NetBSD/sys/arch/evbarm/iq80310/iq80310_machdep.c
thorpej 9c31f51c34 Rename map_section() to pmap_map_section(), move it to pmap.c, and give it
an extra argument (prot - specifies protection of the mapping).
2002-02-20 00:10:15 +00:00

915 lines
27 KiB
C

/* $NetBSD: iq80310_machdep.c,v 1.21 2002/02/20 00:10:19 thorpej Exp $ */
/*
* Copyright (c) 2001, 2002 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1997,1998 Mark Brinicombe.
* Copyright (c) 1997,1998 Causality Limited.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Mark Brinicombe
* for the NetBSD Project.
* 4. The name of the company nor the name of the author may be used to
* endorse or promote products derived from this software without specific
* prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Machine dependant functions for kernel setup for Intel IQ80310 evaluation
* boards using RedBoot firmware.
*/
#include "opt_ddb.h"
#include "opt_pmap_debug.h"
#include <sys/param.h>
#include <sys/device.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/exec.h>
#include <sys/proc.h>
#include <sys/msgbuf.h>
#include <sys/reboot.h>
#include <sys/termios.h>
#include <dev/cons.h>
#include <machine/db_machdep.h>
#include <ddb/db_sym.h>
#include <ddb/db_extern.h>
#include <machine/bootconfig.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/frame.h>
#include <arm/undefined.h>
#include <arm/arm32/machdep.h>
#include <arm/xscale/i80312reg.h>
#include <arm/xscale/i80312var.h>
#include <dev/pci/ppbreg.h>
#include <evbarm/iq80310/iq80310reg.h>
#include <evbarm/iq80310/iq80310var.h>
#include <evbarm/iq80310/obiovar.h>
#include "opt_ipkdb.h"
/*
* Address to call from cpu_reset() to reset the machine.
* This is machine architecture dependant as it varies depending
* on where the ROM appears when you turn the MMU off.
*/
u_int cpu_reset_address = 0;
/* Define various stack sizes in pages */
#define IRQ_STACK_SIZE 1
#define ABT_STACK_SIZE 1
#ifdef IPKDB
#define UND_STACK_SIZE 2
#else
#define UND_STACK_SIZE 1
#endif
BootConfig bootconfig; /* Boot config storage */
char *boot_args = NULL;
char *boot_file = NULL;
vm_offset_t physical_start;
vm_offset_t physical_freestart;
vm_offset_t physical_freeend;
vm_offset_t physical_end;
u_int free_pages;
vm_offset_t pagetables_start;
int physmem = 0;
/*int debug_flags;*/
#ifndef PMAP_STATIC_L1S
int max_processes = 64; /* Default number */
#endif /* !PMAP_STATIC_L1S */
/* Physical and virtual addresses for some global pages */
pv_addr_t systempage;
pv_addr_t irqstack;
pv_addr_t undstack;
pv_addr_t abtstack;
pv_addr_t kernelstack;
pv_addr_t minidataclean;
vm_offset_t msgbufphys;
extern u_int data_abort_handler_address;
extern u_int prefetch_abort_handler_address;
extern u_int undefined_handler_address;
#ifdef PMAP_DEBUG
extern int pmap_debug_level;
#endif
#define KERNEL_PT_SYS 0 /* Page table for mapping proc0 zero page */
#define KERNEL_PT_KERNEL 1 /* Page table for mapping kernel */
#define KERNEL_PT_IOPXS 2 /* Page table for mapping i80312 */
#define KERNEL_PT_VMDATA 3 /* Page tables for mapping kernel VM */
#define KERNEL_PT_VMDATA_NUM (KERNEL_VM_SIZE >> (PDSHIFT + 2))
#define NUM_KERNEL_PTS (KERNEL_PT_VMDATA + KERNEL_PT_VMDATA_NUM)
pt_entry_t kernel_pt_table[NUM_KERNEL_PTS];
struct user *proc0paddr;
/* Prototypes */
void consinit(void);
#include "com.h"
#if NCOM > 0
#include <dev/ic/comreg.h>
#include <dev/ic/comvar.h>
#endif
/*
* Define the default console speed for the board. This is generally
* what the firmware provided with the board defaults to.
*/
#ifndef CONSPEED
#if defined(IOP310_TEAMASA_NPWR)
#define CONSPEED B19200
#else /* Default to stock IQ80310 */
#define CONSPEED B115200
#endif /* list of IQ80310-based designs */
#endif /* ! CONSPEED */
#ifndef CONUNIT
#define CONUNIT 0
#endif
#ifndef CONMODE
#define CONMODE ((TTYDEF_CFLAG & ~(CSIZE | CSTOPB | PARENB)) | CS8) /* 8N1 */
#endif
int comcnspeed = CONSPEED;
int comcnmode = CONMODE;
int comcnunit = CONUNIT;
/*
* void cpu_reboot(int howto, char *bootstr)
*
* Reboots the system
*
* Deal with any syncing, unmounting, dumping and shutdown hooks,
* then reset the CPU.
*/
void
cpu_reboot(int howto, char *bootstr)
{
#ifdef DIAGNOSTIC
/* info */
printf("boot: howto=%08x curproc=%p\n", howto, curproc);
#endif
/*
* If we are still cold then hit the air brakes
* and crash to earth fast
*/
if (cold) {
doshutdownhooks();
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
printf("rebooting...\n");
cpu_reset();
/*NOTREACHED*/
}
/* Disable console buffering */
/*
* If RB_NOSYNC was not specified sync the discs.
* Note: Unless cold is set to 1 here, syslogd will die during the
* unmount. It looks like syslogd is getting woken up only to find
* that it cannot page part of the binary in as the filesystem has
* been unmounted.
*/
if (!(howto & RB_NOSYNC))
bootsync();
/* Say NO to interrupts */
splhigh();
/* Do a dump if requested. */
if ((howto & (RB_DUMP | RB_HALT)) == RB_DUMP)
dumpsys();
/* Run any shutdown hooks */
doshutdownhooks();
/* Make sure IRQ's are disabled */
IRQdisable;
if (howto & RB_HALT) {
printf("The operating system has halted.\n");
printf("Please press any key to reboot.\n\n");
cngetc();
}
printf("rebooting...\n");
cpu_reset();
/*NOTREACHED*/
}
/*
* Mapping table for core kernel memory. This memory is mapped at init
* time with section mappings.
*/
struct l1_sec_map {
vaddr_t va;
vaddr_t pa;
vsize_t size;
vm_prot_t prot;
int cache;
} l1_sec_table[] = {
/*
* Map the on-board devices VA == PA so that we can access them
* with the MMU on or off.
*/
{
IQ80310_OBIO_BASE,
IQ80310_OBIO_BASE,
IQ80310_OBIO_SIZE,
VM_PROT_READ|VM_PROT_WRITE,
PTE_NOCACHE,
},
{
0,
0,
0,
0,
0,
}
};
/*
* u_int initarm(...)
*
* Initial entry point on startup. This gets called before main() is
* entered.
* It should be responsible for setting up everything that must be
* in place when main is called.
* This includes
* Taking a copy of the boot configuration structure.
* Initialising the physical console so characters can be printed.
* Setting up page tables for the kernel
* Relocating the kernel to the bottom of physical memory
*/
u_int
initarm(void *arg)
{
extern vaddr_t xscale_cache_clean_addr, xscale_minidata_clean_addr;
extern vsize_t xscale_minidata_clean_size;
int loop;
int loop1;
u_int l1pagetable;
u_int l2pagetable;
extern char page0[], page0_end[];
pv_addr_t kernel_l1pt;
pv_addr_t kernel_ptpt;
paddr_t memstart;
psize_t memsize;
/*
* Clear out the 7-segment display. Whee, the first visual
* indication that we're running kernel code.
*/
iq80310_7seg(' ', ' ');
/*
* Heads up ... Setup the CPU / MMU / TLB functions
*/
if (set_cpufuncs())
panic("cpu not recognized!");
/* Calibrate the delay loop. */
iq80310_calibrate_delay();
/*
* Since we map the on-board devices VA==PA, and the kernel
* is running VA==PA, it's possible for us to initialize
* the console now.
*/
consinit();
/* Talk to the user */
printf("\nNetBSD/evbarm (IQ80310) booting ...\n");
/*
* Reset the secondary PCI bus. RedBoot doesn't stop devices
* on the PCI bus before handing us control, so we have to
* do this.
*
* XXX This is arguably a bug in RedBoot, and doing this reset
* XXX could be problematic in the future if we encounter an
* XXX application where the PPB in the i80312 is used as a
* XXX PPB.
*/
{
uint32_t reg;
printf("Resetting secondary PCI bus...\n");
reg = bus_space_read_4(&obio_bs_tag,
I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL);
bus_space_write_4(&obio_bs_tag,
I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
reg | PPB_BC_SECONDARY_RESET);
delay(10 * 1000); /* 10ms enough? */
bus_space_write_4(&obio_bs_tag,
I80312_PMMR_BASE + I80312_PPB_BASE, PPB_REG_BRIDGECONTROL,
reg);
}
/*
* Okay, RedBoot has provided us with the following memory map:
*
* Physical Address Range Description
* ----------------------- ----------------------------------
* 0x00000000 - 0x00000fff flash Memory
* 0x00001000 - 0x00001fff 80312 Internal Registers
* 0x00002000 - 0x007fffff flash Memory
* 0x00800000 - 0x7fffffff PCI ATU Outbound Direct Window
* 0x80000000 - 0x83ffffff Primary PCI 32-bit Memory
* 0x84000000 - 0x87ffffff Primary PCI 64-bit Memory
* 0x88000000 - 0x8bffffff Secondary PCI 32-bit Memory
* 0x8c000000 - 0x8fffffff Secondary PCI 64-bit Memory
* 0x90000000 - 0x9000ffff Primary PCI IO Space
* 0x90010000 - 0x9001ffff Secondary PCI IO Space
* 0x90020000 - 0x9fffffff Unused
* 0xa0000000 - 0xbfffffff SDRAM
* 0xc0000000 - 0xefffffff Unused
* 0xf0000000 - 0xffffffff 80200 Internal Registers
*
*
* Virtual Address Range C B Description
* ----------------------- - - ----------------------------------
* 0x00000000 - 0x00000fff Y Y SDRAM
* 0x00001000 - 0x00001fff N N 80312 Internal Registers
* 0x00002000 - 0x007fffff Y N flash Memory
* 0x00800000 - 0x7fffffff N N PCI ATU Outbound Direct Window
* 0x80000000 - 0x83ffffff N N Primary PCI 32-bit Memory
* 0x84000000 - 0x87ffffff N N Primary PCI 64-bit Memory
* 0x88000000 - 0x8bffffff N N Secondary PCI 32-bit Memory
* 0x8c000000 - 0x8fffffff N N Secondary PCI 64-bit Memory
* 0x90000000 - 0x9000ffff N N Primary PCI IO Space
* 0x90010000 - 0x9001ffff N N Secondary PCI IO Space
* 0xa0000000 - 0xa0000fff Y N flash
* 0xa0001000 - 0xbfffffff Y Y SDRAM
* 0xc0000000 - 0xcfffffff Y Y Cache Flush Region
* 0xf0000000 - 0xffffffff N N 80200 Internal Registers
*
* The first level page table is at 0xa0004000. There are also
* 2 second-level tables at 0xa0008000 and 0xa0008400.
*
* This corresponds roughly to the physical memory map, i.e.
* we are quite nearly running VA==PA.
*/
/*
* Examine the boot args string for options we need to know about
* now.
*/
#if 0
process_kernel_args((char *)nwbootinfo.bt_args);
#endif
/*
* Fetch the SDRAM start/size from the i80312 SDRAM configration
* registers.
*/
i80312_sdram_bounds(&obio_bs_tag, I80312_PMMR_BASE + I80312_MEM_BASE,
&memstart, &memsize);
printf("initarm: Configuring system ...\n");
/* Fake bootconfig structure for the benefit of pmap.c */
/* XXX must make the memory description h/w independant */
bootconfig.dramblocks = 1;
bootconfig.dram[0].address = memstart;
bootconfig.dram[0].pages = memsize / NBPG;
/*
* Set up the variables that define the availablilty of
* physical memory. For now, we're going to set
* physical_freestart to 0xa0200000 (where the kernel
* was loaded), and allocate the memory we need downwards.
* If we get too close to the page tables that RedBoot
* set up, we will panic. We will update physical_freestart
* and physical_freeend later to reflect what pmap_bootstrap()
* wants to see.
*
* XXX pmap_bootstrap() needs an enema.
*/
physical_start = bootconfig.dram[0].address;
physical_end = physical_start + (bootconfig.dram[0].pages * NBPG);
physical_freestart = 0xa0009000UL;
physical_freeend = 0xa0200000UL;
physmem = (physical_end - physical_start) / NBPG;
/* Tell the user about the memory */
printf("physmemory: %d pages at 0x%08lx -> 0x%08lx\n", physmem,
physical_start, physical_end - 1);
/*
* Okay, the kernel starts 2MB in from the bottom of physical
* memory. We are going to allocate our bootstrap pages downwards
* from there.
*
* We need to allocate some fixed page tables to get the kernel
* going. We allocate one page directory and a number of page
* tables and store the physical addresses in the kernel_pt_table
* array.
*
* The kernel page directory must be on a 16K boundary. The page
* tables must be on 4K bounaries. What we do is allocate the
* page directory on the first 16K boundary that we encounter, and
* the page tables on 4K boundaries otherwise. Since we allocate
* at least 3 L2 page tables, we are guaranteed to encounter at
* least one 16K aligned region.
*/
#ifdef VERBOSE_INIT_ARM
printf("Allocating page tables\n");
#endif
free_pages = (physical_freeend - physical_freestart) / NBPG;
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%08x)\n",
physical_freestart, free_pages, free_pages);
#endif
/* Define a macro to simplify memory allocation */
#define valloc_pages(var, np) \
alloc_pages((var).pv_pa, (np)); \
(var).pv_va = KERNEL_BASE + (var).pv_pa - physical_start;
#define alloc_pages(var, np) \
physical_freeend -= ((np) * NBPG); \
if (physical_freeend < physical_freestart) \
panic("initarm: out of memory"); \
(var) = physical_freeend; \
free_pages -= (np); \
memset((char *)(var), 0, ((np) * NBPG));
loop1 = 0;
kernel_l1pt.pv_pa = 0;
for (loop = 0; loop <= NUM_KERNEL_PTS; ++loop) {
/* Are we 16KB aligned for an L1 ? */
if (((physical_freeend - PD_SIZE) & (PD_SIZE - 1)) == 0
&& kernel_l1pt.pv_pa == 0) {
valloc_pages(kernel_l1pt, PD_SIZE / NBPG);
} else {
alloc_pages(kernel_pt_table[loop1], PT_SIZE / NBPG);
++loop1;
}
}
/* This should never be able to happen but better confirm that. */
if (!kernel_l1pt.pv_pa || (kernel_l1pt.pv_pa & (PD_SIZE-1)) != 0)
panic("initarm: Failed to align the kernel page directory\n");
/*
* Allocate a page for the system page mapped to V0x00000000
* This page will just contain the system vectors and can be
* shared by all processes.
*/
alloc_pages(systempage.pv_pa, 1);
/* Allocate a page for the page table to map kernel page tables. */
valloc_pages(kernel_ptpt, PT_SIZE / NBPG);
/* Allocate stacks for all modes */
valloc_pages(irqstack, IRQ_STACK_SIZE);
valloc_pages(abtstack, ABT_STACK_SIZE);
valloc_pages(undstack, UND_STACK_SIZE);
valloc_pages(kernelstack, UPAGES);
/* Allocate enough pages for cleaning the Mini-Data cache. */
KASSERT(xscale_minidata_clean_size <= NBPG);
valloc_pages(minidataclean, 1);
xscale_minidata_clean_addr = minidataclean.pv_va;
#ifdef VERBOSE_INIT_ARM
printf("IRQ stack: p0x%08lx v0x%08lx\n", irqstack.pv_pa,
irqstack.pv_va);
printf("ABT stack: p0x%08lx v0x%08lx\n", abtstack.pv_pa,
abtstack.pv_va);
printf("UND stack: p0x%08lx v0x%08lx\n", undstack.pv_pa,
undstack.pv_va);
printf("SVC stack: p0x%08lx v0x%08lx\n", kernelstack.pv_pa,
kernelstack.pv_va);
#endif
/*
* XXX Defer this to later so that we can reclaim the memory
* XXX used by the RedBoot page tables.
*/
alloc_pages(msgbufphys, round_page(MSGBUFSIZE) / NBPG);
/*
* Ok we have allocated physical pages for the primary kernel
* page tables
*/
#ifdef VERBOSE_INIT_ARM
printf("Creating L1 page table at 0x%08lx\n", kernel_l1pt.pv_pa);
#endif
/*
* Now we start consturction of the L1 page table
* We start by mapping the L2 page tables into the L1.
* This means that we can replace L1 mappings later on if necessary
*/
l1pagetable = kernel_l1pt.pv_pa;
/* Map the L2 pages tables in the L1 page table */
map_pagetable(l1pagetable, 0x00000000,
kernel_pt_table[KERNEL_PT_SYS]);
map_pagetable(l1pagetable, KERNEL_BASE,
kernel_pt_table[KERNEL_PT_KERNEL]);
map_pagetable(l1pagetable, IQ80310_IOPXS_VBASE,
kernel_pt_table[KERNEL_PT_IOPXS]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
map_pagetable(l1pagetable, KERNEL_VM_BASE + loop * 0x00400000,
kernel_pt_table[KERNEL_PT_VMDATA + loop]);
map_pagetable(l1pagetable, PROCESS_PAGE_TBLS_BASE,
kernel_ptpt.pv_pa);
#ifdef VERBOSE_INIT_ARM
printf("Mapping kernel\n");
#endif
/* Now we fill in the L2 pagetable for the kernel static code/data */
l2pagetable = kernel_pt_table[KERNEL_PT_KERNEL];
{
extern char etext[], _end[];
size_t textsize = (uintptr_t) etext - KERNEL_TEXT_BASE;
size_t totalsize = (uintptr_t) _end - KERNEL_TEXT_BASE;
u_int logical;
textsize = (textsize + PGOFSET) & ~PGOFSET;
totalsize = (totalsize + PGOFSET) & ~PGOFSET;
logical = 0x00200000; /* offset of kernel in RAM */
/*
* This maps the kernel text/data/bss VA==PA.
*/
logical += map_chunk(l1pagetable, l2pagetable,
KERNEL_BASE + logical,
physical_start + logical, textsize,
AP_KRW, PT_CACHEABLE);
logical += map_chunk(l1pagetable, l2pagetable,
KERNEL_BASE + logical,
physical_start + logical, totalsize - textsize,
AP_KRW, PT_CACHEABLE);
#if 0 /* XXX No symbols yet. */
logical += map_chunk(l1pagetable, l2pagetable,
KERNEL_BASE + logical,
physical_start + logical, kernexec->a_syms + sizeof(int)
+ *(u_int *)((int)end + kernexec->a_syms + sizeof(int)),
AP_KRW, PT_CACHEABLE);
#endif
}
#ifdef VERBOSE_INIT_ARM
printf("Constructing L2 page tables\n");
#endif
/* Map the stack pages */
map_chunk(0, l2pagetable, irqstack.pv_va, irqstack.pv_pa,
IRQ_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
map_chunk(0, l2pagetable, abtstack.pv_va, abtstack.pv_pa,
ABT_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
map_chunk(0, l2pagetable, undstack.pv_va, undstack.pv_pa,
UND_STACK_SIZE * NBPG, AP_KRW, PT_CACHEABLE);
map_chunk(0, l2pagetable, kernelstack.pv_va, kernelstack.pv_pa,
UPAGES * NBPG, AP_KRW, PT_CACHEABLE);
map_chunk(0, l2pagetable, kernel_l1pt.pv_va, kernel_l1pt.pv_pa,
PD_SIZE, AP_KRW, 0);
/* Map the Mini-Data cache clean area. */
map_chunk(0, l2pagetable, minidataclean.pv_va, minidataclean.pv_pa,
NBPG, AP_KRW, PT_CACHEABLE);
/* Map the page table that maps the kernel pages */
map_entry_nc(l2pagetable, kernel_ptpt.pv_pa, kernel_ptpt.pv_pa);
/*
* Map entries in the page table used to map PTE's
* Basically every kernel page table gets mapped here
*/
/* The -2 is slightly bogus, it should be -log2(sizeof(pt_entry_t)) */
l2pagetable = kernel_ptpt.pv_pa;
map_entry_nc(l2pagetable, (KERNEL_BASE >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_KERNEL]);
map_entry_nc(l2pagetable, (PROCESS_PAGE_TBLS_BASE >> (PGSHIFT-2)),
kernel_ptpt.pv_pa);
map_entry_nc(l2pagetable, (0x00000000 >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_SYS]);
for (loop = 0; loop < KERNEL_PT_VMDATA_NUM; ++loop)
map_entry_nc(l2pagetable, ((KERNEL_VM_BASE +
(loop * 0x00400000)) >> (PGSHIFT-2)),
kernel_pt_table[KERNEL_PT_VMDATA + loop]);
/*
* Map the system page in the kernel page table for the bottom 1Meg
* of the virtual memory map.
*/
l2pagetable = kernel_pt_table[KERNEL_PT_SYS];
map_entry(l2pagetable, 0x00000000, systempage.pv_pa);
/*
* Map devices we can map w/ section mappings.
*/
loop = 0;
while (l1_sec_table[loop].size) {
vm_size_t sz;
#ifdef VERBOSE_INIT_ARM
printf("%08lx -> %08lx @ %08lx\n", l1_sec_table[loop].pa,
l1_sec_table[loop].pa + l1_sec_table[loop].size - 1,
l1_sec_table[loop].va);
#endif
for (sz = 0; sz < l1_sec_table[loop].size; sz += L1_SEC_SIZE)
pmap_map_section(l1pagetable,
l1_sec_table[loop].va + sz,
l1_sec_table[loop].pa + sz,
l1_sec_table[loop].prot,
l1_sec_table[loop].cache);
++loop;
}
/*
* Map the PCI I/O spaces and i80312 registers. These are too
* small to be mapped w/ section mappings.
*/
l2pagetable = kernel_pt_table[KERNEL_PT_IOPXS];
#ifdef VERBOSE_INIT_ARM
printf("Mapping PIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
I80312_PCI_XLATE_PIOW_BASE,
I80312_PCI_XLATE_PIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
IQ80310_PIOW_VBASE);
#endif
map_chunk(0, l2pagetable, IQ80310_PIOW_VBASE,
I80312_PCI_XLATE_PIOW_BASE, I80312_PCI_XLATE_IOSIZE, AP_KRW, 0);
#ifdef VERBOSE_INIT_ARM
printf("Mapping SIOW 0x%08lx -> 0x%08lx @ 0x%08lx\n",
I80312_PCI_XLATE_SIOW_BASE,
I80312_PCI_XLATE_SIOW_BASE + I80312_PCI_XLATE_IOSIZE - 1,
IQ80310_SIOW_VBASE);
#endif
map_chunk(0, l2pagetable, IQ80310_SIOW_VBASE,
I80312_PCI_XLATE_SIOW_BASE, I80312_PCI_XLATE_IOSIZE, AP_KRW, 0);
#ifdef VERBOSE_INIT_ARM
printf("Mapping 80312 0x%08lx -> 0x%08lx @ 0x%08lx\n",
I80312_PMMR_BASE,
I80312_PMMR_BASE + I80312_PMMR_SIZE - 1,
IQ80310_80312_VBASE);
#endif
map_chunk(0, l2pagetable, IQ80310_80312_VBASE,
I80312_PMMR_BASE, I80312_PMMR_SIZE, AP_KRW, 0);
/*
* Give the XScale global cache clean code an appropriately
* sized chunk of unmapped VA space starting at 0xff000000
* (our device mappings end before this address).
*/
xscale_cache_clean_addr = 0xff000000U;
/*
* Now we have the real page tables in place so we can switch to them.
* Once this is done we will be running with the REAL kernel page
* tables.
*/
/*
* Update the physical_freestart/physical_freeend/free_pages
* variables.
*/
{
extern char _end[];
physical_freestart = (((uintptr_t) _end) + PGOFSET) & ~PGOFSET;
physical_freeend = physical_end;
free_pages = (physical_freeend - physical_freestart) / NBPG;
}
/* Switch tables */
#ifdef VERBOSE_INIT_ARM
printf("freestart = 0x%08lx, free_pages = %d (0x%x)\n",
physical_freestart, free_pages, free_pages);
printf("switching to new L1 page table @%#lx...", kernel_l1pt.pv_pa);
#endif
setttb(kernel_l1pt.pv_pa);
#ifdef VERBOSE_INIT_ARM
printf("done!\n");
#endif
#ifdef VERBOSE_INIT_ARM
printf("bootstrap done.\n");
#endif
/* Right, set up the vectors at the bottom of page 0 */
memcpy((char *)0x00000000, page0, page0_end - page0);
/* We have modified a text page so sync the icache */
cpu_icache_sync_all();
/*
* Pages were allocated during the secondary bootstrap for the
* stacks for different CPU modes.
* We must now set the r13 registers in the different CPU modes to
* point to these stacks.
* Since the ARM stacks use STMFD etc. we must set r13 to the top end
* of the stack memory.
*/
printf("init subsystems: stacks ");
set_stackptr(PSR_IRQ32_MODE, irqstack.pv_va + IRQ_STACK_SIZE * NBPG);
set_stackptr(PSR_ABT32_MODE, abtstack.pv_va + ABT_STACK_SIZE * NBPG);
set_stackptr(PSR_UND32_MODE, undstack.pv_va + UND_STACK_SIZE * NBPG);
/*
* Well we should set a data abort handler.
* Once things get going this will change as we will need a proper
* handler.
* Until then we will use a handler that just panics but tells us
* why.
* Initialisation of the vectors will just panic on a data abort.
* This just fills in a slighly better one.
*/
printf("vectors ");
data_abort_handler_address = (u_int)data_abort_handler;
prefetch_abort_handler_address = (u_int)prefetch_abort_handler;
undefined_handler_address = (u_int)undefinedinstruction_bounce;
/* At last !
* We now have the kernel in physical memory from the bottom upwards.
* Kernel page tables are physically above this.
* The kernel is mapped to KERNEL_TEXT_BASE
* The kernel data PTs will handle the mapping of 0xf1000000-0xf3ffffff
* The page tables are mapped to 0xefc00000
*/
/* Initialise the undefined instruction handlers */
printf("undefined ");
undefined_init();
/* Boot strap pmap telling it where the kernel page table is */
printf("pmap ");
pmap_bootstrap((pd_entry_t *)kernel_l1pt.pv_va, kernel_ptpt);
/* Setup the IRQ system */
printf("irq ");
iq80310_intr_init();
printf("done.\n");
#ifdef IPKDB
/* Initialise ipkdb */
ipkdb_init();
if (boothowto & RB_KDB)
ipkdb_connect(0);
#endif
#ifdef DDB
db_machine_init();
/* Firmware doesn't load symbols. */
ddb_init(0, NULL, NULL);
if (boothowto & RB_KDB)
Debugger();
#endif
/* We return the new stack pointer address */
return(kernelstack.pv_va + USPACE_SVC_STACK_TOP);
}
#if 0
void
process_kernel_args(char *args)
{
static char bootargs[MAX_BOOT_STRING + 1];
boothowto = 0;
/* Make a local copy of the bootargs */
strncpy(bootargs, args, MAX_BOOT_STRING);
args = bootargs;
boot_file = bootargs;
/* Skip the kernel image filename */
while (*args != ' ' && *args != 0)
++args;
if (*args != 0)
*args++ = 0;
while (*args == ' ')
++args;
boot_args = args;
printf("bootfile: %s\n", boot_file);
printf("bootargs: %s\n", boot_args);
parse_mi_bootargs(boot_args);
}
#endif
void
consinit(void)
{
static const bus_addr_t comcnaddrs[] = {
IQ80310_UART2, /* com0 (J9) */
IQ80310_UART1, /* com1 (J10) */
};
static int consinit_called;
if (consinit_called != 0)
return;
consinit_called = 1;
#if NCOM > 0
if (comcnattach(&obio_bs_tag, comcnaddrs[comcnunit], comcnspeed,
COM_FREQ, comcnmode))
panic("can't init serial console @%lx", comcnaddrs[comcnunit]);
#else
panic("serial console @%lx not configured", comcnaddrs[comcnunit]);
#endif
}