
{ /* 22-29 oem_name[16] */
0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0
},
0, /* 30 dvc_err_code */
0, /* 31 adv_err_code */
0, /* 32 adv_err_addr */
0, /* 33 saved_dvc_err_code */
0, /* 34 saved_adv_err_code */
0, /* 35 saved_adv_err_addr */
{ /* 36-55 reserved1[16] */
0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0
},
0, /* 56 cisptr_lsw */
0, /* 57 cisprt_msw */
PCI_VENDOR_ADVSYS, /* 58 subsysvid */
PCI_PRODUCT_ADVSYS_U3W, /* 59 subsysid */
{ 0,0,0,0 } /* 60-63 reserved2[4] */
};
/*
* Read the board's EEPROM configuration. Set fields in ADW_SOFTC and
* ADW_DVC_CFG based on the EEPROM settings. The chip is stopped while
* all of this is done.
*
* For a non-fatal error return a warning code. If there are no warnings
* then 0 is returned.
*
* Note: Chip is stopped on entry.
*/
int
AdwInitFromEEPROM(sc)
ADW_SOFTC *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
ADW_EEPROM eep_config;
u_int16_t warn_code;
u_int16_t sdtr_speed = 0;
u_int8_t tid, termination;
int i, j;
warn_code = 0;
/*
* Read the board's EEPROM configuration.
*
* Set default values if a bad checksum is found.
*
* XXX - Don't handle big-endian access to EEPROM yet.
*/
if (AdwGetEEPROMConfig(iot, ioh, &eep_config) != eep_config.check_sum) {
warn_code |= ADW_WARN_EEPROM_CHKSUM;
/*
* Set EEPROM default values.
*/
switch(sc->chip_type) {
case ADW_CHIP_ASC3550:
eep_config = adw_3550_Default_EEPROM;
break;
case ADW_CHIP_ASC38C0800:
eep_config = adw_38C0800_Default_EEPROM;
break;
case ADW_CHIP_ASC38C1600:
eep_config = adw_38C1600_Default_EEPROM;
#if 0
XXX TODO!!! if (ASC_PCI_ID2FUNC(sc->cfg.pci_slot_info) != 0) {
#endif
if (sc->cfg.pci_slot_info != 0) {
u_int8_t lsw_msb;
lsw_msb = eep_config.cfg_lsw >> 8;
/*
* Set Function 1 EEPROM Word 0 MSB
*
* Clear the BIOS_ENABLE (bit 14) and
* INTAB (bit 11) EEPROM bits.
*
* Disable Bit 14 (BIOS_ENABLE) to fix
* SPARC Ultra 60 and old Mac system booting
* problem. The Expansion ROM must
* be disabled in Function 1 for these systems.
*/
lsw_msb &= ~(((ADW_EEPROM_BIOS_ENABLE |
ADW_EEPROM_INTAB) >> 8) & 0xFF);
/*
* Set the INTAB (bit 11) if the GPIO 0 input
* indicates the Function 1 interrupt line is
* wired to INTA.
*
* Set/Clear Bit 11 (INTAB) from
* the GPIO bit 0 input:
* 1 - Function 1 intr line wired to INT A.
* 0 - Function 1 intr line wired to INT B.
*
* Note: Adapter boards always have Function 0
* wired to INTA.
* Put all 5 GPIO bits in input mode and then
* read their input values.
*/
ADW_WRITE_BYTE_REGISTER(iot, ioh,
IOPB_GPIO_CNTL, 0);
if (ADW_READ_BYTE_REGISTER(iot, ioh,
IOPB_GPIO_DATA) & 0x01) {
/*
* Function 1 interrupt wired to INTA;
* Set EEPROM bit.
*/
lsw_msb |= (ADW_EEPROM_INTAB >> 8)
& 0xFF;
}
eep_config.cfg_lsw &= 0x00FF;
eep_config.cfg_lsw |= lsw_msb << 8;
}
break;
}
/*
* Assume the 6 byte board serial number that was read
* from EEPROM is correct even if the EEPROM checksum
* failed.
*/
for (i=2, j=1; i>=0; i--, j++) {
eep_config.serial_number[i] =
AdwReadEEPWord(iot, ioh, ASC_EEP_DVC_CFG_END - j);
}
AdwSetEEPROMConfig(iot, ioh, &eep_config);
}
/*
* Set sc and sc->cfg variables from the EEPROM configuration
* that was read.
*
* This is the mapping of EEPROM fields to Adw Library fields.
*/
sc->wdtr_able = eep_config.wdtr_able;
if (sc->chip_type == ADW_CHIP_ASC3550) {
sc->sdtr_able = eep_config.sdtr1.sdtr_able;
sc->ultra_able = eep_config.sdtr2.ultra_able;
} else {
sc->sdtr_speed1 = eep_config.sdtr1.sdtr_speed1;
sc->sdtr_speed2 = eep_config.sdtr2.sdtr_speed2;
sc->sdtr_speed3 = eep_config.sdtr3.sdtr_speed3;
sc->sdtr_speed4 = eep_config.sdtr4.sdtr_speed4;
}
sc->ppr_able = 0;
sc->tagqng_able = eep_config.tagqng_able;
sc->cfg.disc_enable = eep_config.disc_enable;
sc->max_host_qng = eep_config.max_host_qng;
sc->max_dvc_qng = eep_config.max_dvc_qng;
sc->chip_scsi_id = (eep_config.adapter_scsi_id & ADW_MAX_TID);
sc->start_motor = eep_config.start_motor;
sc->scsi_reset_wait = eep_config.scsi_reset_delay;
sc->bios_ctrl = eep_config.bios_ctrl;
sc->no_scam = eep_config.scam_tolerant;
sc->cfg.serial1 = eep_config.serial_number[0];
sc->cfg.serial2 = eep_config.serial_number[1];
sc->cfg.serial3 = eep_config.serial_number[2];
if (sc->chip_type == ADW_CHIP_ASC38C0800 ||
sc->chip_type == ADW_CHIP_ASC38C1600) {
sc->sdtr_able = 0;
for (tid = 0; tid <= ADW_MAX_TID; tid++) {
if (tid == 0) {
sdtr_speed = sc->sdtr_speed1;
} else if (tid == 4) {
sdtr_speed = sc->sdtr_speed2;
} else if (tid == 8) {
sdtr_speed = sc->sdtr_speed3;
} else if (tid == 12) {
sdtr_speed = sc->sdtr_speed4;
}
if (sdtr_speed & ADW_MAX_TID) {
sc->sdtr_able |= (1 << tid);
}
sdtr_speed >>= 4;
}
}
/*
* Set the host maximum queuing (max. 253, min. 16) and the per device
* maximum queuing (max. 63, min. 4).
*/
if (eep_config.max_host_qng > ADW_DEF_MAX_HOST_QNG) {
eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
} else if (eep_config.max_host_qng < ADW_DEF_MIN_HOST_QNG)
{
/* If the value is zero, assume it is uninitialized. */
if (eep_config.max_host_qng == 0) {
eep_config.max_host_qng = ADW_DEF_MAX_HOST_QNG;
} else {
eep_config.max_host_qng = ADW_DEF_MIN_HOST_QNG;
}
}
if (eep_config.max_dvc_qng > ADW_DEF_MAX_DVC_QNG) {
eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
} else if (eep_config.max_dvc_qng < ADW_DEF_MIN_DVC_QNG) {
/* If the value is zero, assume it is uninitialized. */
if (eep_config.max_dvc_qng == 0) {
eep_config.max_dvc_qng = ADW_DEF_MAX_DVC_QNG;
} else {
eep_config.max_dvc_qng = ADW_DEF_MIN_DVC_QNG;
}
}
/*
* If 'max_dvc_qng' is greater than 'max_host_qng', then
* set 'max_dvc_qng' to 'max_host_qng'.
*/
if (eep_config.max_dvc_qng > eep_config.max_host_qng) {
eep_config.max_dvc_qng = eep_config.max_host_qng;
}
/*
* Set ADV_DVC_VAR 'max_host_qng' and ADV_DVC_VAR 'max_dvc_qng'
* values based on possibly adjusted EEPROM values.
*/
sc->max_host_qng = eep_config.max_host_qng;
sc->max_dvc_qng = eep_config.max_dvc_qng;
/*
* If the EEPROM 'termination' field is set to automatic (0), then set
* the ADV_DVC_CFG 'termination' field to automatic also.
*
* If the termination is specified with a non-zero 'termination'
* value check that a legal value is set and set the ADV_DVC_CFG
* 'termination' field appropriately.
*/
switch(sc->chip_type) {
case ADW_CHIP_ASC3550:
sc->cfg.termination = 0; /* auto termination */
switch(eep_config.termination_se) {
case 3:
/* Enable manual control with low on / high on. */
sc->cfg.termination |= ADW_TERM_CTL_L;
case 2:
/* Enable manual control with low off / high on. */
sc->cfg.termination |= ADW_TERM_CTL_H;
case 1:
/* Enable manual control with low off / high off. */
sc->cfg.termination |= ADW_TERM_CTL_SEL;
case 0:
break;
default:
warn_code |= ADW_WARN_EEPROM_TERMINATION;
}
break;
case ADW_CHIP_ASC38C0800:
case ADW_CHIP_ASC38C1600:
switch(eep_config.termination_se) {
case 0:
/* auto termination for SE */
termination = 0;
break;
case 1:
/* Enable manual control with low off / high off. */
termination = 0;
break;
case 2:
/* Enable manual control with low off / high on. */
termination = ADW_TERM_SE_HI;
break;
case 3:
/* Enable manual control with low on / high on. */
termination = ADW_TERM_SE;
break;
default:
/*
* The EEPROM 'termination_se' field contains a
* bad value. Use automatic termination instead.
*/
termination = 0;
warn_code |= ADW_WARN_EEPROM_TERMINATION;
}
switch(eep_config.termination_lvd) {
case 0:
/* auto termination for LVD */
sc->cfg.termination = termination;
break;
case 1:
/* Enable manual control with low off / high off. */
sc->cfg.termination = termination;
break;
case 2:
/* Enable manual control with low off / high on. */
sc->cfg.termination = termination | ADW_TERM_LVD_HI;
break;
case 3:
/* Enable manual control with low on / high on. */
sc->cfg.termination = termination | ADW_TERM_LVD;
break;
default:
/*
* The EEPROM 'termination_lvd' field contains a
* bad value. Use automatic termination instead.
*/
sc->cfg.termination = termination;
warn_code |= ADW_WARN_EEPROM_TERMINATION;
}
break;
}
return warn_code;
}
/*
* Initialize the ASC-3550/ASC-38C0800/ASC-38C1600.
*
* On failure return the error code.
*/
int
AdwInitDriver(sc)
ADW_SOFTC *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int16_t error_code;
int word;
int i;
u_int16_t bios_mem[ADW_MC_BIOSLEN/2]; /* BIOS RISC Memory
0x40-0x8F. */
u_int16_t wdtr_able = 0, sdtr_able, ppr_able, tagqng_able;
u_int8_t max_cmd[ADW_MAX_TID + 1];
u_int8_t tid;
error_code = 0;
/*
* Save the RISC memory BIOS region before writing the microcode.
* The BIOS may already be loaded and using its RISC LRAM region
* so its region must be saved and restored.
*
* Note: This code makes the assumption, which is currently true,
* that a chip reset does not clear RISC LRAM.
*/
for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM+(2*i), bios_mem[i]);
}
/*
* Save current per TID negotiated values.
*/
switch (sc->chip_type) {
case ADW_CHIP_ASC3550:
if (bios_mem[(ADW_MC_BIOS_SIGNATURE-ADW_MC_BIOSMEM)/2]==0x55AA){
u_int16_t bios_version, major, minor;
bios_version = bios_mem[(ADW_MC_BIOS_VERSION -
ADW_MC_BIOSMEM) / 2];
major = (bios_version >> 12) & 0xF;
minor = (bios_version >> 8) & 0xF;
if (major < 3 || (major == 3 && minor == 1)) {
/*
* BIOS 3.1 and earlier location of
* 'wdtr_able' variable.
*/
ADW_READ_WORD_LRAM(iot, ioh, 0x120, wdtr_able);
} else {
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
wdtr_able);
}
}
break;
case ADW_CHIP_ASC38C1600:
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
/* FALLTHROUGH */
case ADW_CHIP_ASC38C0800:
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
break;
}
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
for (tid = 0; tid <= ADW_MAX_TID; tid++) {
ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
/*
* Perform a RAM Built-In Self Test
*/
if((error_code = AdwRamSelfTest(iot, ioh, sc->chip_type))) {
return error_code;
}
/*
* Load the Microcode
*/
;
if((error_code = AdwLoadMCode(iot, ioh, bios_mem, sc->chip_type))) {
return error_code;
}
/*
* Read microcode version and date.
*/
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_DATE, sc->cfg.mcode_date);
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_VERSION_NUM, sc->cfg.mcode_version);
/*
* If the PCI Configuration Command Register "Parity Error Response
* Control" Bit was clear (0), then set the microcode variable
* 'control_flag' CONTROL_FLAG_IGNORE_PERR flag to tell the microcode
* to ignore DMA parity errors.
*/
if (sc->cfg.control_flag & CONTROL_FLAG_IGNORE_PERR) {
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
word | CONTROL_FLAG_IGNORE_PERR);
}
switch (sc->chip_type) {
case ADW_CHIP_ASC3550:
/*
* For ASC-3550, setting the START_CTL_EMFU [3:2] bits sets a
* FIFO threshold of 128 bytes.
* This register is only accessible to the host.
*/
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
START_CTL_EMFU | READ_CMD_MRM);
break;
case ADW_CHIP_ASC38C0800:
/*
* Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
* When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
* cable detection and then we are able to read C_DET[3:0].
*
* Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
* Microcode Default Value' section below.
*/
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
| ADW_DIS_TERM_DRV);
/*
* For ASC-38C0800, set FIFO_THRESH_80B [6:4] bits and
* START_CTL_TH [3:2] bits for the default FIFO threshold.
*
* Note: ASC-38C0800 FIFO threshold has been changed to
* 256 bytes.
*
* For DMA Errata #4 set the BC_THRESH_ENB bit.
*/
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
BC_THRESH_ENB | FIFO_THRESH_80B
| START_CTL_TH | READ_CMD_MRM);
break;
case ADW_CHIP_ASC38C1600:
/*
* Write 1 to bit 14 'DIS_TERM_DRV' in the SCSI_CFG1 register.
* When DIS_TERM_DRV set to 1, C_DET[3:0] will reflect current
* cable detection and then we are able to read C_DET[3:0].
*
* Note: We will reset DIS_TERM_DRV to 0 in the 'Set SCSI_CFG1
* Microcode Default Value' section below.
*/
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1,
ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1)
| ADW_DIS_TERM_DRV);
/*
* If the BIOS control flag AIPP (Asynchronous Information
* Phase Protection) disable bit is not set, then set the
* firmware 'control_flag' CONTROL_FLAG_ENABLE_AIPP bit to
* enable AIPP checking and encoding.
*/
if ((sc->bios_ctrl & BIOS_CTRL_AIPP_DIS) == 0) {
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG, word);
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CONTROL_FLAG,
word | CONTROL_FLAG_ENABLE_AIPP);
}
/*
* For ASC-38C1600 use DMA_CFG0 default values:
* FIFO_THRESH_80B [6:4], and START_CTL_TH [3:2].
*/
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_DMA_CFG0,
FIFO_THRESH_80B | START_CTL_TH | READ_CMD_MRM);
break;
}
/*
* Microcode operating variables for WDTR, SDTR, and command tag
* queuing will be set in AdvInquiryHandling() based on what a
* device reports it is capable of in Inquiry byte 7.
*
* If SCSI Bus Resets have been disabled, then directly set
* SDTR and WDTR from the EEPROM configuration. This will allow
* the BIOS and warm boot to work without a SCSI bus hang on
* the Inquiry caused by host and target mismatched DTR values.
* Without the SCSI Bus Reset, before an Inquiry a device can't
* be assumed to be in Asynchronous, Narrow mode.
*/
if ((sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS) == 0) {
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, sc->wdtr_able);
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sc->sdtr_able);
}
/*
* Set microcode operating variables for SDTR_SPEED1, SDTR_SPEED2,
* SDTR_SPEED3, and SDTR_SPEED4 based on the ULTRA EEPROM per TID
* bitmask. These values determine the maximum SDTR speed negotiated
* with a device.
*
* The SDTR per TID bitmask overrides the SDTR_SPEED1, SDTR_SPEED2,
* SDTR_SPEED3, and SDTR_SPEED4 values so it is safe to set them
* without determining here whether the device supports SDTR.
*/
switch (sc->chip_type) {
case ADW_CHIP_ASC3550:
word = 0;
for (tid = 0; tid <= ADW_MAX_TID; tid++) {
if (ADW_TID_TO_TIDMASK(tid) & sc->ultra_able) {
/* Set Ultra speed for TID 'tid'. */
word |= (0x3 << (4 * (tid % 4)));
} else {
/* Set Fast speed for TID 'tid'. */
word |= (0x2 << (4 * (tid % 4)));
}
/* Check if done with sdtr_speed1. */
if (tid == 3) {
ADW_WRITE_WORD_LRAM(iot, ioh,
ADW_MC_SDTR_SPEED1, word);
word = 0;
/* Check if done with sdtr_speed2. */
} else if (tid == 7) {
ADW_WRITE_WORD_LRAM(iot, ioh,
ADW_MC_SDTR_SPEED2, word);
word = 0;
/* Check if done with sdtr_speed3. */
} else if (tid == 11) {
ADW_WRITE_WORD_LRAM(iot, ioh,
ADW_MC_SDTR_SPEED3, word);
word = 0;
/* Check if done with sdtr_speed4. */
} else if (tid == 15) {
ADW_WRITE_WORD_LRAM(iot, ioh,
ADW_MC_SDTR_SPEED4, word);
/* End of loop. */
}
}
/*
* Set microcode operating variable for the
* disconnect per TID bitmask.
*/
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
sc->cfg.disc_enable);
break;
case ADW_CHIP_ASC38C0800:
/* FALLTHROUGH */
case ADW_CHIP_ASC38C1600:
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DISC_ENABLE,
sc->cfg.disc_enable);
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED1,
sc->sdtr_speed1);
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED2,
sc->sdtr_speed2);
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED3,
sc->sdtr_speed3);
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_SPEED4,
sc->sdtr_speed4);
break;
}
/*
* Set SCSI_CFG0 Microcode Default Value.
*
* The microcode will set the SCSI_CFG0 register using this value
* after it is started below.
*/
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG0,
ADW_PARITY_EN | ADW_QUEUE_128 | ADW_SEL_TMO_LONG |
ADW_OUR_ID_EN | sc->chip_scsi_id);
switch(sc->chip_type) {
case ADW_CHIP_ASC3550:
error_code = AdwASC3550Cabling(iot, ioh, &sc->cfg);
break;
case ADW_CHIP_ASC38C0800:
error_code = AdwASC38C0800Cabling(iot, ioh, &sc->cfg);
break;
case ADW_CHIP_ASC38C1600:
error_code = AdwASC38C1600Cabling(iot, ioh, &sc->cfg);
break;
}
if(error_code) {
return error_code;
}
/*
* Set SEL_MASK Microcode Default Value
*
* The microcode will set the SEL_MASK register using this value
* after it is started below.
*/
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SEL_MASK,
ADW_TID_TO_TIDMASK(sc->chip_scsi_id));
/*
* Create and Initialize Host->RISC Carrier lists
*/
sc->carr_freelist = AdwInitCarriers(sc->sc_dmamap_carrier,
sc->sc_control->carriers);
/*
* Set-up the Host->RISC Initiator Command Queue (ICQ).
*/
if ((sc->icq_sp = sc->carr_freelist) == NULL) {
return ADW_IERR_NO_CARRIER;
}
sc->carr_freelist = ADW_CARRIER_VADDR(sc,
ASC_GET_CARRP(sc->icq_sp->next_ba));
/*
* The first command issued will be placed in the stopper carrier.
*/
sc->icq_sp->next_ba = htole32(ASC_CQ_STOPPER);
/*
* Set RISC ICQ physical address start value.
*/
ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_ICQ, le32toh(sc->icq_sp->carr_ba));
/*
* Initialize the COMMA register to the same value otherwise
* the RISC will prematurely detect a command is available.
*/
if(sc->chip_type == ADW_CHIP_ASC38C1600) {
ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
le32toh(sc->icq_sp->carr_ba));
}
/*
* Set-up the RISC->Host Initiator Response Queue (IRQ).
*/
if ((sc->irq_sp = sc->carr_freelist) == NULL) {
return ADW_IERR_NO_CARRIER;
}
sc->carr_freelist = ADW_CARRIER_VADDR(sc,
ASC_GET_CARRP(sc->irq_sp->next_ba));
/*
* The first command completed by the RISC will be placed in
* the stopper.
*
* Note: Set 'next_ba' to ASC_CQ_STOPPER. When the request is
* completed the RISC will set the ASC_RQ_DONE bit.
*/
sc->irq_sp->next_ba = htole32(ASC_CQ_STOPPER);
/*
* Set RISC IRQ physical address start value.
*/
ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IRQ, le32toh(sc->irq_sp->carr_ba));
sc->carr_pending_cnt = 0;
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_INTR_ENABLES,
(ADW_INTR_ENABLE_HOST_INTR | ADW_INTR_ENABLE_GLOBAL_INTR));
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, word);
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_PC, word);
/* finally, finally, gentlemen, start your engine */
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_RUN);
/*
* Reset the SCSI Bus if the EEPROM indicates that SCSI Bus
* Resets should be performed. The RISC has to be running
* to issue a SCSI Bus Reset.
*/
if (sc->bios_ctrl & BIOS_CTRL_RESET_SCSI_BUS)
{
/*
* If the BIOS Signature is present in memory, restore the
* BIOS Handshake Configuration Table and do not perform
* a SCSI Bus Reset.
*/
if (bios_mem[(ADW_MC_BIOS_SIGNATURE - ADW_MC_BIOSMEM)/2] ==
0x55AA) {
/*
* Restore per TID negotiated values.
*/
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
wdtr_able);
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
sdtr_able);
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
tagqng_able);
for (tid = 0; tid <= ADW_MAX_TID; tid++) {
ADW_WRITE_BYTE_LRAM(iot, ioh,
ADW_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
} else {
if (AdwResetCCB(sc) != ADW_TRUE) {
error_code = ADW_WARN_BUSRESET_ERROR;
}
}
}
return error_code;
}
int
AdwRamSelfTest(iot, ioh, chip_type)
bus_space_tag_t iot;
bus_space_handle_t ioh;
u_int8_t chip_type;
{
int i;
u_int8_t byte;
if ((chip_type == ADW_CHIP_ASC38C0800) ||
(chip_type == ADW_CHIP_ASC38C1600)) {
/*
* RAM BIST (RAM Built-In Self Test)
*
* Address : I/O base + offset 0x38h register (byte).
* Function: Bit 7-6(RW) : RAM mode
* Normal Mode : 0x00
* Pre-test Mode : 0x40
* RAM Test Mode : 0x80
* Bit 5 : unused
* Bit 4(RO) : Done bit
* Bit 3-0(RO) : Status
* Host Error : 0x08
* Int_RAM Error : 0x04
* RISC Error : 0x02
* SCSI Error : 0x01
* No Error : 0x00
*
* Note: RAM BIST code should be put right here, before loading
* the microcode and after saving the RISC memory BIOS region.
*/
/*
* LRAM Pre-test
*
* Write PRE_TEST_MODE (0x40) to register and wait for
* 10 milliseconds.
* If Done bit not set or low nibble not PRE_TEST_VALUE (0x05),
* return an error. Reset to NORMAL_MODE (0x00) and do again.
* If cannot reset to NORMAL_MODE, return an error too.
*/
for (i = 0; i < 2; i++) {
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
PRE_TEST_MODE);
/* Wait for 10ms before reading back. */
AdwSleepMilliSecond(10);
byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
if ((byte & RAM_TEST_DONE) == 0 || (byte & 0x0F) !=
PRE_TEST_VALUE) {
return ADW_IERR_BIST_PRE_TEST;
}
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST,
NORMAL_MODE);
/* Wait for 10ms before reading back. */
AdwSleepMilliSecond(10);
if (ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST)
!= NORMAL_VALUE) {
return ADW_IERR_BIST_PRE_TEST;
}
}
/*
* LRAM Test - It takes about 1.5 ms to run through the test.
*
* Write RAM_TEST_MODE (0x80) to register and wait for
* 10 milliseconds.
* If Done bit not set or Status not 0, save register byte,
* set the err_code, and return an error.
*/
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, RAM_TEST_MODE);
/* Wait for 10ms before checking status. */
AdwSleepMilliSecond(10);
byte = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST);
if ((byte & RAM_TEST_DONE)==0 || (byte & RAM_TEST_STATUS)!=0) {
/* Get here if Done bit not set or Status not 0. */
return ADW_IERR_BIST_RAM_TEST;
}
/* We need to reset back to normal mode after LRAM test passes*/
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_RAM_BIST, NORMAL_MODE);
}
return 0;
}
int
AdwLoadMCode(iot, ioh, bios_mem, chip_type)
bus_space_tag_t iot;
bus_space_handle_t ioh;
u_int16_t *bios_mem;
u_int8_t chip_type;
{
u_int8_t *mcode_data;
u_int32_t mcode_chksum;
u_int16_t mcode_size;
u_int32_t sum;
u_int16_t code_sum;
int begin_addr;
int end_addr;
int word;
int adw_memsize;
int adw_mcode_expanded_size;
int i, j;
switch(chip_type) {
case ADW_CHIP_ASC3550:
mcode_data = (u_int8_t *)adw_asc3550_mcode_data.mcode_data;
mcode_chksum = (u_int32_t)adw_asc3550_mcode_data.mcode_chksum;
mcode_size = (u_int16_t)adw_asc3550_mcode_data.mcode_size;
adw_memsize = ADW_3550_MEMSIZE;
break;
case ADW_CHIP_ASC38C0800:
mcode_data = (u_int8_t *)adw_asc38C0800_mcode_data.mcode_data;
mcode_chksum =(u_int32_t)adw_asc38C0800_mcode_data.mcode_chksum;
mcode_size = (u_int16_t)adw_asc38C0800_mcode_data.mcode_size;
adw_memsize = ADW_38C0800_MEMSIZE;
break;
case ADW_CHIP_ASC38C1600:
mcode_data = (u_int8_t *)adw_asc38C1600_mcode_data.mcode_data;
mcode_chksum =(u_int32_t)adw_asc38C1600_mcode_data.mcode_chksum;
mcode_size = (u_int16_t)adw_asc38C1600_mcode_data.mcode_size;
adw_memsize = ADW_38C1600_MEMSIZE;
break;
default:
return (EINVAL);
}
/*
* Write the microcode image to RISC memory starting at address 0.
*/
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
/* Assume the following compressed format of the microcode buffer:
*
* 254 word (508 byte) table indexed by byte code followed
* by the following byte codes:
*
* 1-Byte Code:
* 00: Emit word 0 in table.
* 01: Emit word 1 in table.
* .
* FD: Emit word 253 in table.
*
* Multi-Byte Code:
* FE WW WW: (3 byte code) Word to emit is the next word WW WW.
* FF BB WW WW: (4 byte code) Emit BB count times next word WW WW.
*/
word = 0;
for (i = 253 * 2; i < mcode_size; i++) {
if (mcode_data[i] == 0xff) {
for (j = 0; j < mcode_data[i + 1]; j++) {
ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
(((u_int16_t)mcode_data[i + 3] << 8) |
mcode_data[i + 2]));
word++;
}
i += 3;
} else if (mcode_data[i] == 0xfe) {
ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh,
(((u_int16_t)mcode_data[i + 2] << 8) |
mcode_data[i + 1]));
i += 2;
word++;
} else {
ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, (((u_int16_t)
mcode_data[(mcode_data[i] * 2) + 1] <<8) |
mcode_data[mcode_data[i] * 2]));
word++;
}
}
/*
* Set 'word' for later use to clear the rest of memory and save
* the expanded mcode size.
*/
word *= 2;
adw_mcode_expanded_size = word;
/*
* Clear the rest of the Internal RAM.
*/
for (; word < adw_memsize; word += 2) {
ADW_WRITE_WORD_AUTO_INC_LRAM(iot, ioh, 0);
}
/*
* Verify the microcode checksum.
*/
sum = 0;
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, 0);
for (word = 0; word < adw_mcode_expanded_size; word += 2) {
sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
}
if (sum != mcode_chksum) {
return ADW_IERR_MCODE_CHKSUM;
}
/*
* Restore the RISC memory BIOS region.
*/
for (i = 0; i < ADW_MC_BIOSLEN/2; i++) {
if(chip_type == ADW_CHIP_ASC3550) {
ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
bios_mem[i]);
} else {
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOSMEM + (2 * i),
bios_mem[i]);
}
}
/*
* Calculate and write the microcode code checksum to the microcode
* code checksum location ADW_MC_CODE_CHK_SUM (0x2C).
*/
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_BEGIN_ADDR, begin_addr);
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_CODE_END_ADDR, end_addr);
code_sum = 0;
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RAM_ADDR, begin_addr);
for (word = begin_addr; word < end_addr; word += 2) {
code_sum += ADW_READ_WORD_AUTO_INC_LRAM(iot, ioh);
}
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CODE_CHK_SUM, code_sum);
/*
* Set the chip type.
*/
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_CHIP_TYPE, chip_type);
return 0;
}
int
AdwASC3550Cabling(iot, ioh, cfg)
bus_space_tag_t iot;
bus_space_handle_t ioh;
ADW_DVC_CFG *cfg;
{
u_int16_t scsi_cfg1;
/*
* Determine SCSI_CFG1 Microcode Default Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
/* Read current SCSI_CFG1 Register value. */
scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
/*
* If all three connectors are in use in ASC3550, return an error.
*/
if ((scsi_cfg1 & CABLE_ILLEGAL_A) == 0 ||
(scsi_cfg1 & CABLE_ILLEGAL_B) == 0) {
return ADW_IERR_ILLEGAL_CONNECTION;
}
/*
* If the cable is reversed all of the SCSI_CTRL register signals
* will be set. Check for and return an error if this condition is
* found.
*/
if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
return ADW_IERR_REVERSED_CABLE;
}
/*
* If this is a differential board and a single-ended device
* is attached to one of the connectors, return an error.
*/
if ((scsi_cfg1 & ADW_DIFF_MODE) &&
(scsi_cfg1 & ADW_DIFF_SENSE) == 0) {
return ADW_IERR_SINGLE_END_DEVICE;
}
/*
* If automatic termination control is enabled, then set the
* termination value based on a table listed in a_condor.h.
*
* If manual termination was specified with an EEPROM setting
* then 'termination' was set-up in AdwInitFromEEPROM() and
* is ready to be 'ored' into SCSI_CFG1.
*/
if (cfg->termination == 0) {
/*
* The software always controls termination by setting
* TERM_CTL_SEL.
* If TERM_CTL_SEL were set to 0, the hardware would set
* termination.
*/
cfg->termination |= ADW_TERM_CTL_SEL;
switch(scsi_cfg1 & ADW_CABLE_DETECT) {
/* TERM_CTL_H: on, TERM_CTL_L: on */
case 0x3: case 0x7: case 0xB:
case 0xD: case 0xE: case 0xF:
cfg->termination |=
(ADW_TERM_CTL_H | ADW_TERM_CTL_L);
break;
/* TERM_CTL_H: on, TERM_CTL_L: off */
case 0x1: case 0x5: case 0x9:
case 0xA: case 0xC:
cfg->termination |= ADW_TERM_CTL_H;
break;
/* TERM_CTL_H: off, TERM_CTL_L: off */
case 0x2: case 0x6:
break;
}
}
/*
* Clear any set TERM_CTL_H and TERM_CTL_L bits.
*/
scsi_cfg1 &= ~ADW_TERM_CTL;
/*
* Invert the TERM_CTL_H and TERM_CTL_L bits and then
* set 'scsi_cfg1'. The TERM_POL bit does not need to be
* referenced, because the hardware internally inverts
* the Termination High and Low bits if TERM_POL is set.
*/
scsi_cfg1 |= (ADW_TERM_CTL_SEL | (~cfg->termination & ADW_TERM_CTL));
/*
* Set SCSI_CFG1 Microcode Default Value
*
* Set filter value and possibly modified termination control
* bits in the Microcode SCSI_CFG1 Register Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1,
ADW_FLTR_DISABLE | scsi_cfg1);
/*
* Set MEM_CFG Microcode Default Value
*
* The microcode will set the MEM_CFG register using this value
* after it is started below.
*
* MEM_CFG may be accessed as a word or byte, but only bits 0-7
* are defined.
*
* ASC-3550 has 8KB internal memory.
*/
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
ADW_BIOS_EN | ADW_RAM_SZ_8KB);
return 0;
}
int
AdwASC38C0800Cabling(iot, ioh, cfg)
bus_space_tag_t iot;
bus_space_handle_t ioh;
ADW_DVC_CFG *cfg;
{
u_int16_t scsi_cfg1;
/*
* Determine SCSI_CFG1 Microcode Default Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
/* Read current SCSI_CFG1 Register value. */
scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
/*
* If the cable is reversed all of the SCSI_CTRL register signals
* will be set. Check for and return an error if this condition is
* found.
*/
if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
return ADW_IERR_REVERSED_CABLE;
}
/*
* All kind of combinations of devices attached to one of four
* connectors are acceptable except HVD device attached.
* For example, LVD device can be attached to SE connector while
* SE device attached to LVD connector.
* If LVD device attached to SE connector, it only runs up to
* Ultra speed.
*
* If an HVD device is attached to one of LVD connectors, return
* an error.
* However, there is no way to detect HVD device attached to
* SE connectors.
*/
if (scsi_cfg1 & ADW_HVD) {
return ADW_IERR_HVD_DEVICE;
}
/*
* If either SE or LVD automatic termination control is enabled, then
* set the termination value based on a table listed in a_condor.h.
*
* If manual termination was specified with an EEPROM setting then
* 'termination' was set-up in AdwInitFromEEPROM() and is ready
* to be 'ored' into SCSI_CFG1.
*/
if ((cfg->termination & ADW_TERM_SE) == 0) {
/* SE automatic termination control is enabled. */
switch(scsi_cfg1 & ADW_C_DET_SE) {
/* TERM_SE_HI: on, TERM_SE_LO: on */
case 0x1: case 0x2: case 0x3:
cfg->termination |= ADW_TERM_SE;
break;
/* TERM_SE_HI: on, TERM_SE_LO: off */
case 0x0:
cfg->termination |= ADW_TERM_SE_HI;
break;
}
}
if ((cfg->termination & ADW_TERM_LVD) == 0) {
/* LVD automatic termination control is enabled. */
switch(scsi_cfg1 & ADW_C_DET_LVD) {
/* TERM_LVD_HI: on, TERM_LVD_LO: on */
case 0x4: case 0x8: case 0xC:
cfg->termination |= ADW_TERM_LVD;
break;
/* TERM_LVD_HI: off, TERM_LVD_LO: off */
case 0x0:
break;
}
}
/*
* Clear any set TERM_SE and TERM_LVD bits.
*/
scsi_cfg1 &= (~ADW_TERM_SE & ~ADW_TERM_LVD);
/*
* Invert the TERM_SE and TERM_LVD bits and then set 'scsi_cfg1'.
*/
scsi_cfg1 |= (~cfg->termination & 0xF0);
/*
* Clear BIG_ENDIAN, DIS_TERM_DRV, Terminator Polarity and
* HVD/LVD/SE bits and set possibly modified termination control bits
* in the Microcode SCSI_CFG1 Register Value.
*/
scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV &
~ADW_TERM_POL & ~ADW_HVD_LVD_SE);
/*
* Set SCSI_CFG1 Microcode Default Value
*
* Set possibly modified termination control and reset DIS_TERM_DRV
* bits in the Microcode SCSI_CFG1 Register Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
/*
* Set MEM_CFG Microcode Default Value
*
* The microcode will set the MEM_CFG register using this value
* after it is started below.
*
* MEM_CFG may be accessed as a word or byte, but only bits 0-7
* are defined.
*
* ASC-38C0800 has 16KB internal memory.
*/
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
ADW_BIOS_EN | ADW_RAM_SZ_16KB);
return 0;
}
int
AdwASC38C1600Cabling(iot, ioh, cfg)
bus_space_tag_t iot;
bus_space_handle_t ioh;
ADW_DVC_CFG *cfg;
{
u_int16_t scsi_cfg1;
/*
* Determine SCSI_CFG1 Microcode Default Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
* Each ASC-38C1600 function has only two cable detect bits.
* The bus mode override bits are in IOPB_SOFT_OVER_WR.
*/
/* Read current SCSI_CFG1 Register value. */
scsi_cfg1 = ADW_READ_WORD_REGISTER(iot, ioh, IOPW_SCSI_CFG1);
/*
* If the cable is reversed all of the SCSI_CTRL register signals
* will be set. Check for and return an error if this condition is
* found.
*/
if ((ADW_READ_WORD_REGISTER(iot,ioh, IOPW_SCSI_CTRL) & 0x3F07)==0x3F07){
return ADW_IERR_REVERSED_CABLE;
}
/*
* Each ASC-38C1600 function has two connectors. Only an HVD device
* cannot be connected to either connector. An LVD device or SE device
* may be connected to either connector. If an SE device is connected,
* then at most Ultra speed (20 MHz) can be used on both connectors.
*
* If an HVD device is attached, return an error.
*/
if (scsi_cfg1 & ADW_HVD) {
return ADW_IERR_HVD_DEVICE;
}
/*
* Each function in the ASC-38C1600 uses only the SE cable detect and
* termination because there are two connectors for each function.
* Each function may use either LVD or SE mode.
* Corresponding the SE automatic termination control EEPROM bits are
* used for each function.
* Each function has its own EEPROM. If SE automatic control is enabled
* for the function, then set the termination value based on a table
* listed in adwlib.h.
*
* If manual termination is specified in the EEPROM for the function,
* then 'termination' was set-up in AdwInitFromEEPROM() and is
* ready to be 'ored' into SCSI_CFG1.
*/
if ((cfg->termination & ADW_TERM_SE) == 0) {
/* SE automatic termination control is enabled. */
switch(scsi_cfg1 & ADW_C_DET_SE) {
/* TERM_SE_HI: on, TERM_SE_LO: on */
case 0x1: case 0x2: case 0x3:
cfg->termination |= ADW_TERM_SE;
break;
case 0x0:
#if 0
/* !!!!TODO!!!! */
if (ASC_PCI_ID2FUNC(cfg->pci_slot_info) == 0) {
/* Function 0 - TERM_SE_HI: off, TERM_SE_LO: off */
}
else
#endif
{
/* Function 1 - TERM_SE_HI: on, TERM_SE_LO: off */
cfg->termination |= ADW_TERM_SE_HI;
}
break;
}
}
/*
* Clear any set TERM_SE bits.
*/
scsi_cfg1 &= ~ADW_TERM_SE;
/*
* Invert the TERM_SE bits and then set 'scsi_cfg1'.
*/
scsi_cfg1 |= (~cfg->termination & ADW_TERM_SE);
/*
* Clear Big Endian and Terminator Polarity bits and set possibly
* modified termination control bits in the Microcode SCSI_CFG1
* Register Value.
*/
scsi_cfg1 &= (~ADW_BIG_ENDIAN & ~ADW_DIS_TERM_DRV & ~ADW_TERM_POL);
/*
* Set SCSI_CFG1 Microcode Default Value
*
* Set possibly modified termination control bits in the Microcode
* SCSI_CFG1 Register Value.
*
* The microcode will set the SCSI_CFG1 register using this value
* after it is started below.
*/
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_SCSI_CFG1, scsi_cfg1);
/*
* Set MEM_CFG Microcode Default Value
*
* The microcode will set the MEM_CFG register using this value
* after it is started below.
*
* MEM_CFG may be accessed as a word or byte, but only bits 0-7
* are defined.
*
* ASC-38C1600 has 32KB internal memory.
*/
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_DEFAULT_MEM_CFG,
ADW_BIOS_EN | ADW_RAM_SZ_32KB);
return 0;
}
/*
* Read EEPROM configuration into the specified buffer.
*
* Return a checksum based on the EEPROM configuration read.
*/
static u_int16_t
AdwGetEEPROMConfig(iot, ioh, cfg_buf)
bus_space_tag_t iot;
bus_space_handle_t ioh;
ADW_EEPROM *cfg_buf;
{
u_int16_t wval, chksum;
u_int16_t *wbuf;
int eep_addr;
wbuf = (u_int16_t *) cfg_buf;
chksum = 0;
for (eep_addr = ASC_EEP_DVC_CFG_BEGIN;
eep_addr < ASC_EEP_DVC_CFG_END;
eep_addr++, wbuf++) {
wval = AdwReadEEPWord(iot, ioh, eep_addr);
chksum += wval;
*wbuf = wval;
}
*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
wbuf++;
for (eep_addr = ASC_EEP_DVC_CTL_BEGIN;
eep_addr < ASC_EEP_MAX_WORD_ADDR;
eep_addr++, wbuf++) {
*wbuf = AdwReadEEPWord(iot, ioh, eep_addr);
}
return chksum;
}
/*
* Read the EEPROM from specified location
*/
static u_int16_t
AdwReadEEPWord(iot, ioh, eep_word_addr)
bus_space_tag_t iot;
bus_space_handle_t ioh;
int eep_word_addr;
{
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
ASC_EEP_CMD_READ | eep_word_addr);
AdwWaitEEPCmd(iot, ioh);
return ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_DATA);
}
/*
* Wait for EEPROM command to complete
*/
static void
AdwWaitEEPCmd(iot, ioh)
bus_space_tag_t iot;
bus_space_handle_t ioh;
{
int eep_delay_ms;
for (eep_delay_ms = 0; eep_delay_ms < ASC_EEP_DELAY_MS; eep_delay_ms++){
if (ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD) &
ASC_EEP_CMD_DONE) {
break;
}
AdwSleepMilliSecond(1);
}
ADW_READ_WORD_REGISTER(iot, ioh, IOPW_EE_CMD);
}
/*
* Write the EEPROM from 'cfg_buf'.
*/
static void
AdwSetEEPROMConfig(iot, ioh, cfg_buf)
bus_space_tag_t iot;
bus_space_handle_t ioh;
ADW_EEPROM *cfg_buf;
{
u_int16_t *wbuf;
u_int16_t addr, chksum;
wbuf = (u_int16_t *) cfg_buf;
chksum = 0;
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD, ASC_EEP_CMD_WRITE_ABLE);
AdwWaitEEPCmd(iot, ioh);
/*
* Write EEPROM from word 0 to word 20
*/
for (addr = ASC_EEP_DVC_CFG_BEGIN;
addr < ASC_EEP_DVC_CFG_END; addr++, wbuf++) {
chksum += *wbuf;
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
ASC_EEP_CMD_WRITE | addr);
AdwWaitEEPCmd(iot, ioh);
AdwSleepMilliSecond(ASC_EEP_DELAY_MS);
}
/*
* Write EEPROM checksum at word 21
*/
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, chksum);
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
ASC_EEP_CMD_WRITE | addr);
AdwWaitEEPCmd(iot, ioh);
wbuf++; /* skip over check_sum */
/*
* Write EEPROM OEM name at words 22 to 29
*/
for (addr = ASC_EEP_DVC_CTL_BEGIN;
addr < ASC_EEP_MAX_WORD_ADDR; addr++, wbuf++) {
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_DATA, *wbuf);
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
ASC_EEP_CMD_WRITE | addr);
AdwWaitEEPCmd(iot, ioh);
}
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_EE_CMD,
ASC_EEP_CMD_WRITE_DISABLE);
AdwWaitEEPCmd(iot, ioh);
return;
}
/*
* AdwExeScsiQueue() - Send a request to the RISC microcode program.
*
* Allocate a carrier structure, point the carrier to the ADW_SCSI_REQ_Q,
* add the carrier to the ICQ (Initiator Command Queue), and tickle the
* RISC to notify it a new command is ready to be executed.
*
* If 'done_status' is not set to QD_DO_RETRY, then 'error_retry' will be
* set to SCSI_MAX_RETRY.
*
* Return:
* ADW_SUCCESS(1) - The request was successfully queued.
* ADW_BUSY(0) - Resource unavailable; Retry again after pending
* request completes.
* ADW_ERROR(-1) - Invalid ADW_SCSI_REQ_Q request structure
* host IC error.
*/
int
AdwExeScsiQueue(sc, scsiq)
ADW_SOFTC *sc;
ADW_SCSI_REQ_Q *scsiq;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
ADW_CCB *ccb;
u_int32_t req_paddr;
ADW_CARRIER *new_carrp;
/*
* The ADW_SCSI_REQ_Q 'target_id' field should never exceed ADW_MAX_TID.
*/
if (scsiq->target_id > ADW_MAX_TID) {
scsiq->host_status = QHSTA_M_INVALID_DEVICE;
scsiq->done_status = QD_WITH_ERROR;
return ADW_ERROR;
}
/*
* Begin of CRITICAL SECTION: Must be protected within splbio/splx pair
*/
ccb = adw_ccb_phys_kv(sc, scsiq->ccb_ptr);
/*
* Allocate a carrier and initialize fields.
*/
if ((new_carrp = sc->carr_freelist) == NULL) {
return ADW_BUSY;
}
sc->carr_freelist = ADW_CARRIER_VADDR(sc,
ASC_GET_CARRP(new_carrp->next_ba));
sc->carr_pending_cnt++;
/*
* Set the carrier to be a stopper by setting 'next_ba'
* to the stopper value. The current stopper will be changed
* below to point to the new stopper.
*/
new_carrp->next_ba = htole32(ASC_CQ_STOPPER);
req_paddr = sc->sc_dmamap_control->dm_segs[0].ds_addr +
ADW_CCB_OFF(ccb) + offsetof(struct adw_ccb, scsiq);
/* Save physical address of ADW_SCSI_REQ_Q and Carrier. */
scsiq->scsiq_rptr = htole32(req_paddr);
/*
* Every ADV_CARR_T.carr_ba is byte swapped to little-endian
* order during initialization.
*/
scsiq->carr_ba = sc->icq_sp->carr_ba;
scsiq->carr_va = sc->icq_sp->carr_ba;
/*
* Use the current stopper to send the ADW_SCSI_REQ_Q command to
* the microcode. The newly allocated stopper will become the new
* stopper.
*/
sc->icq_sp->areq_ba = htole32(req_paddr);
/*
* Set the 'next_ba' pointer for the old stopper to be the
* physical address of the new stopper. The RISC can only
* follow physical addresses.
*/
sc->icq_sp->next_ba = new_carrp->carr_ba;
#if ADW_DEBUG
printf("icq 0x%x, 0x%x, 0x%x, 0x%x\n",
sc->icq_sp->carr_id,
sc->icq_sp->carr_ba,
sc->icq_sp->areq_ba,
sc->icq_sp->next_ba);
#endif
/*
* Set the host adapter stopper pointer to point to the new carrier.
*/
sc->icq_sp = new_carrp;
if (sc->chip_type == ADW_CHIP_ASC3550 ||
sc->chip_type == ADW_CHIP_ASC38C0800) {
/*
* Tickle the RISC to tell it to read its Command Queue Head
* pointer.
*/
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_A);
if (sc->chip_type == ADW_CHIP_ASC3550) {
/*
* Clear the tickle value. In the ASC-3550 the RISC flag
* command 'clr_tickle_a' does not work unless the host
* value is cleared.
*/
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE,
ADW_TICKLE_NOP);
}
} else if (sc->chip_type == ADW_CHIP_ASC38C1600) {
/*
* Notify the RISC a carrier is ready by writing the physical
* address of the new carrier stopper to the COMMA register.
*/
ADW_WRITE_DWORD_REGISTER(iot, ioh, IOPDW_COMMA,
le32toh(new_carrp->carr_ba));
}
/*
* End of CRITICAL SECTION: Must be protected within splbio/splx pair
*/
return ADW_SUCCESS;
}
void
AdwResetChip(iot, ioh)
bus_space_tag_t iot;
bus_space_handle_t ioh;
{
/*
* Reset Chip.
*/
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
ADW_CTRL_REG_CMD_RESET);
AdwSleepMilliSecond(100);
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
ADW_CTRL_REG_CMD_WR_IO_REG);
}
/*
* Reset SCSI Bus and purge all outstanding requests.
*
* Return Value:
* ADW_TRUE(1) - All requests are purged and SCSI Bus is reset.
* ADW_FALSE(0) - Microcode command failed.
* ADW_ERROR(-1) - Microcode command timed-out. Microcode or IC
* may be hung which requires driver recovery.
*/
int
AdwResetCCB(sc)
ADW_SOFTC *sc;
{
int status;
/*
* Send the SCSI Bus Reset idle start idle command which asserts
* the SCSI Bus Reset signal.
*/
status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_START, 0L);
if (status != ADW_TRUE) {
return status;
}
/*
* Delay for the specified SCSI Bus Reset hold time.
*
* The hold time delay is done on the host because the RISC has no
* microsecond accurate timer.
*/
AdwDelayMicroSecond((u_int16_t) ASC_SCSI_RESET_HOLD_TIME_US);
/*
* Send the SCSI Bus Reset end idle command which de-asserts
* the SCSI Bus Reset signal and purges any pending requests.
*/
status = AdwSendIdleCmd(sc, (u_int16_t) IDLE_CMD_SCSI_RESET_END, 0L);
if (status != ADW_TRUE) {
return status;
}
AdwSleepMilliSecond((u_int32_t) sc->scsi_reset_wait * 1000);
return status;
}
/*
* Reset chip and SCSI Bus.
*
* Return Value:
* ADW_TRUE(1) - Chip re-initialization and SCSI Bus Reset successful.
* ADW_FALSE(0) - Chip re-initialization and SCSI Bus Reset failure.
*/
int
AdwResetSCSIBus(sc)
ADW_SOFTC *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int status;
u_int16_t wdtr_able, sdtr_able, tagqng_able;
u_int16_t ppr_able = 0; /* XXX: gcc */
u_int8_t tid, max_cmd[ADW_MAX_TID + 1];
u_int16_t bios_sig;
/*
* Save current per TID negotiated values.
*/
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
if (sc->chip_type == ADW_CHIP_ASC38C1600) {
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
}
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
for (tid = 0; tid <= ADW_MAX_TID; tid++) {
ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
/*
* Force the AdwInitAscDriver() function to perform a SCSI Bus Reset
* by clearing the BIOS signature word.
* The initialization functions assumes a SCSI Bus Reset is not
* needed if the BIOS signature word is present.
*/
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, 0);
/*
* Stop chip and reset it.
*/
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_RISC_CSR, ADW_RISC_CSR_STOP);
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
ADW_CTRL_REG_CMD_RESET);
AdwSleepMilliSecond(100);
ADW_WRITE_WORD_REGISTER(iot, ioh, IOPW_CTRL_REG,
ADW_CTRL_REG_CMD_WR_IO_REG);
/*
* Reset Adv Library error code, if any, and try
* re-initializing the chip.
* Then translate initialization return value to status value.
*/
status = (AdwInitDriver(sc) == 0)? ADW_TRUE : ADW_FALSE;
/*
* Restore the BIOS signature word.
*/
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_BIOS_SIGNATURE, bios_sig);
/*
* Restore per TID negotiated values.
*/
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE, wdtr_able);
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE, sdtr_able);
if (sc->chip_type == ADW_CHIP_ASC38C1600) {
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE, ppr_able);
}
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE, tagqng_able);
for (tid = 0; tid <= ADW_MAX_TID; tid++) {
ADW_WRITE_BYTE_LRAM(iot, ioh, ADW_MC_NUMBER_OF_MAX_CMD + tid,
max_cmd[tid]);
}
return status;
}
/*
* Adv Library Interrupt Service Routine
*
* This function is called by a driver's interrupt service routine.
* The function disables and re-enables interrupts.
*
* When a microcode idle command is completed, the ADV_DVC_VAR
* 'idle_cmd_done' field is set to ADW_TRUE.
*
* Note: AdwISR() can be called when interrupts are disabled or even
* when there is no hardware interrupt condition present. It will
* always check for completed idle commands and microcode requests.
* This is an important feature that shouldn't be changed because it
* allows commands to be completed from polling mode loops.
*
* Return:
* ADW_TRUE(1) - interrupt was pending
* ADW_FALSE(0) - no interrupt was pending
*/
int
AdwISR(sc)
ADW_SOFTC *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int8_t int_stat;
ADW_CARRIER *free_carrp/*, *ccb_carr*/;
u_int32_t irq_next_pa;
ADW_SCSI_REQ_Q *scsiq;
ADW_CCB *ccb;
int s;
s = splbio();
/* Reading the register clears the interrupt. */
int_stat = ADW_READ_BYTE_REGISTER(iot, ioh, IOPB_INTR_STATUS_REG);
if ((int_stat & (ADW_INTR_STATUS_INTRA | ADW_INTR_STATUS_INTRB |
ADW_INTR_STATUS_INTRC)) == 0) {
splx(s);
return ADW_FALSE;
}
/*
* Notify the driver of an asynchronous microcode condition by
* calling the ADV_DVC_VAR.async_callback function. The function
* is passed the microcode ADW_MC_INTRB_CODE byte value.
*/
if (int_stat & ADW_INTR_STATUS_INTRB) {
u_int8_t intrb_code;
ADW_READ_BYTE_LRAM(iot, ioh, ADW_MC_INTRB_CODE, intrb_code);
if (sc->chip_type == ADW_CHIP_ASC3550 ||
sc->chip_type == ADW_CHIP_ASC38C0800) {
if (intrb_code == ADV_ASYNC_CARRIER_READY_FAILURE &&
sc->carr_pending_cnt != 0) {
ADW_WRITE_BYTE_REGISTER(iot, ioh,
IOPB_TICKLE, ADW_TICKLE_A);
if (sc->chip_type == ADW_CHIP_ASC3550) {
ADW_WRITE_BYTE_REGISTER(iot, ioh,
IOPB_TICKLE, ADW_TICKLE_NOP);
}
}
}
if (sc->async_callback != 0) {
(*(ADW_ASYNC_CALLBACK)sc->async_callback)(sc, intrb_code);
}
}
/*
* Check if the IRQ stopper carrier contains a completed request.
*/
while (((le32toh(irq_next_pa = sc->irq_sp->next_ba)) & ASC_RQ_DONE) != 0)
{
#if ADW_DEBUG
printf("irq 0x%x, 0x%x, 0x%x, 0x%x\n",
sc->irq_sp->carr_id,
sc->irq_sp->carr_ba,
sc->irq_sp->areq_ba,
sc->irq_sp->next_ba);
#endif
/*
* Get a pointer to the newly completed ADW_SCSI_REQ_Q
* structure.
* The RISC will have set 'areq_ba' to a virtual address.
*
* The firmware will have copied the ASC_SCSI_REQ_Q.ccb_ptr
* field to the carrier ADV_CARR_T.areq_ba field.
* The conversion below complements the conversion of
* ASC_SCSI_REQ_Q.scsiq_ptr' in AdwExeScsiQueue().
*/
ccb = adw_ccb_phys_kv(sc, sc->irq_sp->areq_ba);
scsiq = &ccb->scsiq;
scsiq->ccb_ptr = sc->irq_sp->areq_ba;
/*
* Request finished with good status and the queue was not
* DMAed to host memory by the firmware. Set all status fields
* to indicate good status.
*/
if ((le32toh(irq_next_pa) & ASC_RQ_GOOD) != 0) {
scsiq->done_status = QD_NO_ERROR;
scsiq->host_status = scsiq->scsi_status = 0;
scsiq->data_cnt = 0L;
}
/*
* Advance the stopper pointer to the next carrier
* ignoring the lower four bits. Free the previous
* stopper carrier.
*/
free_carrp = sc->irq_sp;
sc->irq_sp = ADW_CARRIER_VADDR(sc, ASC_GET_CARRP(irq_next_pa));
free_carrp->next_ba = (sc->carr_freelist == NULL) ? 0
: sc->carr_freelist->carr_ba;
sc->carr_freelist = free_carrp;
sc->carr_pending_cnt--;
/*
* Clear request microcode control flag.
*/
scsiq->cntl = 0;
/*
* Check Condition handling
*/
/*
* If the command that completed was a SCSI INQUIRY and
* LUN 0 was sent the command, then process the INQUIRY
* command information for the device.
*/
if (scsiq->done_status == QD_NO_ERROR &&
scsiq->cdb[0] == INQUIRY &&
scsiq->target_lun == 0) {
AdwInquiryHandling(sc, scsiq);
}
/*
* Notify the driver of the completed request by passing
* the ADW_SCSI_REQ_Q pointer to its callback function.
*/
(*(ADW_ISR_CALLBACK)sc->isr_callback)(sc, scsiq);
/*
* Note: After the driver callback function is called, 'scsiq'
* can no longer be referenced.
*
* Fall through and continue processing other completed
* requests...
*/
}
splx(s);
return ADW_TRUE;
}
/*
* Send an idle command to the chip and wait for completion.
*
* Command completion is polled for once per microsecond.
*
* The function can be called from anywhere including an interrupt handler.
* But the function is not re-entrant, so it uses the splbio/splx()
* functions to prevent reentrancy.
*
* Return Values:
* ADW_TRUE - command completed successfully
* ADW_FALSE - command failed
* ADW_ERROR - command timed out
*/
int
AdwSendIdleCmd(sc, idle_cmd, idle_cmd_parameter)
ADW_SOFTC *sc;
u_int16_t idle_cmd;
u_int32_t idle_cmd_parameter;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int16_t result;
u_int32_t i, j, s;
s = splbio();
/*
* Clear the idle command status which is set by the microcode
* to a non-zero value to indicate when the command is completed.
*/
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS, (u_int16_t) 0);
/*
* Write the idle command value after the idle command parameter
* has been written to avoid a race condition. If the order is not
* followed, the microcode may process the idle command before the
* parameters have been written to LRAM.
*/
ADW_WRITE_DWORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_PARAMETER,
idle_cmd_parameter);
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD, idle_cmd);
/*
* Tickle the RISC to tell it to process the idle command.
*/
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_B);
if (sc->chip_type == ADW_CHIP_ASC3550) {
/*
* Clear the tickle value. In the ASC-3550 the RISC flag
* command 'clr_tickle_b' does not work unless the host
* value is cleared.
*/
ADW_WRITE_BYTE_REGISTER(iot, ioh, IOPB_TICKLE, ADW_TICKLE_NOP);
}
/* Wait for up to 100 millisecond for the idle command to timeout. */
for (i = 0; i < SCSI_WAIT_100_MSEC; i++) {
/* Poll once each microsecond for command completion. */
for (j = 0; j < SCSI_US_PER_MSEC; j++) {
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_IDLE_CMD_STATUS,
result);
if (result != 0) {
splx(s);
return result;
}
AdwDelayMicroSecond(1);
}
}
splx(s);
return ADW_ERROR;
}
/*
* Inquiry Information Byte 7 Handling
*
* Handle SCSI Inquiry Command information for a device by setting
* microcode operating variables that affect WDTR, SDTR, and Tag
* Queuing.
*/
static void
AdwInquiryHandling(sc, scsiq)
ADW_SOFTC *sc;
ADW_SCSI_REQ_Q *scsiq;
{
#ifndef FAILSAFE
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int8_t tid;
struct scsipi_inquiry_data *inq;
u_int16_t tidmask;
u_int16_t cfg_word;
/*
* AdwInquiryHandling() requires up to INQUIRY information Byte 7
* to be available.
*
* If less than 8 bytes of INQUIRY information were requested or less
* than 8 bytes were transferred, then return. cdb[4] is the request
* length and the ADW_SCSI_REQ_Q 'data_cnt' field is set by the
* microcode to the transfer residual count.
*/
if (scsiq->cdb[4] < 8 || (scsiq->cdb[4] - scsiq->data_cnt) < 8) {
return;
}
tid = scsiq->target_id;
inq = (struct scsipi_inquiry_data *) scsiq->vdata_addr;
/*
* WDTR, SDTR, and Tag Queuing cannot be enabled for old devices.
*/
if (((inq->response_format & SID_RespDataFmt) < 2) /*SCSI-1 | CCS*/ &&
((inq->version & SID_ANSII) < 2)) {
return;
} else {
/*
* INQUIRY Byte 7 Handling
*
* Use a device's INQUIRY byte 7 to determine whether it
* supports WDTR, SDTR, and Tag Queuing. If the feature
* is enabled in the EEPROM and the device supports the
* feature, then enable it in the microcode.
*/
tidmask = ADW_TID_TO_TIDMASK(tid);
/*
* Wide Transfers
*
* If the EEPROM enabled WDTR for the device and the device
* supports wide bus (16 bit) transfers, then turn on the
* device's 'wdtr_able' bit and write the new value to the
* microcode.
*/
#ifdef SCSI_ADW_WDTR_DISABLE
if(!(tidmask & SCSI_ADW_WDTR_DISABLE))
#endif /* SCSI_ADW_WDTR_DISABLE */
if ((sc->wdtr_able & tidmask) && (inq->flags3 & SID_WBus16)) {
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
cfg_word);
if ((cfg_word & tidmask) == 0) {
cfg_word |= tidmask;
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_ABLE,
cfg_word);
/*
* Clear the microcode "SDTR negotiation" and
* "WDTR negotiation" done indicators for the
* target to cause it to negotiate with the new
* setting set above.
* WDTR when accepted causes the target to enter
* asynchronous mode, so SDTR must be negotiated
*/
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
cfg_word);
cfg_word &= ~tidmask;
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
cfg_word);
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
cfg_word);
cfg_word &= ~tidmask;
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_WDTR_DONE,
cfg_word);
}
}
/*
* Synchronous Transfers
*
* If the EEPROM enabled SDTR for the device and the device
* supports synchronous transfers, then turn on the device's
* 'sdtr_able' bit. Write the new value to the microcode.
*/
#ifdef SCSI_ADW_SDTR_DISABLE
if(!(tidmask & SCSI_ADW_SDTR_DISABLE))
#endif /* SCSI_ADW_SDTR_DISABLE */
if ((sc->sdtr_able & tidmask) && (inq->flags3 & SID_Sync)) {
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,cfg_word);
if ((cfg_word & tidmask) == 0) {
cfg_word |= tidmask;
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_ABLE,
cfg_word);
/*
* Clear the microcode "SDTR negotiation"
* done indicator for the target to cause it
* to negotiate with the new setting set above.
*/
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
cfg_word);
cfg_word &= ~tidmask;
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_SDTR_DONE,
cfg_word);
}
}
/*
* If the Inquiry data included enough space for the SPI-3
* Clocking field, then check if DT mode is supported.
*/
if (sc->chip_type == ADW_CHIP_ASC38C1600 &&
(scsiq->cdb[4] >= 57 ||
(scsiq->cdb[4] - scsiq->data_cnt) >= 57)) {
/*
* PPR (Parallel Protocol Request) Capable
*
* If the device supports DT mode, then it must be
* PPR capable.
* The PPR message will be used in place of the SDTR
* and WDTR messages to negotiate synchronous speed
* and offset, transfer width, and protocol options.
*/
if((inq->flags4 & SID_Clocking) & SID_CLOCKING_DT_ONLY){
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
sc->ppr_able);
sc->ppr_able |= tidmask;
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_PPR_ABLE,
sc->ppr_able);
}
}
/*
* If the EEPROM enabled Tag Queuing for the device and the
* device supports Tag Queueing, then turn on the device's
* 'tagqng_enable' bit in the microcode and set the microcode
* maximum command count to the ADV_DVC_VAR 'max_dvc_qng'
* value.
*
* Tag Queuing is disabled for the BIOS which runs in polled
* mode and would see no benefit from Tag Queuing. Also by
* disabling Tag Queuing in the BIOS devices with Tag Queuing
* bugs will at least work with the BIOS.
*/
#ifdef SCSI_ADW_TAGQ_DISABLE
if(!(tidmask & SCSI_ADW_TAGQ_DISABLE))
#endif /* SCSI_ADW_TAGQ_DISABLE */
if ((sc->tagqng_able & tidmask) && (inq->flags3 & SID_CmdQue)) {
ADW_READ_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
cfg_word);
cfg_word |= tidmask;
ADW_WRITE_WORD_LRAM(iot, ioh, ADW_MC_TAGQNG_ABLE,
cfg_word);
ADW_WRITE_BYTE_LRAM(iot, ioh,
ADW_MC_NUMBER_OF_MAX_CMD + tid,
sc->max_dvc_qng);
}
}
#endif /* FAILSAFE */
}
static void
AdwSleepMilliSecond(n)
u_int32_t n;
{
DELAY(n * 1000);
}
static void
AdwDelayMicroSecond(n)
u_int32_t n;
{
DELAY(n);
}