NetBSD/sys/dev/pci/eap.c
augustss 8af687b575 Add mixer output selection.
From gson@araneus.fi (Andreas Gustafsson)
1998-07-06 11:12:21 +00:00

1270 lines
34 KiB
C

/* $NetBSD: eap.c,v 1.8 1998/07/06 11:12:21 augustss Exp $ */
/*
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* Author: Lennart Augustsson <augustss@cs.chalmers.se>
*
* Debugging: Andreas Gustafsson <gson@araneus.fi>
* Charles Hannum <mycroft@netbsd.org>
* Testing: Chuck Cranor <chuck@maria.wustl.edu>
* Phil Nelson <phil@cs.wwu.edu>
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Ensoniq AudoiPCI ES1370 + AK4531 driver.
* Data sheets can be found at
* http://www.ensoniq.com/multimedia/semi_html/html/es1370.zip
* and
* http://206.214.38.151/pdf/4531.pdf
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/pcivar.h>
#include <sys/audioio.h>
#include <dev/audio_if.h>
#include <dev/mulaw.h>
#include <dev/auconv.h>
#include <machine/bus.h>
#define PCI_CBIO 0x10
#define EAP_ICSC 0x00 /* interrupt / chip select control */
#define EAP_SERR_DISABLE 0x00000001
#define EAP_CDC_EN 0x00000002
#define EAP_JYSTK_EN 0x00000004
#define EAP_UART_EN 0x00000008
#define EAP_ADC_EN 0x00000010
#define EAP_DAC2_EN 0x00000020
#define EAP_DAC1_EN 0x00000040
#define EAP_BREQ 0x00000080
#define EAP_XTCL0 0x00000100
#define EAP_M_CB 0x00000200
#define EAP_CCB_INTRM 0x00000400
#define EAP_DAC_SYNC 0x00000800
#define EAP_WTSRSEL 0x00003000
#define EAP_WTSRSEL_5 0x00000000
#define EAP_WTSRSEL_11 0x00001000
#define EAP_WTSRSEL_22 0x00002000
#define EAP_WTSRSEL_44 0x00003000
#define EAP_M_SBB 0x00004000
#define EAP_MSFMTSEL 0x00008000
#define EAP_SET_PCLKDIV(n) (((n)&0x1fff)<<16)
#define EAP_GET_PCLKDIV(n) (((n)>>16)&0x1fff)
#define EAP_PCLKBITS 0x1fff0000
#define EAP_XTCL1 0x40000000
#define EAP_ADC_STOP 0x80000000
#define EAP_ICSS 0x04 /* interrupt / chip select status */
#define EAP_I_ADC 0x00000001
#define EAP_I_DAC2 0x00000002
#define EAP_I_DAC1 0x00000004
#define EAP_I_UART 0x00000008
#define EAP_I_MCCB 0x00000010
#define EAP_VC 0x00000060
#define EAP_CWRIP 0x00000100
#define EAP_CBUSY 0x00000200
#define EAP_CSTAT 0x00000400
#define EAP_INTR 0x80000000
#define EAP_UART_DATA 0x08
#define EAP_UART_STATUS 0x09
#define EAP_UART_CONTROL 0x09
#define EAP_MEMPAGE 0x0c
#define EAP_CODEC 0x10
#define EAP_SET_CODEC(a,d) (((a)<<8) | (d))
#define EAP_SIC 0x20
#define EAP_P1_S_MB 0x00000001
#define EAP_P1_S_EB 0x00000002
#define EAP_P2_S_MB 0x00000004
#define EAP_P2_S_EB 0x00000008
#define EAP_R1_S_MB 0x00000010
#define EAP_R1_S_EB 0x00000020
#define EAP_R1P2_BITS 0x0000003c
#define EAP_P2_DAC_SEN 0x00000040
#define EAP_P1_SCT_RLD 0x00000080
#define EAP_P1_INTR_EN 0x00000100
#define EAP_P2_INTR_EN 0x00000200
#define EAP_R1_INTR_EN 0x00000400
#define EAP_P1_PAUSE 0x00000800
#define EAP_P2_PAUSE 0x00001000
#define EAP_P1_LOOP_SEL 0x00002000
#define EAP_P2_LOOP_SEL 0x00004000
#define EAP_R1_LOOP_SEL 0x00008000
#define EAP_SET_P2_ST_INC(i) ((i) << 16)
#define EAP_SET_P2_END_INC(i) ((i) << 19)
#define EAP_INC_BITS 0x003f0000
#define EAP_DAC1_CSR 0x24
#define EAP_DAC2_CSR 0x28
#define EAP_ADC_CSR 0x2c
#define EAP_GET_CURRSAMP(r) ((r) >> 16)
#define EAP_DAC_PAGE 0xc
#define EAP_ADC_PAGE 0xd
#define EAP_UART_PAGE1 0xe
#define EAP_UART_PAGE2 0xf
#define EAP_DAC1_ADDR 0x30
#define EAP_DAC1_SIZE 0x34
#define EAP_DAC2_ADDR 0x38
#define EAP_DAC2_SIZE 0x3c
#define EAP_ADC_ADDR 0x30
#define EAP_ADC_SIZE 0x34
#define EAP_SET_SIZE(c,s) (((c)<<16) | (s))
#define EAP_XTAL_FREQ 1411200 /* 22.5792 / 16 MHz */
/* AK4531 registers */
#define AK_MASTER_L 0x00
#define AK_MASTER_R 0x01
#define AK_VOICE_L 0x02
#define AK_VOICE_R 0x03
#define AK_FM_L 0x04
#define AK_FM_R 0x05
#define AK_CD_L 0x06
#define AK_CD_R 0x07
#define AK_LINE_L 0x08
#define AK_LINE_R 0x09
#define AK_AUX_L 0x0a
#define AK_AUX_R 0x0b
#define AK_MONO1 0x0c
#define AK_MONO2 0x0d
#define AK_MIC 0x0e
#define AK_MONO 0x0f
#define AK_OUT_MIXER1 0x10
#define AK_M_FM_L 0x40
#define AK_M_FM_R 0x20
#define AK_M_LINE_L 0x10
#define AK_M_LINE_R 0x08
#define AK_M_CD_L 0x04
#define AK_M_CD_R 0x02
#define AK_M_MIC 0x01
#define AK_OUT_MIXER2 0x11
#define AK_M_AUX_L 0x20
#define AK_M_AUX_R 0x10
#define AK_M_VOICE_L 0x08
#define AK_M_VOICE_R 0x04
#define AK_M_MONO2 0x02
#define AK_M_MONO1 0x01
#define AK_IN_MIXER1_L 0x12
#define AK_IN_MIXER1_R 0x13
#define AK_IN_MIXER2_L 0x14
#define AK_IN_MIXER2_R 0x15
#define AK_M_TMIC 0x80
#define AK_M_TMONO1 0x40
#define AK_M_TMONO2 0x20
#define AK_M2_AUX_L 0x10
#define AK_M2_AUX_R 0x08
#define AK_M_VOICE 0x04
#define AK_M2_MONO2 0x02
#define AK_M2_MONO1 0x01
#define AK_RESET 0x16
#define AK_PD 0x02
#define AK_NRST 0x01
#define AK_CS 0x17
#define AK_ADSEL 0x18
#define AK_MGAIN 0x19
#define AK_NPORTS 16
#define VOL_TO_ATT5(v) (0x1f - ((v) >> 3))
#define VOL_TO_GAIN5(v) VOL_TO_ATT5(v)
#define ATT5_TO_VOL(v) ((0x1f - (v)) << 3)
#define GAIN5_TO_VOL(v) ATT5_TO_VOL(v)
#define VOL_0DB 200
#define EAP_MASTER_VOL 0
#define EAP_VOICE_VOL 1
#define EAP_FM_VOL 2
#define EAP_CD_VOL 3
#define EAP_LINE_VOL 4
#define EAP_AUX_VOL 5
#define EAP_MIC_VOL 6
#define EAP_RECORD_SOURCE 7
#define EAP_OUTPUT_SELECT 8
#define EAP_OUTPUT_CLASS 9
#define EAP_RECORD_CLASS 10
#define EAP_INPUT_CLASS 11
#ifdef AUDIO_DEBUG
#define DPRINTF(x) if (eapdebug) printf x
#define DPRINTFN(n,x) if (eapdebug>(n)) printf x
int eapdebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif
int eap_match __P((struct device *, struct cfdata *, void *));
void eap_attach __P((struct device *, struct device *, void *));
int eap_intr __P((void *));
struct eap_dma {
bus_dmamap_t map;
caddr_t addr;
bus_dma_segment_t segs[1];
int nsegs;
size_t size;
struct eap_dma *next;
};
#define DMAADDR(map) ((map)->segs[0].ds_addr)
#define KERNADDR(map) ((void *)((map)->addr))
struct eap_softc {
struct device sc_dev; /* base device */
void *sc_ih; /* interrupt vectoring */
bus_space_tag_t iot;
bus_space_handle_t ioh;
bus_dma_tag_t sc_dmatag; /* DMA tag */
struct eap_dma *sc_dmas;
void (*sc_pintr)(void *); /* dma completion intr handler */
void *sc_parg; /* arg for sc_intr() */
char sc_prun;
void (*sc_rintr)(void *); /* dma completion intr handler */
void *sc_rarg; /* arg for sc_intr() */
char sc_rrun;
int sc_sampsize; /* bytes / sample */
u_char sc_port[AK_NPORTS]; /* mirror of the hardware setting */
u_int sc_record_source; /* recording source mask */
u_int sc_output_source; /* output source mask */
};
int eap_allocmem __P((struct eap_softc *, size_t, size_t, struct eap_dma *));
int eap_freemem __P((struct eap_softc *, struct eap_dma *));
#define EWRITE2(sc, r, x) bus_space_write_2((sc)->iot, (sc)->ioh, (r), (x))
#define EWRITE4(sc, r, x) bus_space_write_4((sc)->iot, (sc)->ioh, (r), (x))
#define EREAD2(sc, r) bus_space_read_2((sc)->iot, (sc)->ioh, (r))
#define EREAD4(sc, r) bus_space_read_4((sc)->iot, (sc)->ioh, (r))
struct cfattach eap_ca = {
sizeof(struct eap_softc), eap_match, eap_attach
};
int eap_open __P((void *, int));
void eap_close __P((void *));
int eap_query_encoding __P((void *, struct audio_encoding *));
int eap_set_params __P((void *, int, int, struct audio_params *, struct audio_params *));
int eap_round_blocksize __P((void *, int));
int eap_dma_init_output __P((void *, void *, int));
int eap_dma_init_input __P((void *, void *, int));
int eap_dma_output __P((void *, void *, int, void (*)(void *), void*));
int eap_dma_input __P((void *, void *, int, void (*)(void *), void*));
int eap_halt_in_dma __P((void *));
int eap_halt_out_dma __P((void *));
int eap_getdev __P((void *, struct audio_device *));
int eap_mixer_set_port __P((void *, mixer_ctrl_t *));
int eap_mixer_get_port __P((void *, mixer_ctrl_t *));
int eap_query_devinfo __P((void *, mixer_devinfo_t *));
void *eap_malloc __P((void *, u_long, int, int));
void eap_free __P((void *, void *, int));
u_long eap_round __P((void *, u_long));
int eap_mappage __P((void *, void *, int, int));
int eap_get_props __P((void *));
void eap_write_codec __P((struct eap_softc *sc, int a, int d));
void eap_set_mixer __P((struct eap_softc *sc, int a, int d));
struct audio_hw_if eap_hw_if = {
eap_open,
eap_close,
NULL,
eap_query_encoding,
eap_set_params,
eap_round_blocksize,
NULL,
eap_dma_init_output,
eap_dma_init_input,
eap_dma_output,
eap_dma_input,
eap_halt_out_dma,
eap_halt_in_dma,
NULL,
eap_getdev,
NULL,
eap_mixer_set_port,
eap_mixer_get_port,
eap_query_devinfo,
eap_malloc,
eap_free,
eap_round,
eap_mappage,
eap_get_props,
};
struct audio_device eap_device = {
"Ensoniq AudioPCI",
"",
"eap"
};
int
eap_match(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
struct pci_attach_args *pa = (struct pci_attach_args *) aux;
if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_ENSONIQ)
return (0);
if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_ENSONIQ_AUDIOPCI)
return (0);
return (1);
}
void
eap_write_codec(sc, a, d)
struct eap_softc *sc;
int a, d;
{
int icss;
do {
icss = EREAD4(sc, EAP_ICSS);
DPRINTFN(5,("eap: codec %d prog: icss=0x%08x\n", a, icss));
} while(icss & EAP_CWRIP);
EWRITE4(sc, EAP_CODEC, EAP_SET_CODEC(a, d));
}
void
eap_attach(parent, self, aux)
struct device *parent;
struct device *self;
void *aux;
{
struct eap_softc *sc = (struct eap_softc *)self;
struct pci_attach_args *pa = (struct pci_attach_args *)aux;
pci_chipset_tag_t pc = pa->pa_pc;
char const *intrstr;
pci_intr_handle_t ih;
pcireg_t csr;
char devinfo[256];
mixer_ctrl_t ctl;
pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo);
printf(": %s (rev. 0x%02x)\n", devinfo, PCI_REVISION(pa->pa_class));
/* Map I/O register */
if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
&sc->iot, &sc->ioh, NULL, NULL)) {
printf("%s: can't map i/o space\n", sc->sc_dev.dv_xname);
return;
}
sc->sc_dmatag = pa->pa_dmat;
/* Enable the device. */
csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
csr | PCI_COMMAND_MASTER_ENABLE);
/* Map and establish the interrupt. */
if (pci_intr_map(pc, pa->pa_intrtag, pa->pa_intrpin,
pa->pa_intrline, &ih)) {
printf("%s: couldn't map interrupt\n", sc->sc_dev.dv_xname);
return;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_AUDIO, eap_intr, sc);
if (sc->sc_ih == NULL) {
printf("%s: couldn't establish interrupt",
sc->sc_dev.dv_xname);
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
return;
}
printf("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
/* Enable interrupts and looping mode. */
EWRITE4(sc, EAP_SIC, EAP_P2_INTR_EN | EAP_R1_INTR_EN);
EWRITE4(sc, EAP_ICSC, EAP_CDC_EN); /* enable the parts we need */
eap_write_codec(sc, AK_RESET, AK_PD); /* reset codec */
eap_write_codec(sc, AK_RESET, AK_PD | AK_NRST); /* normal operation */
eap_write_codec(sc, AK_CS, 0x0); /* select codec clocks */
/* Enable all relevant mixer switches. */
ctl.dev = EAP_OUTPUT_SELECT;
ctl.type = AUDIO_MIXER_SET;
ctl.un.mask = 1 << EAP_VOICE_VOL | 1 << EAP_FM_VOL | 1 << EAP_CD_VOL |
1 << EAP_LINE_VOL | 1 << EAP_AUX_VOL | 1 << EAP_MIC_VOL;
eap_mixer_set_port(sc, &ctl);
ctl.type = AUDIO_MIXER_VALUE;
ctl.un.value.num_channels = 1;
for (ctl.dev = EAP_MASTER_VOL; ctl.dev < EAP_MIC_VOL; ctl.dev++) {
ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = VOL_0DB;
eap_mixer_set_port(sc, &ctl);
}
ctl.un.value.level[AUDIO_MIXER_LEVEL_MONO] = 0;
eap_mixer_set_port(sc, &ctl); /* set the mic to 0 */
ctl.dev = EAP_RECORD_SOURCE;
ctl.type = AUDIO_MIXER_SET;
ctl.un.mask = 1 << EAP_MIC_VOL;
eap_mixer_set_port(sc, &ctl);
audio_attach_mi(&eap_hw_if, 0, sc, &sc->sc_dev);
}
int
eap_intr(p)
void *p;
{
struct eap_softc *sc = p;
u_int32_t intr, sic;
intr = EREAD4(sc, EAP_ICSS);
if (!(intr & EAP_INTR))
return (0);
sic = EREAD4(sc, EAP_SIC);
DPRINTFN(5, ("eap_intr: ICSS=0x%08x, SIC=0x%08x\n", intr, sic));
if (intr & EAP_I_ADC) {
/*
* XXX This is a hack!
* The EAP chip sometimes generates the recording interrupt
* while it is still transferring the data. To make sure
* it has all arrived we busy wait until the count is right.
* The transfer we are waiting for is 8 longwords.
*/
int s, nw, n;
EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
s = EREAD4(sc, EAP_ADC_CSR);
nw = ((s & 0xffff) + 1) / 4; /* # of words in DMA */
n = 0;
while (((EREAD4(sc, EAP_ADC_SIZE) >> 16) + 8) % nw == 0) {
delay(10);
if (++n > 100) {
printf("eapintr: dma fix timeout");
break;
}
}
/* Continue with normal interrupt handling. */
EWRITE4(sc, EAP_SIC, sic & ~EAP_R1_INTR_EN);
EWRITE4(sc, EAP_SIC, sic);
if (sc->sc_rintr)
sc->sc_rintr(sc->sc_rarg);
}
if (intr & EAP_I_DAC2) {
EWRITE4(sc, EAP_SIC, sic & ~EAP_P2_INTR_EN);
EWRITE4(sc, EAP_SIC, sic);
if (sc->sc_pintr)
sc->sc_pintr(sc->sc_parg);
}
return (1);
}
int
eap_allocmem(sc, size, align, p)
struct eap_softc *sc;
size_t size;
size_t align;
struct eap_dma *p;
{
int error;
p->size = size;
error = bus_dmamem_alloc(sc->sc_dmatag, p->size, align, 0,
p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
&p->nsegs, BUS_DMA_NOWAIT);
if (error)
return (error);
error = bus_dmamem_map(sc->sc_dmatag, p->segs, p->nsegs, p->size,
&p->addr, BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
if (error)
goto free;
error = bus_dmamap_create(sc->sc_dmatag, p->size, 1, p->size,
0, BUS_DMA_NOWAIT, &p->map);
if (error)
goto unmap;
error = bus_dmamap_load(sc->sc_dmatag, p->map, p->addr, p->size, NULL,
BUS_DMA_NOWAIT);
if (error)
goto destroy;
return (0);
destroy:
bus_dmamap_destroy(sc->sc_dmatag, p->map);
unmap:
bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
free:
bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
return (error);
}
int
eap_freemem(sc, p)
struct eap_softc *sc;
struct eap_dma *p;
{
bus_dmamap_unload(sc->sc_dmatag, p->map);
bus_dmamap_destroy(sc->sc_dmatag, p->map);
bus_dmamem_unmap(sc->sc_dmatag, p->addr, p->size);
bus_dmamem_free(sc->sc_dmatag, p->segs, p->nsegs);
return (0);
}
int
eap_open(addr, flags)
void *addr;
int flags;
{
struct eap_softc *sc = addr;
DPRINTF(("eap_open: sc=%p\n", sc));
sc->sc_pintr = 0;
sc->sc_rintr = 0;
return (0);
}
/*
* Close function is called at splaudio().
*/
void
eap_close(addr)
void *addr;
{
struct eap_softc *sc = addr;
eap_halt_in_dma(sc);
eap_halt_out_dma(sc);
sc->sc_pintr = 0;
sc->sc_rintr = 0;
}
int
eap_query_encoding(addr, fp)
void *addr;
struct audio_encoding *fp;
{
switch (fp->index) {
case 0:
strcpy(fp->name, AudioEulinear);
fp->encoding = AUDIO_ENCODING_ULINEAR;
fp->precision = 8;
fp->flags = 0;
return (0);
case 1:
strcpy(fp->name, AudioEmulaw);
fp->encoding = AUDIO_ENCODING_ULAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 2:
strcpy(fp->name, AudioEalaw);
fp->encoding = AUDIO_ENCODING_ALAW;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 3:
strcpy(fp->name, AudioEslinear);
fp->encoding = AUDIO_ENCODING_SLINEAR;
fp->precision = 8;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 4:
strcpy(fp->name, AudioEslinear_le);
fp->encoding = AUDIO_ENCODING_SLINEAR_LE;
fp->precision = 16;
fp->flags = 0;
return (0);
case 5:
strcpy(fp->name, AudioEulinear_le);
fp->encoding = AUDIO_ENCODING_ULINEAR_LE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 6:
strcpy(fp->name, AudioEslinear_be);
fp->encoding = AUDIO_ENCODING_SLINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
case 7:
strcpy(fp->name, AudioEulinear_be);
fp->encoding = AUDIO_ENCODING_ULINEAR_BE;
fp->precision = 16;
fp->flags = AUDIO_ENCODINGFLAG_EMULATED;
return (0);
default:
return (EINVAL);
}
}
int
eap_set_params(addr, setmode, usemode, p, r)
void *addr;
int setmode, usemode;
struct audio_params *p, *r;
{
struct eap_softc *sc = addr;
void (*pswcode) __P((void *, u_char *buf, int cnt));
void (*rswcode) __P((void *, u_char *buf, int cnt));
u_int32_t mode, div;
pswcode = rswcode = 0;
switch (p->encoding) {
case AUDIO_ENCODING_SLINEAR_BE:
if (p->precision == 16)
rswcode = pswcode = swap_bytes;
else
pswcode = rswcode = change_sign8;
break;
case AUDIO_ENCODING_SLINEAR_LE:
if (p->precision != 16)
pswcode = rswcode = change_sign8;
break;
case AUDIO_ENCODING_ULINEAR_BE:
if (p->precision == 16) {
pswcode = swap_bytes_change_sign16;
rswcode = change_sign16_swap_bytes;
}
break;
case AUDIO_ENCODING_ULINEAR_LE:
if (p->precision == 16)
pswcode = rswcode = change_sign16;
break;
case AUDIO_ENCODING_ULAW:
pswcode = mulaw_to_ulinear8;
rswcode = ulinear8_to_mulaw;
break;
case AUDIO_ENCODING_ALAW:
pswcode = alaw_to_ulinear8;
rswcode = ulinear8_to_alaw;
break;
default:
return (EINVAL);
}
if (p->precision == 16)
mode = EAP_P2_S_EB | EAP_R1_S_EB;
else
mode = 0;
if (p->channels == 2)
mode |= EAP_P2_S_MB | EAP_R1_S_MB;
else if (p->channels != 1)
return (EINVAL);
if (p->sample_rate < 4000 || p->sample_rate > 50000)
return (EINVAL);
sc->sc_sampsize = p->precision / 8 * p->channels; /* bytes / sample */
p->sw_code = pswcode;
r->sw_code = rswcode;
/* Set the encoding */
mode |= EREAD4(sc, EAP_SIC) & ~(EAP_R1P2_BITS | EAP_INC_BITS);
mode |= EAP_SET_P2_ST_INC(0) | EAP_SET_P2_END_INC(p->precision / 8);
EWRITE4(sc, EAP_SIC, mode);
DPRINTFN(2, ("eap_set_params: set SIC = 0x%08x\n", mode));
/* Set the speed */
DPRINTFN(2, ("eap_set_params: old ICSC = 0x%08x\n",
EREAD4(sc, EAP_ICSC)));
div = EREAD4(sc, EAP_ICSC) & ~EAP_PCLKBITS;
div |= EAP_SET_PCLKDIV(EAP_XTAL_FREQ / p->sample_rate - 2);
div |= EAP_CCB_INTRM;
EWRITE4(sc, EAP_ICSC, div);
DPRINTFN(2, ("eap_set_params: set ICSC = 0x%08x\n", div));
return (0);
}
int
eap_round_blocksize(addr, blk)
void *addr;
int blk;
{
return (blk & -32); /* keep good alignment */
}
int
eap_dma_init_input(addr, buf, cc)
void *addr;
void *buf;
int cc;
{
struct eap_softc *sc = addr;
struct eap_dma *p;
DPRINTF(("eap_dma_init_input: dma start loop input addr=%p cc=%d\n",
buf, cc));
for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next)
;
if (!p) {
printf("eap_dma_init_input: bad addr %p\n", buf);
return (EINVAL);
}
EWRITE4(sc, EAP_MEMPAGE, EAP_ADC_PAGE);
EWRITE4(sc, EAP_ADC_ADDR, DMAADDR(p));
EWRITE4(sc, EAP_ADC_SIZE, EAP_SET_SIZE(0, cc / 4 - 1));
DPRINTF(("eap_dma_init_input: ADC_ADDR=0x%x, ADC_SIZE=0x%x\n",
(int)DMAADDR(p), EAP_SET_SIZE(0, cc / 4 - 1)));
return (0);
}
int
eap_dma_init_output(addr, buf, cc)
void *addr;
void *buf;
int cc;
{
struct eap_softc *sc = addr;
struct eap_dma *p;
DPRINTF(("eap: dma start loop output buf=%p cc=%d\n", buf, cc));
for (p = sc->sc_dmas; p && KERNADDR(p) != buf; p = p->next)
;
if (!p) {
printf("eap_dma_init_output: bad addr %p\n", buf);
return (EINVAL);
}
EWRITE4(sc, EAP_MEMPAGE, EAP_DAC_PAGE);
EWRITE4(sc, EAP_DAC2_ADDR, DMAADDR(p));
EWRITE4(sc, EAP_DAC2_SIZE, EAP_SET_SIZE(0, cc / 4 - 1));
DPRINTF(("eap_dma_init_output: DAC2_ADDR=0x%x, DAC2_SIZE=0x%x\n",
(int)DMAADDR(p), EAP_SET_SIZE(0, cc / 4 - 1)));
return (0);
}
int
eap_dma_output(addr, p, cc, intr, arg)
void *addr;
void *p;
int cc;
void (*intr) __P((void *));
void *arg;
{
struct eap_softc *sc = addr;
u_int32_t mode;
DPRINTFN(sc->sc_prun ? 5 : 1,
("eap_dma_output: sc=%p buf=%p cc=%d intr=%p(%p)\n",
addr, p, cc, intr, arg));
sc->sc_pintr = intr;
sc->sc_parg = arg;
if (!sc->sc_prun) {
#if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
if (sc->sc_sampsize == 0) {
printf("eap_dma_output: sampsize == 0\n");
return EINVAL;
}
#endif
EWRITE2(sc, EAP_DAC2_CSR, cc / sc->sc_sampsize - 1);
DPRINTFN(1, ("eap_dma_output: set DAC2_CSR = %d\n",
cc / sc->sc_sampsize - 1));
DPRINTFN(1, ("eap_dma_output: old ICSC = 0x%08x\n",
EREAD4(sc, EAP_ICSC)));
mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
EWRITE4(sc, EAP_ICSC, mode);
mode |= EAP_DAC2_EN;
EWRITE4(sc, EAP_ICSC, mode);
DPRINTFN(1, ("eap_dma_output: set ICSC = 0x%08x\n", mode));
sc->sc_prun = 1;
}
return (0);
}
int
eap_dma_input(addr, p, cc, intr, arg)
void *addr;
void *p;
int cc;
void (*intr) __P((void *));
void *arg;
{
struct eap_softc *sc = addr;
u_int32_t mode;
DPRINTFN(1, ("eap_dma_input: sc=%p buf=%p cc=%d intr=%p(%p)\n",
addr, p, cc, intr, arg));
sc->sc_rintr = intr;
sc->sc_rarg = arg;
if (!sc->sc_rrun) {
#if defined(DIAGNOSTIC) || defined(AUDIO_DEBUG)
if (sc->sc_sampsize == 0) {
printf("eap_dma_input: sampsize == 0\n");
return EINVAL;
}
#endif
EWRITE2(sc, EAP_ADC_CSR, cc / sc->sc_sampsize - 1);
mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
EWRITE4(sc, EAP_ICSC, mode);
mode |= EAP_ADC_EN;
EWRITE4(sc, EAP_ICSC, mode);
DPRINTFN(1, ("eap_dma_input: set ICSC = 0x%08x\n", mode));
sc->sc_rrun = 1;
}
return (0);
}
int
eap_halt_out_dma(addr)
void *addr;
{
struct eap_softc *sc = addr;
u_int32_t mode;
DPRINTF(("eap: eap_halt_out_dma\n"));
mode = EREAD4(sc, EAP_ICSC) & ~EAP_DAC2_EN;
EWRITE4(sc, EAP_ICSC, mode);
sc->sc_prun = 0;
return (0);
}
int
eap_halt_in_dma(addr)
void *addr;
{
struct eap_softc *sc = addr;
u_int32_t mode;
DPRINTF(("eap: eap_halt_in_dma\n"));
mode = EREAD4(sc, EAP_ICSC) & ~EAP_ADC_EN;
EWRITE4(sc, EAP_ICSC, mode);
sc->sc_rrun = 0;
return (0);
}
int
eap_getdev(addr, retp)
void *addr;
struct audio_device *retp;
{
*retp = eap_device;
return (0);
}
void
eap_set_mixer(sc, a, d)
struct eap_softc *sc;
int a, d;
{
eap_write_codec(sc, a, d);
DPRINTFN(1, ("eap_mixer_set_port port 0x%02x = 0x%02x\n", a, d));
}
int
eap_mixer_set_port(addr, cp)
void *addr;
mixer_ctrl_t *cp;
{
struct eap_softc *sc = addr;
int lval, rval, l, r, la, ra;
int l1, r1, l2, r2, m, o1, o2;
if (cp->dev == EAP_RECORD_SOURCE) {
if (cp->type != AUDIO_MIXER_SET)
return (EINVAL);
m = sc->sc_record_source = cp->un.mask;
l1 = l2 = r1 = r2 = 0;
if (m & (1 << EAP_VOICE_VOL))
l2 |= AK_M_VOICE, r2 |= AK_M_VOICE;
if (m & (1 << EAP_FM_VOL))
l1 |= AK_M_FM_L, r1 |= AK_M_FM_R;
if (m & (1 << EAP_CD_VOL))
l1 |= AK_M_CD_L, r1 |= AK_M_CD_R;
if (m & (1 << EAP_LINE_VOL))
l1 |= AK_M_LINE_L, r1 |= AK_M_LINE_R;
if (m & (1 << EAP_AUX_VOL))
l2 |= AK_M2_AUX_L, r2 |= AK_M2_AUX_R;
if (m & (1 << EAP_MIC_VOL))
l2 |= AK_M_TMIC, r2 |= AK_M_TMIC;
eap_set_mixer(sc, AK_IN_MIXER1_L, l1);
eap_set_mixer(sc, AK_IN_MIXER1_R, r1);
eap_set_mixer(sc, AK_IN_MIXER2_L, l2);
eap_set_mixer(sc, AK_IN_MIXER2_R, r2);
return (0);
}
if (cp->dev == EAP_OUTPUT_SELECT) {
if (cp->type != AUDIO_MIXER_SET)
return (EINVAL);
m = sc->sc_output_source = cp->un.mask;
o1 = o2 = 0;
if (m & (1 << EAP_VOICE_VOL))
o2 |= AK_M_VOICE_L | AK_M_VOICE_R;
if (m & (1 << EAP_FM_VOL))
o1 |= AK_M_FM_L | AK_M_FM_R;
if (m & (1 << EAP_CD_VOL))
o1 |= AK_M_CD_L | AK_M_CD_R;
if (m & (1 << EAP_LINE_VOL))
o1 |= AK_M_LINE_L | AK_M_LINE_R;
if (m & (1 << EAP_AUX_VOL))
o2 |= AK_M_AUX_L | AK_M_AUX_R;
if (m & (1 << EAP_MIC_VOL))
o1 |= AK_M_MIC;
eap_set_mixer(sc, AK_OUT_MIXER1, o1);
eap_set_mixer(sc, AK_OUT_MIXER2, o2);
return (0);
}
if (cp->type != AUDIO_MIXER_VALUE)
return (EINVAL);
if (cp->un.value.num_channels == 1)
lval = rval = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
else if (cp->un.value.num_channels == 2) {
lval = cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT];
rval = cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT];
} else
return (EINVAL);
ra = -1;
switch (cp->dev) {
case EAP_MASTER_VOL:
l = VOL_TO_ATT5(lval);
r = VOL_TO_ATT5(rval);
la = AK_MASTER_L;
ra = AK_MASTER_R;
break;
case EAP_MIC_VOL:
if (cp->un.value.num_channels != 1)
return (EINVAL);
la = AK_MIC;
goto lr;
case EAP_VOICE_VOL:
la = AK_VOICE_L;
ra = AK_VOICE_R;
goto lr;
case EAP_FM_VOL:
la = AK_FM_L;
ra = AK_FM_R;
goto lr;
case EAP_CD_VOL:
la = AK_CD_L;
ra = AK_CD_R;
goto lr;
case EAP_LINE_VOL:
la = AK_LINE_L;
ra = AK_LINE_R;
goto lr;
case EAP_AUX_VOL:
la = AK_AUX_L;
ra = AK_AUX_R;
lr:
l = VOL_TO_GAIN5(lval);
r = VOL_TO_GAIN5(rval);
break;
default:
return (EINVAL);
}
eap_set_mixer(sc, la, l);
sc->sc_port[la] = l;
if (ra >= 0) {
eap_set_mixer(sc, ra, r);
sc->sc_port[ra] = r;
}
return (0);
}
int
eap_mixer_get_port(addr, cp)
void *addr;
mixer_ctrl_t *cp;
{
struct eap_softc *sc = addr;
int la, ra, l, r;
switch (cp->dev) {
case EAP_RECORD_SOURCE:
cp->un.mask = sc->sc_record_source;
return (0);
case EAP_OUTPUT_SELECT:
cp->un.mask = sc->sc_output_source;
return (0);
case EAP_MASTER_VOL:
l = ATT5_TO_VOL(sc->sc_port[AK_MASTER_L]);
r = ATT5_TO_VOL(sc->sc_port[AK_MASTER_R]);
break;
case EAP_MIC_VOL:
if (cp->un.value.num_channels != 1)
return (EINVAL);
la = ra = AK_MIC;
goto lr;
case EAP_VOICE_VOL:
la = AK_VOICE_L;
ra = AK_VOICE_R;
goto lr;
case EAP_FM_VOL:
la = AK_FM_L;
ra = AK_FM_R;
goto lr;
case EAP_CD_VOL:
la = AK_CD_L;
ra = AK_CD_R;
goto lr;
case EAP_LINE_VOL:
la = AK_LINE_L;
ra = AK_LINE_R;
goto lr;
case EAP_AUX_VOL:
la = AK_AUX_L;
ra = AK_AUX_R;
lr:
l = GAIN5_TO_VOL(sc->sc_port[la]);
r = GAIN5_TO_VOL(sc->sc_port[ra]);
break;
default:
return (EINVAL);
}
if (cp->un.value.num_channels == 1)
cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = (l+r) / 2;
else if (cp->un.value.num_channels == 2) {
cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] = l;
cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] = r;
}
return (0);
}
int
eap_query_devinfo(addr, dip)
void *addr;
mixer_devinfo_t *dip;
{
switch (dip->index) {
case EAP_MASTER_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = EAP_OUTPUT_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmaster);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case EAP_VOICE_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = EAP_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNdac);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case EAP_FM_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = EAP_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNfmsynth);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case EAP_CD_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = EAP_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNcd);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case EAP_LINE_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = EAP_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNline);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case EAP_AUX_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = EAP_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNaux);
dip->un.v.num_channels = 2;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case EAP_MIC_VOL:
dip->type = AUDIO_MIXER_VALUE;
dip->mixer_class = EAP_INPUT_CLASS;
dip->prev = AUDIO_MIXER_LAST;
dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNmicrophone);
dip->un.v.num_channels = 1;
strcpy(dip->un.v.units.name, AudioNvolume);
return (0);
case EAP_RECORD_SOURCE:
dip->mixer_class = EAP_RECORD_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNsource);
dip->type = AUDIO_MIXER_SET;
dip->un.s.num_mem = 6;
strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
strcpy(dip->un.s.member[1].label.name, AudioNcd);
dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
strcpy(dip->un.s.member[2].label.name, AudioNline);
dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
strcpy(dip->un.s.member[4].label.name, AudioNaux);
dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
strcpy(dip->un.s.member[5].label.name, AudioNdac);
dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
return (0);
case EAP_OUTPUT_SELECT:
dip->mixer_class = EAP_OUTPUT_CLASS;
dip->prev = dip->next = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioNselect);
dip->type = AUDIO_MIXER_SET;
dip->un.s.num_mem = 6;
strcpy(dip->un.s.member[0].label.name, AudioNmicrophone);
dip->un.s.member[0].mask = 1 << EAP_MIC_VOL;
strcpy(dip->un.s.member[1].label.name, AudioNcd);
dip->un.s.member[1].mask = 1 << EAP_CD_VOL;
strcpy(dip->un.s.member[2].label.name, AudioNline);
dip->un.s.member[2].mask = 1 << EAP_LINE_VOL;
strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
dip->un.s.member[3].mask = 1 << EAP_FM_VOL;
strcpy(dip->un.s.member[4].label.name, AudioNaux);
dip->un.s.member[4].mask = 1 << EAP_AUX_VOL;
strcpy(dip->un.s.member[5].label.name, AudioNdac);
dip->un.s.member[5].mask = 1 << EAP_VOICE_VOL;
return (0);
case EAP_OUTPUT_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = EAP_OUTPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCoutputs);
return (0);
case EAP_RECORD_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = EAP_RECORD_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCrecord);
return (0);
case EAP_INPUT_CLASS:
dip->type = AUDIO_MIXER_CLASS;
dip->mixer_class = EAP_INPUT_CLASS;
dip->next = dip->prev = AUDIO_MIXER_LAST;
strcpy(dip->label.name, AudioCinputs);
return (0);
}
return (ENXIO);
}
void *
eap_malloc(addr, size, pool, flags)
void *addr;
u_long size;
int pool;
int flags;
{
struct eap_softc *sc = addr;
struct eap_dma *p;
int error;
p = malloc(sizeof(*p), pool, flags);
if (!p)
return (0);
error = eap_allocmem(sc, size, 16, p);
if (error) {
free(p, pool);
return (0);
}
p->next = sc->sc_dmas;
sc->sc_dmas = p;
return (KERNADDR(p));
}
void
eap_free(addr, ptr, pool)
void *addr;
void *ptr;
int pool;
{
struct eap_softc *sc = addr;
struct eap_dma **p;
for (p = &sc->sc_dmas; *p; p = &(*p)->next) {
if (KERNADDR(*p) == ptr) {
eap_freemem(sc, *p);
*p = (*p)->next;
free(*p, pool);
return;
}
}
}
u_long
eap_round(addr, size)
void *addr;
u_long size;
{
return (size);
}
int
eap_mappage(addr, mem, off, prot)
void *addr;
void *mem;
int off;
int prot;
{
struct eap_softc *sc = addr;
struct eap_dma *p;
for (p = sc->sc_dmas; p && KERNADDR(p) != mem; p = p->next)
;
if (!p)
return (-1);
return (bus_dmamem_mmap(sc->sc_dmatag, p->segs, p->nsegs,
off, prot, BUS_DMA_WAITOK));
}
int
eap_get_props(addr)
void *addr;
{
return (AUDIO_PROP_MMAP | AUDIO_PROP_FULLDUPLEX);
}