827c75471f
Here are some fixes I derived from the mach 3.0 VM system a couple of months ago. At the time, I was giving the memory object routines a good looking at, trying to fix the long-standing problem where vm_object_collapse() sometimes fails to collapse objects left over from the exit of a forked child. As bde has noted, the problem seems to occur when portions of the parent are paged out. These "lost" memory objects, which can eat up a huge amount of swap space, are reclaimed when the parent responsible for the fork()s is killed.
1497 lines
36 KiB
C
1497 lines
36 KiB
C
/*
|
|
* Copyright (c) 1991 Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)vm_object.c 7.4 (Berkeley) 5/7/91
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Authors: Avadis Tevanian, Jr., Michael Wayne Young
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/*
|
|
* Virtual memory object module.
|
|
*/
|
|
|
|
#include "param.h"
|
|
#include "malloc.h"
|
|
|
|
#include "vm.h"
|
|
#include "vm_page.h"
|
|
|
|
/*
|
|
* Virtual memory objects maintain the actual data
|
|
* associated with allocated virtual memory. A given
|
|
* page of memory exists within exactly one object.
|
|
*
|
|
* An object is only deallocated when all "references"
|
|
* are given up. Only one "reference" to a given
|
|
* region of an object should be writeable.
|
|
*
|
|
* Associated with each object is a list of all resident
|
|
* memory pages belonging to that object; this list is
|
|
* maintained by the "vm_page" module, and locked by the object's
|
|
* lock.
|
|
*
|
|
* Each object also records a "pager" routine which is
|
|
* used to retrieve (and store) pages to the proper backing
|
|
* storage. In addition, objects may be backed by other
|
|
* objects from which they were virtual-copied.
|
|
*
|
|
* The only items within the object structure which are
|
|
* modified after time of creation are:
|
|
* reference count locked by object's lock
|
|
* pager routine locked by object's lock
|
|
*
|
|
*/
|
|
|
|
struct vm_object kernel_object_store;
|
|
struct vm_object kmem_object_store;
|
|
|
|
#define VM_OBJECT_HASH_COUNT 157
|
|
|
|
int vm_cache_max = 100; /* can patch if necessary */
|
|
queue_head_t vm_object_hashtable[VM_OBJECT_HASH_COUNT];
|
|
|
|
long object_collapses = 0;
|
|
long object_bypasses = 0;
|
|
|
|
/*
|
|
* vm_object_init:
|
|
*
|
|
* Initialize the VM objects module.
|
|
*/
|
|
void vm_object_init()
|
|
{
|
|
register int i;
|
|
|
|
queue_init(&vm_object_cached_list);
|
|
queue_init(&vm_object_list);
|
|
vm_object_count = 0;
|
|
simple_lock_init(&vm_cache_lock);
|
|
simple_lock_init(&vm_object_list_lock);
|
|
|
|
for (i = 0; i < VM_OBJECT_HASH_COUNT; i++)
|
|
queue_init(&vm_object_hashtable[i]);
|
|
|
|
kernel_object = &kernel_object_store;
|
|
_vm_object_allocate(VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS,
|
|
kernel_object);
|
|
|
|
kmem_object = &kmem_object_store;
|
|
_vm_object_allocate(VM_KMEM_SIZE + VM_MBUF_SIZE, kmem_object);
|
|
}
|
|
|
|
/*
|
|
* vm_object_allocate:
|
|
*
|
|
* Returns a new object with the given size.
|
|
*/
|
|
|
|
vm_object_t vm_object_allocate(size)
|
|
vm_size_t size;
|
|
{
|
|
register vm_object_t result;
|
|
|
|
result = (vm_object_t)
|
|
malloc((u_long)sizeof *result, M_VMOBJ, M_WAITOK);
|
|
|
|
_vm_object_allocate(size, result);
|
|
|
|
return(result);
|
|
}
|
|
|
|
_vm_object_allocate(size, object)
|
|
vm_size_t size;
|
|
register vm_object_t object;
|
|
{
|
|
queue_init(&object->memq);
|
|
vm_object_lock_init(object);
|
|
object->ref_count = 1;
|
|
object->resident_page_count = 0;
|
|
object->size = size;
|
|
object->can_persist = FALSE;
|
|
object->paging_in_progress = 0;
|
|
object->copy = NULL;
|
|
|
|
/*
|
|
* Object starts out read-write, with no pager.
|
|
*/
|
|
|
|
object->pager = NULL;
|
|
object->pager_ready = FALSE;
|
|
object->internal = TRUE; /* vm_allocate_with_pager will reset */
|
|
object->paging_offset = 0;
|
|
object->shadow = NULL;
|
|
object->shadow_offset = (vm_offset_t) 0;
|
|
|
|
simple_lock(&vm_object_list_lock);
|
|
queue_enter(&vm_object_list, object, vm_object_t, object_list);
|
|
vm_object_count++;
|
|
simple_unlock(&vm_object_list_lock);
|
|
}
|
|
|
|
/*
|
|
* vm_object_reference:
|
|
*
|
|
* Gets another reference to the given object.
|
|
*/
|
|
void vm_object_reference(object)
|
|
register vm_object_t object;
|
|
{
|
|
if (object == NULL)
|
|
return;
|
|
|
|
vm_object_lock(object);
|
|
object->ref_count++;
|
|
vm_object_unlock(object);
|
|
}
|
|
|
|
/*
|
|
* vm_object_deallocate:
|
|
*
|
|
* Release a reference to the specified object,
|
|
* gained either through a vm_object_allocate
|
|
* or a vm_object_reference call. When all references
|
|
* are gone, storage associated with this object
|
|
* may be relinquished.
|
|
*
|
|
* No object may be locked.
|
|
*/
|
|
void vm_object_deallocate(object)
|
|
register vm_object_t object;
|
|
{
|
|
vm_object_t temp;
|
|
|
|
while (object != NULL) {
|
|
|
|
/*
|
|
* The cache holds a reference (uncounted) to
|
|
* the object; we must lock it before removing
|
|
* the object.
|
|
*/
|
|
|
|
vm_object_cache_lock();
|
|
|
|
/*
|
|
* Lose the reference
|
|
*/
|
|
vm_object_lock(object);
|
|
if (--(object->ref_count) != 0) {
|
|
|
|
/*
|
|
* If there are still references, then
|
|
* we are done.
|
|
*/
|
|
vm_object_unlock(object);
|
|
vm_object_cache_unlock();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* See if this object can persist. If so, enter
|
|
* it in the cache, then deactivate all of its
|
|
* pages.
|
|
*/
|
|
|
|
if (object->can_persist) {
|
|
|
|
queue_enter(&vm_object_cached_list, object,
|
|
vm_object_t, cached_list);
|
|
vm_object_cached++;
|
|
vm_object_cache_unlock();
|
|
|
|
vm_object_deactivate_pages(object);
|
|
vm_object_unlock(object);
|
|
|
|
vm_object_cache_trim();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Make sure no one can look us up now.
|
|
*/
|
|
vm_object_remove(object->pager);
|
|
vm_object_cache_unlock();
|
|
|
|
temp = object->shadow;
|
|
vm_object_terminate(object);
|
|
/* unlocks and deallocates object */
|
|
object = temp;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* vm_object_terminate actually destroys the specified object, freeing
|
|
* up all previously used resources.
|
|
*
|
|
* The object must be locked.
|
|
*/
|
|
void vm_object_terminate(object)
|
|
register vm_object_t object;
|
|
{
|
|
register vm_page_t p;
|
|
vm_object_t shadow_object;
|
|
|
|
/*
|
|
* Detach the object from its shadow if we are the shadow's
|
|
* copy.
|
|
*/
|
|
if ((shadow_object = object->shadow) != NULL) {
|
|
vm_object_lock(shadow_object);
|
|
if (shadow_object->copy == object)
|
|
shadow_object->copy = NULL;
|
|
#if 0
|
|
else if (shadow_object->copy != NULL)
|
|
panic("vm_object_terminate: copy/shadow inconsistency");
|
|
#endif
|
|
vm_object_unlock(shadow_object);
|
|
}
|
|
|
|
/*
|
|
* Wait until the pageout daemon is through
|
|
* with the object.
|
|
*/
|
|
|
|
while (object->paging_in_progress != 0) {
|
|
vm_object_sleep(object, object, FALSE);
|
|
vm_object_lock(object);
|
|
}
|
|
|
|
|
|
/*
|
|
* While the paging system is locked,
|
|
* pull the object's pages off the active
|
|
* and inactive queues. This keeps the
|
|
* pageout daemon from playing with them
|
|
* during vm_pager_deallocate.
|
|
*
|
|
* We can't free the pages yet, because the
|
|
* object's pager may have to write them out
|
|
* before deallocating the paging space.
|
|
*/
|
|
|
|
p = (vm_page_t) queue_first(&object->memq);
|
|
while (!queue_end(&object->memq, (queue_entry_t) p)) {
|
|
VM_PAGE_CHECK(p);
|
|
|
|
vm_page_lock_queues();
|
|
if (p->active) {
|
|
queue_remove(&vm_page_queue_active, p, vm_page_t,
|
|
pageq);
|
|
p->active = FALSE;
|
|
vm_page_active_count--;
|
|
}
|
|
|
|
if (p->inactive) {
|
|
queue_remove(&vm_page_queue_inactive, p, vm_page_t,
|
|
pageq);
|
|
p->inactive = FALSE;
|
|
vm_page_inactive_count--;
|
|
}
|
|
vm_page_unlock_queues();
|
|
p = (vm_page_t) queue_next(&p->listq);
|
|
}
|
|
|
|
vm_object_unlock(object);
|
|
|
|
if (object->paging_in_progress != 0)
|
|
panic("vm_object_deallocate: pageout in progress");
|
|
|
|
/*
|
|
* Clean and free the pages, as appropriate.
|
|
* All references to the object are gone,
|
|
* so we don't need to lock it.
|
|
*/
|
|
|
|
if (!object->internal) {
|
|
vm_object_lock(object);
|
|
vm_object_page_clean(object, 0, 0);
|
|
vm_object_unlock(object);
|
|
}
|
|
while (!queue_empty(&object->memq)) {
|
|
p = (vm_page_t) queue_first(&object->memq);
|
|
|
|
VM_PAGE_CHECK(p);
|
|
|
|
vm_page_lock_queues();
|
|
vm_page_free(p);
|
|
vm_page_unlock_queues();
|
|
}
|
|
|
|
/*
|
|
* Let the pager know object is dead.
|
|
*/
|
|
|
|
if (object->pager != NULL)
|
|
vm_pager_deallocate(object->pager);
|
|
|
|
|
|
simple_lock(&vm_object_list_lock);
|
|
queue_remove(&vm_object_list, object, vm_object_t, object_list);
|
|
vm_object_count--;
|
|
simple_unlock(&vm_object_list_lock);
|
|
|
|
/*
|
|
* Free the space for the object.
|
|
*/
|
|
|
|
free((caddr_t)object, M_VMOBJ);
|
|
}
|
|
|
|
/*
|
|
* vm_object_page_clean
|
|
*
|
|
* Clean all dirty pages in the specified range of object.
|
|
* Leaves page on whatever queue it is currently on.
|
|
*
|
|
* Odd semantics: if start == end, we clean everything.
|
|
*
|
|
* The object must be locked.
|
|
*/
|
|
vm_object_page_clean(object, start, end)
|
|
register vm_object_t object;
|
|
register vm_offset_t start;
|
|
register vm_offset_t end;
|
|
{
|
|
register vm_page_t p;
|
|
|
|
if (object->pager == NULL)
|
|
return;
|
|
|
|
again:
|
|
p = (vm_page_t) queue_first(&object->memq);
|
|
while (!queue_end(&object->memq, (queue_entry_t) p)) {
|
|
if (start == end ||
|
|
p->offset >= start && p->offset < end) {
|
|
if (p->clean && pmap_is_modified(VM_PAGE_TO_PHYS(p)))
|
|
p->clean = FALSE;
|
|
pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_NONE);
|
|
if (!p->clean) {
|
|
p->busy = TRUE;
|
|
object->paging_in_progress++;
|
|
vm_object_unlock(object);
|
|
(void) vm_pager_put(object->pager, p, TRUE);
|
|
vm_object_lock(object);
|
|
object->paging_in_progress--;
|
|
p->busy = FALSE;
|
|
PAGE_WAKEUP(p);
|
|
goto again;
|
|
}
|
|
}
|
|
p = (vm_page_t) queue_next(&p->listq);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* vm_object_deactivate_pages
|
|
*
|
|
* Deactivate all pages in the specified object. (Keep its pages
|
|
* in memory even though it is no longer referenced.)
|
|
*
|
|
* The object must be locked.
|
|
*/
|
|
vm_object_deactivate_pages(object)
|
|
register vm_object_t object;
|
|
{
|
|
register vm_page_t p, next;
|
|
|
|
p = (vm_page_t) queue_first(&object->memq);
|
|
while (!queue_end(&object->memq, (queue_entry_t) p)) {
|
|
next = (vm_page_t) queue_next(&p->listq);
|
|
vm_page_lock_queues();
|
|
if (!p->busy)
|
|
vm_page_deactivate(p); /* optimisation from mach 3.0 -
|
|
* andrew@werple.apana.org.au,
|
|
* Feb '93
|
|
*/
|
|
vm_page_unlock_queues();
|
|
p = next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Trim the object cache to size.
|
|
*/
|
|
vm_object_cache_trim()
|
|
{
|
|
register vm_object_t object;
|
|
|
|
vm_object_cache_lock();
|
|
while (vm_object_cached > vm_cache_max) {
|
|
object = (vm_object_t) queue_first(&vm_object_cached_list);
|
|
vm_object_cache_unlock();
|
|
|
|
if (object != vm_object_lookup(object->pager))
|
|
panic("vm_object_deactivate: I'm sooo confused.");
|
|
|
|
pager_cache(object, FALSE);
|
|
|
|
vm_object_cache_lock();
|
|
}
|
|
vm_object_cache_unlock();
|
|
}
|
|
|
|
|
|
/*
|
|
* vm_object_shutdown()
|
|
*
|
|
* Shut down the object system. Unfortunately, while we
|
|
* may be trying to do this, init is happily waiting for
|
|
* processes to exit, and therefore will be causing some objects
|
|
* to be deallocated. To handle this, we gain a fake reference
|
|
* to all objects we release paging areas for. This will prevent
|
|
* a duplicate deallocation. This routine is probably full of
|
|
* race conditions!
|
|
*/
|
|
|
|
void vm_object_shutdown()
|
|
{
|
|
register vm_object_t object;
|
|
|
|
/*
|
|
* Clean up the object cache *before* we screw up the reference
|
|
* counts on all of the objects.
|
|
*/
|
|
|
|
vm_object_cache_clear();
|
|
|
|
printf("free paging spaces: ");
|
|
|
|
/*
|
|
* First we gain a reference to each object so that
|
|
* no one else will deallocate them.
|
|
*/
|
|
|
|
simple_lock(&vm_object_list_lock);
|
|
object = (vm_object_t) queue_first(&vm_object_list);
|
|
while (!queue_end(&vm_object_list, (queue_entry_t) object)) {
|
|
vm_object_reference(object);
|
|
object = (vm_object_t) queue_next(&object->object_list);
|
|
}
|
|
simple_unlock(&vm_object_list_lock);
|
|
|
|
/*
|
|
* Now we deallocate all the paging areas. We don't need
|
|
* to lock anything because we've reduced to a single
|
|
* processor while shutting down. This also assumes that
|
|
* no new objects are being created.
|
|
*/
|
|
|
|
object = (vm_object_t) queue_first(&vm_object_list);
|
|
while (!queue_end(&vm_object_list, (queue_entry_t) object)) {
|
|
if (object->pager != NULL)
|
|
vm_pager_deallocate(object->pager);
|
|
object = (vm_object_t) queue_next(&object->object_list);
|
|
printf(".");
|
|
}
|
|
printf("done.\n");
|
|
}
|
|
|
|
/*
|
|
* vm_object_pmap_copy:
|
|
*
|
|
* Makes all physical pages in the specified
|
|
* object range copy-on-write. No writeable
|
|
* references to these pages should remain.
|
|
*
|
|
* The object must *not* be locked.
|
|
*/
|
|
void vm_object_pmap_copy(object, start, end)
|
|
register vm_object_t object;
|
|
register vm_offset_t start;
|
|
register vm_offset_t end;
|
|
{
|
|
register vm_page_t p;
|
|
|
|
if (object == NULL)
|
|
return;
|
|
|
|
vm_object_lock(object);
|
|
p = (vm_page_t) queue_first(&object->memq);
|
|
while (!queue_end(&object->memq, (queue_entry_t) p)) {
|
|
if ((start <= p->offset) && (p->offset < end)) {
|
|
pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_READ);
|
|
p->copy_on_write = TRUE;
|
|
}
|
|
p = (vm_page_t) queue_next(&p->listq);
|
|
}
|
|
vm_object_unlock(object);
|
|
}
|
|
|
|
/*
|
|
* vm_object_pmap_remove:
|
|
*
|
|
* Removes all physical pages in the specified
|
|
* object range from all physical maps.
|
|
*
|
|
* The object must *not* be locked.
|
|
*/
|
|
void vm_object_pmap_remove(object, start, end)
|
|
register vm_object_t object;
|
|
register vm_offset_t start;
|
|
register vm_offset_t end;
|
|
{
|
|
register vm_page_t p;
|
|
|
|
if (object == NULL)
|
|
return;
|
|
|
|
vm_object_lock(object);
|
|
p = (vm_page_t) queue_first(&object->memq);
|
|
while (!queue_end(&object->memq, (queue_entry_t) p)) {
|
|
if ((start <= p->offset) && (p->offset < end))
|
|
pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_NONE);
|
|
p = (vm_page_t) queue_next(&p->listq);
|
|
}
|
|
vm_object_unlock(object);
|
|
}
|
|
|
|
/*
|
|
* vm_object_copy:
|
|
*
|
|
* Create a new object which is a copy of an existing
|
|
* object, and mark all of the pages in the existing
|
|
* object 'copy-on-write'. The new object has one reference.
|
|
* Returns the new object.
|
|
*
|
|
* May defer the copy until later if the object is not backed
|
|
* up by a non-default pager.
|
|
*/
|
|
void vm_object_copy(src_object, src_offset, size,
|
|
dst_object, dst_offset, src_needs_copy)
|
|
register vm_object_t src_object;
|
|
vm_offset_t src_offset;
|
|
vm_size_t size;
|
|
vm_object_t *dst_object; /* OUT */
|
|
vm_offset_t *dst_offset; /* OUT */
|
|
boolean_t *src_needs_copy; /* OUT */
|
|
{
|
|
register vm_object_t new_copy;
|
|
register vm_object_t old_copy;
|
|
vm_offset_t new_start, new_end;
|
|
|
|
register vm_page_t p;
|
|
|
|
if (src_object == NULL) {
|
|
/*
|
|
* Nothing to copy
|
|
*/
|
|
*dst_object = NULL;
|
|
*dst_offset = 0;
|
|
*src_needs_copy = FALSE;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the object's pager is null_pager or the
|
|
* default pager, we don't have to make a copy
|
|
* of it. Instead, we set the needs copy flag and
|
|
* make a shadow later.
|
|
*/
|
|
|
|
vm_object_lock(src_object);
|
|
if (src_object->pager == NULL ||
|
|
src_object->internal) {
|
|
|
|
/*
|
|
* Make another reference to the object
|
|
*/
|
|
src_object->ref_count++;
|
|
|
|
/*
|
|
* Mark all of the pages copy-on-write.
|
|
*/
|
|
for (p = (vm_page_t) queue_first(&src_object->memq);
|
|
!queue_end(&src_object->memq, (queue_entry_t)p);
|
|
p = (vm_page_t) queue_next(&p->listq)) {
|
|
if (src_offset <= p->offset &&
|
|
p->offset < src_offset + size)
|
|
p->copy_on_write = TRUE;
|
|
}
|
|
vm_object_unlock(src_object);
|
|
|
|
*dst_object = src_object;
|
|
*dst_offset = src_offset;
|
|
|
|
/*
|
|
* Must make a shadow when write is desired
|
|
*/
|
|
*src_needs_copy = TRUE;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Try to collapse the object before copying it.
|
|
*/
|
|
vm_object_collapse(src_object);
|
|
|
|
/*
|
|
* If the object has a pager, the pager wants to
|
|
* see all of the changes. We need a copy-object
|
|
* for the changed pages.
|
|
*
|
|
* If there is a copy-object, and it is empty,
|
|
* no changes have been made to the object since the
|
|
* copy-object was made. We can use the same copy-
|
|
* object.
|
|
*/
|
|
|
|
Retry1:
|
|
old_copy = src_object->copy;
|
|
if (old_copy != NULL) {
|
|
/*
|
|
* Try to get the locks (out of order)
|
|
*/
|
|
if (!vm_object_lock_try(old_copy)) {
|
|
vm_object_unlock(src_object);
|
|
|
|
/* should spin a bit here... */
|
|
vm_object_lock(src_object);
|
|
goto Retry1;
|
|
}
|
|
|
|
if (old_copy->resident_page_count == 0 &&
|
|
old_copy->pager == NULL) {
|
|
/*
|
|
* Return another reference to
|
|
* the existing copy-object.
|
|
*/
|
|
old_copy->ref_count++;
|
|
vm_object_unlock(old_copy);
|
|
vm_object_unlock(src_object);
|
|
*dst_object = old_copy;
|
|
*dst_offset = src_offset;
|
|
*src_needs_copy = FALSE;
|
|
return;
|
|
}
|
|
vm_object_unlock(old_copy);
|
|
}
|
|
vm_object_unlock(src_object);
|
|
|
|
/*
|
|
* If the object has a pager, the pager wants
|
|
* to see all of the changes. We must make
|
|
* a copy-object and put the changed pages there.
|
|
*
|
|
* The copy-object is always made large enough to
|
|
* completely shadow the original object, since
|
|
* it may have several users who want to shadow
|
|
* the original object at different points.
|
|
*/
|
|
|
|
new_copy = vm_object_allocate(src_object->size);
|
|
|
|
Retry2:
|
|
vm_object_lock(src_object);
|
|
/*
|
|
* Copy object may have changed while we were unlocked
|
|
*/
|
|
old_copy = src_object->copy;
|
|
if (old_copy != NULL) {
|
|
/*
|
|
* Try to get the locks (out of order)
|
|
*/
|
|
if (!vm_object_lock_try(old_copy)) {
|
|
vm_object_unlock(src_object);
|
|
goto Retry2;
|
|
}
|
|
|
|
/*
|
|
* Consistency check
|
|
*/
|
|
if (old_copy->shadow != src_object ||
|
|
old_copy->shadow_offset != (vm_offset_t) 0)
|
|
panic("vm_object_copy: copy/shadow inconsistency");
|
|
|
|
/*
|
|
* Make the old copy-object shadow the new one.
|
|
* It will receive no more pages from the original
|
|
* object.
|
|
*/
|
|
|
|
src_object->ref_count--; /* remove ref. from old_copy */
|
|
old_copy->shadow = new_copy;
|
|
new_copy->ref_count++; /* locking not needed - we
|
|
have the only pointer */
|
|
vm_object_unlock(old_copy); /* done with old_copy */
|
|
}
|
|
|
|
new_start = (vm_offset_t) 0; /* always shadow original at 0 */
|
|
new_end = (vm_offset_t) new_copy->size; /* for the whole object */
|
|
|
|
/*
|
|
* Point the new copy at the existing object.
|
|
*/
|
|
|
|
new_copy->shadow = src_object;
|
|
new_copy->shadow_offset = new_start;
|
|
src_object->ref_count++;
|
|
src_object->copy = new_copy;
|
|
|
|
/*
|
|
* Mark all the affected pages of the existing object
|
|
* copy-on-write.
|
|
*/
|
|
p = (vm_page_t) queue_first(&src_object->memq);
|
|
while (!queue_end(&src_object->memq, (queue_entry_t) p)) {
|
|
if ((new_start <= p->offset) && (p->offset < new_end))
|
|
p->copy_on_write = TRUE;
|
|
p = (vm_page_t) queue_next(&p->listq);
|
|
}
|
|
|
|
vm_object_unlock(src_object);
|
|
|
|
*dst_object = new_copy;
|
|
*dst_offset = src_offset - new_start;
|
|
*src_needs_copy = FALSE;
|
|
}
|
|
|
|
/*
|
|
* vm_object_shadow:
|
|
*
|
|
* Create a new object which is backed by the
|
|
* specified existing object range. The source
|
|
* object reference is deallocated.
|
|
*
|
|
* The new object and offset into that object
|
|
* are returned in the source parameters.
|
|
*/
|
|
|
|
void vm_object_shadow(object, offset, length)
|
|
vm_object_t *object; /* IN/OUT */
|
|
vm_offset_t *offset; /* IN/OUT */
|
|
vm_size_t length;
|
|
{
|
|
register vm_object_t source;
|
|
register vm_object_t result;
|
|
|
|
source = *object;
|
|
|
|
/*
|
|
* Allocate a new object with the given length
|
|
*/
|
|
|
|
if ((result = vm_object_allocate(length)) == NULL)
|
|
panic("vm_object_shadow: no object for shadowing");
|
|
|
|
/*
|
|
* The new object shadows the source object, adding
|
|
* a reference to it. Our caller changes his reference
|
|
* to point to the new object, removing a reference to
|
|
* the source object. Net result: no change of reference
|
|
* count.
|
|
*/
|
|
result->shadow = source;
|
|
|
|
/*
|
|
* Store the offset into the source object,
|
|
* and fix up the offset into the new object.
|
|
*/
|
|
|
|
result->shadow_offset = *offset;
|
|
|
|
/*
|
|
* Return the new things
|
|
*/
|
|
|
|
*offset = 0;
|
|
*object = result;
|
|
}
|
|
|
|
/*
|
|
* Set the specified object's pager to the specified pager.
|
|
*/
|
|
|
|
void vm_object_setpager(object, pager, paging_offset,
|
|
read_only)
|
|
vm_object_t object;
|
|
vm_pager_t pager;
|
|
vm_offset_t paging_offset;
|
|
boolean_t read_only;
|
|
{
|
|
#ifdef lint
|
|
read_only++; /* No longer used */
|
|
#endif lint
|
|
|
|
vm_object_lock(object); /* XXX ? */
|
|
object->pager = pager;
|
|
object->paging_offset = paging_offset;
|
|
vm_object_unlock(object); /* XXX ? */
|
|
}
|
|
|
|
/*
|
|
* vm_object_hash hashes the pager/id pair.
|
|
*/
|
|
|
|
#define vm_object_hash(pager) \
|
|
(((unsigned)pager)%VM_OBJECT_HASH_COUNT)
|
|
|
|
/*
|
|
* vm_object_lookup looks in the object cache for an object with the
|
|
* specified pager and paging id.
|
|
*/
|
|
|
|
vm_object_t vm_object_lookup(pager)
|
|
vm_pager_t pager;
|
|
{
|
|
register queue_t bucket;
|
|
register vm_object_hash_entry_t entry;
|
|
vm_object_t object;
|
|
|
|
bucket = &vm_object_hashtable[vm_object_hash(pager)];
|
|
|
|
vm_object_cache_lock();
|
|
|
|
entry = (vm_object_hash_entry_t) queue_first(bucket);
|
|
while (!queue_end(bucket, (queue_entry_t) entry)) {
|
|
object = entry->object;
|
|
if (object->pager == pager) {
|
|
vm_object_lock(object);
|
|
if (object->ref_count == 0) {
|
|
queue_remove(&vm_object_cached_list, object,
|
|
vm_object_t, cached_list);
|
|
vm_object_cached--;
|
|
}
|
|
object->ref_count++;
|
|
vm_object_unlock(object);
|
|
vm_object_cache_unlock();
|
|
return(object);
|
|
}
|
|
entry = (vm_object_hash_entry_t) queue_next(&entry->hash_links);
|
|
}
|
|
|
|
vm_object_cache_unlock();
|
|
return(NULL);
|
|
}
|
|
|
|
/*
|
|
* vm_object_enter enters the specified object/pager/id into
|
|
* the hash table.
|
|
*/
|
|
|
|
void vm_object_enter(object, pager)
|
|
vm_object_t object;
|
|
vm_pager_t pager;
|
|
{
|
|
register queue_t bucket;
|
|
register vm_object_hash_entry_t entry;
|
|
|
|
/*
|
|
* We don't cache null objects, and we can't cache
|
|
* objects with the null pager.
|
|
*/
|
|
|
|
if (object == NULL)
|
|
return;
|
|
if (pager == NULL)
|
|
return;
|
|
|
|
bucket = &vm_object_hashtable[vm_object_hash(pager)];
|
|
entry = (vm_object_hash_entry_t)
|
|
malloc((u_long)sizeof *entry, M_VMOBJHASH, M_WAITOK);
|
|
entry->object = object;
|
|
object->can_persist = TRUE;
|
|
|
|
vm_object_cache_lock();
|
|
queue_enter(bucket, entry, vm_object_hash_entry_t, hash_links);
|
|
vm_object_cache_unlock();
|
|
}
|
|
|
|
/*
|
|
* vm_object_remove:
|
|
*
|
|
* Remove the pager from the hash table.
|
|
* Note: This assumes that the object cache
|
|
* is locked. XXX this should be fixed
|
|
* by reorganizing vm_object_deallocate.
|
|
*/
|
|
vm_object_remove(pager)
|
|
register vm_pager_t pager;
|
|
{
|
|
register queue_t bucket;
|
|
register vm_object_hash_entry_t entry;
|
|
register vm_object_t object;
|
|
|
|
bucket = &vm_object_hashtable[vm_object_hash(pager)];
|
|
|
|
entry = (vm_object_hash_entry_t) queue_first(bucket);
|
|
while (!queue_end(bucket, (queue_entry_t) entry)) {
|
|
object = entry->object;
|
|
if (object->pager == pager) {
|
|
queue_remove(bucket, entry, vm_object_hash_entry_t,
|
|
hash_links);
|
|
free((caddr_t)entry, M_VMOBJHASH);
|
|
break;
|
|
}
|
|
entry = (vm_object_hash_entry_t) queue_next(&entry->hash_links);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* vm_object_cache_clear removes all objects from the cache.
|
|
*
|
|
*/
|
|
|
|
void vm_object_cache_clear()
|
|
{
|
|
register vm_object_t object;
|
|
|
|
/*
|
|
* Remove each object in the cache by scanning down the
|
|
* list of cached objects.
|
|
*/
|
|
vm_object_cache_lock();
|
|
while (!queue_empty(&vm_object_cached_list)) {
|
|
object = (vm_object_t) queue_first(&vm_object_cached_list);
|
|
vm_object_cache_unlock();
|
|
|
|
/*
|
|
* Note: it is important that we use vm_object_lookup
|
|
* to gain a reference, and not vm_object_reference, because
|
|
* the logic for removing an object from the cache lies in
|
|
* lookup.
|
|
*/
|
|
if (object != vm_object_lookup(object->pager))
|
|
panic("vm_object_cache_clear: I'm sooo confused.");
|
|
pager_cache(object, FALSE);
|
|
|
|
vm_object_cache_lock();
|
|
}
|
|
vm_object_cache_unlock();
|
|
}
|
|
|
|
boolean_t vm_object_collapse_allowed = TRUE;
|
|
/*
|
|
* vm_object_collapse:
|
|
*
|
|
* Collapse an object with the object backing it.
|
|
* Pages in the backing object are moved into the
|
|
* parent, and the backing object is deallocated.
|
|
*
|
|
* Requires that the object be locked and the page
|
|
* queues be unlocked.
|
|
*
|
|
*/
|
|
void vm_object_collapse(object)
|
|
register vm_object_t object;
|
|
|
|
{
|
|
register vm_object_t backing_object;
|
|
register vm_offset_t backing_offset;
|
|
register vm_size_t size;
|
|
register vm_offset_t new_offset;
|
|
register vm_page_t p, pp;
|
|
|
|
if (!vm_object_collapse_allowed)
|
|
return;
|
|
|
|
while (TRUE) {
|
|
/*
|
|
* Verify that the conditions are right for collapse:
|
|
*
|
|
* The object exists and no pages in it are currently
|
|
* being paged out (or have ever been paged out).
|
|
*/
|
|
if (object == NULL ||
|
|
object->paging_in_progress != 0 ||
|
|
object->pager != NULL)
|
|
return;
|
|
|
|
/*
|
|
* There is a backing object, and
|
|
*/
|
|
|
|
if ((backing_object = object->shadow) == NULL)
|
|
return;
|
|
|
|
vm_object_lock(backing_object);
|
|
/*
|
|
* ...
|
|
* The backing object is not read_only,
|
|
* and no pages in the backing object are
|
|
* currently being paged out.
|
|
* The backing object is internal.
|
|
*/
|
|
|
|
if (!backing_object->internal ||
|
|
backing_object->paging_in_progress != 0) {
|
|
vm_object_unlock(backing_object);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The backing object can't be a copy-object:
|
|
* the shadow_offset for the copy-object must stay
|
|
* as 0. Furthermore (for the 'we have all the
|
|
* pages' case), if we bypass backing_object and
|
|
* just shadow the next object in the chain, old
|
|
* pages from that object would then have to be copied
|
|
* BOTH into the (former) backing_object and into the
|
|
* parent object.
|
|
*/
|
|
if (backing_object->shadow != NULL &&
|
|
backing_object->shadow->copy != NULL) {
|
|
vm_object_unlock(backing_object);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We know that we can either collapse the backing
|
|
* object (if the parent is the only reference to
|
|
* it) or (perhaps) remove the parent's reference
|
|
* to it.
|
|
*/
|
|
|
|
backing_offset = object->shadow_offset;
|
|
size = object->size;
|
|
|
|
/*
|
|
* If there is exactly one reference to the backing
|
|
* object, we can collapse it into the parent.
|
|
*/
|
|
|
|
if (backing_object->ref_count == 1) {
|
|
|
|
/*
|
|
* We can collapse the backing object.
|
|
*
|
|
* Move all in-memory pages from backing_object
|
|
* to the parent. Pages that have been paged out
|
|
* will be overwritten by any of the parent's
|
|
* pages that shadow them.
|
|
*/
|
|
|
|
while (!queue_empty(&backing_object->memq)) {
|
|
|
|
p = (vm_page_t)
|
|
queue_first(&backing_object->memq);
|
|
|
|
new_offset = (p->offset - backing_offset);
|
|
|
|
/*
|
|
* If the parent has a page here, or if
|
|
* this page falls outside the parent,
|
|
* dispose of it.
|
|
*
|
|
* Otherwise, move it as planned.
|
|
*/
|
|
|
|
if (p->offset < backing_offset ||
|
|
new_offset >= size) {
|
|
vm_page_lock_queues();
|
|
vm_page_free(p);
|
|
vm_page_unlock_queues();
|
|
} else {
|
|
pp = vm_page_lookup(object, new_offset);
|
|
if (pp != NULL && !pp->fake) {
|
|
vm_page_lock_queues();
|
|
vm_page_free(p);
|
|
vm_page_unlock_queues();
|
|
}
|
|
else {
|
|
if (pp) {
|
|
#if 1
|
|
/*
|
|
* This should never happen -- the
|
|
* parent cannot have ever had an
|
|
* external memory object, and thus
|
|
* cannot have absent pages.
|
|
*/
|
|
panic("vm_object_collapse: bad case");
|
|
/* andrew@werple.apana.org.au - from
|
|
mach 3.0 VM */
|
|
#else
|
|
/* may be someone waiting for it */
|
|
PAGE_WAKEUP(pp);
|
|
vm_page_lock_queues();
|
|
vm_page_free(pp);
|
|
vm_page_unlock_queues();
|
|
#endif
|
|
}
|
|
/*
|
|
* Parent now has no page.
|
|
* Move the backing object's page
|
|
* up.
|
|
*/
|
|
vm_page_rename(p, object, new_offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Move the pager from backing_object to object.
|
|
*
|
|
* XXX We're only using part of the paging space
|
|
* for keeps now... we ought to discard the
|
|
* unused portion.
|
|
*/
|
|
|
|
object->pager = backing_object->pager;
|
|
#if 1
|
|
/* Mach 3.0 code */
|
|
/* andrew@werple.apana.org.au, 12 Feb 1993 */
|
|
|
|
/*
|
|
* If there is no pager, leave paging-offset alone.
|
|
*/
|
|
if (object->pager)
|
|
object->paging_offset =
|
|
backing_object->paging_offset +
|
|
backing_offset;
|
|
#else
|
|
/* old VM 2.5 version */
|
|
object->paging_offset += backing_offset;
|
|
#endif
|
|
|
|
backing_object->pager = NULL;
|
|
|
|
/*
|
|
* Object now shadows whatever backing_object did.
|
|
* Note that the reference to backing_object->shadow
|
|
* moves from within backing_object to within object.
|
|
*/
|
|
|
|
object->shadow = backing_object->shadow;
|
|
object->shadow_offset += backing_object->shadow_offset;
|
|
if (object->shadow != NULL &&
|
|
object->shadow->copy != NULL) {
|
|
panic("vm_object_collapse: we collapsed a copy-object!");
|
|
}
|
|
/*
|
|
* Discard backing_object.
|
|
*
|
|
* Since the backing object has no pages, no
|
|
* pager left, and no object references within it,
|
|
* all that is necessary is to dispose of it.
|
|
*/
|
|
|
|
vm_object_unlock(backing_object);
|
|
|
|
simple_lock(&vm_object_list_lock);
|
|
queue_remove(&vm_object_list, backing_object,
|
|
vm_object_t, object_list);
|
|
vm_object_count--;
|
|
simple_unlock(&vm_object_list_lock);
|
|
|
|
free((caddr_t)backing_object, M_VMOBJ);
|
|
|
|
object_collapses++;
|
|
}
|
|
else {
|
|
/*
|
|
* If all of the pages in the backing object are
|
|
* shadowed by the parent object, the parent
|
|
* object no longer has to shadow the backing
|
|
* object; it can shadow the next one in the
|
|
* chain.
|
|
*
|
|
* The backing object must not be paged out - we'd
|
|
* have to check all of the paged-out pages, as
|
|
* well.
|
|
*/
|
|
|
|
if (backing_object->pager != NULL) {
|
|
vm_object_unlock(backing_object);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Should have a check for a 'small' number
|
|
* of pages here.
|
|
*/
|
|
|
|
p = (vm_page_t) queue_first(&backing_object->memq);
|
|
while (!queue_end(&backing_object->memq,
|
|
(queue_entry_t) p)) {
|
|
|
|
new_offset = (p->offset - backing_offset);
|
|
|
|
/*
|
|
* If the parent has a page here, or if
|
|
* this page falls outside the parent,
|
|
* keep going.
|
|
*
|
|
* Otherwise, the backing_object must be
|
|
* left in the chain.
|
|
*/
|
|
|
|
if (p->offset >= backing_offset &&
|
|
new_offset <= size &&
|
|
((pp = vm_page_lookup(object, new_offset))
|
|
== NULL ||
|
|
pp->fake)) {
|
|
/*
|
|
* Page still needed.
|
|
* Can't go any further.
|
|
*/
|
|
vm_object_unlock(backing_object);
|
|
return;
|
|
}
|
|
p = (vm_page_t) queue_next(&p->listq);
|
|
}
|
|
|
|
/*
|
|
* Make the parent shadow the next object
|
|
* in the chain. Deallocating backing_object
|
|
* will not remove it, since its reference
|
|
* count is at least 2.
|
|
*/
|
|
|
|
vm_object_reference(object->shadow = backing_object->shadow);
|
|
object->shadow_offset += backing_object->shadow_offset;
|
|
|
|
#if 1
|
|
/* Mach 3.0 code */
|
|
/* andrew@werple.apana.org.au, 12 Feb 1993 */
|
|
|
|
/*
|
|
* Backing object might have had a copy pointer
|
|
* to us. If it did, clear it.
|
|
*/
|
|
if (backing_object->copy == object)
|
|
backing_object->copy = NULL;
|
|
#endif
|
|
|
|
/* Drop the reference count on backing_object.
|
|
* Since its ref_count was at least 2, it
|
|
* will not vanish; so we don't need to call
|
|
* vm_object_deallocate.
|
|
*/
|
|
backing_object->ref_count--;
|
|
vm_object_unlock(backing_object);
|
|
|
|
object_bypasses ++;
|
|
|
|
}
|
|
|
|
/*
|
|
* Try again with this object's new backing object.
|
|
*/
|
|
}
|
|
}
|
|
|
|
/*
|
|
* vm_object_page_remove: [internal]
|
|
*
|
|
* Removes all physical pages in the specified
|
|
* object range from the object's list of pages.
|
|
*
|
|
* The object must be locked.
|
|
*/
|
|
void vm_object_page_remove(object, start, end)
|
|
register vm_object_t object;
|
|
register vm_offset_t start;
|
|
register vm_offset_t end;
|
|
{
|
|
register vm_page_t p, next;
|
|
|
|
if (object == NULL)
|
|
return;
|
|
|
|
p = (vm_page_t) queue_first(&object->memq);
|
|
while (!queue_end(&object->memq, (queue_entry_t) p)) {
|
|
next = (vm_page_t) queue_next(&p->listq);
|
|
if ((start <= p->offset) && (p->offset < end)) {
|
|
pmap_page_protect(VM_PAGE_TO_PHYS(p), VM_PROT_NONE);
|
|
vm_page_lock_queues();
|
|
vm_page_free(p);
|
|
vm_page_unlock_queues();
|
|
}
|
|
p = next;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Routine: vm_object_coalesce
|
|
* Function: Coalesces two objects backing up adjoining
|
|
* regions of memory into a single object.
|
|
*
|
|
* returns TRUE if objects were combined.
|
|
*
|
|
* NOTE: Only works at the moment if the second object is NULL -
|
|
* if it's not, which object do we lock first?
|
|
*
|
|
* Parameters:
|
|
* prev_object First object to coalesce
|
|
* prev_offset Offset into prev_object
|
|
* next_object Second object into coalesce
|
|
* next_offset Offset into next_object
|
|
*
|
|
* prev_size Size of reference to prev_object
|
|
* next_size Size of reference to next_object
|
|
*
|
|
* Conditions:
|
|
* The object must *not* be locked.
|
|
*/
|
|
boolean_t vm_object_coalesce(prev_object, next_object,
|
|
prev_offset, next_offset,
|
|
prev_size, next_size)
|
|
|
|
register vm_object_t prev_object;
|
|
vm_object_t next_object;
|
|
vm_offset_t prev_offset, next_offset;
|
|
vm_size_t prev_size, next_size;
|
|
{
|
|
vm_size_t newsize;
|
|
|
|
#ifdef lint
|
|
next_offset++;
|
|
#endif lint
|
|
|
|
if (next_object != NULL) {
|
|
return(FALSE);
|
|
}
|
|
|
|
if (prev_object == NULL) {
|
|
return(TRUE);
|
|
}
|
|
|
|
vm_object_lock(prev_object);
|
|
|
|
/*
|
|
* Try to collapse the object first
|
|
*/
|
|
vm_object_collapse(prev_object);
|
|
|
|
/*
|
|
* Can't coalesce if:
|
|
* . more than one reference
|
|
* . paged out
|
|
* . shadows another object
|
|
* . has a copy elsewhere
|
|
* (any of which mean that the pages not mapped to
|
|
* prev_entry may be in use anyway)
|
|
*/
|
|
|
|
if (prev_object->ref_count > 1 ||
|
|
prev_object->pager != NULL ||
|
|
prev_object->shadow != NULL ||
|
|
prev_object->copy != NULL) {
|
|
vm_object_unlock(prev_object);
|
|
return(FALSE);
|
|
}
|
|
|
|
/*
|
|
* Remove any pages that may still be in the object from
|
|
* a previous deallocation.
|
|
*/
|
|
|
|
vm_object_page_remove(prev_object,
|
|
prev_offset + prev_size,
|
|
prev_offset + prev_size + next_size);
|
|
|
|
/*
|
|
* Extend the object if necessary.
|
|
*/
|
|
newsize = prev_offset + prev_size + next_size;
|
|
if (newsize > prev_object->size)
|
|
prev_object->size = newsize;
|
|
|
|
vm_object_unlock(prev_object);
|
|
return(TRUE);
|
|
}
|
|
|
|
/*
|
|
* vm_object_print: [ debug ]
|
|
*/
|
|
void vm_object_print(object, full)
|
|
vm_object_t object;
|
|
boolean_t full;
|
|
{
|
|
register vm_page_t p;
|
|
extern indent;
|
|
|
|
register int count;
|
|
|
|
if (object == NULL)
|
|
return;
|
|
|
|
iprintf("Object 0x%x: size=0x%x, res=%d, ref=%d, ",
|
|
(int) object, (int) object->size,
|
|
object->resident_page_count, object->ref_count);
|
|
printf("pager=0x%x+0x%x, shadow=(0x%x)+0x%x\n",
|
|
(int) object->pager, (int) object->paging_offset,
|
|
(int) object->shadow, (int) object->shadow_offset);
|
|
printf("cache: next=0x%x, prev=0x%x\n",
|
|
object->cached_list.next, object->cached_list.prev);
|
|
|
|
if (!full)
|
|
return;
|
|
|
|
indent += 2;
|
|
count = 0;
|
|
p = (vm_page_t) queue_first(&object->memq);
|
|
while (!queue_end(&object->memq, (queue_entry_t) p)) {
|
|
if (count == 0)
|
|
iprintf("memory:=");
|
|
else if (count == 6) {
|
|
printf("\n");
|
|
iprintf(" ...");
|
|
count = 0;
|
|
} else
|
|
printf(",");
|
|
count++;
|
|
|
|
printf("(off=0x%x,page=0x%x)", p->offset, VM_PAGE_TO_PHYS(p));
|
|
p = (vm_page_t) queue_next(&p->listq);
|
|
}
|
|
if (count != 0)
|
|
printf("\n");
|
|
indent -= 2;
|
|
}
|