NetBSD/sys/nfs/nfs_socket.c
2008-10-07 01:20:37 +00:00

2650 lines
62 KiB
C

/* $NetBSD: nfs_socket.c,v 1.173 2008/10/07 01:20:37 pooka Exp $ */
/*
* Copyright (c) 1989, 1991, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Rick Macklem at The University of Guelph.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)nfs_socket.c 8.5 (Berkeley) 3/30/95
*/
/*
* Socket operations for use by nfs
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: nfs_socket.c,v 1.173 2008/10/07 01:20:37 pooka Exp $");
#include "fs_nfs.h"
#include "opt_nfs.h"
#include "opt_nfsserver.h"
#include "opt_mbuftrace.h"
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/evcnt.h>
#include <sys/callout.h>
#include <sys/proc.h>
#include <sys/mount.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mbuf.h>
#include <sys/vnode.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/syslog.h>
#include <sys/tprintf.h>
#include <sys/namei.h>
#include <sys/signal.h>
#include <sys/signalvar.h>
#include <sys/kauth.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <nfs/rpcv2.h>
#include <nfs/nfsproto.h>
#include <nfs/nfs.h>
#include <nfs/xdr_subs.h>
#include <nfs/nfsm_subs.h>
#include <nfs/nfsmount.h>
#include <nfs/nfsnode.h>
#include <nfs/nfsrtt.h>
#include <nfs/nfs_var.h>
#ifdef MBUFTRACE
struct mowner nfs_mowner = MOWNER_INIT("nfs","");
#endif
/*
* Estimate rto for an nfs rpc sent via. an unreliable datagram.
* Use the mean and mean deviation of rtt for the appropriate type of rpc
* for the frequent rpcs and a default for the others.
* The justification for doing "other" this way is that these rpcs
* happen so infrequently that timer est. would probably be stale.
* Also, since many of these rpcs are
* non-idempotent, a conservative timeout is desired.
* getattr, lookup - A+2D
* read, write - A+4D
* other - nm_timeo
*/
#define NFS_RTO(n, t) \
((t) == 0 ? (n)->nm_timeo : \
((t) < 3 ? \
(((((n)->nm_srtt[t-1] + 3) >> 2) + (n)->nm_sdrtt[t-1] + 1) >> 1) : \
((((n)->nm_srtt[t-1] + 7) >> 3) + (n)->nm_sdrtt[t-1] + 1)))
#define NFS_SRTT(r) (r)->r_nmp->nm_srtt[proct[(r)->r_procnum] - 1]
#define NFS_SDRTT(r) (r)->r_nmp->nm_sdrtt[proct[(r)->r_procnum] - 1]
/*
* External data, mostly RPC constants in XDR form
*/
extern u_int32_t rpc_reply, rpc_msgdenied, rpc_mismatch, rpc_vers,
rpc_auth_unix, rpc_msgaccepted, rpc_call, rpc_autherr,
rpc_auth_kerb;
extern u_int32_t nfs_prog;
extern const int nfsv3_procid[NFS_NPROCS];
extern int nfs_ticks;
/*
* Defines which timer to use for the procnum.
* 0 - default
* 1 - getattr
* 2 - lookup
* 3 - read
* 4 - write
*/
static const int proct[NFS_NPROCS] = {
[NFSPROC_NULL] = 0,
[NFSPROC_GETATTR] = 1,
[NFSPROC_SETATTR] = 0,
[NFSPROC_LOOKUP] = 2,
[NFSPROC_ACCESS] = 1,
[NFSPROC_READLINK] = 3,
[NFSPROC_READ] = 3,
[NFSPROC_WRITE] = 4,
[NFSPROC_CREATE] = 0,
[NFSPROC_MKDIR] = 0,
[NFSPROC_SYMLINK] = 0,
[NFSPROC_MKNOD] = 0,
[NFSPROC_REMOVE] = 0,
[NFSPROC_RMDIR] = 0,
[NFSPROC_RENAME] = 0,
[NFSPROC_LINK] = 0,
[NFSPROC_READDIR] = 3,
[NFSPROC_READDIRPLUS] = 3,
[NFSPROC_FSSTAT] = 0,
[NFSPROC_FSINFO] = 0,
[NFSPROC_PATHCONF] = 0,
[NFSPROC_COMMIT] = 0,
[NFSPROC_NOOP] = 0,
};
/*
* There is a congestion window for outstanding rpcs maintained per mount
* point. The cwnd size is adjusted in roughly the way that:
* Van Jacobson, Congestion avoidance and Control, In "Proceedings of
* SIGCOMM '88". ACM, August 1988.
* describes for TCP. The cwnd size is chopped in half on a retransmit timeout
* and incremented by 1/cwnd when each rpc reply is received and a full cwnd
* of rpcs is in progress.
* (The sent count and cwnd are scaled for integer arith.)
* Variants of "slow start" were tried and were found to be too much of a
* performance hit (ave. rtt 3 times larger),
* I suspect due to the large rtt that nfs rpcs have.
*/
#define NFS_CWNDSCALE 256
#define NFS_MAXCWND (NFS_CWNDSCALE * 32)
static const int nfs_backoff[8] = { 2, 4, 8, 16, 32, 64, 128, 256, };
int nfsrtton = 0;
struct nfsrtt nfsrtt;
struct nfsreqhead nfs_reqq;
static callout_t nfs_timer_ch;
static struct evcnt nfs_timer_ev;
static struct evcnt nfs_timer_start_ev;
static struct evcnt nfs_timer_stop_ev;
#ifdef NFS
static int nfs_sndlock(struct nfsmount *, struct nfsreq *);
static void nfs_sndunlock(struct nfsmount *);
#endif
static int nfs_rcvlock(struct nfsmount *, struct nfsreq *);
static void nfs_rcvunlock(struct nfsmount *);
#if defined(NFSSERVER)
static void nfsrv_wakenfsd_locked(struct nfssvc_sock *);
#endif /* defined(NFSSERVER) */
/*
* Initialize sockets and congestion for a new NFS connection.
* We do not free the sockaddr if error.
*/
int
nfs_connect(nmp, rep, l)
struct nfsmount *nmp;
struct nfsreq *rep;
struct lwp *l;
{
struct socket *so;
int error, rcvreserve, sndreserve;
struct sockaddr *saddr;
struct sockaddr_in *sin;
#ifdef INET6
struct sockaddr_in6 *sin6;
#endif
struct mbuf *m;
int val;
nmp->nm_so = (struct socket *)0;
saddr = mtod(nmp->nm_nam, struct sockaddr *);
error = socreate(saddr->sa_family, &nmp->nm_so,
nmp->nm_sotype, nmp->nm_soproto, l, NULL);
if (error)
goto bad;
so = nmp->nm_so;
#ifdef MBUFTRACE
so->so_mowner = &nfs_mowner;
so->so_rcv.sb_mowner = &nfs_mowner;
so->so_snd.sb_mowner = &nfs_mowner;
#endif
nmp->nm_soflags = so->so_proto->pr_flags;
/*
* Some servers require that the client port be a reserved port number.
*/
if (saddr->sa_family == AF_INET && (nmp->nm_flag & NFSMNT_RESVPORT)) {
val = IP_PORTRANGE_LOW;
if ((error = so_setsockopt(NULL, so, IPPROTO_IP, IP_PORTRANGE,
&val, sizeof(val))))
goto bad;
m = m_get(M_WAIT, MT_SONAME);
MCLAIM(m, so->so_mowner);
sin = mtod(m, struct sockaddr_in *);
sin->sin_len = m->m_len = sizeof (struct sockaddr_in);
sin->sin_family = AF_INET;
sin->sin_addr.s_addr = INADDR_ANY;
sin->sin_port = 0;
error = sobind(so, m, &lwp0);
m_freem(m);
if (error)
goto bad;
}
#ifdef INET6
if (saddr->sa_family == AF_INET6 && (nmp->nm_flag & NFSMNT_RESVPORT)) {
val = IPV6_PORTRANGE_LOW;
if ((error = so_setsockopt(NULL, so, IPPROTO_IPV6,
IPV6_PORTRANGE, &val, sizeof(val))))
goto bad;
m = m_get(M_WAIT, MT_SONAME);
MCLAIM(m, so->so_mowner);
sin6 = mtod(m, struct sockaddr_in6 *);
sin6->sin6_len = m->m_len = sizeof (struct sockaddr_in6);
sin6->sin6_family = AF_INET6;
sin6->sin6_addr = in6addr_any;
sin6->sin6_port = 0;
error = sobind(so, m, &lwp0);
m_freem(m);
if (error)
goto bad;
}
#endif
/*
* Protocols that do not require connections may be optionally left
* unconnected for servers that reply from a port other than NFS_PORT.
*/
solock(so);
if (nmp->nm_flag & NFSMNT_NOCONN) {
if (nmp->nm_soflags & PR_CONNREQUIRED) {
sounlock(so);
error = ENOTCONN;
goto bad;
}
} else {
error = soconnect(so, nmp->nm_nam, l);
if (error) {
sounlock(so);
goto bad;
}
/*
* Wait for the connection to complete. Cribbed from the
* connect system call but with the wait timing out so
* that interruptible mounts don't hang here for a long time.
*/
while ((so->so_state & SS_ISCONNECTING) && so->so_error == 0) {
(void)sowait(so, 2 * hz);
if ((so->so_state & SS_ISCONNECTING) &&
so->so_error == 0 && rep &&
(error = nfs_sigintr(nmp, rep, rep->r_lwp)) != 0){
so->so_state &= ~SS_ISCONNECTING;
sounlock(so);
goto bad;
}
}
if (so->so_error) {
error = so->so_error;
so->so_error = 0;
sounlock(so);
goto bad;
}
}
if (nmp->nm_flag & (NFSMNT_SOFT | NFSMNT_INT)) {
so->so_rcv.sb_timeo = (5 * hz);
so->so_snd.sb_timeo = (5 * hz);
} else {
/*
* enable receive timeout to detect server crash and reconnect.
* otherwise, we can be stuck in soreceive forever.
*/
so->so_rcv.sb_timeo = (5 * hz);
so->so_snd.sb_timeo = 0;
}
if (nmp->nm_sotype == SOCK_DGRAM) {
sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
NFS_MAXPKTHDR) * 2;
} else if (nmp->nm_sotype == SOCK_SEQPACKET) {
sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR) * 2;
rcvreserve = (max(nmp->nm_rsize, nmp->nm_readdirsize) +
NFS_MAXPKTHDR) * 2;
} else {
sounlock(so);
if (nmp->nm_sotype != SOCK_STREAM)
panic("nfscon sotype");
if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
val = 1;
so_setsockopt(NULL, so, SOL_SOCKET, SO_KEEPALIVE, &val,
sizeof(val));
}
if (so->so_proto->pr_protocol == IPPROTO_TCP) {
val = 1;
so_setsockopt(NULL, so, IPPROTO_TCP, TCP_NODELAY, &val,
sizeof(val));
}
sndreserve = (nmp->nm_wsize + NFS_MAXPKTHDR +
sizeof (u_int32_t)) * 2;
rcvreserve = (nmp->nm_rsize + NFS_MAXPKTHDR +
sizeof (u_int32_t)) * 2;
solock(so);
}
error = soreserve(so, sndreserve, rcvreserve);
if (error) {
sounlock(so);
goto bad;
}
so->so_rcv.sb_flags |= SB_NOINTR;
so->so_snd.sb_flags |= SB_NOINTR;
sounlock(so);
/* Initialize other non-zero congestion variables */
nmp->nm_srtt[0] = nmp->nm_srtt[1] = nmp->nm_srtt[2] = nmp->nm_srtt[3] =
NFS_TIMEO << 3;
nmp->nm_sdrtt[0] = nmp->nm_sdrtt[1] = nmp->nm_sdrtt[2] =
nmp->nm_sdrtt[3] = 0;
nmp->nm_cwnd = NFS_MAXCWND / 2; /* Initial send window */
nmp->nm_sent = 0;
nmp->nm_timeouts = 0;
return (0);
bad:
nfs_disconnect(nmp);
return (error);
}
/*
* Reconnect routine:
* Called when a connection is broken on a reliable protocol.
* - clean up the old socket
* - nfs_connect() again
* - set R_MUSTRESEND for all outstanding requests on mount point
* If this fails the mount point is DEAD!
* nb: Must be called with the nfs_sndlock() set on the mount point.
*/
int
nfs_reconnect(struct nfsreq *rep)
{
struct nfsreq *rp;
struct nfsmount *nmp = rep->r_nmp;
int error;
nfs_disconnect(nmp);
while ((error = nfs_connect(nmp, rep, &lwp0)) != 0) {
if (error == EINTR || error == ERESTART)
return (EINTR);
kpause("nfscn2", false, hz, NULL);
}
/*
* Loop through outstanding request list and fix up all requests
* on old socket.
*/
TAILQ_FOREACH(rp, &nfs_reqq, r_chain) {
if (rp->r_nmp == nmp) {
if ((rp->r_flags & R_MUSTRESEND) == 0)
rp->r_flags |= R_MUSTRESEND | R_REXMITTED;
rp->r_rexmit = 0;
}
}
return (0);
}
/*
* NFS disconnect. Clean up and unlink.
*/
void
nfs_disconnect(nmp)
struct nfsmount *nmp;
{
struct socket *so;
int drain = 0;
if (nmp->nm_so) {
so = nmp->nm_so;
nmp->nm_so = (struct socket *)0;
solock(so);
soshutdown(so, SHUT_RDWR);
sounlock(so);
drain = (nmp->nm_iflag & NFSMNT_DISMNT) != 0;
if (drain) {
/*
* soshutdown() above should wake up the current
* listener.
* Now wake up those waiting for the receive lock, and
* wait for them to go away unhappy, to prevent *nmp
* from evaporating while they're sleeping.
*/
mutex_enter(&nmp->nm_lock);
while (nmp->nm_waiters > 0) {
cv_broadcast(&nmp->nm_rcvcv);
cv_broadcast(&nmp->nm_sndcv);
cv_wait(&nmp->nm_disconcv, &nmp->nm_lock);
}
mutex_exit(&nmp->nm_lock);
}
soclose(so);
}
#ifdef DIAGNOSTIC
if (drain && (nmp->nm_waiters > 0))
panic("nfs_disconnect: waiters left after drain?");
#endif
}
void
nfs_safedisconnect(nmp)
struct nfsmount *nmp;
{
struct nfsreq dummyreq;
memset(&dummyreq, 0, sizeof(dummyreq));
dummyreq.r_nmp = nmp;
nfs_rcvlock(nmp, &dummyreq); /* XXX ignored error return */
nfs_disconnect(nmp);
nfs_rcvunlock(nmp);
}
/*
* This is the nfs send routine. For connection based socket types, it
* must be called with an nfs_sndlock() on the socket.
* "rep == NULL" indicates that it has been called from a server.
* For the client side:
* - return EINTR if the RPC is terminated, 0 otherwise
* - set R_MUSTRESEND if the send fails for any reason
* - do any cleanup required by recoverable socket errors (? ? ?)
* For the server side:
* - return EINTR or ERESTART if interrupted by a signal
* - return EPIPE if a connection is lost for connection based sockets (TCP...)
* - do any cleanup required by recoverable socket errors (? ? ?)
*/
int
nfs_send(so, nam, top, rep, l)
struct socket *so;
struct mbuf *nam;
struct mbuf *top;
struct nfsreq *rep;
struct lwp *l;
{
struct mbuf *sendnam;
int error, soflags, flags;
/* XXX nfs_doio()/nfs_request() calls with rep->r_lwp == NULL */
if (l == NULL && rep->r_lwp == NULL)
l = curlwp;
if (rep) {
if (rep->r_flags & R_SOFTTERM) {
m_freem(top);
return (EINTR);
}
if ((so = rep->r_nmp->nm_so) == NULL) {
rep->r_flags |= R_MUSTRESEND;
m_freem(top);
return (0);
}
rep->r_flags &= ~R_MUSTRESEND;
soflags = rep->r_nmp->nm_soflags;
} else
soflags = so->so_proto->pr_flags;
if ((soflags & PR_CONNREQUIRED) || (so->so_state & SS_ISCONNECTED))
sendnam = (struct mbuf *)0;
else
sendnam = nam;
if (so->so_type == SOCK_SEQPACKET)
flags = MSG_EOR;
else
flags = 0;
error = (*so->so_send)(so, sendnam, NULL, top, NULL, flags, l);
if (error) {
if (rep) {
if (error == ENOBUFS && so->so_type == SOCK_DGRAM) {
/*
* We're too fast for the network/driver,
* and UDP isn't flowcontrolled.
* We need to resend. This is not fatal,
* just try again.
*
* Could be smarter here by doing some sort
* of a backoff, but this is rare.
*/
rep->r_flags |= R_MUSTRESEND;
} else {
if (error != EPIPE)
log(LOG_INFO,
"nfs send error %d for %s\n",
error,
rep->r_nmp->nm_mountp->
mnt_stat.f_mntfromname);
/*
* Deal with errors for the client side.
*/
if (rep->r_flags & R_SOFTTERM)
error = EINTR;
else
rep->r_flags |= R_MUSTRESEND;
}
} else {
/*
* See above. This error can happen under normal
* circumstances and the log is too noisy.
* The error will still show up in nfsstat.
*/
if (error != ENOBUFS || so->so_type != SOCK_DGRAM)
log(LOG_INFO, "nfsd send error %d\n", error);
}
/*
* Handle any recoverable (soft) socket errors here. (? ? ?)
*/
if (error != EINTR && error != ERESTART &&
error != EWOULDBLOCK && error != EPIPE)
error = 0;
}
return (error);
}
#ifdef NFS
/*
* Receive a Sun RPC Request/Reply. For SOCK_DGRAM, the work is all
* done by soreceive(), but for SOCK_STREAM we must deal with the Record
* Mark and consolidate the data into a new mbuf list.
* nb: Sometimes TCP passes the data up to soreceive() in long lists of
* small mbufs.
* For SOCK_STREAM we must be very careful to read an entire record once
* we have read any of it, even if the system call has been interrupted.
*/
static int
nfs_receive(struct nfsreq *rep, struct mbuf **aname, struct mbuf **mp,
struct lwp *l)
{
struct socket *so;
struct uio auio;
struct iovec aio;
struct mbuf *m;
struct mbuf *control;
u_int32_t len;
struct mbuf **getnam;
int error, sotype, rcvflg;
/*
* Set up arguments for soreceive()
*/
*mp = (struct mbuf *)0;
*aname = (struct mbuf *)0;
sotype = rep->r_nmp->nm_sotype;
/*
* For reliable protocols, lock against other senders/receivers
* in case a reconnect is necessary.
* For SOCK_STREAM, first get the Record Mark to find out how much
* more there is to get.
* We must lock the socket against other receivers
* until we have an entire rpc request/reply.
*/
if (sotype != SOCK_DGRAM) {
error = nfs_sndlock(rep->r_nmp, rep);
if (error)
return (error);
tryagain:
/*
* Check for fatal errors and resending request.
*/
/*
* Ugh: If a reconnect attempt just happened, nm_so
* would have changed. NULL indicates a failed
* attempt that has essentially shut down this
* mount point.
*/
if (rep->r_mrep || (rep->r_flags & R_SOFTTERM)) {
nfs_sndunlock(rep->r_nmp);
return (EINTR);
}
so = rep->r_nmp->nm_so;
if (!so) {
error = nfs_reconnect(rep);
if (error) {
nfs_sndunlock(rep->r_nmp);
return (error);
}
goto tryagain;
}
while (rep->r_flags & R_MUSTRESEND) {
m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
nfsstats.rpcretries++;
rep->r_rtt = 0;
rep->r_flags &= ~R_TIMING;
error = nfs_send(so, rep->r_nmp->nm_nam, m, rep, l);
if (error) {
if (error == EINTR || error == ERESTART ||
(error = nfs_reconnect(rep)) != 0) {
nfs_sndunlock(rep->r_nmp);
return (error);
}
goto tryagain;
}
}
nfs_sndunlock(rep->r_nmp);
if (sotype == SOCK_STREAM) {
aio.iov_base = (void *) &len;
aio.iov_len = sizeof(u_int32_t);
auio.uio_iov = &aio;
auio.uio_iovcnt = 1;
auio.uio_rw = UIO_READ;
auio.uio_offset = 0;
auio.uio_resid = sizeof(u_int32_t);
UIO_SETUP_SYSSPACE(&auio);
do {
rcvflg = MSG_WAITALL;
error = (*so->so_receive)(so, (struct mbuf **)0, &auio,
(struct mbuf **)0, (struct mbuf **)0, &rcvflg);
if (error == EWOULDBLOCK && rep) {
if (rep->r_flags & R_SOFTTERM)
return (EINTR);
/*
* if it seems that the server died after it
* received our request, set EPIPE so that
* we'll reconnect and retransmit requests.
*/
if (rep->r_rexmit >= rep->r_nmp->nm_retry) {
nfsstats.rpctimeouts++;
error = EPIPE;
}
}
} while (error == EWOULDBLOCK);
if (!error && auio.uio_resid > 0) {
/*
* Don't log a 0 byte receive; it means
* that the socket has been closed, and
* can happen during normal operation
* (forcible unmount or Solaris server).
*/
if (auio.uio_resid != sizeof (u_int32_t))
log(LOG_INFO,
"short receive (%lu/%lu) from nfs server %s\n",
(u_long)sizeof(u_int32_t) - auio.uio_resid,
(u_long)sizeof(u_int32_t),
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
error = EPIPE;
}
if (error)
goto errout;
len = ntohl(len) & ~0x80000000;
/*
* This is SERIOUS! We are out of sync with the sender
* and forcing a disconnect/reconnect is all I can do.
*/
if (len > NFS_MAXPACKET) {
log(LOG_ERR, "%s (%d) from nfs server %s\n",
"impossible packet length",
len,
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
error = EFBIG;
goto errout;
}
auio.uio_resid = len;
do {
rcvflg = MSG_WAITALL;
error = (*so->so_receive)(so, (struct mbuf **)0,
&auio, mp, (struct mbuf **)0, &rcvflg);
} while (error == EWOULDBLOCK || error == EINTR ||
error == ERESTART);
if (!error && auio.uio_resid > 0) {
if (len != auio.uio_resid)
log(LOG_INFO,
"short receive (%lu/%d) from nfs server %s\n",
(u_long)len - auio.uio_resid, len,
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
error = EPIPE;
}
} else {
/*
* NB: Since uio_resid is big, MSG_WAITALL is ignored
* and soreceive() will return when it has either a
* control msg or a data msg.
* We have no use for control msg., but must grab them
* and then throw them away so we know what is going
* on.
*/
auio.uio_resid = len = 100000000; /* Anything Big */
/* not need to setup uio_vmspace */
do {
rcvflg = 0;
error = (*so->so_receive)(so, (struct mbuf **)0,
&auio, mp, &control, &rcvflg);
if (control)
m_freem(control);
if (error == EWOULDBLOCK && rep) {
if (rep->r_flags & R_SOFTTERM)
return (EINTR);
}
} while (error == EWOULDBLOCK ||
(!error && *mp == NULL && control));
if ((rcvflg & MSG_EOR) == 0)
printf("Egad!!\n");
if (!error && *mp == NULL)
error = EPIPE;
len -= auio.uio_resid;
}
errout:
if (error && error != EINTR && error != ERESTART) {
m_freem(*mp);
*mp = (struct mbuf *)0;
if (error != EPIPE)
log(LOG_INFO,
"receive error %d from nfs server %s\n",
error,
rep->r_nmp->nm_mountp->mnt_stat.f_mntfromname);
error = nfs_sndlock(rep->r_nmp, rep);
if (!error)
error = nfs_reconnect(rep);
if (!error)
goto tryagain;
else
nfs_sndunlock(rep->r_nmp);
}
} else {
if ((so = rep->r_nmp->nm_so) == NULL)
return (EACCES);
if (so->so_state & SS_ISCONNECTED)
getnam = (struct mbuf **)0;
else
getnam = aname;
auio.uio_resid = len = 1000000;
/* not need to setup uio_vmspace */
do {
rcvflg = 0;
error = (*so->so_receive)(so, getnam, &auio, mp,
(struct mbuf **)0, &rcvflg);
if (error == EWOULDBLOCK &&
(rep->r_flags & R_SOFTTERM))
return (EINTR);
} while (error == EWOULDBLOCK);
len -= auio.uio_resid;
if (!error && *mp == NULL)
error = EPIPE;
}
if (error) {
m_freem(*mp);
*mp = (struct mbuf *)0;
}
return (error);
}
/*
* Implement receipt of reply on a socket.
* We must search through the list of received datagrams matching them
* with outstanding requests using the xid, until ours is found.
*/
/* ARGSUSED */
static int
nfs_reply(struct nfsreq *myrep, struct lwp *lwp)
{
struct nfsreq *rep;
struct nfsmount *nmp = myrep->r_nmp;
int32_t t1;
struct mbuf *mrep, *nam, *md;
u_int32_t rxid, *tl;
char *dpos, *cp2;
int error;
/*
* Loop around until we get our own reply
*/
for (;;) {
/*
* Lock against other receivers so that I don't get stuck in
* sbwait() after someone else has received my reply for me.
* Also necessary for connection based protocols to avoid
* race conditions during a reconnect.
*/
error = nfs_rcvlock(nmp, myrep);
if (error == EALREADY)
return (0);
if (error)
return (error);
/*
* Get the next Rpc reply off the socket
*/
mutex_enter(&nmp->nm_lock);
nmp->nm_waiters++;
mutex_exit(&nmp->nm_lock);
error = nfs_receive(myrep, &nam, &mrep, lwp);
mutex_enter(&nmp->nm_lock);
nmp->nm_waiters--;
cv_signal(&nmp->nm_disconcv);
mutex_exit(&nmp->nm_lock);
if (error) {
nfs_rcvunlock(nmp);
if (nmp->nm_iflag & NFSMNT_DISMNT) {
/*
* Oops, we're going away now..
*/
return error;
}
/*
* Ignore routing errors on connectionless protocols? ?
*/
if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
nmp->nm_so->so_error = 0;
#ifdef DEBUG
printf("nfs_reply: ignoring error %d\n", error);
#endif
continue;
}
return (error);
}
if (nam)
m_freem(nam);
/*
* Get the xid and check that it is an rpc reply
*/
md = mrep;
dpos = mtod(md, void *);
nfsm_dissect(tl, u_int32_t *, 2*NFSX_UNSIGNED);
rxid = *tl++;
if (*tl != rpc_reply) {
nfsstats.rpcinvalid++;
m_freem(mrep);
nfsmout:
nfs_rcvunlock(nmp);
continue;
}
/*
* Loop through the request list to match up the reply
* Iff no match, just drop the datagram
*/
TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
if (rep->r_mrep == NULL && rxid == rep->r_xid) {
/* Found it.. */
rep->r_mrep = mrep;
rep->r_md = md;
rep->r_dpos = dpos;
if (nfsrtton) {
struct rttl *rt;
rt = &nfsrtt.rttl[nfsrtt.pos];
rt->proc = rep->r_procnum;
rt->rto = NFS_RTO(nmp, proct[rep->r_procnum]);
rt->sent = nmp->nm_sent;
rt->cwnd = nmp->nm_cwnd;
rt->srtt = nmp->nm_srtt[proct[rep->r_procnum] - 1];
rt->sdrtt = nmp->nm_sdrtt[proct[rep->r_procnum] - 1];
rt->fsid = nmp->nm_mountp->mnt_stat.f_fsidx;
getmicrotime(&rt->tstamp);
if (rep->r_flags & R_TIMING)
rt->rtt = rep->r_rtt;
else
rt->rtt = 1000000;
nfsrtt.pos = (nfsrtt.pos + 1) % NFSRTTLOGSIZ;
}
/*
* Update congestion window.
* Do the additive increase of
* one rpc/rtt.
*/
if (nmp->nm_cwnd <= nmp->nm_sent) {
nmp->nm_cwnd +=
(NFS_CWNDSCALE * NFS_CWNDSCALE +
(nmp->nm_cwnd >> 1)) / nmp->nm_cwnd;
if (nmp->nm_cwnd > NFS_MAXCWND)
nmp->nm_cwnd = NFS_MAXCWND;
}
rep->r_flags &= ~R_SENT;
nmp->nm_sent -= NFS_CWNDSCALE;
/*
* Update rtt using a gain of 0.125 on the mean
* and a gain of 0.25 on the deviation.
*/
if (rep->r_flags & R_TIMING) {
/*
* Since the timer resolution of
* NFS_HZ is so course, it can often
* result in r_rtt == 0. Since
* r_rtt == N means that the actual
* rtt is between N+dt and N+2-dt ticks,
* add 1.
*/
t1 = rep->r_rtt + 1;
t1 -= (NFS_SRTT(rep) >> 3);
NFS_SRTT(rep) += t1;
if (t1 < 0)
t1 = -t1;
t1 -= (NFS_SDRTT(rep) >> 2);
NFS_SDRTT(rep) += t1;
}
nmp->nm_timeouts = 0;
break;
}
}
nfs_rcvunlock(nmp);
/*
* If not matched to a request, drop it.
* If it's mine, get out.
*/
if (rep == 0) {
nfsstats.rpcunexpected++;
m_freem(mrep);
} else if (rep == myrep) {
if (rep->r_mrep == NULL)
panic("nfsreply nil");
return (0);
}
}
}
/*
* nfs_request - goes something like this
* - fill in request struct
* - links it into list
* - calls nfs_send() for first transmit
* - calls nfs_receive() to get reply
* - break down rpc header and return with nfs reply pointed to
* by mrep or error
* nb: always frees up mreq mbuf list
*/
int
nfs_request(np, mrest, procnum, lwp, cred, mrp, mdp, dposp, rexmitp)
struct nfsnode *np;
struct mbuf *mrest;
int procnum;
struct lwp *lwp;
kauth_cred_t cred;
struct mbuf **mrp;
struct mbuf **mdp;
char **dposp;
int *rexmitp;
{
struct mbuf *m, *mrep;
struct nfsreq *rep;
u_int32_t *tl;
int i;
struct nfsmount *nmp = VFSTONFS(np->n_vnode->v_mount);
struct mbuf *md, *mheadend;
char nickv[RPCX_NICKVERF];
time_t waituntil;
char *dpos, *cp2;
int t1, s, error = 0, mrest_len, auth_len, auth_type;
int trylater_delay = NFS_TRYLATERDEL, failed_auth = 0;
int verf_len, verf_type;
u_int32_t xid;
char *auth_str, *verf_str;
NFSKERBKEY_T key; /* save session key */
kauth_cred_t acred;
struct mbuf *mrest_backup = NULL;
kauth_cred_t origcred = NULL; /* XXX: gcc */
bool retry_cred = true;
bool use_opencred = (np->n_flag & NUSEOPENCRED) != 0;
if (rexmitp != NULL)
*rexmitp = 0;
acred = kauth_cred_alloc();
tryagain_cred:
KASSERT(cred != NULL);
rep = kmem_alloc(sizeof(*rep), KM_SLEEP);
rep->r_nmp = nmp;
KASSERT(lwp == NULL || lwp == curlwp);
rep->r_lwp = lwp;
rep->r_procnum = procnum;
i = 0;
m = mrest;
while (m) {
i += m->m_len;
m = m->m_next;
}
mrest_len = i;
/*
* Get the RPC header with authorization.
*/
kerbauth:
verf_str = auth_str = (char *)0;
if (nmp->nm_flag & NFSMNT_KERB) {
verf_str = nickv;
verf_len = sizeof (nickv);
auth_type = RPCAUTH_KERB4;
memset((void *)key, 0, sizeof (key));
if (failed_auth || nfs_getnickauth(nmp, cred, &auth_str,
&auth_len, verf_str, verf_len)) {
error = nfs_getauth(nmp, rep, cred, &auth_str,
&auth_len, verf_str, &verf_len, key);
if (error) {
kmem_free(rep, sizeof(*rep));
m_freem(mrest);
KASSERT(kauth_cred_getrefcnt(acred) == 1);
kauth_cred_free(acred);
return (error);
}
}
retry_cred = false;
} else {
/* AUTH_UNIX */
uid_t uid;
gid_t gid;
/*
* on the most unix filesystems, permission checks are
* done when the file is open(2)'ed.
* ie. once a file is successfully open'ed,
* following i/o operations never fail with EACCES.
* we try to follow the semantics as far as possible.
*
* note that we expect that the nfs server always grant
* accesses by the file's owner.
*/
origcred = cred;
switch (procnum) {
case NFSPROC_READ:
case NFSPROC_WRITE:
case NFSPROC_COMMIT:
uid = np->n_vattr->va_uid;
gid = np->n_vattr->va_gid;
if (kauth_cred_geteuid(cred) == uid &&
kauth_cred_getegid(cred) == gid) {
retry_cred = false;
break;
}
if (use_opencred)
break;
kauth_cred_setuid(acred, uid);
kauth_cred_seteuid(acred, uid);
kauth_cred_setsvuid(acred, uid);
kauth_cred_setgid(acred, gid);
kauth_cred_setegid(acred, gid);
kauth_cred_setsvgid(acred, gid);
cred = acred;
break;
default:
retry_cred = false;
break;
}
/*
* backup mbuf chain if we can need it later to retry.
*
* XXX maybe we can keep a direct reference to
* mrest without doing m_copym, but it's ...ugly.
*/
if (retry_cred)
mrest_backup = m_copym(mrest, 0, M_COPYALL, M_WAIT);
auth_type = RPCAUTH_UNIX;
/* XXX elad - ngroups */
auth_len = (((kauth_cred_ngroups(cred) > nmp->nm_numgrps) ?
nmp->nm_numgrps : kauth_cred_ngroups(cred)) << 2) +
5 * NFSX_UNSIGNED;
}
m = nfsm_rpchead(cred, nmp->nm_flag, procnum, auth_type, auth_len,
auth_str, verf_len, verf_str, mrest, mrest_len, &mheadend, &xid);
if (auth_str)
free(auth_str, M_TEMP);
/*
* For stream protocols, insert a Sun RPC Record Mark.
*/
if (nmp->nm_sotype == SOCK_STREAM) {
M_PREPEND(m, NFSX_UNSIGNED, M_WAIT);
*mtod(m, u_int32_t *) = htonl(0x80000000 |
(m->m_pkthdr.len - NFSX_UNSIGNED));
}
rep->r_mreq = m;
rep->r_xid = xid;
tryagain:
if (nmp->nm_flag & NFSMNT_SOFT)
rep->r_retry = nmp->nm_retry;
else
rep->r_retry = NFS_MAXREXMIT + 1; /* past clip limit */
rep->r_rtt = rep->r_rexmit = 0;
if (proct[procnum] > 0)
rep->r_flags = R_TIMING;
else
rep->r_flags = 0;
rep->r_mrep = NULL;
/*
* Do the client side RPC.
*/
nfsstats.rpcrequests++;
/*
* Chain request into list of outstanding requests. Be sure
* to put it LAST so timer finds oldest requests first.
*/
s = splsoftnet();
TAILQ_INSERT_TAIL(&nfs_reqq, rep, r_chain);
nfs_timer_start();
/*
* If backing off another request or avoiding congestion, don't
* send this one now but let timer do it. If not timing a request,
* do it now.
*/
if (nmp->nm_so && (nmp->nm_sotype != SOCK_DGRAM ||
(nmp->nm_flag & NFSMNT_DUMBTIMR) || nmp->nm_sent < nmp->nm_cwnd)) {
splx(s);
if (nmp->nm_soflags & PR_CONNREQUIRED)
error = nfs_sndlock(nmp, rep);
if (!error) {
m = m_copym(rep->r_mreq, 0, M_COPYALL, M_WAIT);
error = nfs_send(nmp->nm_so, nmp->nm_nam, m, rep, lwp);
if (nmp->nm_soflags & PR_CONNREQUIRED)
nfs_sndunlock(nmp);
}
if (!error && (rep->r_flags & R_MUSTRESEND) == 0) {
nmp->nm_sent += NFS_CWNDSCALE;
rep->r_flags |= R_SENT;
}
} else {
splx(s);
rep->r_rtt = -1;
}
/*
* Wait for the reply from our send or the timer's.
*/
if (!error || error == EPIPE)
error = nfs_reply(rep, lwp);
/*
* RPC done, unlink the request.
*/
s = splsoftnet();
TAILQ_REMOVE(&nfs_reqq, rep, r_chain);
splx(s);
/*
* Decrement the outstanding request count.
*/
if (rep->r_flags & R_SENT) {
rep->r_flags &= ~R_SENT; /* paranoia */
nmp->nm_sent -= NFS_CWNDSCALE;
}
if (rexmitp != NULL) {
int rexmit;
if (nmp->nm_sotype != SOCK_DGRAM)
rexmit = (rep->r_flags & R_REXMITTED) != 0;
else
rexmit = rep->r_rexmit;
*rexmitp = rexmit;
}
/*
* If there was a successful reply and a tprintf msg.
* tprintf a response.
*/
if (!error && (rep->r_flags & R_TPRINTFMSG))
nfs_msg(rep->r_lwp, nmp->nm_mountp->mnt_stat.f_mntfromname,
"is alive again");
mrep = rep->r_mrep;
md = rep->r_md;
dpos = rep->r_dpos;
if (error)
goto nfsmout;
/*
* break down the rpc header and check if ok
*/
nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
if (*tl++ == rpc_msgdenied) {
if (*tl == rpc_mismatch)
error = EOPNOTSUPP;
else if ((nmp->nm_flag & NFSMNT_KERB) && *tl++ == rpc_autherr) {
if (!failed_auth) {
failed_auth++;
mheadend->m_next = (struct mbuf *)0;
m_freem(mrep);
m_freem(rep->r_mreq);
goto kerbauth;
} else
error = EAUTH;
} else
error = EACCES;
m_freem(mrep);
goto nfsmout;
}
/*
* Grab any Kerberos verifier, otherwise just throw it away.
*/
verf_type = fxdr_unsigned(int, *tl++);
i = fxdr_unsigned(int32_t, *tl);
if ((nmp->nm_flag & NFSMNT_KERB) && verf_type == RPCAUTH_KERB4) {
error = nfs_savenickauth(nmp, cred, i, key, &md, &dpos, mrep);
if (error)
goto nfsmout;
} else if (i > 0)
nfsm_adv(nfsm_rndup(i));
nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
/* 0 == ok */
if (*tl == 0) {
nfsm_dissect(tl, u_int32_t *, NFSX_UNSIGNED);
if (*tl != 0) {
error = fxdr_unsigned(int, *tl);
switch (error) {
case NFSERR_PERM:
error = EPERM;
break;
case NFSERR_NOENT:
error = ENOENT;
break;
case NFSERR_IO:
error = EIO;
break;
case NFSERR_NXIO:
error = ENXIO;
break;
case NFSERR_ACCES:
error = EACCES;
if (!retry_cred)
break;
m_freem(mrep);
m_freem(rep->r_mreq);
kmem_free(rep, sizeof(*rep));
use_opencred = !use_opencred;
if (mrest_backup == NULL) {
/* m_copym failure */
KASSERT(
kauth_cred_getrefcnt(acred) == 1);
kauth_cred_free(acred);
return ENOMEM;
}
mrest = mrest_backup;
mrest_backup = NULL;
cred = origcred;
error = 0;
retry_cred = false;
goto tryagain_cred;
case NFSERR_EXIST:
error = EEXIST;
break;
case NFSERR_XDEV:
error = EXDEV;
break;
case NFSERR_NODEV:
error = ENODEV;
break;
case NFSERR_NOTDIR:
error = ENOTDIR;
break;
case NFSERR_ISDIR:
error = EISDIR;
break;
case NFSERR_INVAL:
error = EINVAL;
break;
case NFSERR_FBIG:
error = EFBIG;
break;
case NFSERR_NOSPC:
error = ENOSPC;
break;
case NFSERR_ROFS:
error = EROFS;
break;
case NFSERR_MLINK:
error = EMLINK;
break;
case NFSERR_TIMEDOUT:
error = ETIMEDOUT;
break;
case NFSERR_NAMETOL:
error = ENAMETOOLONG;
break;
case NFSERR_NOTEMPTY:
error = ENOTEMPTY;
break;
case NFSERR_DQUOT:
error = EDQUOT;
break;
case NFSERR_STALE:
/*
* If the File Handle was stale, invalidate the
* lookup cache, just in case.
*/
error = ESTALE;
cache_purge(NFSTOV(np));
break;
case NFSERR_REMOTE:
error = EREMOTE;
break;
case NFSERR_WFLUSH:
case NFSERR_BADHANDLE:
case NFSERR_NOT_SYNC:
case NFSERR_BAD_COOKIE:
error = EINVAL;
break;
case NFSERR_NOTSUPP:
error = ENOTSUP;
break;
case NFSERR_TOOSMALL:
case NFSERR_SERVERFAULT:
case NFSERR_BADTYPE:
error = EINVAL;
break;
case NFSERR_TRYLATER:
if ((nmp->nm_flag & NFSMNT_NFSV3) == 0)
break;
m_freem(mrep);
error = 0;
waituntil = time_second + trylater_delay;
while (time_second < waituntil) {
kpause("nfstrylater", false, hz, NULL);
}
trylater_delay *= NFS_TRYLATERDELMUL;
if (trylater_delay > NFS_TRYLATERDELMAX)
trylater_delay = NFS_TRYLATERDELMAX;
/*
* RFC1813:
* The client should wait and then try
* the request with a new RPC transaction ID.
*/
nfs_renewxid(rep);
goto tryagain;
default:
#ifdef DIAGNOSTIC
printf("Invalid rpc error code %d\n", error);
#endif
error = EINVAL;
break;
}
if (nmp->nm_flag & NFSMNT_NFSV3) {
*mrp = mrep;
*mdp = md;
*dposp = dpos;
error |= NFSERR_RETERR;
} else
m_freem(mrep);
goto nfsmout;
}
/*
* note which credential worked to minimize number of retries.
*/
if (use_opencred)
np->n_flag |= NUSEOPENCRED;
else
np->n_flag &= ~NUSEOPENCRED;
*mrp = mrep;
*mdp = md;
*dposp = dpos;
KASSERT(error == 0);
goto nfsmout;
}
m_freem(mrep);
error = EPROTONOSUPPORT;
nfsmout:
KASSERT(kauth_cred_getrefcnt(acred) == 1);
kauth_cred_free(acred);
m_freem(rep->r_mreq);
kmem_free(rep, sizeof(*rep));
m_freem(mrest_backup);
return (error);
}
#endif /* NFS */
/*
* Generate the rpc reply header
* siz arg. is used to decide if adding a cluster is worthwhile
*/
int
nfs_rephead(siz, nd, slp, err, cache, frev, mrq, mbp, bposp)
int siz;
struct nfsrv_descript *nd;
struct nfssvc_sock *slp;
int err;
int cache;
u_quad_t *frev;
struct mbuf **mrq;
struct mbuf **mbp;
char **bposp;
{
u_int32_t *tl;
struct mbuf *mreq;
char *bpos;
struct mbuf *mb;
mreq = m_gethdr(M_WAIT, MT_DATA);
MCLAIM(mreq, &nfs_mowner);
mb = mreq;
/*
* If this is a big reply, use a cluster else
* try and leave leading space for the lower level headers.
*/
siz += RPC_REPLYSIZ;
if (siz >= max_datalen) {
m_clget(mreq, M_WAIT);
} else
mreq->m_data += max_hdr;
tl = mtod(mreq, u_int32_t *);
mreq->m_len = 6 * NFSX_UNSIGNED;
bpos = ((char *)tl) + mreq->m_len;
*tl++ = txdr_unsigned(nd->nd_retxid);
*tl++ = rpc_reply;
if (err == ERPCMISMATCH || (err & NFSERR_AUTHERR)) {
*tl++ = rpc_msgdenied;
if (err & NFSERR_AUTHERR) {
*tl++ = rpc_autherr;
*tl = txdr_unsigned(err & ~NFSERR_AUTHERR);
mreq->m_len -= NFSX_UNSIGNED;
bpos -= NFSX_UNSIGNED;
} else {
*tl++ = rpc_mismatch;
*tl++ = txdr_unsigned(RPC_VER2);
*tl = txdr_unsigned(RPC_VER2);
}
} else {
*tl++ = rpc_msgaccepted;
/*
* For Kerberos authentication, we must send the nickname
* verifier back, otherwise just RPCAUTH_NULL.
*/
if (nd->nd_flag & ND_KERBFULL) {
struct nfsuid *nuidp;
struct timeval ktvin, ktvout;
memset(&ktvout, 0, sizeof ktvout); /* XXX gcc */
LIST_FOREACH(nuidp,
NUIDHASH(slp, kauth_cred_geteuid(nd->nd_cr)),
nu_hash) {
if (kauth_cred_geteuid(nuidp->nu_cr) ==
kauth_cred_geteuid(nd->nd_cr) &&
(!nd->nd_nam2 || netaddr_match(
NU_NETFAM(nuidp), &nuidp->nu_haddr,
nd->nd_nam2)))
break;
}
if (nuidp) {
ktvin.tv_sec =
txdr_unsigned(nuidp->nu_timestamp.tv_sec
- 1);
ktvin.tv_usec =
txdr_unsigned(nuidp->nu_timestamp.tv_usec);
/*
* Encrypt the timestamp in ecb mode using the
* session key.
*/
#ifdef NFSKERB
XXX
#endif
*tl++ = rpc_auth_kerb;
*tl++ = txdr_unsigned(3 * NFSX_UNSIGNED);
*tl = ktvout.tv_sec;
nfsm_build(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
*tl++ = ktvout.tv_usec;
*tl++ = txdr_unsigned(
kauth_cred_geteuid(nuidp->nu_cr));
} else {
*tl++ = 0;
*tl++ = 0;
}
} else {
*tl++ = 0;
*tl++ = 0;
}
switch (err) {
case EPROGUNAVAIL:
*tl = txdr_unsigned(RPC_PROGUNAVAIL);
break;
case EPROGMISMATCH:
*tl = txdr_unsigned(RPC_PROGMISMATCH);
nfsm_build(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
*tl++ = txdr_unsigned(2);
*tl = txdr_unsigned(3);
break;
case EPROCUNAVAIL:
*tl = txdr_unsigned(RPC_PROCUNAVAIL);
break;
case EBADRPC:
*tl = txdr_unsigned(RPC_GARBAGE);
break;
default:
*tl = 0;
if (err != NFSERR_RETVOID) {
nfsm_build(tl, u_int32_t *, NFSX_UNSIGNED);
if (err)
*tl = txdr_unsigned(nfsrv_errmap(nd, err));
else
*tl = 0;
}
break;
};
}
if (mrq != NULL)
*mrq = mreq;
*mbp = mb;
*bposp = bpos;
if (err != 0 && err != NFSERR_RETVOID)
nfsstats.srvrpc_errs++;
return (0);
}
static void
nfs_timer_schedule(void)
{
callout_schedule(&nfs_timer_ch, nfs_ticks);
}
void
nfs_timer_start(void)
{
if (callout_pending(&nfs_timer_ch))
return;
nfs_timer_start_ev.ev_count++;
nfs_timer_schedule();
}
void
nfs_timer_init(void)
{
callout_init(&nfs_timer_ch, 0);
callout_setfunc(&nfs_timer_ch, nfs_timer, NULL);
evcnt_attach_dynamic(&nfs_timer_ev, EVCNT_TYPE_MISC, NULL,
"nfs", "timer");
evcnt_attach_dynamic(&nfs_timer_start_ev, EVCNT_TYPE_MISC, NULL,
"nfs", "timer start");
evcnt_attach_dynamic(&nfs_timer_stop_ev, EVCNT_TYPE_MISC, NULL,
"nfs", "timer stop");
}
/*
* Nfs timer routine
* Scan the nfsreq list and retranmit any requests that have timed out
* To avoid retransmission attempts on STREAM sockets (in the future) make
* sure to set the r_retry field to 0 (implies nm_retry == 0).
*/
void
nfs_timer(void *arg)
{
struct nfsreq *rep;
struct mbuf *m;
struct socket *so;
struct nfsmount *nmp;
int timeo;
int s, error;
bool more = false;
#ifdef NFSSERVER
struct timeval tv;
struct nfssvc_sock *slp;
u_quad_t cur_usec;
#endif
nfs_timer_ev.ev_count++;
s = splsoftnet();
TAILQ_FOREACH(rep, &nfs_reqq, r_chain) {
more = true;
nmp = rep->r_nmp;
if (rep->r_mrep || (rep->r_flags & R_SOFTTERM))
continue;
if (nfs_sigintr(nmp, rep, rep->r_lwp)) {
rep->r_flags |= R_SOFTTERM;
continue;
}
if (rep->r_rtt >= 0) {
rep->r_rtt++;
if (nmp->nm_flag & NFSMNT_DUMBTIMR)
timeo = nmp->nm_timeo;
else
timeo = NFS_RTO(nmp, proct[rep->r_procnum]);
if (nmp->nm_timeouts > 0)
timeo *= nfs_backoff[nmp->nm_timeouts - 1];
if (rep->r_rtt <= timeo)
continue;
if (nmp->nm_timeouts <
(sizeof(nfs_backoff) / sizeof(nfs_backoff[0])))
nmp->nm_timeouts++;
}
/*
* Check for server not responding
*/
if ((rep->r_flags & R_TPRINTFMSG) == 0 &&
rep->r_rexmit > nmp->nm_deadthresh) {
nfs_msg(rep->r_lwp,
nmp->nm_mountp->mnt_stat.f_mntfromname,
"not responding");
rep->r_flags |= R_TPRINTFMSG;
}
if (rep->r_rexmit >= rep->r_retry) { /* too many */
nfsstats.rpctimeouts++;
rep->r_flags |= R_SOFTTERM;
continue;
}
if (nmp->nm_sotype != SOCK_DGRAM) {
if (++rep->r_rexmit > NFS_MAXREXMIT)
rep->r_rexmit = NFS_MAXREXMIT;
continue;
}
if ((so = nmp->nm_so) == NULL)
continue;
/*
* If there is enough space and the window allows..
* Resend it
* Set r_rtt to -1 in case we fail to send it now.
*/
solock(so);
rep->r_rtt = -1;
if (sbspace(&so->so_snd) >= rep->r_mreq->m_pkthdr.len &&
((nmp->nm_flag & NFSMNT_DUMBTIMR) ||
(rep->r_flags & R_SENT) ||
nmp->nm_sent < nmp->nm_cwnd) &&
(m = m_copym(rep->r_mreq, 0, M_COPYALL, M_DONTWAIT))){
if (so->so_state & SS_ISCONNECTED)
error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
(struct mbuf *)0, (struct mbuf *)0, (struct lwp *)0);
else
error = (*so->so_proto->pr_usrreq)(so, PRU_SEND, m,
nmp->nm_nam, (struct mbuf *)0, (struct lwp *)0);
if (error) {
if (NFSIGNORE_SOERROR(nmp->nm_soflags, error)) {
#ifdef DEBUG
printf("nfs_timer: ignoring error %d\n",
error);
#endif
so->so_error = 0;
}
} else {
/*
* Iff first send, start timing
* else turn timing off, backoff timer
* and divide congestion window by 2.
*/
if (rep->r_flags & R_SENT) {
rep->r_flags &= ~R_TIMING;
if (++rep->r_rexmit > NFS_MAXREXMIT)
rep->r_rexmit = NFS_MAXREXMIT;
nmp->nm_cwnd >>= 1;
if (nmp->nm_cwnd < NFS_CWNDSCALE)
nmp->nm_cwnd = NFS_CWNDSCALE;
nfsstats.rpcretries++;
} else {
rep->r_flags |= R_SENT;
nmp->nm_sent += NFS_CWNDSCALE;
}
rep->r_rtt = 0;
}
}
sounlock(so);
}
splx(s);
#ifdef NFSSERVER
/*
* Scan the write gathering queues for writes that need to be
* completed now.
*/
getmicrotime(&tv);
cur_usec = (u_quad_t)tv.tv_sec * 1000000 + (u_quad_t)tv.tv_usec;
mutex_enter(&nfsd_lock);
TAILQ_FOREACH(slp, &nfssvc_sockhead, ns_chain) {
struct nfsrv_descript *nd;
nd = LIST_FIRST(&slp->ns_tq);
if (nd != NULL) {
if (nd->nd_time <= cur_usec) {
nfsrv_wakenfsd_locked(slp);
}
more = true;
}
}
mutex_exit(&nfsd_lock);
#endif /* NFSSERVER */
if (more) {
nfs_timer_schedule();
} else {
nfs_timer_stop_ev.ev_count++;
}
}
/*
* Test for a termination condition pending on the process.
* This is used for NFSMNT_INT mounts.
*/
int
nfs_sigintr(nmp, rep, l)
struct nfsmount *nmp;
struct nfsreq *rep;
struct lwp *l;
{
sigset_t ss;
if (rep && (rep->r_flags & R_SOFTTERM))
return (EINTR);
if (!(nmp->nm_flag & NFSMNT_INT))
return (0);
if (l) {
sigpending1(l, &ss);
#if 0
sigminusset(&l->l_proc->p_sigctx.ps_sigignore, &ss);
#endif
if (sigismember(&ss, SIGINT) || sigismember(&ss, SIGTERM) ||
sigismember(&ss, SIGKILL) || sigismember(&ss, SIGHUP) ||
sigismember(&ss, SIGQUIT))
return (EINTR);
}
return (0);
}
#ifdef NFS
/*
* Lock a socket against others.
* Necessary for STREAM sockets to ensure you get an entire rpc request/reply
* and also to avoid race conditions between the processes with nfs requests
* in progress when a reconnect is necessary.
*/
static int
nfs_sndlock(struct nfsmount *nmp, struct nfsreq *rep)
{
struct lwp *l;
int timeo = 0;
bool catch = false;
int error = 0;
if (rep) {
l = rep->r_lwp;
if (rep->r_nmp->nm_flag & NFSMNT_INT)
catch = true;
} else
l = NULL;
mutex_enter(&nmp->nm_lock);
while ((nmp->nm_iflag & NFSMNT_SNDLOCK) != 0) {
if (rep && nfs_sigintr(rep->r_nmp, rep, l)) {
error = EINTR;
goto quit;
}
if (catch) {
cv_timedwait_sig(&nmp->nm_sndcv, &nmp->nm_lock, timeo);
} else {
cv_timedwait(&nmp->nm_sndcv, &nmp->nm_lock, timeo);
}
if (catch) {
catch = false;
timeo = 2 * hz;
}
}
nmp->nm_iflag |= NFSMNT_SNDLOCK;
quit:
mutex_exit(&nmp->nm_lock);
return error;
}
/*
* Unlock the stream socket for others.
*/
static void
nfs_sndunlock(struct nfsmount *nmp)
{
mutex_enter(&nmp->nm_lock);
if ((nmp->nm_iflag & NFSMNT_SNDLOCK) == 0)
panic("nfs sndunlock");
nmp->nm_iflag &= ~NFSMNT_SNDLOCK;
cv_signal(&nmp->nm_sndcv);
mutex_exit(&nmp->nm_lock);
}
#endif /* NFS */
static int
nfs_rcvlock(struct nfsmount *nmp, struct nfsreq *rep)
{
int *flagp = &nmp->nm_iflag;
int slptimeo = 0;
bool catch;
int error = 0;
KASSERT(nmp == rep->r_nmp);
catch = (nmp->nm_flag & NFSMNT_INT) != 0;
mutex_enter(&nmp->nm_lock);
while (/* CONSTCOND */ true) {
if (*flagp & NFSMNT_DISMNT) {
cv_signal(&nmp->nm_disconcv);
error = EIO;
break;
}
/* If our reply was received while we were sleeping,
* then just return without taking the lock to avoid a
* situation where a single iod could 'capture' the
* receive lock.
*/
if (rep->r_mrep != NULL) {
error = EALREADY;
break;
}
if (nfs_sigintr(rep->r_nmp, rep, rep->r_lwp)) {
error = EINTR;
break;
}
if ((*flagp & NFSMNT_RCVLOCK) == 0) {
*flagp |= NFSMNT_RCVLOCK;
break;
}
if (catch) {
cv_timedwait_sig(&nmp->nm_rcvcv, &nmp->nm_lock,
slptimeo);
} else {
cv_timedwait(&nmp->nm_rcvcv, &nmp->nm_lock,
slptimeo);
}
if (catch) {
catch = false;
slptimeo = 2 * hz;
}
}
mutex_exit(&nmp->nm_lock);
return error;
}
/*
* Unlock the stream socket for others.
*/
static void
nfs_rcvunlock(struct nfsmount *nmp)
{
mutex_enter(&nmp->nm_lock);
if ((nmp->nm_iflag & NFSMNT_RCVLOCK) == 0)
panic("nfs rcvunlock");
nmp->nm_iflag &= ~NFSMNT_RCVLOCK;
cv_broadcast(&nmp->nm_rcvcv);
mutex_exit(&nmp->nm_lock);
}
/*
* Parse an RPC request
* - verify it
* - allocate and fill in the cred.
*/
int
nfs_getreq(nd, nfsd, has_header)
struct nfsrv_descript *nd;
struct nfsd *nfsd;
int has_header;
{
int len, i;
u_int32_t *tl;
int32_t t1;
struct uio uio;
struct iovec iov;
char *dpos, *cp2, *cp;
u_int32_t nfsvers, auth_type;
uid_t nickuid;
int error = 0, ticklen;
struct mbuf *mrep, *md;
struct nfsuid *nuidp;
struct timeval tvin, tvout;
memset(&tvout, 0, sizeof tvout); /* XXX gcc */
KASSERT(nd->nd_cr == NULL);
mrep = nd->nd_mrep;
md = nd->nd_md;
dpos = nd->nd_dpos;
if (has_header) {
nfsm_dissect(tl, u_int32_t *, 10 * NFSX_UNSIGNED);
nd->nd_retxid = fxdr_unsigned(u_int32_t, *tl++);
if (*tl++ != rpc_call) {
m_freem(mrep);
return (EBADRPC);
}
} else
nfsm_dissect(tl, u_int32_t *, 8 * NFSX_UNSIGNED);
nd->nd_repstat = 0;
nd->nd_flag = 0;
if (*tl++ != rpc_vers) {
nd->nd_repstat = ERPCMISMATCH;
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
if (*tl != nfs_prog) {
nd->nd_repstat = EPROGUNAVAIL;
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
tl++;
nfsvers = fxdr_unsigned(u_int32_t, *tl++);
if (nfsvers < NFS_VER2 || nfsvers > NFS_VER3) {
nd->nd_repstat = EPROGMISMATCH;
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
if (nfsvers == NFS_VER3)
nd->nd_flag = ND_NFSV3;
nd->nd_procnum = fxdr_unsigned(u_int32_t, *tl++);
if (nd->nd_procnum == NFSPROC_NULL)
return (0);
if (nd->nd_procnum > NFSPROC_COMMIT ||
(!nd->nd_flag && nd->nd_procnum > NFSV2PROC_STATFS)) {
nd->nd_repstat = EPROCUNAVAIL;
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
if ((nd->nd_flag & ND_NFSV3) == 0)
nd->nd_procnum = nfsv3_procid[nd->nd_procnum];
auth_type = *tl++;
len = fxdr_unsigned(int, *tl++);
if (len < 0 || len > RPCAUTH_MAXSIZ) {
m_freem(mrep);
return (EBADRPC);
}
nd->nd_flag &= ~ND_KERBAUTH;
/*
* Handle auth_unix or auth_kerb.
*/
if (auth_type == rpc_auth_unix) {
uid_t uid;
gid_t gid;
nd->nd_cr = kauth_cred_alloc();
len = fxdr_unsigned(int, *++tl);
if (len < 0 || len > NFS_MAXNAMLEN) {
m_freem(mrep);
error = EBADRPC;
goto errout;
}
nfsm_adv(nfsm_rndup(len));
nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
uid = fxdr_unsigned(uid_t, *tl++);
gid = fxdr_unsigned(gid_t, *tl++);
kauth_cred_setuid(nd->nd_cr, uid);
kauth_cred_seteuid(nd->nd_cr, uid);
kauth_cred_setsvuid(nd->nd_cr, uid);
kauth_cred_setgid(nd->nd_cr, gid);
kauth_cred_setegid(nd->nd_cr, gid);
kauth_cred_setsvgid(nd->nd_cr, gid);
len = fxdr_unsigned(int, *tl);
if (len < 0 || len > RPCAUTH_UNIXGIDS) {
m_freem(mrep);
error = EBADRPC;
goto errout;
}
nfsm_dissect(tl, u_int32_t *, (len + 2) * NFSX_UNSIGNED);
if (len > 0) {
size_t grbuf_size = min(len, NGROUPS) * sizeof(gid_t);
gid_t *grbuf = kmem_alloc(grbuf_size, KM_SLEEP);
for (i = 0; i < len; i++) {
if (i < NGROUPS) /* XXX elad */
grbuf[i] = fxdr_unsigned(gid_t, *tl++);
else
tl++;
}
kauth_cred_setgroups(nd->nd_cr, grbuf,
min(len, NGROUPS), -1, UIO_SYSSPACE);
kmem_free(grbuf, grbuf_size);
}
len = fxdr_unsigned(int, *++tl);
if (len < 0 || len > RPCAUTH_MAXSIZ) {
m_freem(mrep);
error = EBADRPC;
goto errout;
}
if (len > 0)
nfsm_adv(nfsm_rndup(len));
} else if (auth_type == rpc_auth_kerb) {
switch (fxdr_unsigned(int, *tl++)) {
case RPCAKN_FULLNAME:
ticklen = fxdr_unsigned(int, *tl);
*((u_int32_t *)nfsd->nfsd_authstr) = *tl;
uio.uio_resid = nfsm_rndup(ticklen) + NFSX_UNSIGNED;
nfsd->nfsd_authlen = uio.uio_resid + NFSX_UNSIGNED;
if (uio.uio_resid > (len - 2 * NFSX_UNSIGNED)) {
m_freem(mrep);
error = EBADRPC;
goto errout;
}
uio.uio_offset = 0;
uio.uio_iov = &iov;
uio.uio_iovcnt = 1;
UIO_SETUP_SYSSPACE(&uio);
iov.iov_base = (void *)&nfsd->nfsd_authstr[4];
iov.iov_len = RPCAUTH_MAXSIZ - 4;
nfsm_mtouio(&uio, uio.uio_resid);
nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
if (*tl++ != rpc_auth_kerb ||
fxdr_unsigned(int, *tl) != 4 * NFSX_UNSIGNED) {
printf("Bad kerb verifier\n");
nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
nfsm_dissect(cp, void *, 4 * NFSX_UNSIGNED);
tl = (u_int32_t *)cp;
if (fxdr_unsigned(int, *tl) != RPCAKN_FULLNAME) {
printf("Not fullname kerb verifier\n");
nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
cp += NFSX_UNSIGNED;
memcpy(nfsd->nfsd_verfstr, cp, 3 * NFSX_UNSIGNED);
nfsd->nfsd_verflen = 3 * NFSX_UNSIGNED;
nd->nd_flag |= ND_KERBFULL;
nfsd->nfsd_flag |= NFSD_NEEDAUTH;
break;
case RPCAKN_NICKNAME:
if (len != 2 * NFSX_UNSIGNED) {
printf("Kerb nickname short\n");
nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADCRED);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
nickuid = fxdr_unsigned(uid_t, *tl);
nfsm_dissect(tl, u_int32_t *, 2 * NFSX_UNSIGNED);
if (*tl++ != rpc_auth_kerb ||
fxdr_unsigned(int, *tl) != 3 * NFSX_UNSIGNED) {
printf("Kerb nick verifier bad\n");
nd->nd_repstat = (NFSERR_AUTHERR|AUTH_BADVERF);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
nfsm_dissect(tl, u_int32_t *, 3 * NFSX_UNSIGNED);
tvin.tv_sec = *tl++;
tvin.tv_usec = *tl;
LIST_FOREACH(nuidp, NUIDHASH(nfsd->nfsd_slp, nickuid),
nu_hash) {
if (kauth_cred_geteuid(nuidp->nu_cr) == nickuid &&
(!nd->nd_nam2 ||
netaddr_match(NU_NETFAM(nuidp),
&nuidp->nu_haddr, nd->nd_nam2)))
break;
}
if (!nuidp) {
nd->nd_repstat =
(NFSERR_AUTHERR|AUTH_REJECTCRED);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
/*
* Now, decrypt the timestamp using the session key
* and validate it.
*/
#ifdef NFSKERB
XXX
#endif
tvout.tv_sec = fxdr_unsigned(long, tvout.tv_sec);
tvout.tv_usec = fxdr_unsigned(long, tvout.tv_usec);
if (nuidp->nu_expire < time_second ||
nuidp->nu_timestamp.tv_sec > tvout.tv_sec ||
(nuidp->nu_timestamp.tv_sec == tvout.tv_sec &&
nuidp->nu_timestamp.tv_usec > tvout.tv_usec)) {
nuidp->nu_expire = 0;
nd->nd_repstat =
(NFSERR_AUTHERR|AUTH_REJECTVERF);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
kauth_cred_hold(nuidp->nu_cr);
nd->nd_cr = nuidp->nu_cr;
nd->nd_flag |= ND_KERBNICK;
}
} else {
nd->nd_repstat = (NFSERR_AUTHERR | AUTH_REJECTCRED);
nd->nd_procnum = NFSPROC_NOOP;
return (0);
}
nd->nd_md = md;
nd->nd_dpos = dpos;
KASSERT((nd->nd_cr == NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) != 0)
|| (nd->nd_cr != NULL && (nfsd->nfsd_flag & NFSD_NEEDAUTH) == 0));
return (0);
nfsmout:
errout:
KASSERT(error != 0);
if (nd->nd_cr != NULL) {
kauth_cred_free(nd->nd_cr);
nd->nd_cr = NULL;
}
return (error);
}
int
nfs_msg(l, server, msg)
struct lwp *l;
const char *server, *msg;
{
tpr_t tpr;
if (l)
tpr = tprintf_open(l->l_proc);
else
tpr = NULL;
tprintf(tpr, "nfs server %s: %s\n", server, msg);
tprintf_close(tpr);
return (0);
}
#ifdef NFSSERVER
int (*nfsrv3_procs[NFS_NPROCS]) __P((struct nfsrv_descript *,
struct nfssvc_sock *, struct lwp *,
struct mbuf **)) = {
nfsrv_null,
nfsrv_getattr,
nfsrv_setattr,
nfsrv_lookup,
nfsrv3_access,
nfsrv_readlink,
nfsrv_read,
nfsrv_write,
nfsrv_create,
nfsrv_mkdir,
nfsrv_symlink,
nfsrv_mknod,
nfsrv_remove,
nfsrv_rmdir,
nfsrv_rename,
nfsrv_link,
nfsrv_readdir,
nfsrv_readdirplus,
nfsrv_statfs,
nfsrv_fsinfo,
nfsrv_pathconf,
nfsrv_commit,
nfsrv_noop
};
/*
* Socket upcall routine for the nfsd sockets.
* The void *arg is a pointer to the "struct nfssvc_sock".
*/
void
nfsrv_soupcall(struct socket *so, void *arg, int waitflag)
{
struct nfssvc_sock *slp = (struct nfssvc_sock *)arg;
nfsdsock_setbits(slp, SLP_A_NEEDQ);
nfsrv_wakenfsd(slp);
}
void
nfsrv_rcv(struct nfssvc_sock *slp)
{
struct socket *so;
struct mbuf *m;
struct mbuf *mp, *nam;
struct uio auio;
int flags;
int error;
int setflags = 0;
error = nfsdsock_lock(slp, true);
if (error) {
setflags |= SLP_A_NEEDQ;
goto dorecs_unlocked;
}
nfsdsock_clearbits(slp, SLP_A_NEEDQ);
so = slp->ns_so;
if (so->so_type == SOCK_STREAM) {
/*
* Do soreceive().
*/
auio.uio_resid = 1000000000;
/* not need to setup uio_vmspace */
flags = MSG_DONTWAIT;
error = (*so->so_receive)(so, &nam, &auio, &mp, NULL, &flags);
if (error || mp == NULL) {
if (error == EWOULDBLOCK)
setflags |= SLP_A_NEEDQ;
else
setflags |= SLP_A_DISCONN;
goto dorecs;
}
m = mp;
m_claimm(m, &nfs_mowner);
if (slp->ns_rawend) {
slp->ns_rawend->m_next = m;
slp->ns_cc += 1000000000 - auio.uio_resid;
} else {
slp->ns_raw = m;
slp->ns_cc = 1000000000 - auio.uio_resid;
}
while (m->m_next)
m = m->m_next;
slp->ns_rawend = m;
/*
* Now try and parse record(s) out of the raw stream data.
*/
error = nfsrv_getstream(slp, M_WAIT);
if (error) {
if (error == EPERM)
setflags |= SLP_A_DISCONN;
else
setflags |= SLP_A_NEEDQ;
}
} else {
do {
auio.uio_resid = 1000000000;
/* not need to setup uio_vmspace */
flags = MSG_DONTWAIT;
error = (*so->so_receive)(so, &nam, &auio, &mp, NULL,
&flags);
if (mp) {
if (nam) {
m = nam;
m->m_next = mp;
} else
m = mp;
m_claimm(m, &nfs_mowner);
if (slp->ns_recend)
slp->ns_recend->m_nextpkt = m;
else
slp->ns_rec = m;
slp->ns_recend = m;
m->m_nextpkt = (struct mbuf *)0;
}
if (error) {
if ((so->so_proto->pr_flags & PR_CONNREQUIRED)
&& error != EWOULDBLOCK) {
setflags |= SLP_A_DISCONN;
goto dorecs;
}
}
} while (mp);
}
dorecs:
nfsdsock_unlock(slp);
dorecs_unlocked:
if (setflags) {
nfsdsock_setbits(slp, setflags);
}
}
int
nfsdsock_lock(struct nfssvc_sock *slp, bool waitok)
{
mutex_enter(&slp->ns_lock);
while ((~slp->ns_flags & (SLP_BUSY|SLP_VALID)) == 0) {
if (!waitok) {
mutex_exit(&slp->ns_lock);
return EWOULDBLOCK;
}
cv_wait(&slp->ns_cv, &slp->ns_lock);
}
if ((slp->ns_flags & SLP_VALID) == 0) {
mutex_exit(&slp->ns_lock);
return EINVAL;
}
KASSERT((slp->ns_flags & SLP_BUSY) == 0);
slp->ns_flags |= SLP_BUSY;
mutex_exit(&slp->ns_lock);
return 0;
}
void
nfsdsock_unlock(struct nfssvc_sock *slp)
{
mutex_enter(&slp->ns_lock);
KASSERT((slp->ns_flags & SLP_BUSY) != 0);
cv_broadcast(&slp->ns_cv);
slp->ns_flags &= ~SLP_BUSY;
mutex_exit(&slp->ns_lock);
}
int
nfsdsock_drain(struct nfssvc_sock *slp)
{
int error = 0;
mutex_enter(&slp->ns_lock);
if ((slp->ns_flags & SLP_VALID) == 0) {
error = EINVAL;
goto done;
}
slp->ns_flags &= ~SLP_VALID;
while ((slp->ns_flags & SLP_BUSY) != 0) {
cv_wait(&slp->ns_cv, &slp->ns_lock);
}
done:
mutex_exit(&slp->ns_lock);
return error;
}
/*
* Try and extract an RPC request from the mbuf data list received on a
* stream socket. The "waitflag" argument indicates whether or not it
* can sleep.
*/
int
nfsrv_getstream(slp, waitflag)
struct nfssvc_sock *slp;
int waitflag;
{
struct mbuf *m, **mpp;
struct mbuf *recm;
u_int32_t recmark;
int error = 0;
KASSERT((slp->ns_flags & SLP_BUSY) != 0);
for (;;) {
if (slp->ns_reclen == 0) {
if (slp->ns_cc < NFSX_UNSIGNED) {
break;
}
m = slp->ns_raw;
m_copydata(m, 0, NFSX_UNSIGNED, (void *)&recmark);
m_adj(m, NFSX_UNSIGNED);
slp->ns_cc -= NFSX_UNSIGNED;
recmark = ntohl(recmark);
slp->ns_reclen = recmark & ~0x80000000;
if (recmark & 0x80000000)
slp->ns_sflags |= SLP_S_LASTFRAG;
else
slp->ns_sflags &= ~SLP_S_LASTFRAG;
if (slp->ns_reclen > NFS_MAXPACKET) {
error = EPERM;
break;
}
}
/*
* Now get the record part.
*
* Note that slp->ns_reclen may be 0. Linux sometimes
* generates 0-length records.
*/
if (slp->ns_cc == slp->ns_reclen) {
recm = slp->ns_raw;
slp->ns_raw = slp->ns_rawend = (struct mbuf *)0;
slp->ns_cc = slp->ns_reclen = 0;
} else if (slp->ns_cc > slp->ns_reclen) {
recm = slp->ns_raw;
m = m_split(recm, slp->ns_reclen, waitflag);
if (m == NULL) {
error = EWOULDBLOCK;
break;
}
m_claimm(recm, &nfs_mowner);
slp->ns_raw = m;
if (m->m_next == NULL)
slp->ns_rawend = m;
slp->ns_cc -= slp->ns_reclen;
slp->ns_reclen = 0;
} else {
break;
}
/*
* Accumulate the fragments into a record.
*/
mpp = &slp->ns_frag;
while (*mpp)
mpp = &((*mpp)->m_next);
*mpp = recm;
if (slp->ns_sflags & SLP_S_LASTFRAG) {
if (slp->ns_recend)
slp->ns_recend->m_nextpkt = slp->ns_frag;
else
slp->ns_rec = slp->ns_frag;
slp->ns_recend = slp->ns_frag;
slp->ns_frag = NULL;
}
}
return error;
}
/*
* Parse an RPC header.
*/
int
nfsrv_dorec(struct nfssvc_sock *slp, struct nfsd *nfsd,
struct nfsrv_descript **ndp, bool *more)
{
struct mbuf *m, *nam;
struct nfsrv_descript *nd;
int error;
*ndp = NULL;
*more = false;
if (nfsdsock_lock(slp, true)) {
return ENOBUFS;
}
m = slp->ns_rec;
if (m == NULL) {
nfsdsock_unlock(slp);
return ENOBUFS;
}
slp->ns_rec = m->m_nextpkt;
if (slp->ns_rec) {
m->m_nextpkt = NULL;
*more = true;
} else {
slp->ns_recend = NULL;
}
nfsdsock_unlock(slp);
if (m->m_type == MT_SONAME) {
nam = m;
m = m->m_next;
nam->m_next = NULL;
} else
nam = NULL;
nd = nfsdreq_alloc();
nd->nd_md = nd->nd_mrep = m;
nd->nd_nam2 = nam;
nd->nd_dpos = mtod(m, void *);
error = nfs_getreq(nd, nfsd, true);
if (error) {
m_freem(nam);
nfsdreq_free(nd);
return (error);
}
*ndp = nd;
nfsd->nfsd_nd = nd;
return (0);
}
/*
* Search for a sleeping nfsd and wake it up.
* SIDE EFFECT: If none found, set NFSD_CHECKSLP flag, so that one of the
* running nfsds will go look for the work in the nfssvc_sock list.
*/
static void
nfsrv_wakenfsd_locked(struct nfssvc_sock *slp)
{
struct nfsd *nd;
KASSERT(mutex_owned(&nfsd_lock));
if ((slp->ns_flags & SLP_VALID) == 0)
return;
if (slp->ns_gflags & SLP_G_DOREC)
return;
nd = SLIST_FIRST(&nfsd_idle_head);
if (nd) {
SLIST_REMOVE_HEAD(&nfsd_idle_head, nfsd_idle);
if (nd->nfsd_slp)
panic("nfsd wakeup");
slp->ns_sref++;
KASSERT(slp->ns_sref > 0);
nd->nfsd_slp = slp;
cv_signal(&nd->nfsd_cv);
} else {
slp->ns_gflags |= SLP_G_DOREC;
nfsd_head_flag |= NFSD_CHECKSLP;
TAILQ_INSERT_TAIL(&nfssvc_sockpending, slp, ns_pending);
}
}
void
nfsrv_wakenfsd(struct nfssvc_sock *slp)
{
mutex_enter(&nfsd_lock);
nfsrv_wakenfsd_locked(slp);
mutex_exit(&nfsd_lock);
}
int
nfsdsock_sendreply(struct nfssvc_sock *slp, struct nfsrv_descript *nd)
{
int error;
if (nd->nd_mrep != NULL) {
m_freem(nd->nd_mrep);
nd->nd_mrep = NULL;
}
mutex_enter(&slp->ns_lock);
if ((slp->ns_flags & SLP_SENDING) != 0) {
SIMPLEQ_INSERT_TAIL(&slp->ns_sendq, nd, nd_sendq);
mutex_exit(&slp->ns_lock);
return 0;
}
KASSERT(SIMPLEQ_EMPTY(&slp->ns_sendq));
slp->ns_flags |= SLP_SENDING;
mutex_exit(&slp->ns_lock);
again:
error = nfs_send(slp->ns_so, nd->nd_nam2, nd->nd_mreq, NULL, curlwp);
if (nd->nd_nam2) {
m_free(nd->nd_nam2);
}
nfsdreq_free(nd);
mutex_enter(&slp->ns_lock);
KASSERT((slp->ns_flags & SLP_SENDING) != 0);
nd = SIMPLEQ_FIRST(&slp->ns_sendq);
if (nd != NULL) {
SIMPLEQ_REMOVE_HEAD(&slp->ns_sendq, nd_sendq);
mutex_exit(&slp->ns_lock);
goto again;
}
slp->ns_flags &= ~SLP_SENDING;
mutex_exit(&slp->ns_lock);
return error;
}
void
nfsdsock_setbits(struct nfssvc_sock *slp, int bits)
{
mutex_enter(&slp->ns_alock);
slp->ns_aflags |= bits;
mutex_exit(&slp->ns_alock);
}
void
nfsdsock_clearbits(struct nfssvc_sock *slp, int bits)
{
mutex_enter(&slp->ns_alock);
slp->ns_aflags &= ~bits;
mutex_exit(&slp->ns_alock);
}
bool
nfsdsock_testbits(struct nfssvc_sock *slp, int bits)
{
return (slp->ns_aflags & bits);
}
#endif /* NFSSERVER */
#if defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY))
static struct pool nfs_srvdesc_pool;
void
nfsdreq_init(void)
{
pool_init(&nfs_srvdesc_pool, sizeof(struct nfsrv_descript),
0, 0, 0, "nfsrvdescpl", &pool_allocator_nointr, IPL_NONE);
}
struct nfsrv_descript *
nfsdreq_alloc(void)
{
struct nfsrv_descript *nd;
nd = pool_get(&nfs_srvdesc_pool, PR_WAITOK);
nd->nd_cr = NULL;
return nd;
}
void
nfsdreq_free(struct nfsrv_descript *nd)
{
kauth_cred_t cr;
cr = nd->nd_cr;
if (cr != NULL) {
kauth_cred_free(cr);
}
pool_put(&nfs_srvdesc_pool, nd);
}
#endif /* defined(NFSSERVER) || (defined(NFS) && !defined(NFS_V2_ONLY)) */